
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(2): 5147–5170.
DOI: 10.3934/math.2024250
Received: 13 December 2023
Revised: 08 January 2024
Accepted: 19 January 2024
Published: 25 January 2024

Research article

Some dynamic Hardy-type inequalities with negative parameters on time
scales nabla calculus

Elkhateeb S. Aly1, Y. A. Madani2, F. Gassem2, A. I. Saied3, H. M. Rezk4 and Wael W.
Mohammed2,5,*

1 Department of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142,
Kingdom of Saudi Arabia

2 Department of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
3 Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
4 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
5 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

* Correspondence: Email: wael.mohammed@mans.edu.eg.

Abstract: In this paper, we establish some new dynamic Hardy-type inequalities with negative
parameters on time scales nabla calculus by applying the reverse Hölder’s inequality, integration by
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1. Introduction

In 1920, Hardy [1] proved that

∞∑
τ=1

1
τ

τ∑
k=1

h(k)

ε ≤ (
ε

ε − 1

)ε ∞∑
τ=1

hε(τ), (1.1)

where ε > 1, h(τ) ≥ 0 for τ ≥ 1, and
∑∞
τ=1 hε(τ) < ∞. In 1925, Hardy [2, Theorem A] showed that if

ε > 1, $ ≥ 0 such that
∫ ∞

0
$ε(ξ)dξ < ∞, then $ is integrable over any finite interval (0, ξ), ξ ∈ (0,∞)
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and ∫ ∞

0

(
1
ξ

∫ ξ

0
$(ϑ)dϑ

)ε
dξ ≤

(
ε

ε − 1

)ε ∫ ∞

0
$ε(ξ)dξ. (1.2)

The constant (ε/(ε − 1))ε in (1.1) and (1.2) is the best possible.
In 1927, Hardy and Littlewood [3] proved that if 0 < ε < 1, $(ξ) ≥ 0 for ξ ∈ (0,∞), and∫ ∞

0
$ε(ξ)dξ < ∞, then∫ ∞

0

(
1
ξ

∫ ∞

ξ

$(ϑ)dϑ
)ε

dξ ≥
(

ε

1 − ε

)ε ∫ ∞

0
$ε(ξ)dξ, 0 < ε < 1,

where the constant (ε/ (1 − ε))ε is the best possible.
The Hardy inequalities mentioned above are proved for a positive parameter 0 < ε < 1 and ε > 1.

Also, these inequalities depend on the power rule inequality in case of the positive parameter. So, some
authors discovered new inequalities of Hardy type with negative parameters and noted that they proved
these inequalities with a different technique which depends on the power rule inequality.

For example, in 2007, Bicheng [4] established the integral inequality of Hardy type with negative
parameter and proved that if ε < 0, r > 1, $ (ϑ) ≥ 0, and 0 <

∫ ∞
0
ξ−r (ξ$(ξ))ε dξ < ∞, then∫ ∞

0
ξ−r

(∫ ∞

ξ

$(ϑ)dϑ
)ε

dξ ≤
(

ε

1 − r

)ε ∫ ∞

0
ξ−r (ξ$(ξ))ε dξ, (1.3)

where the constant factor (ε/ (1 − r))ε is the best possible. Also, in [4] it was proved that if ε < 0,
r < 1, $ (ϑ) ≥ 0, and 0 <

∫ ∞
0
ξ−r (ξ$(ξ))ε dξ < ∞, then∫ ∞

0
ξ−r

(∫ ξ

0
$(ϑ)dϑ

)ε
dξ ≤

(
ε

r − 1

)ε ∫ ∞

0
ξ−r (ξ$(ξ))ε dξ, (1.4)

where the constant factor (ε/ (r − 1))ε is the best possible.
In 2020, Benaissa and Sarikaya [5] generalized (1.3), and proved that if ε < 0, r > 1, and $, Ξ > 0

such that the function ξ/Ξ(ξ) is nondecreasing, then∫ ∞

0
Ξ−r(ξ)

(∫ ∞

ξ

$(ϑ)dϑ
)ε

dξ ≤
(

ε

1 − r

)ε ∫ ∞

0
(ξ$(ξ))ε Ξ−r(ξ)dξ, (1.5)

and if ε < 0, 0 ≤ r < 1, and $, Ξ > 0 such that the function ξ/Ξ(ξ) is nonincreasing, then∫ ∞

0
Ξ−r(ξ)

(∫ ξ

0
$(ϑ)dϑ

)ε
dξ ≤

(
ε

r − 1

)ε ∫ ∞

0
(ξ$(ξ))ε Ξ−r(ξ)dξ. (1.6)

Also, the authors of [5] proved that if ε < 0, r < 0, and $, Ξ > 0 such that the function ξ/Ξ(ξ) is
nondecreasing, then∫ ∞

0
Ξ−r(ξ)

(∫ ξ

0
$(ϑ)dϑ

)ε
dξ ≤

(
ε

r − 1

)ε ∫ ∞

0
(ξ$(ξ))ε Ξ−r(ξ)dξ. (1.7)

The time scale T is an arbitrary nonempty closed subset of the real numbers. As an application on
time scales, we can get the continuous and discrete forms of any inequality, i.e., T = R and T = N. For
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more details about the dynamic inequalities on time scales, refer to [6–16], and for the applications of
dynamic inequalities in the study of qualitative behavior of dynamic equations, refer to [17–24]. For
including an exploration of advanced methodologies, we refer to the papers [25, 26].

The objective of this paper is to introduce novel generalizations of the continuous the
inequalities (1.5)–(1.7) on nabla time scales. The proofs of these results rely on employing the
reverse Hölder’s inequality and the chain rule formula adapted to time scales.

This paper is divided into three sections: In Section 2, we present some lemmas on time scales
needed in Section 3 where we prove our results. These results as special cases when T = R give the
inequalities (1.5)–(1.7), while for T = N0, the results are fundamentally original.

2. Preliminaries and basic lemmas

In 2001, Bohner and Peterson [27] introduced the time scale T as an arbitrary nonempty closed
subset of the real numbers R. Also, they defined the backward jump operator by ρ(τ) := sup{s ∈ T :
s < τ}. For any function $ : T → R, the notation $ρ(τ) signifies $(ρ(τ)). The time scale interval
[%, δ]T is defined as [%, δ]T := [%, δ] ∩ T.

Definition 2.1. [28] A function λ : T→ R is left-dense continuous or ld-continuous provided that it
is continuous at left-dense points in T and its right-sided limits exist at right-dense points in T. The
space of ld-continuous functions is denoted by Cld(T, R).

The set Tκ is derived from the time scale T as follows: If T has a left-scattered maximum m, then
Tκ = T − {m} . Otherwise, Tκ = T. In summary,

Tκ =

{
T\

(
ρ
(
supT

)
, supT

]
if supT < ∞,

T if supT = ∞.

Definition 2.2. [28] A function ψ : T→ R is said to be ∇-differentiable at ϑ ∈ Tκ if ψ is defined in
a neighbourhood U of ϑ and there exists a unique real number ψ∇(ϑ), called the nabla derivative of ψ
at ϑ, such that for each ε > 0, there exists a neighbourhood N of ϑ with N ⊆ U and∣∣∣ψ(ρ(ϑ)) − ψ(s) − ψ∇(ϑ)[ρ(ϑ) − s]

∣∣∣ ≤ ε |ρ(ϑ) − s| , ∀s ∈ N.

Theorem 2.1. [28] Assume ψ, Θ : T→ R are nabla differentiable at ϑ ∈ T. Then:

(1) The product ψΘ : T→ R is nabla differentiable at ϑ, and we get the product rule

(ψΘ)∇(ϑ) = ψ∇(ϑ)Θ(ϑ) + ψρ(ϑ)Θ∇(ϑ) = ψ(ϑ)Θ∇(ϑ) + ψ∇(ϑ)Θρ(ϑ).

(2) If Θ(ϑ)Θρ(ϑ) , 0, then ψ/Θ is nabla differentiable at ϑ, and we get the quotient rule(
ψ

Θ

)∇
(ϑ) =

ψ∇(ϑ)Θ(ϑ) − ψ(ϑ)Θ∇(ϑ)
Θ(ϑ)Θρ(ϑ)

.

Lemma 2.1. [29] Let ψ : R→ R be continuously differentiable and suppose that Θ : T→ R is
continuous and nabla differentiable. Then, ψ ◦ Θ : T→ R is nabla differentiable and

(ψ ◦ Θ)∇ (ϑ) = ψ′ (Θ (d)) Θ∇(ϑ), d ∈ [ρ(ϑ), ϑ]. (2.1)
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Definition 2.3. [28] A function Λ : T→ R is called a nabla antiderivative of ψ : T→ R, if Λ∇(ϑ) =

ψ(ϑ) ∀ϑ ∈ T. We then define the nabla integral of ψ by∫ ϑ

%

ψ(s)∇s = Λ(ϑ) − Λ(%), ∀ϑ ∈ T.

Lemma 2.2. [28] If %, δ ∈ T and $, Ξ : T→ R are ld-continuous, then∫ δ

%

$(ϑ)Ξ∇(ϑ)∇ϑ = $(ϑ)Ξ(ϑ)|δ% −
∫ δ

%

$∇(ϑ)Ξρ(ϑ)∇ϑ. (2.2)

Lemma 2.3. [27] If $ ∈ Cld(T, R) and ϑ ∈ T, then∫ ϑ

ρ(ϑ)
$ (ξ)∇ξ = ν (ϑ)$ (ϑ) ,

where ν (ϑ) = ϑ − ρ (ϑ) .

Lemma 2.4. (Reverse Hölder’s inequality [30]) If %, δ ∈ T, α < 0, 1/α+1/β = 1, and φ, ω ∈ Cld([%, δ]T,
R+), then ∫ δ

%

φ(ϑ)ω(ϑ)∇ϑ ≥
[∫ δ

%

φα(ϑ)∇ϑ
] 1
α
[∫ δ

%

ωβ(ϑ)∇ϑ
] 1
β

. (2.3)

3. Main results

In this document, we will make the assumption that the functions are ld-continuous on the
interval [%,∞)T and we also assume the existence of the integrals under consideration. Additionally,
we posit the existence of a positive constant K such that

ρ (ξ) − %
ξ − %

≥
1
K
, ρ (ξ) > %. (3.1)

Now, we can state and prove our results.

Theorem 3.1. Let % ∈ T, ε < 0, ε∗ = ε/ (ε − 1) , r > 1, and$,Ξ ∈ Cld ([%,∞)T,R+) where (ξ − %) /Ξ(ξ)
is nondecreasing. If (3.1) holds, then∫ ∞

%

Ξ−r(ξ)Fε(ξ)∇ξ ≤ C
∫ ∞

%

(ρ (ξ) − %)ε $ε(ξ)Ξ−r(ξ)∇ξ, (3.2)

where F(ξ) =
∫ ∞
ξ
$(ϑ)∇ϑ and

C =


(
ε

1−r

)ε
K

r−1
ε∗ , 1 − r ≤ ε;(

ε
1−r

)ε
Kr, 1 − r ≥ ε.
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Proof. Note that

F(ξ) =

∫ ∞

ξ

$(ϑ)∇ϑ

=

∫ ∞

ξ

(ρ(ϑ) − %)−
1+ε−r
εε∗ (ρ(ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ. (3.3)

Applying Lemma 2.4 to ∫ ∞

ξ

(ρ(ϑ) − %)−
1+ε−r
εε∗ (ρ(ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ,

with
ε < 0, ε∗ = ε/ (ε − 1) , φ(ϑ) = (ρ(ϑ) − %)−

1+ε−r
εε∗ and ω(ϑ) = (ρ(ϑ) − %)

1+ε−r
εε∗ $(ϑ),

we get ∫ ∞

ξ

(ρ(ϑ) − %)−
1+ε−r
εε∗ (ρ(ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ

≥

(∫ ∞

ξ

(ρ(ϑ) − %)−
1+ε−r
ε ∇ϑ

) 1
ε∗

(∫ ∞

ξ

(ρ(ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.4)

Applying (2.1) to (ϑ − %)
r−1
ε , we see that

ε

r − 1

[
(ϑ − %)

r−1
ε

]∇
= (d − %)

r−1−ε
ε , d ∈ [ρ(ϑ), ϑ]. (3.5)

Since ε < 0, r > 1, and d ≥ ρ(ϑ), we have that (r − 1 − ε) /ε < 0 and

(d − %)
r−1−ε
ε ≤ (ρ(ϑ) − %)

r−1−ε
ε . (3.6)

Substituting (3.6) into (3.5), we see that

ε

r − 1

[
(ϑ − %)−

1+ε−r
ε +1

]∇
≤ (ρ(ϑ) − %)

r−1−ε
ε . (3.7)

From (3.7), (note ε < 0 and ε∗ = ε/ (ε − 1) > 0), we observe that∫ ∞

ξ

(ρ(ϑ) − %)−
1+ε−r
ε ∇ϑ

≥
ε

r − 1

∫ ∞

ξ

[
(ϑ − %)−

1+ε−r
ε +1

]∇
∇ϑ

=
ε

r − 1

∫ ∞

ξ

[
(ϑ − %)

r−1
ε

]∇
∇ϑ =

ε

1 − r
(ξ − %)

r−1
ε

and then (∫ ∞

ξ

(ρ(ϑ) − %)−
1+ε−r
ε ∇ϑ

) 1
ε∗

≥

(
ε

1 − r

) 1
ε∗

(ξ − %)
r−1
εε∗ . (3.8)
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Substituting (3.8) into (3.4), we see that∫ ∞

ξ

(ρ(ϑ) − %)−
1+ε−r
εε∗ (ρ(ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ

≥

(
ε

1 − r

) 1
ε∗

(ξ − %)
r−1
εε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.9)

From (3.3) and (3.9), we have for ε < 0 that

Fε(ξ) ≤
(

ε

1 − r

)ε−1
(ξ − %)

r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
. (3.10)

Multiplying (3.10) by Ξ−r(ξ) and then integrating over ξ from % to∞, we get∫ ∞

%

Ξ−r(ξ)Fε(ξ)∇ξ

≤

(
ε

1 − r

)ε−1 ∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ. (3.11)

Applying (2.2) to ∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ,

with

u1(ξ) =

∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ and v∇1 (ξ) = Ξ−r(ξ) (ξ − %)

r−1
ε∗ ,

we have that∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

= v1(ξ)
(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)∣∣∣∣∣∣∞
%

+

∫ ∞

%

(ρ (ξ) − %)
1+ε−r
ε∗ $ε(ξ)vρ1(ξ)∇ξ,

where

v1(ξ) =

∫ ξ

%

Ξ−r(ϑ) (ϑ − %)
r−1
ε∗ ∇ϑ.

Since v1(%) = 0, we observe that∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

=

∫ ∞

%

(ρ (ξ) − %)
1+ε−r
ε∗ $ε(ξ)

[∫ ρ(ξ)

%

Ξ−r(ϑ) (ϑ − %)
r−1
ε∗ ∇ϑ

]
∇ξ

=

∫ ∞

%

(ρ (ξ) − %)
1+ε−r
ε∗ $ε(ξ)

[∫ ρ(ξ)

%

(
ϑ − %

Ξ (ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

]
∇ξ. (3.12)

AIMS Mathematics Volume 9, Issue 2, 5147–5170.



5153

Note that ∫ ρ(ξ)

%

(
ϑ − %

Ξ (ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

=

∫ ξ

%

(
ϑ − %

Ξ (ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ −

∫ ξ

ρ(ξ)

(
ϑ − %

Ξ (ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

=

∫ ξ

%

(
ϑ − %

Ξ (ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ − ν(ξ)

(
ξ − %

Ξ (ξ)

)r

(ξ − %)
r−1
ε∗
−r . (3.13)

Since (ϑ − %) /Ξ (ϑ) is nondecreasing and r > 1, we have for ϑ ≤ ξ that∫ ξ

%

(
ϑ − %

Ξ (ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ ≤

(
ξ − %

Ξ(ξ)

)r ∫ ξ

%

(ϑ − %)
r−1
ε∗
−r
∇ϑ. (3.14)

Substituting (3.14) into (3.13), we observe that∫ ρ(ξ)

%

(
ϑ − %

Ξ (ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

≤

(
ξ − %

Ξ(ξ)

)r ∫ ξ

%

(ϑ − %)
r−1
ε∗
−r
∇ϑ − ν(ξ)

(
ξ − %

Ξ (ξ)

)r

(ξ − %)
r−1
ε∗
−r

=

(
ξ − %

Ξ(ξ)

)r [∫ ξ

%

(ϑ − %)
r−1
ε∗
−r
∇ϑ − ν(ξ) (ξ − %)

r−1
ε∗
−r
]

=

(
ξ − %

Ξ(ξ)

)r (∫ ξ

%

(ϑ − %)
r−1
ε∗
−r
∇ϑ −

∫ ξ

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ

)
=

(
ξ − %

Ξ(ξ)

)r (∫ ρ(ξ)

%

(ϑ − %)
r−1
ε∗
−r
∇ϑ

)
. (3.15)

Substituting (3.15) into (3.12), we have∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤

∫ ∞

%

(ρ (ξ) − %)
1+ε−r
ε∗ (ξ − %)r $ε(ξ)Ξ−r(ξ)

(∫ ρ(ξ)

%

(ϑ − %)
r−1
ε∗
−r
∇ϑ

)
∇ξ. (3.16)

To complete the proof, we have two cases:
Case 1: For 1 − r ≤ ε.

Applying (2.1) to the term (ϑ − %)
r−1
ε∗
−r+1 , we see that

ε

1 − r

(
(ϑ − %)

r−1
ε∗
−r+1

)∇
=

ε

1 − r

(
(ϑ − %)

1−r
ε

)∇
= (d − %)

1−r
ε −1 , (3.17)

where d ∈ [ρ (ϑ) , ϑ]. Since ε < 0 and 1 − r ≤ ε (note (1 − r) /ε − 1 ≥ 0), we have for d ≥ ρ (ϑ) that

(d − %)
1−r
ε −1
≥ (ρ (ϑ) − %)

1−r
ε −1 = (ρ (ϑ) − %)

r−1
ε∗
−r . (3.18)
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From (3.17) and (3.18), we observe that

ε

1 − r

(
(ϑ − %)

r−1
ε∗
−r+1

)∇
≥ (ρ (ϑ) − %)

r−1
ε∗
−r . (3.19)

Integrating (3.19) over ϑ from % to ρ (ξ), since r > 1 and ε < 0, we have that∫ ρ(ξ)

%

(ρ (ϑ) − %)
r−1
ε∗
−r
∇ϑ

≤
ε

1 − r

∫ ρ(ξ)

%

(
(ϑ − %)

r−1
ε∗
−r+1

)∇
∇ϑ =

ε

1 − r

∫ ρ(ξ)

%

(
(ϑ − %)

1−r
ε

)∇
∇ϑ

=
ε

1 − r
(ρ (ξ) − %)

1−r
ε . (3.20)

Using (3.1), since r−1
ε∗
− r = 1−r

ε
− 1 > 0, then (3.16) becomes∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤ K
r−1
ε∗
−r

∫ ∞

%

(ρ (ξ) − %)
1+ε−r
ε∗ (ξ − %)r $ε(ξ)Ξ−r(ξ)

(∫ ρ(ξ)

%

(ρ (ϑ) − %)
r−1
ε∗
−r
∇ϑ

)
∇ξ. (3.21)

Substituting (3.20) into (3.21) and using (3.1), we see that∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤ K
r−1
ε∗
−r

(
ε

1 − r

) ∫ ∞

%

(ρ (ξ) − %)ε
(
ξ − %

ρ (ξ) − %

)r

$ε(ξ)Ξ−r(ξ)∇ξ

≤ K
r−1
ε∗

(
ε

1 − r

) ∫ ∞

%

(ρ (ξ) − %)ε $ε(ξ)Ξ−r(ξ)∇ξ. (3.22)

From (3.11) and (3.22), we see that∫ ∞

%

Ξ−r(ξ)Fε(ξ)∇ξ

≤

(
ε

1 − r

)ε
K

r−1
ε∗

∫ ∞

%

(ρ (ξ) − %)ε $ε(ξ)Ξ−r(ξ)∇ξ,

which is (3.2) with C = (ε/ (1 − r))ε K
r−1
ε∗ .

Case 2: For 1 − r ≥ ε.
Applying (2.1) to (ϑ − %)

1−r
ε , we see that

ε

1 − r

(
(ϑ − %)

1−r
ε

)∇
= (d − %)

1−r
ε −1 , d ∈ [ρ (ϑ) , ϑ]. (3.23)

Since ε < 0, and 1 − r ≥ ε (note that ((1 − r) /ε) − 1 ≤ 0), we have for d ≤ ϑ that

(d − %)
1−r
ε −1
≥ (ϑ − %)

1−r
ε −1 = (ϑ − %)

r−1
ε∗
−r . (3.24)
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From (3.23) and (3.24), we observe that
ε

1 − r

(
(ϑ − %)

1−r
ε

)∇
≥ (ϑ − %)

r−1
ε∗
−r . (3.25)

Integrating (3.25) over ϑ from % to ρ (ξ), we have that∫ ρ(ξ)

%

(ϑ − %)
r−1
ε∗
−r
∇ϑ

≤
ε

1 − r

∫ ρ(ξ)

%

(
(ϑ − %)

1−r
ε

)∇
∇ϑ =

ε

1 − r
(ρ (ξ) − %)

1−r
ε . (3.26)

Substituting (3.26) into (3.16), we observe that∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤

(
ε

1 − r

) ∫ ∞

%

(ρ (ξ) − %)ε $ε(ξ)Ξ−r(ξ)
(
ξ − %

ρ (ξ) − %

)r

∇ξ. (3.27)

Using (3.1), (3.27) then becomes∫ ∞

%

Ξ−r(ξ) (ξ − %)
r−1
ε∗

(∫ ∞

ξ

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤

(
ε

1 − r

)
Kr

∫ ∞

%

(ρ (ξ) − %)ε $ε(ξ)Ξ−r(ξ)∇ξ. (3.28)

From (3.11) and (3.28), we see that∫ ∞

%

Ξ−r(ξ)Fε(ξ)∇ξ ≤
(

ε

1 − r

)ε
Kr

∫ ∞

%

(ρ (ξ) − %)ε $ε(ξ)Ξ−r(ξ)∇ξ,

which is (3.2) with C = (ε/ (1 − r))ε Kr. �

Remark 3.1. In Theorem 3.1, if T = R, and % = 0, then ρ (ξ) = ξ, and we observe that (3.1) holds with
K = 1. Then, we get (1.5), and for Ξ(ξ) = ξ, we get (1.3).

Corollary 3.1. If T = N0, % = 0, and $, Ξ are positive sequences such that τ/Ξ(τ) is nondecreasing,
then

∞∑
τ=1

Ξ−r(τ)

 ∞∑
k=τ+1

$(k)

ε ≤ C
∞∑
τ=2

(τ − 1)ε Ξ−r(τ)$ε(τ),

where

C =


2

r−1
ε∗

(
ε

1−r

)ε
, 1 − r ≤ ε;

2r
(
ε

1−r

)ε
, 1 − r ≥ ε.

Here, we used that for ρ (τ) > %, we have for τ ≥ 2, and

ρ (τ) − %
τ − %

=
τ − 1
τ

= 1 −
1
τ
≥

1
2

and thus inequality (3.1) holds with K = 2.
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Theorem 3.2. Let % ∈ T, ε < 0, 0 ≤ r < 1, and $, Ξ ∈ Cld ([%,∞)T,R+) where (ϑ − %) /Ξ(ϑ) is
nonincreasing. If (3.1) holds, then∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ ≤ D
∫ ∞

%

(ρ (ξ) − %)ε Ξ−r(ξ)$ε(ξ)∇ξ, (3.29)

where Ω(ξ) =
∫ ξ

%
$(ϑ)∇ϑ and

D =


(
ε

r−1

)ε
K

r−1
ε , (r − 1) /ε ≥ 1;

Kr
(
ε

r−1

)ε
, (r − 1) /ε ≤ 1.

Proof. To establish this theorem, we have two cases:
Case 1: For (r − 1) /ε ≥ 1.

Note that

Ω(ξ) =

∫ ξ

%

$(ϑ)∇ϑ

=

∫ ξ

%

(ϑ − %)
r−ε−1
εε∗ (ϑ − %)

1+ε−r
εε∗ $(ϑ)∇ϑ, (3.30)

where ε∗ = ε/(ε − 1). Applying Lemma 2.4 to
∫ ξ

%
(ϑ − %)

r−ε−1
εε∗ (ϑ − %)

1+ε−r
εε∗ $(ϑ)∇ϑ, with

ε < 0, ε∗ = ε/ (ε − 1) , φ(ϑ) = (ϑ − %)
r−ε−1
εε∗ and ω(ϑ) = (ϑ − %)

1+ε−r
εε∗ $(ϑ),

we get ∫ ξ

%

(ϑ − %)
r−ε−1
εε∗ (ϑ − %)

1+ε−r
εε∗ $(ϑ)∇ϑ

≥

(∫ ξ

%

(ϑ − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.31)

From (3.30), and (3.31), we see that

Ω(ξ) ≥
(∫ ξ

%

(ϑ − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.32)

Applying (2.1) to (ϑ − %)
r−1
ε , we observe that

ε

r − 1

[
(ϑ − %)

r−1
ε

]∇
= (d − %)

r−ε−1
ε , (3.33)

where d ∈ [ρ (ϑ) , ϑ]. Since d ≤ ϑ, and (r − 1) /ε ≥ 1, we have from (3.33) that

ε

r − 1

[
(ϑ − %)

r−1
ε

]∇
≤ (ϑ − %)

r−ε−1
ε . (3.34)
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By integrating (3.34) over ϑ from % to ξ, we get∫ ξ

%

(ϑ − %)
r−ε−1
ε ∇ϑ ≥

ε

r − 1

∫ ξ

%

[
(ϑ − %)

r−1
ε

]∇
∇ϑ =

ε

r − 1
(ξ − %)

r−1
ε . (3.35)

Substituting (3.35) into (3.32), since ε∗ > 0, we observe that

Ω(ξ) ≥
(

ε

r − 1

) 1
ε∗

(ξ − %)
r−1
εε∗

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

and then we have for ε < 0, that

Ωε(ξ) ≤
(

ε

r − 1

)ε−1
(ξ − %)

r−1
ε∗

∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ. (3.36)

Multiplying (3.36) with Ξ−r(ξ) and then integrating over ξ from % to∞, we see that∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ

≤

(
ε

r − 1

)ε−1 ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ. (3.37)

Applying (2.2) to ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ,

with

u3(ξ) =

∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ and v∇3 (ξ) = (ξ − %)

r−1
ε∗ Ξ−r(ξ),

we get ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

= v3(ξ)
(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)∣∣∣∣∣∣∞
%

(3.38)

−

∫ ∞

%

vρ3(ξ) (ξ − %)
1+ε−r
ε∗ $ε(ξ)∇ξ,

where

v3(ξ) = −

∫ ∞

ξ

(ϑ − %)
r−1
ε∗ Ξ−r(ϑ)∇ϑ.

Since limξ→∞ v3(ξ) = 0, we have from (3.38) that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ
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=

∫ ∞

%

(ξ − %)
1+ε−r
ε∗ $ε(ξ)

(∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗ Ξ−r(ϑ)∇ϑ

)
∇ξ

=

∫ ∞

%

(ξ − %)
1+ε−r
ε∗ $ε(ξ)

(∫ ∞

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

)
∇ξ. (3.39)

Note that ∫ ∞

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

=

∫ ξ

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ +

∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

= ν (ξ)
(
ξ − %

Ξ(ξ)

)r

(ξ − %)
r−1
ε∗
−r +

∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ. (3.40)

Since (ϑ − %) /Ξ(ϑ) is nonincreasing, 0 ≤ r < 1, and ϑ ≥ ξ, we observe that∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ ≤

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ

and then we have from (3.40) that∫ ∞

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

≤ ν (ξ)
(
ξ − %

Ξ(ξ)

)r

(ξ − %)
r−1
ε∗
−r +

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ

=

(
ξ − %

Ξ(ξ)

)r [∫ ξ

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ +

∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ

]
=

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ. (3.41)

Substituting (3.41) into (3.39), we observe that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤

∫ ∞

%

(ξ − %)
1+ε−r
ε∗ $ε(ξ)

(
ξ − %

Ξ(ξ)

)r (∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ

)
∇ξ. (3.42)

Using (3.23), since (1 − r) /ε < 0 and d ≤ ϑ, we have that

ε

1 − r

[
(ϑ − %)

1−r
ε

]∇
≥ (ϑ − %)

1−r
ε −1 = (ϑ − %)

r−1
ε∗
−r

and then ∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ
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≤
ε

1 − r

∫ ∞

ρ(ξ)

[
(ϑ − %)

1−r
ε

]∇
∇ϑ =

ε

r − 1
(ρ (ξ) − %)

1−r
ε . (3.43)

Substituting (3.43) into (3.42), and then using (3.1), we observe that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤
ε

r − 1

∫ ∞

%

(
ξ − %

ρ (ξ) − %

) r−1
ε

(ξ − %)ε Ξ−r(ξ)$ε(ξ)∇ξ

≤
ε

r − 1
K

r−1
ε

∫ ∞

%

(ξ − %)ε Ξ−r(ξ)$ε(ξ)∇ξ. (3.44)

Substituting (3.44) into (3.37), we see that∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ

≤

(
ε

r − 1

)ε
K

r−1
ε

∫ ∞

%

(ξ − %)ε Ξ−r(ξ)$ε(ξ)∇ξ

≤

(
ε

r − 1

)ε
K

r−1
ε

∫ ∞

%

(ρ (ξ) − %)ε Ξ−r(ξ)$ε(ξ)∇ξ,

which is (3.29) with D = (ε/ (r − 1))ε K
r−1
ε .

Case 2: For (r − 1) /ε ≤ 1.
Note that

Ω(ξ) =

∫ ξ

%

$(ϑ)∇ϑ

=

∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
εε∗ (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ. (3.45)

Applying Lemma 2.4 to the term∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
εε∗ (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ,

with
ε < 0, ε∗ = ε/ (ε − 1) , φ(ϑ) = (ρ (ϑ) − %)

r−ε−1
εε∗ and ω(ϑ) = (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ),

we get ∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
εε∗ (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ

≥

(∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.46)
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From (3.45), and (3.46), we see that

Ω(ξ) ≥
(∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.47)

Using (3.5), since d ≥ ρ (ϑ), and 0 < (r − 1) /ε ≤ 1, we have that

ε

r − 1

[
(ϑ − %)

r−1
ε

]∇
≤ (ρ (ϑ) − %)

r−ε−1
ε

and then ∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
ε ∇ϑ

≥
ε

r − 1

∫ ξ

%

[
(ϑ − %)

r−1
ε

]∇
∇ϑ =

ε

r − 1
(ξ − %)

r−1
ε . (3.48)

Substituting (3.48) into (3.47), we see that

Ω(ξ) ≥
(

ε

r − 1

) 1
ε∗

(ξ − %)
r−1
εε∗

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

and then (note ε < 0)

Ωε(ξ) ≤
(

ε

r − 1

)ε−1
(ξ − %)

r−1
ε∗

∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ. (3.49)

Multiplying (3.49) with Ξ−r(ξ) and then integrating over ξ from % to∞, we observe that∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ

≤

(
ε

r − 1

)ε−1 ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ. (3.50)

Applying (2.2) to ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

with

u4(ξ) =

∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ and v∇4 (ξ) = (ξ − %)

r−1
ε∗ Ξ−r(ξ),

we see that ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

= v4(ξ)
(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)∣∣∣∣∣∣∞
%

(3.51)
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−

∫ ∞

%

vρ4(ξ) (ρ (ξ) − %)
1+ε−r
ε∗ $ε(ξ)∇ξ,

where
v4(ξ) = −

∫ ∞

ξ

(ϑ − %)
r−1
ε∗ Ξ−r(ϑ)∇ϑ.

Since limξ→∞ v4(ξ) = 0, we have from (3.51) that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

=

∫ ∞

%

(∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗ Ξ−r(ϑ)∇ϑ

)
(ρ (ξ) − %)

1+ε−r
ε∗ $ε(ξ)∇ξ

=

∫ ∞

%

(ρ (ξ) − %)
1+ε−r
ε∗ $ε(ξ)

(∫ ∞

ρ(ξ)

[
ϑ − %

Ξ(ϑ)

]r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

)
∇ξ. (3.52)

Using (3.41) and (3.52), we observe that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤

∫ ∞

%

(ρ (ξ) − %)
1+ε−r
ε∗ $ε(ξ)

(
ξ − %

Ξ(ξ)

)r (∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ

)
∇ξ. (3.53)

Using (3.23), since (1 − r) /ε < 0 and d ≤ ϑ, we have that

ε

1 − r

[
(ϑ − %)

1−r
ε

]∇
≥ (ϑ − %)

1−r
ε −1 = (ϑ − %)

r−1
ε∗
−r

and then ∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ

≤
ε

1 − r

∫ ∞

ρ(ξ)

[
(ϑ − %)

1−r
ε

]∇
∇ϑ =

ε

r − 1
(ρ (ξ) − %)

1−r
ε . (3.54)

Substituting (3.54) into (3.53), and then using (3.1), we obtain∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤
ε

r − 1

∫ ∞

%

(
ξ − %

ρ (ξ) − %

)r

Ξ−r(ξ) (ρ (ξ) − %)ε $ε(ξ)∇ξ

≤
ε

r − 1
Kr

∫ ∞

%

Ξ−r(ξ) (ρ (ξ) − %)ε $ε(ξ)∇ξ. (3.55)

Substituting (3.55) into (3.50), we observe that∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ ≤
(

ε

r − 1

)ε
Kr

∫ ∞

%

Ξ−r(ξ) (ρ (ξ) − %)ε $ε(ξ)∇ξ,

which is (3.29) with D = (ε/ (r − 1))ε Kr. �
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Remark 3.2. In Theorem 3.2, if T = R and % = 0, then ρ (ξ) = ξ and we see that (3.1) holds with
K = 1. Then, we get (1.6), and for Ξ (ξ) = ξ, we get (1.4).

Corollary 3.2. If T = N0, % = 0, and $, Ξ are positive sequences such that τ/Ξ(τ) is nonincreasing,
then

∞∑
τ=1

Ξ−r(τ)

 τ∑
k=1

$ (k)

ε ≤ D∗
∞∑
τ=1

(τ − 1)ε Ξ−r(τ)$ε(τ), (3.56)

where

D∗ =


2

r−1
ε

(
ε

r−1

)ε
, (r − 1) /ε ≥ 1;

2r
(
ε

r−1

)ε
, (r − 1) /ε ≤ 1.

Here, inequality (3.1) holds with K = 2.

Theorem 3.3. Assume that % ∈ T, ε < 0, r < 0, and $, Ξ ∈ Cld ([%,∞)T,R+) such that the function
(ϑ − %) /Ξ(ϑ) is nondecreasing. Then,∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ ≤ E
∫ ∞

%

(ρ(ξ) − %)ε Ξ−r(ξ)$ε(ξ)∇ξ, (3.57)

where Ω(ξ) =
∫ ξ

%
$(ϑ)∇ϑ and

E =


(
ε

r−1

)ε
, (r − 1) /ε ≤ 1;(

ε
r−1

)ε
K

r−1
ε , (r − 1) /ε ≥ 1.

Proof. To prove this theorem, we have two cases:
Case 1: For (r − 1) /ε ≤ 1.

Note that

Ω(ξ) =

∫ ξ

%

$(ϑ)∇ϑ =

∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
εε∗ (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ, (3.58)

where ε∗ = ε/(ε − 1). Applying Lemma 2.4 to
∫ ξ

%
(ρ (ϑ) − %)

r−ε−1
εε∗ (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ with

ε < 0, ε∗ = ε/ (ε − 1) , φ(ϑ) = (ρ (ϑ) − %)
r−ε−1
εε∗ , and ω(ϑ) = (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ),

we get ∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
εε∗ (ρ (ϑ) − %)

1+ε−r
εε∗ $(ϑ)∇ϑ

≥

(∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.59)

From (3.58) and (3.59), we see that

Ω(ξ) ≥
(∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.60)
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Using (3.5), since d ≥ ρ (ϑ), and 0 < (r − 1) /ε ≤ 1, we have that

ε

r − 1

[
(ϑ − %)

r−1
ε

]∇
≤ (ρ (ϑ) − %)

r−ε−1
ε

and then ∫ ξ

%

(ρ (ϑ) − %)
r−ε−1
ε ∇ϑ

≥
ε

r − 1

∫ ξ

%

[
(ϑ − %)

r−1
ε

]∇
∇ϑ =

ε

r − 1
(ξ − %)

r−1
ε . (3.61)

Substituting (3.61) into (3.60), since ε∗ > 0, we see that

Ω(ξ) ≥
(

ε

r − 1

) 1
ε∗

(ξ − %)
r−1
εε∗

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

and then (note ε < 0)

Ωε(ξ) ≤
(

ε

r − 1

)ε−1
(ξ − %)

r−1
ε∗

∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ. (3.62)

Multiplying (3.62) with Ξ−r(ξ) and then integrating over ξ from % to∞, we observe that∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ

≤

(
ε

r − 1

)ε−1 ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ. (3.63)

Applying (2.2) to
∫ ∞
%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%
(ρ (ϑ) − %)

1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ, with

u5(ξ) =

∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ and v∇5 (ξ) = (ξ − %)

r−1
ε∗ Ξ−r(ξ),

we see that ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

= v5(ξ)
(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)∣∣∣∣∣∣∞
%

(3.64)

−

∫ ∞

%

vρ5(ξ) (ρ(ξ) − %)
1+ε−r
ε∗ $ε(ξ)∇ξ,

where
v5(ξ) = −

∫ ∞

ξ

(ϑ − %)
r−1
ε∗ Ξ−r(ϑ)∇ϑ.
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Since limξ→∞ v5(ξ) = 0, we have from (3.64) that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

=

∫ ∞

%

(∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗ Ξ−r(ϑ)∇ϑ

)
(ρ(ξ) − %)

1+ε−r
ε∗ $ε(ξ)∇ξ

=

∫ ∞

%

(∫ ∞

ρ(ξ)

[
ϑ − %

Ξ(ϑ)

]r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

)
(ρ(ξ) − %)

1+ε−r
ε∗ $ε(ξ)∇ξ. (3.65)

Since ∫ ∞

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

=

∫ ξ

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ +

∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

= ν (ξ)
(
ξ − %

Ξ(ξ)

)r

(ξ − %)
r−1
ε∗
−r +

∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ. (3.66)

Since (ϑ − %) /Ξ(ϑ) is nondecreasing, r < 0, and ϑ ≥ ξ, we see that∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ ≤

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ.

Substituting the last inequality into (3.66), we get∫ ∞

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

≤

(
ξ − %

Ξ(ξ)

)r [
ν (ξ) (ξ − %)

r−1
ε∗
−r +

∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ

]
=

(
ξ − %

Ξ(ξ)

)r [∫ ξ

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ +

∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ

]
=

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ. (3.67)

Substituting (3.67) into (3.65), we observe that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤

∫ ∞

%

(∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ

)
(ξ − %)r (ρ(ξ) − %)

1+ε−r
ε∗ Ξ−r(ξ)$ε(ξ)∇ξ. (3.68)

Using (3.23), since (1 − r) /ε < 0, and d ≤ ϑ, we have that

ε

1 − r

[
(ϑ − %)

1−r
ε

]∇
≥ (ϑ − %)

1−r
ε −1 = (ϑ − %)

r−1
ε∗
−r
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and then ∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ ≤

ε

1 − r

∫ ∞

ρ(ξ)

[
(ϑ − %)

1−r
ε

]∇
∇ϑ =

ε

r − 1
(ρ (ξ) − %)

1−r
ε . (3.69)

Substituting (3.69) into (3.68), we obtain∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤
ε

r − 1

∫ ∞

%

(
ξ − %

ρ (ξ) − %

)r

(ρ(ξ) − %)ε Ξ−r(ξ)$ε(ξ)∇ξ. (3.70)

Since r < 0, and ξ ≥ ρ (ξ) , inequality (3.70) becomes∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ρ (ϑ) − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤
ε

r − 1

∫ ∞

%

(ρ(ξ) − %)ε Ξ−r(ξ)$ε(ξ)∇ξ. (3.71)

Substituting (3.71) into (3.63), we observe that∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ ≤
(

ε

r − 1

)ε ∫ ∞

%

(ρ(ξ) − %)ε Ξ−r(ξ)$ε(ξ)∇ξ,

which is (3.57) with E = (ε/ (r − 1))ε .
Case 2: For (r − 1) /ε ≥ 1.

Note that

Ω(ξ) =

∫ ξ

%

$(ϑ)∇ϑ =

∫ ξ

%

(ϑ − %)
r−ε−1
εε∗ (ϑ − %)

1+ε−r
εε∗ $(ϑ)∇ϑ. (3.72)

Applying Lemma 2.4 to
∫ ξ

%
(ϑ − %)

r−ε−1
εε∗ (ϑ − %)

1+ε−r
εε∗ $(ϑ)∇ϑ, with

ε < 0, ε∗ = ε/ (ε − 1) , φ(ϑ) = (ϑ − %)
r−ε−1
εε∗ and ω(ϑ) = (ϑ − %)

1+ε−r
εε∗ $(ϑ),

we get ∫ ξ

%

(ϑ − %)
r−ε−1
εε∗ (ϑ − %)

1+ε−r
εε∗ $(ϑ)∇ϑ

≥

(∫ ξ

%

(ϑ − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.73)

From (3.72) and (3.73), we see that

Ω(ξ) ≥
(∫ ξ

%

(ϑ − %)
r−ε−1
ε ∇ϑ

) 1
ε∗

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

. (3.74)

Using (3.5), since d ≤ ϑ and (r − 1) /ε ≥ 1, we have that

ε

r − 1

[
(ϑ − %)

r−1
ε

]∇
≤ (ϑ − %)

r−ε−1
ε . (3.75)
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By integrating (3.75) over ϑ from % to ξ, we get∫ ξ

%

(ϑ − %)
r−ε−1
ε ∇ϑ ≥

ε

r − 1

∫ ξ

%

[
(ϑ − %)

r−1
ε

]∇
∇ϑ =

ε

r − 1
(ξ − %)

r−1
ε . (3.76)

Substituting (3.76) into (3.74), we observe that

Ω(ξ) ≥
(

ε

r − 1

) 1
ε∗

(ξ − %)
r−1
εε∗

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

) 1
ε

and then we have for ε < 0 that

Ωε(ξ) ≤
(

ε

r − 1

)ε−1
(ξ − %)

r−1
ε∗

∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ. (3.77)

Multiplying (3.77) with Ξ−r(ξ) and then integrating over ξ from % to∞, we see that∫ ∞

%

Ξ−r(ξ)Ωε(ξ)∇ξ

≤

(
ε

r − 1

)ε−1 ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ. (3.78)

Applying (2.2) to
∫ ∞
%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%
(ϑ − %)

1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ, with

u6(ξ) =

∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ and v∇6 (ξ) = (ξ − %)

r−1
ε∗ Ξ−r(ξ),

we get ∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

= v6(ξ)
(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)∣∣∣∣∣∣∞
%

(3.79)

−

∫ ∞

%

vρ6(ξ) (ξ − %)
1+ε−r
ε∗ $ε(ξ)∇ξ,

where
v6(ξ) = −

∫ ∞

ξ

(ϑ − %)
r−1
ε∗ Ξ−r(ϑ)∇ϑ.

Since limξ→∞ v6(ξ) = 0, we have from (3.79) that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

=

∫ ∞

%

(∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗ Ξ−r(ϑ)∇ϑ

)
(ξ − %)

1+ε−r
ε∗ $ε(ξ)∇ξ
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=

∫ ∞

%

(∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r

(
ϑ − %

Ξ(ϑ)

)r

∇ϑ

)
(ξ − %)

1+ε−r
ε∗ $ε(ξ)∇ξ. (3.80)

Since (ϑ − %) /Ξ(ϑ) is nondecreasing and r < 0, we have for ϑ ≥ ξ that∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ ≤

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ

and then ∫ ∞

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

=

∫ ξ

ρ(ξ)

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ +

∫ ∞

ξ

(
ϑ − %

Ξ(ϑ)

)r

(ϑ − %)
r−1
ε∗
−r
∇ϑ

≤ ν (ξ)
(
ξ − %

Ξ(ξ)

)r

(ξ − %)
r−1
ε∗
−r +

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ξ

(ϑ − %)
r−1
ε∗
−r
∇ϑ

=

(
ξ − %

Ξ(ξ)

)r ∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ. (3.81)

Substituting (3.81) into (3.80), we see that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤

∫ ∞

%

(∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ

)
(ξ − %)

1+ε−r
ε∗

+r Ξ−r(ξ)$ε(ξ)∇ξ. (3.82)

Using (3.23), since (1 − r) /ε < 0, and d ≤ ϑ, we have that

ε

1 − r

[
(ϑ − %)

1−r
ε

]∇
≥ (ϑ − %)

1−r
ε −1 = (ϑ − %)

r−1
ε∗
−r

and then ∫ ∞

ρ(ξ)
(ϑ − %)

r−1
ε∗
−r
∇ϑ ≤

ε

1 − r

∫ ∞

ρ(ξ)

[
(ϑ − %)

1−r
ε

]∇
∇ϑ =

ε

r − 1
(ρ (ξ) − %)

1−r
ε . (3.83)

Substituting (3.83) into (3.82), we observe that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤
ε

r − 1

∫ ∞

%

(
ξ − %

ρ (ξ) − %

) r−1
ε

(ξ − %)ε Ξ−r(ξ)$ε(ξ)∇ξ

and then we have from (3.1) that∫ ∞

%

(ξ − %)
r−1
ε∗ Ξ−r(ξ)

(∫ ξ

%

(ϑ − %)
1+ε−r
ε∗ $ε(ϑ)∇ϑ

)
∇ξ

≤
ε

r − 1
K

r−1
ε

∫ ∞

%

(ξ − %)ε Ξ−r(ξ)$ε(ξ)∇ξ. (3.84)

Substituting (3.84) into (3.78), we see that
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%

Ξ−r(ξ)Ωε(ξ)∇ξ

≤

(
ε

r − 1

)ε
K

r−1
ε

∫ ∞

%

(ξ − %)ε Ξ−r(ξ)$ε(ξ)∇ξ

≤

(
ε

r − 1

)ε
K

r−1
ε

∫ ∞

%

(ρ(ξ) − %)ε Ξ−r(ξ)$ε(ξ)∇ξ,

which is (3.57) with E = (ε/ (r − 1))ε K
r−1
ε . �

Remark 3.3. In Theorem 3.3, if T = R and % = 0, then ρ (ξ) = ξ and we see that (3.1) holds with
K = 1, and thus we get (1.7). In addition, if Ξ (ξ) = ξ, then we get (1.4).

Corollary 3.3. If T = N0, % = 0, and $, Ξ are positive sequences such that τ/Ξ(τ) is nondecreasing,
then we see that (3.1) holds with K = 2 and then

∞∑
τ=1

Ξ−r(τ)

 τ∑
k=1

$ (k)

ε ≤ E
∞∑
τ=1

(τ − 1)ε Ξ−r(τ)$ε(τ), (3.85)

where

E =


(
ε

r−1

)ε
, (r − 1) /ε ≤ 1;

2
r−1
ε

(
ε

r−1

)ε
, (r − 1) /ε ≥ 1.

4. Conclusions

In this paper, we established some new generalizations of the continuous inequalities on nabla
calculus time scales. These inequalities were proved by employing the reverse Hölder’s inequality and
the chain rule formula adapted to time scales.
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