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1. Introduction

In 1920, Hardy [1] proved that

1« ‘ €\ o .
Z(;;W‘)) <(:5) 2@ (b

=1

where € > 1, h(t) > O for T > 1, and )7, h(7) < oo. In 1925, Hardy [2, Theorem A] showed that if
€ > 1, @ > 0 such that fow we(£)dé < oo, then w is integrable over any finite interval (0, &), € € (0, c0)
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( f w(ﬁ)dﬁ) d§< f o (£)dE. (1.2)

The constant (¢/(e — 1))€ in (1.1) and (1.2) is the best p0551ble.
In 1927, Hardy and Littlewood [3] proved that if 0 < € < 1, w(£é) > 0 for ¢ € (0,0), and

[~ @ (€)dé < oo, then

f ( f w(ﬂ)dﬁ) d§> f @(E)dE, 0<e< 1,

where the constant (¢/ (1 — €))° is the best possible.

The Hardy inequalities mentioned above are proved for a positive parameter 0 < € < 1 and € > 1.
Also, these inequalities depend on the power rule inequality in case of the positive parameter. So, some
authors discovered new inequalities of Hardy type with negative parameters and noted that they proved
these inequalities with a different technique which depends on the power rule inequality.

For example, in 2007, Bicheng [4] established the integral inequality of Hardy type with negative
parameter and proved thatif e < 0,7 > 1, w () > 0, and 0 < fooo E7 (Ew(€)) dE < oo, then

where the constant factor (e/ (1 —r)) is the best possible. Also, in [4] it was proved that if € < 0,
r<l,@ () >0,and 0 < fo"" E7 (Ew(€))E dé < oo, then

and

( f W(ﬂ)dﬂ) d¢ < f & (Em(§)) dé, (1.4)
where the constant factor (e/ (r — 1))€ is the best possible.

In 2020, Benaissa and Sarikaya [5] generalized (1.3), and proved thatif e < 0, r > 1, and @w, E > 0
such that the function £/Z(¢) is nondecreasing, then

f "_’(f)( f W(ﬁ)dﬁ) d§< f @) E(§)d¢, (1.5)

andif e < 0,0 <r < 1, and @, E > 0 such that the function £/Z(¢) is nonincreasing, then

f (&) ( f w(ﬂ)dﬁ) de < (- f (Ew(@) T @)de. (1.6)

Also, the authors of [5] proved that if € < 0, r < 0, and @, & > 0 such that the function £/Z(¢) is
nondecreasing, then

f =) ( f w(ﬂ)dﬂ) ag < (- f Em() = (©)de. (17)

The time scale T is an arbitrary nonempty closed subset of the real numbers. As an application on
time scales, we can get the continuous and discrete forms of any inequality, i.e., T = R and T = N. For
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more details about the dynamic inequalities on time scales, refer to [6—16], and for the applications of
dynamic inequalities in the study of qualitative behavior of dynamic equations, refer to [17-24]. For
including an exploration of advanced methodologies, we refer to the papers [25, 26].

The objective of this paper is to introduce novel generalizations of the continuous the
inequalities (1.5)—(1.7) on nabla time scales. The proofs of these results rely on employing the
reverse Holder’s inequality and the chain rule formula adapted to time scales.

This paper is divided into three sections: In Section 2, we present some lemmas on time scales
needed in Section 3 where we prove our results. These results as special cases when T = R give the
inequalities (1.5)—(1.7), while for T = Ny, the results are fundamentally original.

2. Preliminaries and basic lemmas

In 2001, Bohner and Peterson [27] introduced the time scale T as an arbitrary nonempty closed
subset of the real numbers R. Also, they defined the backward jump operator by p(7) := sup{s € T :
s < 1}. For any function @ : T — R, the notation @”(7) signifies @w(o(7)). The time scale interval
[0, d]7 1s defined as [, 0]t := [0,0] N T.

Definition 2.1. [28] A function A : T — R is left-dense continuous or /d-continuous provided that it
is continuous at left-dense points in T and its right-sided limits exist at right-dense points in T. The
space of ld-continuous functions is denoted by C;(T, R).

The set T* is derived from the time scale T as follows: If T has a left-scattered maximum m, then
T =T — {m}. Otherwise, T = T. In summary,

T« = T\ (o (supT), supT] if supT < oo,
T if supT = oo.

Definition 2.2. [28] A function ¢ : T — R is said to be V-differentiable at ¢ € T* if ¢ is defined in
a neighbourhood U of ¥ and there exists a unique real number /¥ (1#), called the nabla derivative of i
at 1, such that for each € > 0, there exists a neighbourhood N of ¥ with N C U and

(o) — w(s) — ¥  (Dp®) — 5| < €lp@) — 5|, Vs eN.
Theorem 2.1. [28] Assume , ® : T — R are nabla differentiable at & € T. Then:
(1) The product y® : T — R is nabla differentiable at J, and we get the product rule
WO’ @) = ¢ (DHOW) + ¢ (O () = YO () + ¢ (HO ().
(2) If O(HOP(F) # 0, then /O is nabla differentiable at 1}, and we get the quotient rule

(ﬂ)v @) = L DOW) —u()0"®)
©) B OO (F) '

Lemma 2.1. [29] Let  : R — R be continuously differentiable and suppose that ® : T — R is
continuous and nabla differentiable. Then, y o ® : T — R is nabla differentiable and

0 ©)" (@) = ¢ (©(d) O (), d € [p(®), I. 2.1)
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Definition 2.3. [28] A function A : T — R is called a nabla antiderivative of ¢ : T — R, if AV(}) =
Y () V& € T. We then define the nabla integral of by

9
f U(s)Vs = AP — Ap), YO € T.
Y

Lemma 2.2. [28]Ifo,6 € T and w, E : T — R are ld-continuous, then

) )
f w(HE' NV = w(HEWD)|) - f @’ (HE(F)VD. (2.2)
© o

Lemma 2.3. [27]If w € Cy(T, R) and ¥ € T, then

9
w (@ VE=v(Hw @),
Gl
where v(9) =9 —p ().

Lemma 2.4. (Reverse Holder’s inequality [30]) Ifo,0 € T, « < 0, 1/a+1/B = 1,and ¢, w € C;y(|0, O,

R*), then
5 il o g
f(ﬁ(ﬂ)w(ﬁ)Vﬂ > [f ¢“(19)V19] [f wﬁ(ﬂ)Vﬂr. (2.3)
0 Y @

3. Main results

In this document, we will make the assumption that the functions are ld-continuous on the
interval [p, co)r and we also assume the existence of the integrals under consideration. Additionally,
we posit the existence of a positive constant K such that

p@-0 1
(-0 K

Now, we can state and prove our results.

p &) >o. (3.1)

Theorem 3.1. Letp €T, e <0,¢" =€¢/(e—1),r > 1,andw, E € Cyy ([0, )1, R*) where (¢ — ) /E(£)
is nondecreasing. If (3.1) holds, then

f ET@OF@VE<C f (0 (&) —0) T(OET(HVE, (3.2)
4 o

where F(&) = f;" w(9)VY and
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Proof. Note that

F(¢) f ) (VY
3

f (0(9) — o)« (p(®) — 0) " W(H)VI.
3

Applying Lemma 2.4 to

L () — )« (p(d) — )« (W),

with
1+e:

€<0, € =€/(e—1), @) = (p(¥) —0) = and w®) = (p(@) — )« @(®),

we get

1+

< (VI

fg (@) — )"« (p(®) - o)

Z(f (p(@) — o) Vﬁ)g (f (@) - )" T VI .
3 3

Applying (2.1) to (¢ — Q)% , we see that

r=l-€

€ =11V
:[(ﬂ—g)f] :(d_Q) € ,de[p(ﬁ)’ﬁ]

Since € < 0, r > 1, and d > p(#), we have that (r — 1 — €) /e < 0 and

d-0)" <(p@) -0 .
Substituting (3.6) into (3.5), we see that

€
r—1

l+e-r r=1-€

[0 -0 ] < (o) -0+

From (3.7), (note e < 0 and €" = ¢/ (¢ — 1) > 0), we observe that

f (p(® - 0) T VI
13

> rjlf; [(ﬂ—g)’l+?r+l]vvz9

0 —11V r=1
rflfg [(@-07] Vo= ——(-0)"

and then 1

([ v = () e-o

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

AIMS Mathematics Volume 9, Issue 2, 5147-5170.



5152

Substituting (3.8) into (3.4), we see that
f (p(@) = Q)™ (p(®) — 0) & BV
3

> (1%)“@—@)2*'( f @(ﬂ)—g)li‘*"w%mwy.
r £

From (3.3) and (3.9), we have for € < O that

I+e

e-1 - 0 _r
Fe(#) < (ﬁ) -0 ( L (P (@) - 0)F w‘(ﬂ)Vﬁ).

Multiplying (3.10) by E7"(¢) and then integrating over & from o to oo, we get

f = OF (Ve
1%

1 o A Lte=r
<(75) [ oo ([ oo-o v
0 3

-7
Applying (2.2) to
[ =ree-o? ( ff T -0 wf(ﬁ)w}) vé,
with Q .
(@) = L (0 () - 0" ()79 and V() =TT O E -7,
we have that |
fg = E-0F ( ff W) -0 wf(ﬂwﬂ) ve

[Se]

= @) ( f (0@ - 0" wf(ﬁwﬂ)
3

©

where
V(€ = f =(9) (9 - )7 V.
o
Since v;(0) = 0, we observe that

f =@ E-0)F ( f (0@ - 0)"= wf(ﬁwﬁ) Ve
0 3

0 l+e-r p(f) r—1
- f (0 () - 0" o) [ f =79 (9 - 0) Vﬁ] ve
o o

0 l+e-r P({:) 19 - Q g r—1
= f (&) -0 @& [f (H—) -0 Vﬂ] VE.
0 o \EW)

. f 0 - 0" T OV EVE,
%

(3.9)

(3.10)

(3.11)

(3.12)
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Note that

0(£) 9 — r
Qo =l
— (P—p)¢ "V
fg (n(ﬂ)) ¢

(&) 007w [ (550) -0
= d—-p)¢ "VI- 9 - A\
f: (E(ﬂ)) -0 e \E () @-or

(9 -0 sl &-o0 e,
= 0 — V9 - —o0)e ", 1
f:(a(ﬁ))( )7 V(f)( (5))(‘5 0) (3.13)

Since (¢ — o) /E (1#) is nondecreasing and r > 1, we have for J < ¢ that

A
0 - 7_r Vo < — 7_rV19 3.14
f( (ﬁ))( 0 (_@)f( o) 19

Substituting (3.14) into (3.13), we observe that

(&) 9 0
9 - *_’Vﬂ
fg ( (ﬂ))( o)

£-o fﬁ Sy (f Q) _ B
< ( =0 ®—-0)" O\ ) €0
- i;; f W@ -0)T VI - W) (£ - g)]
= L 0
- f{g f @-07 V- | @-07 Vﬁ)
= Y p&)
_o\ [ (r® .
= ‘f_ (5) f & — o) e va) . (3.15)
- Y
Substituting (3.15) into (3.12), we have
f ETE)(E-0)T ( o wf(ﬂw) Vé
&
’ 00 Lees 0(£) -
< (O ( f & - 0)? Vﬂ) ve. (3.16)
Y

To complete the proof, we have two cases:
Case 1: For1 —r <e.
r=1
Applying (2.1) to the term (% — o) "*!, we see that
1-r

< (#-07) =@-0%", (3.17)

—(@-0F ) =+

1
where d € [p () ,%]. Sincee <0and 1 —r < € (note (1 —r) /e — 1 > 0), we have for d > p (:7) that

d=-0) "2 -0 " =@ -0)7". (3.18)
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From (3.17) and (3.18), we observe that

“(@-0" ") 2 e -7,

Integrating (3.19) over ¢ from o to p (£), since r > 1 and € < 0, we have that
0() -
f (@) —0)e "V
0

0(£) i \V 0 (&) 1\
< 15[ 0P v =g [T (0-0%) v

(0@ -07
-r

Using (3.1), since s p—_ % — 1> 0, then (3.16) becomes

€*

f 2@ (E -0 ( f (0 (9) - 0)
o I3

< Kr?*l"f (&) -0
Y

lﬁ”afo%Vﬂ)vg

Substituting (3.20) into (3.21) and using (3.1), we see that

f ET@E-07 ( f (b -0« w%ﬂ)Vﬂ) vé
o £

=l € ~ _ \€ f_Q ' € _=r
s (1_r)fg (0© -0 (p(f _Q)w@_ Ve

IA

IA

K7 (-5 f (0 (&) - 0 TV,
o

1-r

From (3.11) and (3.22), we see that

r

< ()& f (0©) — 0 TOETEVE,
%

[1]

TOF(©VE

1-r

which is (3.2) with C = (¢/ (1 - P)) K= .
Case2: For 1 —r > €.
Applying (2.1) to (¢ — 0) < , we see that

€

1=r\V g
(@-0)F) =@-0", delp@),d.

1-r

Since € < 0, and 1 — r > € (note that ((1 —r) /e) — 1 < 0), we have for d < 9 that

-0 2@-07 ' =@-07".

AIMS Mathematics Volume 9, Issue 2,
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(€ -0 TEET©) ( -0 Vﬁ) VE.
©

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

5147-5170.



5155

From (3.23) and (3.24), we observe that
€

1-r

Integrating (3.25) over ¥ from o to p (£), we have that

0(&) o
f & -0)F VO
%

0 (£) . -
< = [ (@-07) -1 0@-0" (3.26)
o

(#-07) z@-07. (3.25)

1-r 1-r

Substituting (3.26) into (3.16), we observe that

f ETOE-07 ( f (@) -0 wf(ﬂw) vé
o 4

e\ (" e emmrn( € )
- = VE. 2
((5) [ eo-orme© o) ve (327)

Using (3.1), (3.27) then becomes

f ETE)(E -0 ( f @ -0« wf(ﬂw) Vé
0 13

(+=)x f (0 (&) — 0 T(EZ"(EVE. (3.28)
=)&)
From (3.11) and (3.28), we see that
f =@FEvEs (=) K f (0(&) - 0 TOTEVE,
© 0
which is (3.2) with C = (¢/ (1 = r))* K". O

Remark 3.1. In Theorem 3.1, if T = R, and p = 0, then p (£) = &, and we observe that (3.1) holds with
K = 1. Then, we get (1.5), and for E(¢) = &, we get (1.3).

Corollary 3.1. If T = Ny, 0 = 0, and @, E are positive sequences such that T/Z(7) is nondecreasing,

then .
> 5*@)[ > w(k)) <C) (- DE @),
=1 k=1+1 =2
where 1 .
27 (%), 1-r<e
C =
(). 1-r2e
Here, we used that for p (t) > o, we have for T > 2, and
p@M=-0 _7-1_, 1.1
T—0 T T 2

and thus inequality (3.1) holds with K = 2.

AIMS Mathematics Volume 9, Issue 2, 5147-5170.
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Theorem 3.2. Leto € T, € < 0,0 <r < 1, and w, E € Cyy([0,0)r,R") where (9 —0) |Z(D) is

nonincreasing. If (3.1) holds, then
[ =reeevesn [ o@-o=r@oeve
o ©

where Q(&) = [} ¢ ( PV and

( < )GK%, r-1/ex>1;

1
D =

K(5)., @-D/e<l.

Proof. To establish this theorem, we have two cases:

Case l: For(r—1) /e > 1.
fw(ﬁ)Vﬁ
o

Note that
f & - 0)5 (9 - 0)“F BBV,
©

Q&)

where € = €/(e — 1). Applying Lemma 2.4 to [ @ —0) " (& —0) " w(I)VI, with

€<0, € =€/(e—1), ¢@) = —0)« andw®) = (I —p) «

f(ﬂg
= [o-

@ (1),

we get

Ea wf(ﬂ)w) .

« w()VH

) (ff
From (3.30), and (3.31), we see that

Q) > ( f ®—0) " W})e ( f ®-0) & we(ﬂ)Vﬂ)E .
1% %

Applying (2.1) to (¢ - g)% , we observe that

rel

C @-07] =@-0"

r—1
where d € [p (1), 1]. Since d <, and (r — 1) /e > 1, we have from (3.33) that

rel

j[w—m’] <@-0)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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By integrating (3.34) over 9 from p to &, we get

r=1

- =11V €
f(ﬂ 0V o-o7] o= Se-o

1

Substituting (3.35) into (3.32), since €* > 0, we observe that

1

€ fi* r=1 l+e—r € €
Q) > (—) & - o) ( o (ﬂ)Vﬁ)
r—1 0
and then we have for € < 0, that
€ €\ =l €
c©s<(-—=) €-o7 @ (VY.

Multiplying (3.36) with Z7"(£) and then integrating over & from p to co, we see that

f =IO EVE
o

<

Applying (2.2) to
f -7 27 ( f ®-0) ¢ wf(ﬂ)w) Ve,
o Y
with
u3(€) = f @ —0) < @ (VI and v () = (£ — 0) T Z7(&),
1%
we get
f E-oF = ( f(ﬂ)w) ve
= 1(@) ( f ® - 0) " f(ﬂwﬂ)
%
- f 2O E -0 T @VE,
0
where

v3(§) = —f (- Q)%} E (V.
¢

Since lim;_,o, v3(£) = 0, we have from (3.38) that

f E-07 E"(f)(
o ©

o (VY| Ve

<! ” -1 ’ l+e-r
(r f 1 ) f (E—0)7 E7() (f (@ —0) < wf(ﬂ)Vﬁ) \Z3
e 0

(3.35)

(3.36)

(3.37)

(3.38)
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j‘@—@%fwcw w—mﬁaﬂwwﬂvg
o

p&)

* Leer RN 1

-0 @ )(f (, )(19— )< rVﬂ)V-
fg froT e \ E(F) ¢ ¢
L

Note that

Qp

9 —0)e VY
(ﬂ))( o)«

> [

E —_ r —1 00 ﬁ
= f(; :(ﬂ?) (ﬁ—Q)e*"Vz‘}+f ( (ﬁ)) (0 - g)*"Vﬁ
@) \ B =

£-0\ . _ Hher fw(ﬁ ) _o)F Ty
v () E(f))(g 0) + e (P -o0)- 0.

Since (¢ — o) /E(1?) is nonincreasing, 0 < r < 1, and 9 > &, we observe that

" (9 -0 . f =,
0 - V9 - Vo
\g(awﬂ( 2 <(4®) SR

and then we have from (3.40) that

00 19 _ Q)r -,
9 -0V
fp(f) ( E() €
é: © _ ré;*l—r f 1,9 _ 7_,, Vﬂ
@%H@J(S 2 (4@) -

&-o - f . ]
= Vi o Vi
(E@J[ @( QT | @-0F

é- 9)’ .
- | ® - 0)5 " V0.
(5(5) (&) ¢

Substituting (3.41) into (3.39), we observe that

\f @—gﬂfgﬂa(fiﬁ—wffwﬂmVﬂVf

E)
Using (3.23), since (1 — r) /e < 0 and d < 1, we have that

j‘<§ 0 @ <§>(f 9)( a?—gﬂ**Vﬂ)Va
p&)

= |0-07] 20-07" =@-07"

and then

& -0) ="V
p&)

(3.39)

(3.40)

(3.41)

(3.42)
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1-r

< = [ Jo-o T v-Swo-0". (3.43)
pl&) r—1

Substituting (3.43) into (3.42), and then using (3.1), we observe that

f E-0 E7© ( f - )" @ (VD Ve
o o
€

[ £-o0 = .
— o) =T (EWV
< r_lfg (p@_g) (¢ - 0 B O E)VE
< k7 f € - 0 BT @)VE (3.44)
r—1 o

Substituting (3.44) into (3.37), we see that

f = (OQ(E)VE
o

< (S) ks f - O T EVE
Y

r—1

r—1

(=5 )K f (0 (&) - 0) ETOD(EVE,
Y
which is (3.29) with D = (¢/ (r — 1)) K=

Case2: For(r—1)/e < 1.
Note that

Q) = f (VI
o
= f; (0@ —0) % (o) —0) « TVI. (3.45)
Applying Lemma 2.4 to the term
f (P -0 (p(9) —0) & @BV,
with

€<0,€=¢/(e-1), s = (0@ -0« andw®) = (p®) - o) < @®),

we get

f @) -0)= (P -0« @V
1%

> ( f (p(ﬁ)—g)"i”Vﬁ)E ( f (p(ﬁ)—e)’?"wf(ﬂw)g. (3.46)
o 1%

AIMS Mathematics Volume 9, Issue 2, 5147-5170.
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From (3.45), and (3.46), we see that

Q) = (f(p(ﬁ) ~0 Vﬂ)e (f(p(ﬁ) -0 T (VY E- (3.47)
o Y
Using (3.5), since d > p (1), and 0 < (r — 1) /e < 1, we have that

- [w-07] < -0+

and then

f(p(ﬁ)—g)"?l v
1%
€

=11V € r=1
> r_lf[(ﬁ—g)f] Vi=— (-0 . (3.48)
o
Substituting (3.48) into (3.47), we see that
€ EL* r=1 ; lie-r %
2© > (=) €-o? ( f (0@ - )" T @V
©
and then (note € < 0)
€ e-1 r=1 l+e-r
Q9 < (:) -0 f (@) —0) < (VI (3.49)
©

Multiplying (3.49) with Z77(£) and then integrating over & from o to co, we observe that

f =0 VE
o

< (rf 1)6_1 fg -0 E® ( f @) —0) & wf(ﬂ)w) ve. (3.50)
Applying (2.2) to
[ e-o7=e ( f (0@ - )" wf(ﬁwﬂ) ve
with ) :
us(€) = f (p@) —0) < T (VI and V](£) = (£ - )T E7 (),
we see that )

f E-07 7 ® ( f (0@ -0 wf(ﬂwﬁ) ve
% %

= 14(8) ( f @) -0 & wf(mw) (3.51)
Y

©
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@ @)VE,

where

va(@) = f & - o)™ T (@)VD.

Since lim;_, v4(§) = 0, we have from (3.51) that

f -7 = ’(f)( f (0@ -0 wf(ﬁm?)vg

f ( @07 ”"(ﬂ)Vﬂ)(p(f) )" o (¢)Ve
o p(é)

© I+e-r 0 19
f ) -0 < @) (f l ] (- )_rVﬂ) Vé.
0 @ | @)

Using (3.41) and (3.52), we observe that

f E-0P =7 ( f (0@ - 0)=" wf(ﬂ)w) ve

Lier &-p e,
¥ —p) VI VE
< [(wo-0F oo ([ @-o7 )

Using (3.23), since (1 —r) /e < 0 and d < 1%, we have that

€ 1=V 1r_ =1,
[@-07] 20-07 " =@W-0)"7
1-r
and then
@ -0)7 VY
P&
€

a 1-r 1V € 1-r
[ Jo-0%[vo-Se©-0%.
P) r—1

1-r

Substituting (3.54) into (3.53), and then using (3.1), we obtain

f E-oF = )( f (p(ﬂ)—g)'?’wfww)vg
©

E-0 \ -
:‘r _ € € V
< r_lfg (p@ ) © (p©) - 0 T @VE

K f 276 (p (&) - o) T(E)VE.
%

€

r—1

Substituting (3.55) into (3.50), we observe that

[1

[ =reoeves(fx [ =@pe-o e
0 ©

which is (3.29) with D = (¢/ (r — 1)) K".

(3.52)

(3.53)

(3.54)

(3.55)

O
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Remark 3.2. In Theorem 3.2, if T =R and o = 0, then p(£) = £ and we see that (3.1) holds with
K = 1. Then, we get (1.6), and for = (¢) = &, we get (1.4).

Corollary 3.2. If T =Ny, o = 0, and @, E are positive sequences such that T/Z(t) is nonincreasing,

then . ]
D ET@ [Z @ (k)
k=1

=1

€

<D Z (r - D E" (D)@ (1), (3.56)
=1

where 1 .
27 (&), r-D/ex1;
D" =
2(5). r-D/e<l.
Here, inequality (3.1) holds with K = 2.

Theorem 3.3. Assume thato € T, € < 0, r <0, and w, E € Cyy ([0, )1, R*) such that the function
(¢ — 0) /E() is nondecreasing. Then,

f EOQEVESE f (0(é) - 0 E" O O)VE, (3.57)

© ©

where Q(¢) = [ * @)V and

(5). G-Djes<t
E =
(5) K7, -Djex1.

Proof. To prove this theorem, we have two cases:
Case l: For(r—1)/e < 1.
Note that

Q) = f (VI = f P —0)= (p@) —0)« @BV, (3.58)
© %

r—e—1 I+e-r

where €* = €/(e — 1). Applying Lemma 2.4 to fg ¢ (@) —0) < (p(}) —o) < w@®)VI with

1+

€<0, e =€/(e=1), () =@ -0« , and w®) = (p () —0) =& w®),

we get

f @) -0)= (p@ —0) < @)V
Y

> ( f (0 (@) —0)2 Vﬁ)f ( f @) -0 wf(ﬂ)W)é . (3.59)
1% o
From (3.58) and (3.59), we see that
Q) > ( f () —0) < Vﬂ)E ( f @ -0 wf(ﬁ)w)f . (3.60)
o o
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Using (3.5), since d > p (9), and 0 < (r — 1) /e < 1, we have that

- [w-07] < -0

and then

f(p(ﬂ)—g)’i‘ v
Y
€

=11V € r=1
f (@-07] Vo= —E-07. (3.61)
o r—1

2

r—1

Substituting (3.61) into (3.60), since €* > 0, we see that

Q) > (5) -0 ( f 0@ - 0)"F TV
o

and then (note € < 0)

€

el -1 " Le=r
Q&) < (—) E-0)7 f 0 —0)F TV (3.62)
©

r—1

Multiplying (3.62) with Z77(£) and then integrating over & from o to co, we observe that

f =0 VE
©

el © -1 ‘ Lte—r

< ( € ) f E-0)F E7(@) ( f 0@ —0) " wf(ﬂwﬂ) VE. (3.63)
r—1 0 o

Applying (22) to [~ (¢ - )7 E7(&) ( NG R wf(ﬁwﬁ) Ve, with

us(§) = f (p@) —0) < T (VI and V() = (£ - )T E7 (),
©

we see that
fg -0 =T ( f (o) - 0" wf(ﬂ)Vﬂ) ve
= w®) ( f (0@ -0 wf(ﬂm) ) (3.64)
.
- f VO (0® - 0 F T @V,
where

vs(§) = — f - g)%‘ E(9)VD.
¢

AIMS Mathematics Volume 9, Issue 2, 5147-5170.



5164

Since lim;_,, v5(£) = 0, we have from (3.64) that

f E-0 7@ ( f (0 @) - 0)" =" wf(ﬁwﬂ) ve
o ©

f ( ®-0)7 E-rw)w) (0&) - 0) =" w(&)VE
o

p©)

f ( f [11_ 9 ] @ 0)™ Vﬁ) (&) - ) T E)VE. (3.65)
0 oo | E()

(&

°° ﬂ—g)r 1
@ —0)Z " Vo
fp@ ()

~ ﬂ—g)r sl “(9-o0) el
= g ’V’“f (" )(ﬁ— )T VY
f@ () ¢ : \E®) "¢

- " r=1 0 19_ " r=1
- vt Q) -0+ f (-——Q) & -0)7 Vo, (3.66)
¢

Since

Since (1 — o) /E() is nondecreasing, r < 0, and ¥ > &, we see that

© ﬁ_Q ' [ é:_g)rfm =l
9 —p)e VI < 9 —p)e V.
L (E(ﬁ))( 0) <(E(§) i (-0)

Substituting the last inequality into (3.66), we get

« ﬂ—Q)r =1
— (P—o0)c "V
[0(5)(5(’9)

g_Q ' _ ':71—7' foo ﬁ_ ':71—}’ Vﬁ]
< (55 [V(f)@ 07+ | -0
- £-0 r[ =y foo =l ]
= (= @ -0 Vo+ | @ -0V
2@ ) | e ¢ .
E-o\ ™ =
= (=== (9 —0)e V. (3.67)
E@)) Jyo . ©

Substituting (3.67) into (3.65), we observe that
[ e-o7=zv@ ( f (o) - 0)* wf(ﬂwﬁ) vé
0 0
< f ( " @ -0 Vﬂ) €~ 0) (0 —0) & ET@OT(E)VE. (3.63)
0 o

Using (3.23), since (1 — r) /e < 0, and d < 19, we have that

€ [(ﬂ—g)%]v > (- 0)E = (9 — o)

1-r
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and then

(ﬁ _ Q re—*l _ 1
1263 I Jp@)
Substituting (3.69) into (3.68), we obtain

f E-oF = )( f (p(ﬂ)—g)‘?rwfwwﬂ)véf
©

f Q ' € ™——r €
- = w (E)VE.
< r—1fg (p @ - )(p(§) 0) (T (EVE

(0-0%] v =

Since r < 0, and ¢ > p (€), inequality (3.70) becomes

f €07 E—’@)( f (0@ - )" f(ﬁ)Vﬁ) ve
o
E 00

FET(OT(HVE.

<

Substituting (3.71) into (3.63), we observe that
f O @V s f (0(&) - 0 E7 (O TV,
%
which is (3.57) with E = (¢/ (r - 1))°.

Case2: For(r—1)/e> 1.
Note that

Q&) = f (VI = f @ -0) & (9-0) = BBV,
© ©

Applying Lemma 2.4 to [ CW—0) e (9 —0)“ @)V, with

€<0, e =¢/(e=1), () =@ -0« andw® =@ -0) '« w(®),

we get

f @ -0)F (9-0) < @@V

( f (- Q)w) ( f - 0)"F w(ﬂ)Vﬁ).

From (3.72) and (3.73), we see that

Q(g)z(f(ﬁ—g)’i‘ Vﬁ)e (f(ﬂ—g)”é’ wf(ﬁ)Vﬂ)e.
o o

Using (3.5), since d < ¢ and (r — 1) /e > 1, we have that

= |w-07| s@-0.

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)
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By integrating (3.75) over ¥ from p to &, we get

f(ﬁ—g)”ﬁwz - f[(ﬁ—g)’e‘]vw= — -0
o r—1J, r—1

Substituting (3.76) into (3.74), we observe that

1

2© 2 () €-o? ( f ®-0) " wf(z?)w)E
o
and then we have for € < 0 that
€ e-1 r—1 l+e-r
c©s<(-=) ¢-o7 f @ -0 T @)V,
0

Multiplying (3.77) with Z7"(£) and then integrating over & from o to co, we see that

f =IO OVE
o

e—1 00 1 ° I+e-r
<(—=) f E-7 =7 ( f & -0 wf(ﬂ)W) VE.
r—1 o 0

Applying (22) to [~ (¢ - )7 E7(&) ( [fw-o wf(ﬂ)w) V&, with

us(£) = f ®—0) & @(W)VO and v (€) = (€ - 0) T E7(&),
1%

we get
f -0 =@ ( f ® - 0)"F wf(ﬁwﬂ) ve
Y o
= V(&) ( f W@-0) wf(ﬁwﬁ)
e 0
- f VO (€ - o) @)V,
%
where

ve(§) = — f - g)%‘ = (9)VD.
3

Since lim;_,, v6(§) = 0, we have from (3.79) that

f E-07 =7 ( f & 0)F wf(ﬂw) ve
o %

- f ( ®—-0) E"(ﬁ)Vﬂ) -0 & TE)VE
o

o)

(3.76)

(3.77)

(3.78)

(3.79)
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0 0 r=1 19 - " l+e-r
- f ( w—Q)s*-r( - ) w) & - 0) " T (E)VE.
o \Jp® ()

Since (1 — o) /E(#) is nondecreasing and r < 0, we have for 9 > £ that

- ﬂ_Q ' =l f =y
P—0)¢ "V < ) — V9
L (E(ﬂ)) @-e) (45)) @ - o)

)9} (9 0)F V9
fp(f) ) ) ¢
| ﬁ_Q r %_r foo(ﬂ ) 7_"
= ’ﬁ— € V’ﬂ 19‘— V'ﬂ
L;E())( 0) <), 5 @-o

—0 ' ——r ——r
- 9 — Vi
7 E(f)) c-or (u@)f @=o<

é— Q)r =i,
— (& —0) " V.
( (&) ) Jpe ¢

Substituting (3.81) into (3.80), we see that

f E- 0™ E7@) ( f - 0)"F wf(ﬁwﬁ) ve

o

< f ( f - 0)7" ’Vﬂ)@f 0 E T E @O Ve,
0 p&)

Using (3.23), since (1 —r) /e < 0, and d < 1}, we have that

and then

Qo

N

[x

S
)

IA

-7 20-0" " =@-07
1-r

and then

(ﬁ _ Q rE—*I
o) I Jp®
Substituting (3.83) into (3.82), we observe that

f E-0F T ( f - mw(ﬂwﬂ)vs
©

“( E-0 \" —_
€ r € V
< r_lfg (p(f)_g) (¢~ 0 T O (Ve

and then we have from (3.1) that

f - g)"’(g)( f - g)w(ﬁw) ve

< “ f -0 ET(@w(HVE.

Substituting (3.84) into (3.78), we see that

[(0-07] Vo=~ (p©-07.

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

AIMS Mathematics Volume 9, Issue 2, 5147-5170.



5168

f = (OQE)Ve
1%

(<) &% f (€ — 0 BT O ()VE
r—1 0

IA

(=) &= f (0(&) - 0 ET (T (E)VE,
r—1 0
which is (3.57) with E = (¢/ (r — 1))¢ K%l. O

Remark 3.3. In Theorem 3.3, if T =R and o = 0, then p(£) = ¢ and we see that (3.1) holds with
K =1, and thus we get (1.7). In addition, if Z (£) = &, then we get (1.4).

Corollary 3.3. If T = Ny, 0 = 0, and @, E are positive sequences such that T/2(7) is nondecreasing,
then we see that (3.1) holds with K = 2 and then

R [Z @ (k)
=1 k=1

(L)E, (r—=1/e<1;

r—1

<E Z (t - DS E" (D@ (1), (3.85)
=1
where

E =
2*(—) (r—1)/e>1.

r—1
4. Conclusions
In this paper, we established some new generalizations of the continuous inequalities on nabla
calculus time scales. These inequalities were proved by employing the reverse Holder’s inequality and
the chain rule formula adapted to time scales.
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