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1. Introduction

A quasinorm ∥·∥ is a weaker notion of a norm in the sense that it is positive definite and absolutely
homogeneous, but only satisfies a relaxed version of the triangle inequality,

∥x + y∥ ≤ K
(
∥x∥ + ∥y∥

)
for some constant K ≥ 1. The most widely used quasinorm is a p-quasinorm ∥u∥p =

(∑n
i=1 |ui|

p ) 1
p

for 0 < p < 1 and u ∈ Rn. p-quasinorms have been successfully applied in low-rank minimization
problems such as low-rank matrix recovery problems, recommendation system, and robust principal
component analysis, to name a few. For more details, we refer to [10] and references therein.

Going beyond Euclidean spaces, one prevalent choice of a (quasi)norm for matrices is the so-called
Schatten p-(quasi)norm, defined by the p-(quasi)norm of the singular values. It is well known that it is
a norm when 1 ≤ p ≤ ∞ and a quasinorm when 0 < p < 1. In particular, for A ∈ Sn, where Sn is the
space of n × n real symmetric matrices, we have

∥|A|∥p = ∥λ(A)∥p .

Here, λ(A) denotes the vector in Rn whose entries are the eigenvalues of A, arranged in nonincreasing
order.
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Recently, Huang-Chen-Hu [7] introduced Schatten p-(quasi)norms on Rn and on the Jordan spin
algebra Ln, then investigated how these two (quasi)norms are related. Realizing that Sn, Rn, and Ln

are all particular instances of (simple) Euclidean Jordan algebras, where each element x in a Euclidean
Jordan algebraV can be associated with its corresponding eigenvalue vector λ(x), Huang-Chen-Hu [7,
Conjecture 1] conjectured whether the following functional x ∈ V 7→ ∥λ(x)∥p for 0 < p < 1 is indeed
a quasinorm for general Euclidean Jordan algebras. In this manuscript, we give an affirmative answer
to their conjecture by proving the following theorem.

Theorem 1.1. LetV be any Euclidean Jordan algebra of rank n. For 0 < p < 1, the functional

x 7→ ∥|x|∥p = ∥λ(x)∥p =
[ n∑

i=1

|λi(x)|p
] 1

p

is a quasinorm onV.

The rest of the paper is organized as follows: Section 2 provides necessary definitions and properties
of Euclidean Jordan algebras. We derive a proof of Theorem 1.1 in Section 3 and conclude the paper
with some conjectures in Section 4.

2. Preliminary

Throughout the manuscript, Rn denotes the n-dimensional Euclidean space and Rn
+ is the

nonnegative orthant in Rn. When n = 1, we omit the superscript and simply write R and R+. For
u = (u1, . . . , un) ∈ Rn, we write u ≥ 0 in Rn if ui ≥ 0 for all i or, equivalently, u ∈ Rn

+. We write
u↓ = (u↓1, . . . , u

↓
n) ∈ Rn for the vector obtained by rearranging the entries of u in nonincreasing order.

For any function f : R → R, we define f (u) =
(
f (u1), . . . , f (un)

)
; in particular, |u| =

(
|u1| , . . . , |un|

)
.

2.1. Euclidean Jordan algebras

A triple (V, ◦, ⟨·, ·⟩) is called a Euclidean Jordan algebra if a finite dimensional inner product
space (V, ⟨·, ·⟩) is equipped with the Jordan product ◦ satisfying commutativity, Jordan identity, and
associativity with the inherited inner product. We refer [1] for detailed definitions and properties of
Euclidean Jordan algebras. Throughout the manuscript,V denotes a Euclidean Jordan algebra of rank
n with the unit element e. The symmetric cone V+ of V is the cone of square elements, i.e.,
V+ = {x ◦ x : x ∈ V}. We write x ≥ y provided that x − y ∈ V+.

A Euclidean Jordan algebra is said to be simple if it cannot be written as the direct product of
nonzero Euclidean Jordan algebras. A classification theorem [1, Corollary IV.1.5 and Theorem V.3.7]
says that every nonzero Euclidean Jordan algebra is the direct product of simple Euclidean Jordan
algebras, and each of simple Euclidean Jordan algebras is isomorphic to one of the five algebras given
below.

- The algebras Sn, Hn, and Qn of n × n real symmetric, complex Hermitian, and quaternion
Hermitian matrices, respectively. In these three matrix algebras, the Jordan product and the inner
product are defined, respectively, by X ◦ Y = 1

2 (XY + YX) and (the real part of) tr(XY).
- The algebra O3 of 3×3 octonion Hermitian matrices, with the Jordan product X ◦Y = 1

2 (XY+YX)
and the inner product defined by the real part of tr(XY).
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- The Jordan spin algebra Ln for n ≥ 3. (Definition is given in Example 2.2 below.)

An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it is nonzero and cannot
be written as the sum of two nonzero idempotents. A set {e1, . . . , en} of primitive idempotents in V is
a Jordan frame if

ei ◦ e j = 0 when i , j and
n∑

i=1

ei = e.

The (complete) spectral decomposition theorem [1, Theorem III.1.2] asserts that, for every x ∈ V,
there exist uniquely determined real numbers λ1(x) ≥ · · · ≥ λn(x) and a Jordan frame {e1, . . . , en} such
that

x = λ1(x)e1 + · · · + λn(x)en.

These real numbers λ1(x), . . . , λn(x) are called the eigenvalues of x. We define the eigenvalue map
λ : V → Rn by λ(x) =

(
λ1(x), . . . , λn(x)

)
; thus, λ(x) is a vector in Rn consisting of the eigenvalues of x

written in nonincreasing order.
A linear map ϕ : V → V is called an algebra automorphism if it is invertible and satisfies

ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y)

for all x, y ∈ V. The set of all algebra automorphisms of V is denoted by Aut(V). It is known [1,
Theorem IV.2.5] that algebra automorphisms preserve eigenvalues, that is, λ(ϕ(x)) = λ(x) for all x ∈ V
and ϕ ∈ Aut(V).

For 0 < p < ∞, we define a functional ∥|·|∥p : V → R by

x 7→ ∥|x|∥p := ∥λ(x)∥p =
[ n∑

i=1

|λi(x)|p
] 1

p

(2.1)

and ∥|x|∥∞ := ∥λ(x)∥∞ = maxi |λi(x)|. It is easy to see that the above is positive definite and absolute
homogeneous. Moreover, when 1 ≤ p ≤ ∞, it also satisfies the triangle
inequality [12, Theorem 4.1; 8, Example 6], i.e.,

∥|x + y|∥p ≤ ∥|x|∥p + ∥|y|∥p.

This norm is referred to as the Schatten p-norm (also, the terms such as the spectral p-norm or trace
p-norm are often used in the literature). We refer [3, 5, 8, 12] for resent works on the Schatten p-norm
on Euclidean Jordan algebras.

Here, we list two examples of the Schatten p-(quasi)norm defined on Rn.

Example 2.1. The n-dimensional Euclidean space Rn can be made into a (non-simple) Euclidean
Jordan algebra by imposing the Jordan product as the component-wise product. In this algebra, the
eigenvalues of u ∈ Rn are nothing but the entries of u. Hence, the functional (2.1) is reduced to the
standard p-(quasi)norm.

Example 2.2. The Jordan spin algebra Ln for n ≥ 3 is an n-dimensional Euclidean space equipped
with the Jordan product defined as follows: For a vector z ∈ Rn, we write z = (z1, z̄), where z1 ∈ R

and z̄ ∈ Rn−1. For x = (x1, x̄) and y = (y1, ȳ), the Jordan product is defined by

(x1, x̄) ◦ (y1, ȳ) = (x1y1 + ⟨x̄, ȳ⟩ , y1 x̄ + x1ȳ).
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For n ≥ 3, the Jordan spin algebra Ln has rank 2 and the eigenvalues of x = (x1, x̄) in Ln are x1 ± ∥x̄∥.
Hence, in this algebra, the functional (2.1) simplifies to

∥|x|∥ =
(∣∣∣x1 + ∥x̄∥

∣∣∣p + ∣∣∣x1 − ∥x̄∥
∣∣∣p) 1

p
.

It has been observed in [7, Theorem 3.7] that the above functional satisfies

∥|x + y|∥p ≤ 2
1
p−1

(
∥|x|∥p + ∥|y|∥p

)
for 0 < p < 1 and x, y ∈ Ln. Hence, it is a quasinorm.

2.2. Majorization

For two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn, we say that u is weakly majorized by v
and write u ≺w v, provided

k∑
i=1

u↓i ≤
k∑

i=1

v↓i

for all 1 ≤ k ≤ n. Additionally, if the inequality above becomes an equality for k = n, then we say that
u is majorized by v and write u ≺ v. An n × n real matrix D is called doubly stochastic if all the entries
are nonnegative and each row and column sums to 1.

We collect some properties of (weak) majorization, which will be used frequently in the sequel.
Proofs can be found in [11, 15].

Proposition 2.1. For vectors u, v ∈ Rn, the following hold:

(a) u ≺ v if, and only if, u = Dv for some n × n doubly stochastic matrix D.
(b) For any convex function f : R → R, u ≺ v implies f (u) ≺w f (v).
(c) In particular, if u ≺ v, then |u| ≺w |v|.

The concepts of (weak) majorization can be naturally generalized to Euclidean Jordan algebras via
the eigenvalue map. For x, y ∈ V, we say that x is majorized (weakly majorized) by y onV and write
x ≺ y (x ≺w y) if λ(x) ≺ λ(y) (λ(x) ≺w λ(y)) on Rn. Various inequalities in the setting of Euclidean
Jordan algebras have been obtained/generalized with an aid of (weak) majorization; see [2,6,9,12,14].

3. Schatten p-quasinorm on Euclidean Jordan algebras

We start with the following elementary result on p-quasinorm on Rn.

Lemma 3.1. For u = (u1, . . . , un) ∈ Rn
+ and 0 < p < 1, we have

∥u∥1 ≤ ∥u∥p ≤ n
1
p−1
∥u∥1 .

Proposition 3.1. LetV be any Euclidean Jordan algebra of rank n, then

∥|x + y|∥p ≤ n
1
p−1

(
∥|x|∥p + ∥|y|∥p

)
for 0 < p < 1 and x, y ∈ V.
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Proof. Note that, for any x, y ∈ V, we have λ(x + y) ≺ λ(x) + λ(y) by [4, Theorem 4.5], which
implies |λ(x + y)| ≺w |λ(x) + λ(y)|. It follows that

n∑
i=1

|λi(x + y)| ≤
n∑

i=1

|λi(x) + λi(y)| ≤
n∑

i=1

|λi(x)| + |λi(y)| . (3.1)

Therefore, for any 0 < p < 1, we have

∥|x + y|∥p =
[ n∑

i=1

|λi(x + y)|p
] 1

p

≤ n
1
p−1

n∑
i=1

|λi(x + y)|

≤ n
1
p−1

n∑
i=1

|λi(x)| + |λi(y)|

≤ n
1
p−1

[ n∑
i=1

|λi(x)|p
] 1

p

+

[ n∑
i=1

|λi(y)|p
] 1

p


= n

1
p−1

(
∥|x|∥p + ∥|y|∥p

)
,

where the first and the last inequalities are due to Lemma 3.1 and the second inequality is by (3.1).
This completes the proof.

Hence, the above proposition alone already gives an answer to the conjecture raised by Huang-
Chen-Hu [7] in the affirmative. The subsequent part of this section is devoted to proving that the
optimal quasinorm constant K is indeed 2

1
p−1 for any Euclidean Jordan algebras of rank n ≥ 2.

The first lemma extends Thompson’s matrix triangle inequality to Euclidean Jordan algebras. The
second lemma is a generalization of well-known majorization relation on Rn to Euclidean Jordan
algebras.

Lemma 3.2. Let V be any Euclidean Jordan algebra, then for a, b ∈ V, there exist ϕ, ψ ∈ Aut(V)
such that

|a + b| ≤ ϕ(|a|) + ψ(|b|). (3.2)

Proof. It was originally proved by Tao-Kong-Luo-Kiu in [12, Theorem 3.1] for simple Euclidean
Jordan algebras by case-by-case analysis. Later, the first author extended the result to general
Euclidean Jordan algebra in [13, Theorem 3.2] and gave a direct proof.

Lemma 3.3. LetV be any Euclidean Jordan algebra of rank n. For x, y ∈ V+, we have[
λ(x)
λ(y)

]
≺

[
λ(x + y)

0

]
. (3.3)

Proof. The lemma has been shown in [12, Theorem 5.1] when V is simple. For non-simple V, for
simplicity we assume V = V1 × V2, where V1 and V2 are simple algebras of rank n1 and n2,
respectively (hence, n = n1 + n2). Recall that for any z = (z1, z2) ∈ V1 × V2, the eigenvalues of z
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consist of the eigenvalues of z1 and z2 in some order. Thus, for given x = (x1, x2), y = (y1, y2), where
xi, yi ∈ Vi for i = 1, 2, there exist permutation matrices σ1, σ2, σ3 ∈ Σn such that

λ

([
x1

x2

])
= σ1

[
λ(x1)
λ(x2)

]
, λ

([
y1

y2

])
= σ2

[
λ(y1)
λ(y2)

]
, λ

([
x1 + y1

x2 + y2

])
= σ3

[
λ(x1 + y1)
λ(x2 + y2)

]
.

SinceV1,V2 are simple, we have [
λ(xi)
λ(yi)

]
≺

[
λ(xi + yi)

0

]
for i = 1, 2. Thus, for each i, there exists a 2ni × 2ni doubly stochastic matrix Di such that[

λ(xi)
λ(yi)

]
= Di

[
λ(xi + yi)

0

]
.

This can be written as a single matrix equation
λ(x1)
λ(y1)
λ(x2)
λ(y2)

 =
[
D1 0
0 D2

] 
λ(x1 + y1)

0
λ(x2 + y2)

0

 .
Defining a block diagonal matrix D whose diagonal blocks are D1,D2, one can easily verify that D is
a 2n × 2n doubly stochastic matrix. Now, choose permutation matrices Σ1,Σ2 ∈ Σ2n so that

Σ1


λ(x1)
λ(x2)
λ(y1)
λ(y2)

 =

λ(x1)
λ(y1)
λ(x2)
λ(y2)

 and Σ2


λ(x1 + y1)
λ(x2 + y2)

0
0

 =

λ(x1 + y1)

0
λ(x2 + y2)

0

 .
Finally, define a 2n × 2n matrix A by

A :=
[
σ1 0
0 σ2

]
Σ−1

1 DΣ2

[
σ−1

3 0
0 In

]
.

As the product of doubly stochastic matrices is doubly stochastic, A is doubly stochastic and satisfies[
λ(x)
λ(y)

]
= A

[
λ(x + y)

0

]
,

implying the desired majorization.

Theorem 3.4. Let V be any Euclidean Jordan algebra of rank n. Let a, b ∈ V, and f : R+ → R+ be
an increasing concave function such that f (0) ≥ 0, then

n∑
i=1

f
(
λi(|a + b|)

)
≤

n∑
i=1

f
(
λi(|a|)

)
+

n∑
i=1

f
(
λi(|b|)

)
.
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Proof. We first remark that the result was proved in [12, Theorem 5.5] for simple Euclidean Jordan
algebras, and the proof given here is in the same vein as the proof of the original result. From
Lemma 3.2, there exist ϕ, ψ ∈ Aut(V) such that |a + b| ≤ ϕ(|a|) + ψ(|b|). It follows that
λi(|a + b|) ≤ λi

(
ϕ(|a|) + ψ(|b|)

)
for all i. Since f is increasing on R+, we consequently get

f
(
λi(|a + b|)

)
≤ f

(
λi
(
ϕ(|a|) + ψ(|b|)

))
(3.4)

for all i = 1, . . . , n. Now, from Lemma 3.3 applied to ϕ(|a|), ψ(|b|) ∈ V+, we have[
λ(|a|)
λ(|b|)

]
=

[
λ
(
ϕ(|a|)

)
λ
(
ϕ(|b|)

)] ≺ [
λ
(
ϕ(|a|) + ψ(|b|)

)
0

]
,

where the equality follows from the fact that the eigenvalues are invariant under algebra
automorphisms. Since − f is convex on R+, the above implies[

− f
(
λ(|a|)

)
− f

(
λ(|b|)

)] ≺w

[
− f

(
λ
(
ϕ(|a|) + ψ(|b|)

))
− f (0)

]
. (3.5)

Combining (3.4) and (3.5) together with the condition f (0) ≥ 0, we see that

n∑
i=1

f
(
λi(|a + b|)

)
≤

n∑
i=1

f
(
λi
(
ϕ(|a|) + ψ(|b|)

))
≤

n∑
i=1

f
(
λi
(
ϕ(|a|) + ψ(|b|)

))
+ n f (0)

≤

n∑
i=1

f
(
λi(|a|)

)
+ f

(
λi(|b|)

)
.

This completes the proof.

As a consequence of Theorem 3.4, by taking f (t) = tp for 0 < p < 1, we see that the functional
x 7→ ∥|x|∥pp satisfies the triangle inequality:

∥|x + y|∥pp ≤ ∥|x|∥
p
p + ∥|y|∥

p
p. (3.6)

We point out that the inequality (3.6) naturally produces a metric on V defined by
d(x, y) = ∥|x − y|∥pp. This has been observed in [12, Theorem 5.6] for simple Euclidean Jordan
algebras. We now come to our main result.

Theorem 3.5. LetV be any Euclidean Jordan algebra of rank n. For x, y ∈ V and 0 < p < 1, we have

∥|x + y|∥p ≤ 2
1
p−1

(
∥|x|∥p + ∥|y|∥p

)
.

Moreover, if n ≥ 2, the constant 2
1
p−1 is optimal in the sense that it cannot be replaced by any smaller

constant.
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Proof. From (3.6), it is easy to see that

∥|x + y|∥p ≤
(
∥|x|∥pp + ∥|y|∥

p
p

) 1
p
= 2

1
p

(
∥|x|∥pp

2
+
∥|y|∥pp

2

) 1
p

≤ 2
1
p−1

(
∥|x|∥p + ∥|y|∥p

)
,

where the last inequality follows from the convexity of the map t 7→ t
1
p for 0 < p < 1. This proves the

desired inequality. Additionally, let {e1, . . . , en} be any Jordan frame of V. Putting x = e1 and y = e2

gives the equality; hence, the constant is optimal.

As mentioned earlier, the functional (2.1) possesses positive definiteness and absolute
homogeneity. These together with Theorem 3.5 verify that Theorem 1.1 holds, thereby affirming the
conjecture by Huang-Chen-Hu. Consequently, it is now appropriate to call the functional (2.1) the
Schatten p-quasinorm onV when 0 < p < 1.

4. Concluding remarks

In this paper, we studied the functional (2.1) in Euclidean Jordan algebras and showed that it is a
quasinorm when 0 < p < 1 with the optimal constant 2

1
p−1.

We conclude the manuscript with the following conjectures. Note that Conjecture 4.1 reduces to
Theorem 3.4 if we take k = n. Conjecture 4.2 generalizes Thompson’s matrix triangle inequality (3.2)
and implies Conjecture 4.1.

Conjecture 4.1. Let a, b ∈ V, and f : R+ → R+ be an increasing concave function with f (0) ≥ 0,
then the following weak majorization relation holds:

k∑
i=1

f
(
λi(|a + b|)

)
≤

k∑
i=1

f
(
λi(|a|)

)
+

k∑
i=1

f
(
λi(|b|)

)
for 1 ≤ k ≤ n.

Conjecture 4.2. Let a, b ∈ V, and f : R+ → R+ be an increasing concave function with f (0) ≥ 0,
then there exist ϕ, ψ ∈ Aut(V) such that

f (|a + b|) ≤ ϕ
(
f (|a|)

)
+ ψ

(
f (|b|)

)
.

We remark that the above conjectures hold in matrix algebra [10].
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