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Abstract: Image segmentation is the process of partitioning an image into homogenous regions,
and represents one of the most fundamental and important procedures in image processing. Image
denoising is a process to remove unwanted noise from a digital image, enhancing its visual quality.
Various algorithms, like non-local means and deep learning-based approaches, have been developed to
remove noise while preserving important image details. Currently, the prevalent application of pattern
recognition technology is achieved through the implementation of image segmentation algorithms. In
this study, we present a new, highly efficient, and fast computational scheme specifically developed
for a phase-field mathematical model of image segmentation. The numerical methodology is based
on an operator splitting method (OSM). The split operators are solved by using closed-form analytic
solutions and a finite difference method (FDM) with an alternating direction explicit (ADE) method.
To show the notable efficiency and rapid computational performance of the proposed computational
algorithm, we conduct a series of numerical experiments. Through these computational tests, we
confirm a significant contribution to the advancement of methodologies employed in the critical domain
of image processing.
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1. Introduction

Image segmentation is the process of dividing an image into homogenous regions based on a
characterization of the given image, and represents one of the most fundamental procedures of
image processing [1–12]. Currently, the prevalent applications of pattern recognition technologies
such as medical image recognition, robotics, and visual field monitoring are achieved through the
implementation of image segmentation algorithms [1]. Furthermore, Ahmad et al. [2] presented an
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augmented Lagrangian technique for the image deblurring problem in its primal form based on mean
curvature. Song et al. [3] proposed tensor Conjugate-Gradient schemes, and applied the proposed
scheme to restore images and videos. Lee et al. [4] and Li et al. [5] studied the restoration of fingerprint
images, and they utilized the phase-field model for image processing. Pan and Feng [6] conducted
research on parameter estimation necessary for image restoration. They proposed algorithms to
improve the accuracy of parameter estimation, and verified the advantages when using the estimated
parameters for image restoration.

Numerous phase-field methods have been developed for image segmentation [7–12]. Chen et al. [7]
proposed a novel image segmentation model designed for complex two-dimensional images with
intensity inhomogeneity. The proposed phase-field model uses local information. Furthermore,
their proposed scheme excels at minimizing background interference compared to previous methods.
Fang et al. [8] introduced an integrated vector-valued active contour model for image segmentation.
They combined the advantages of edge-based and region-based active contour models to propose an
integrated method that uses adaptively adjustable weights to effectively obtain boundary information.
The proposed scheme efficiently segmented vector-valued images. Jeong et al. [9] solved a modified
Allen-Cahn (AC) equation with a fidelity term. They proposed a fast and accurate hybrid method
that possesses the advantages of simplicity and versatility in arbitrary computational domains.
Liu et al. [10] presented an Allen-Cahn Cahn-Vese (ACCV) model that deals with multi-phase image
segmentation. They validated the effectiveness of the proposed method by comparing it to previous
models. Thasneem et al. [11] proposed an algorithm that consists of three steps: Slice selection,
segmentation, and interpolation. In the segmentation step, they presented a segmentation method
using a modified AC equation. Yang et al. [12] proposed a modified Cahn-Hilliard (CH) equation
for image segmentation. A significant feature of the proposed model is that it can interpolate omitted
contours over wide distances. They improved the tailored-finite-point method for the proposed image
segmentation model. Image denoising is a process that aims to remove unwanted noise from an image
and enhances its visual quality. Noise, often caused by factors like low-light conditions or sensor
limitations, can distort image details. Denoising algorithms can remove this noise while preserving
essential image features. Common techniques include wavelet transforms, non-local means, and deep
learning-based approaches. In deep learning, convolutional neural networks (CNNs) are frequently
used for their ability to learn complex noise patterns and restore clean images [13]. Image denoising
plays a crucial role in various applications, such as medical imaging, surveillance, and photography to
have clearer and more accurate visual representations [14, 15].

The main purpose of this study is to present a novel, highly efficient, and fast numerical scheme
specifically developed for a phase-field mathematical model of image segmentation. The proposed
computational scheme is based on an operator splitting method [16]. The three split operators
are solved by using closed-form analytic solutions and a finite difference method (FDM) with an
alternating direction explicit (ADE) method [17].

The outline of this paper is as follows: In Section 2, we present the proposed numerical solution
algorithm. In Section 3, we conduct a series of numerical experiments to validate the notable efficiency
and rapid computational performance of the proposed numerical algorithm. Finally, conclusions are
given in Section 4.
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2. Proposed numerical solution algorithm

We consider the following phase-field model for image segmentation and denoising:

∂u(x, t)
∂t

=
u(x, t) − u3(x, t)

ε2 + ∆u(x, t) (2.1)

−λ[(1 + u(x, t))( f (x) − c1(t))2
− (1 − u(x, t))( f (x) − c2(t))2],

where u(x, t) is an order parameter at space x and time t, ε is an interfacial thickness related parameter,
λ is a fidelity parameter, and f (x) is the given image. In addition, c1(t) and c2(t) are the averages of the
given image f in the region (u ≥ 0) and (u < 0), respectively, and are defined as

c1(t) =

∫
Ω

f (x)(1 + u(x, t))dx∫
Ω

(1 + u(x, t))dx
and c2(t) =

∫
Ω

f (x)(1 − u(x, t))dx∫
Ω

(1 − u(x, t))dx
.

The phase-field model for image segmentation and denoising can be derived from the phase-field
approximation of the Mumford-Shah functional

E(u) =

∫
Ω

(
(u2 − 1)2

4ε2 +
|∇u|2

2
+
λ

2

[
(1 + u)2( f − c1)2 + (1 − u)2( f − c2)2

])
dx. (2.2)

Given our focus on a stable numerical algorithm in this study, for a more detailed derivation and
definitions, please refer to [18].

Equation (2.1) is discretized in a domain Ω = (Lx,Rx) × (Ly,Ry), which is discretized as follows:
Ωh = {(xi, y j) : xi = Lx+ih, y j = Ly+ jh, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny}, where h = (Rx−Lx)/Nx = (Ry−Ly)/Ny

for some integers Nx and Ny. For simplicity of notion, let un
i j = u(xi, y j, n∆t), where ∆t is the uniform

time step and n is the number of temporal iteration steps.
Using the operator splitting method, we first solve the following term in the governing Eq (2.1):

∂u(x, t)
∂t

= −λ[(1 + u(x, t))( f (x) − c1(t))2
− (1 − u(x, t))( f (x) − c2(t))2], (2.3)

which is analytically solved as follows and the solution after ∆t time is given as for i = 1, 2, . . . ,Nx − 1
and j = 1, 2, . . . ,Ny − 1:

un+1,1
i j = e−λ[( fi j−cn

1)2+( fi j−cn
2)2]∆tun

i j + (e−λ[( fi j−cn
1)2+( fi j−cn

2)2]∆t − 1)
( fi j − cn

1)2 − ( fi j − cn
2)2

( fi j − cn
1)2 + ( fi j − cn

2)2 . (2.4)

Here, cn
1 and cn

2 are defined as

cn
1 =

Nx−1∑
i=1

Ny−1∑
j=1

fi j(1 + un
i j)

Nx−1∑
i=1

Ny−1∑
j=1

(1 + un
i j)

and cn
2 =

Nx−1∑
i=1

Ny−1∑
j=1

fi j(1 − un
i j)

Nx−1∑
i=1

Ny−1∑
j=1

(1 − un
i j)

.

Next, we solve the diffusion term in the governing Eq (2.1)

∂u(x, t)
∂t

= ∆u(x, t), (2.5)
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which is numerically solved by a semi-implicit Euler method

un+1,2
i j − un+1,1

i j

∆t
= ∆hun+1,2

i j , (2.6)

where ∆hun+1,2
i j = (un+1,2

i−1, j + un+1,2
i+1, j − 4un+1,2

i j + un+1,2
i, j−1 + un+1,2

i, j+1 )/h2. To efficiently solve the discrete Eq (2.6),
we apply the ADE method [17] as follows: If n = 4m+1 for some integer m, then for j = 1, 2, . . . ,Ny−1
and i = 1, 2, . . . ,Nx − 1,

un+1,2
i j − un+1,1

i j

∆t
=

un+1,2
i−1, j + un+1,1

i+1, j − 2un+1,1
i j − 2un+1,2

i j + un+1,2
i, j−1 + un+1,1

i, j+1

h2 . (2.7)

Equation (2.7) can be rewritten as

un+1,2
i j =

∆tun+1,2
i−1, j + ∆tun+1,1

i+1, j + (h2 − 2∆t)un+1,1
i j + ∆tun+1,2

i, j−1 + ∆tun+1,1
i, j+1

h2 + 2∆t
. (2.8)

If n = 4m + 2 for some integer m, then for j = 1, 2, . . . ,Ny − 1 and i = Nx − 1,Nx − 2, . . . , 1,

un+1,2
i j − un+1,1

i j

∆t
=

un+1,1
i−1, j + un+1,2

i+1, j − 2un+1,1
i j − 2un+1,2

i j + un+1,2
i, j−1 + un+1,1

i, j+1

h2 ,

which can be rewritten as

un+1,2
i j =

∆tun+1,1
i−1, j + ∆tun+1,2

i+1, j + (h2 − 2∆t)un+1,1
i j + ∆tun+1,2

i, j−1 + ∆tun+1,1
i, j+1

h2 + 2∆t
. (2.9)

If n = 4m + 3 for some integer m, then for j = Ny − 1,Ny − 2, . . . , 1 and i = 1, 2, . . . ,Nx − 1,

un+1,2
i j − un+1,1

i j

∆t
=

un+1,2
i−1, j + un+1,1

i+1, j − 2un+1,1
i j − 2un+1,2

i j + un+1,1
i, j−1 + un+1,2

i, j+1

h2 ,

which can be rewritten as

un+1,2
i j =

∆tun+1,2
i−1, j + ∆tun+1,1

i+1, j + (h2 − 2∆t)un+1,1
i j + ∆tun+1,1

i, j−1 + ∆tun+1,2
i, j+1

h2 + 2∆t
. (2.10)

If n = 4m for some integer m, then for j = Ny − 1,Ny − 2, . . . , 1 and i = Nx − 1,Nx − 2, . . . , 1,

un+1,2
i j − un+1,1

i j

∆t
=

un+1,1
i−1, j + un+1,2

i+1, j − 2un+1,1
i j − 2un+1,2

i j + un+1,1
i, j−1 + un+1,2

i, j+1

h2 ,

which can be rewritten as

un+1,2
i j =

∆tun+1,1
i−1, j + ∆tun+1,2

i+1, j + (h2 − 2∆t)un+1,1
i j + ∆tun+1,1

i, j−1 + ∆tun+1,2
i, j+1

h2 + 2∆t
. (2.11)

For simplicity of exposition, we use the Dirichlet boundary condition

un+1,1
0 j = u0

0 j, un+1,1
Nx j = u0

Nx j, for j = 1, . . . ,Ny − 1,

un+1,1
i0 = u0

i1, un+1,1
iNy

= u0
iNy
, for i = 0, . . . ,Nx.

(2.12)
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We should note that there are many other numerical methods for solving the diffusion equation such
as Fourier spectral method and multigrid methods [19]. In this study, we choose the above scheme
because it is simple and practically stable.

Finally, we solve the following nonlinear term in the governing Eq (2.1):

∂u(x, t)
∂t

=
u(x, t) − u3(x, t)

ε2 , (2.13)

which is solved by using a separation of variables and its closed-form solution is given as

un+1 =
un+1,2√

e−
2∆t
ε2 + (un+1,2)2

(
1 − e−

2∆t
ε2

) . (2.14)

We redefine f as f = ( f − fmin)/( fmax − fmin), where fmax is the maximum and fmin is the minimum
of f . In this study, we use u0 = 2 f −1, which implies that −1 ≤ u0 ≤ 1. Because we use (u2−1)2/(4ε2)
in the total cost functional E(u), the values of u in the bulk phases are approximately ±1.

In summary, the proposed numerical algorithm follows these steps:

Algorithm (Proposed numerical algorithm)
For a given image fi j and a numerical solution un

i j at time t = n∆t, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny.

Step 1) Compute un+1,1
i j by solving Eq (2.4).

Step 2) Compute Eq (2.6) using one of four different updating schemes, Eqs (2.8)–(2.11),
selected based on the values of n.

Step 3) Compute the solution at the next time level, un+1
i j , using Eq (2.14).

Steps 1)–3) consist of one time step update.

We note that the main motivation of the proposed algorithm is as follows: It is an explicit scheme
having practical stability because of using an ADE method for solving the diffusion equation, which
was previously solved by a fully explicit scheme.

3. Computational tests

Now, we conduct several computational tests using the proposed numerical method on synthetic
and real images.

3.1. Comparison test with a previous method

In the previous study, Jeong et al. [9] proposed the explicit hybrid method for image segmentation.
We compare the previous and our proposed methods for the segmentation of a real blood vessel image.
The image consists of 64 pixels. Figure 1 displays the image segmentation results for a real blood
vessel image with the previous method (top row) and our proposed method (bottom row). The model
parameters used are ε = ε4 and λ = 10. We use the time step size ∆t = 0.1 and ∆t = 0.5 for the
previous and proposed methods, respectively. Here, εm = hm/[2

√
2 tanh−1(0.9)]; see [9] for more

detailed information. The previous explicit hybrid method is fast and accurate, however it has the
time step restriction because it is a fully implicit scheme. Our proposed method achieved successful
segmentation through fewer iterations with more stability for the time step size.

AIMS Mathematics Volume 9, Issue 2, 5015–5027.
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0 iteration (t = 0) 10 iteration (t = 1) 40 iteration (t = 4)

0 iteration (t = 0) 2 iterations (t = 1) 8 iterations (t = 4)
Figure 1. Temporal evolutions of segmentation results of the left anterior descending vessel
with the explicit hybrid method [9] (top row) and the proposed method (bottom row), the
number of iterations and time are shown below each figure.

3.2. Image segmentation

In this section, we investigate the segmentation performance of the proposed numerical algorithm.
To validate segmentation results, we consider images of 256 × 256 pixels. First, we consider a brain
MR image as shown in Figure 2(a). Our proposed algorithm can be used for the analysis of medical
images to provide essential information for medical treatment. Figure 2 shows the temporal evolution
of segmentation results for a solid brain tumor. Here, we use ∆t = 0.5, h = 1, ε = ε4, and λ = 4. From
the result in Figure 2(c), we can observe that the proposed method segments solid brain tumors in the
brain MR image.

Next, we consider a satellite image of Europe’s night-lights, which is complex scattered data, to
perform segmentation using the proposed method. The given image of Europe’s night-lights is shown
in Figure 3(a). Figure 3(b),(c) shows the segmentation results at t = 10 and t = 50, respectively.
We note that the homogeneous Neumann boundary condition is applied in this test. Here, interfacial
parameter ε = ε80, λ = 2, time step ∆t = 0.5, and h = 1 are used. The proposed algorithm generates a
clear segmentation result for the European terrain.

AIMS Mathematics Volume 9, Issue 2, 5015–5027.
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0 iteration (t = 0) 8 iteration (t = 4) 40 iteration (t = 20)

Figure 2. Temporal evolution of segmentation results of a solid brain tumor image, the
number of iterations and time are shown below each figure.

(a) (b) (c)

Figure 3. (a) Given image of Europe night-lights; temporal evolution of contour at (b) t = 10
and (c) t = 50.

3.3. Image denoising

Next, we consider image denoising by using the proposed numerical algorithm for the phase-field
model. The governing equation contains a diffusion term, where diffusion is effective in noise removal
from images due to its inherent smoothing property. In image processing, diffusion processes, such as
the diffusion equation, redistribute pixel values by averaging neighboring intensities over time. This
averaging removes high-frequency variations associated with noise and promotes a more uniform and
visually coherent appearance. Diffusion operates as a low-pass filter and reduces high-frequency noise
components while preserving essential image features. The gradual blending of pixel values minimizes
abrupt intensity changes, resulting in a smoother image appearance and effectively reducing the impact
of noise for enhanced visual clarity.

Figure 4 shows an image denoising process on a text image corrupted with 10% salt-and-pepper
noise level using the proposed algorithm. Figures 4(a), (b), and (c) are the initial image, computational
results after 1 iteration, and 4 iterations, respectively. Here, the denoising is performed in a domain
Ω = (0, 4)×(0, 1) with grid sizes Nx = 256 and Ny = 128, ε2, ∆t = 2×10−5, and λ = 104 are used. From

AIMS Mathematics Volume 9, Issue 2, 5015–5027.
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this test result, we can confirm that the proposed algorithm is highly efficient because it can obtain a
good result with a small number of iterations.

(a)

(b)

(c)

Figure 4. (a) Initial noisy image, (b) and (c) are the computational results after 1 iteration
and 4 iterations, respectively.

3.4. Fingerprint image

We consider two fingerprint images with 10% salt-and-pepper noise. The proposed scheme is
applied to the noisy fingerprint images, and the results are shown in Figure 5. Figure 5 displays image
processing for corrupted fingerprint images on a domain Ω = (0,Nx) × (0,Ny). In the first row from
Figure 5, interface parameter ε2, time step ∆t = 0.2, Nx = 256, Ny = 256, h = 1, and λ = 1 are used. In
the second row from Figure 5, interface parameter ε2, time step ∆t = 0.3, Nx = 300, Ny = 300, h = 1,
and λ = 20 are used. We note that image noise was removed with only a small number of iterations
because we can use a practically larger time step.

3.5. Bar code image

We conduct denoising test with a seriously damaged image. Figure 6 shows the results of image
denoising. Figure 6(a) is the original image. Figure 6(b) is the corruption of Figure 6(a) with scratch
and 10% salt-and-pepper noise level. Using the proposed algorithm, we obtain a denoised result as
shown in Figure 6(c). Here, the used parameters are the interface parameter ε2, time step ∆t = 0.2,
Nx = 380, Ny = 250, h = 1, and λ = 0.1. As a result, we obtain a denoised image that can be scanned
with a bar code scanner.

AIMS Mathematics Volume 9, Issue 2, 5015–5027.
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(a) (b) (c)
Figure 5. (a) Initial images with noise; (b) t = ∆t (1 iteration); (c) t = 3∆t (3 iterations).

(a) (b) (c)
Figure 6. (a) Original bar code image; (b) damaged bar code image; (c) t = 9∆t (9 iterations).

4. Conclusions

In this article, we proposed a novel, highly efficient, and fast computational algorithm, which is
based on an operator splitting method, specifically developed for a modified AC equation of image
segmentation. The split operators were solved by using two closed-form analytic solutions and the
FDM with an ADE method. To validate the superior efficiency and rapid computational performance
of the proposed computational method, we conducted several numerical tests, such as noise removal in
a blood bessel image, a text image, and fingerprint images. The computational tests confirmed a high
efficiency of the proposed algorithm.
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Appendix

The following MATLAB source code and data are also available from the corresponding author’s
webpage: https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/.

clear ;
% I n i t i a l image
f = double ( rgb2gray ( imread( 'AC1.bmp ' ) ) ) ; Nx=512; Ny=128; f=imresize ( f ' , [Nx Ny]) ;
f=(f -min(min( f ) ) ) / (max(max( f ) ) -min(min( f ) ) ) ;
f (2:end-1 ,2:end -1)=imnoise ( f (2:end-1 ,2:end -1) , ' s a l t & pepper ' , 0.1) ;
figure (1) ; c l f ; imshow( f ' ) ; figure (2) ; c l f ; u0=2*f -1; contourf (u0,1) ; xticks ( [ ] ) ; yticks ( [ ] ) ;
colormap gray ; axis image ; view(90 ,90) ; h=1/128; dt = 2E-5; m=2;
ep = h*m/(2* sqrt (2)*atanh (0.9) ) ; lam=1e4 ; i i =2:Nx-1; j j =2:Ny-1; u=u0; newu=u0;
for n=1:4

c1 = sum(sum( f ( i i , j j ) .*(1+u( i i , j j ) ) ) ) /sum(sum(1+u( i i , j j ) ) ) ;
c2 = sum(sum( f ( i i , j j ) .*(1 -u( i i , j j ) ) ) ) /sum(sum(1 -u( i i , j j ) ) ) ;
% Step 1
u( i i , j j ) = exp( -lam*(( f ( i i , j j ) -c1) .ˆ2+( f ( i i , j j ) -c2) . ˆ2 )*dt ) .*u( i i , j j ) . . .

+(exp( -lam*(( f ( i i , j j ) -c1) .ˆ2+( f ( i i , j j ) -c2) . ˆ2 )*dt ) -1) . . .
. * ( ( f ( i i , j j ) -c1) . ˆ2 - ( f ( i i , j j ) -c2) . ˆ2 ) . / ( ( f ( i i , j j ) -c1) .ˆ2+( f ( i i , j j ) -c2) . ˆ2 ) ;

% Step 2
i f mod(n,4)==1

for j =2:Ny-1
for i =2:Nx-1

newu( i , j ) =(dt*newu( i -1 , j )+dt*u( i +1, j )+(hˆ2-2*dt )*u( i , j ) . . .
+dt*newu( i , j -1)+dt*u( i , j+1)) / ( hˆ2+2*dt ) ;

end

AIMS Mathematics Volume 9, Issue 2, 5015–5027.
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end
e l se i f mod(n,4)==2

for j =2:Ny-1
for i=Nx-1: -1:2

newu( i , j ) = ( dt*u( i -1 , j )+dt*newu( i +1, j )+(hˆ2-2*dt )*u( i , j ) . . .
+dt*newu( i , j -1)+dt*u( i , j+1)) / ( hˆ2+2*dt ) ;

end
end

e l se i f mod(n,4)==3
for j=Ny-1: -1:2

for i =2:Nx-1
newu( i , j ) = ( dt*newu( i -1 , j )+dt*u( i +1, j )+(hˆ2-2*dt )*u( i , j ) . . .

+dt*u( i , j -1)+dt*newu( i , j+1)) / ( hˆ2+2*dt ) ;
end

end
else

for j=Ny-1: -1:2
for i=Nx-1: -1:2

newu( i , j ) = ( dt*u( i -1 , j )+dt*newu( i +1, j )+(hˆ2-2*dt )*u( i , j ) . . .
+dt*u( i , j -1)+dt*newu( i , j+1)) / ( hˆ2+2*dt ) ;

end
end

end
% Step 3
u( i i , j j )=newu( i i , j j ) . / sqrt (exp( -2* dt / epˆ2)+newu( i i , j j ) .ˆ2*(1 -exp( -2* dt / epˆ2) ) ) ;
figure (3) ; c l f ; contourf (u(2:end-1 ,2:end -1) ,1) ; set (gca , ' fontsize ' ,20)
colormap gray ; axis image ; xticks ( [ ] ) ; yticks ( [ ] ) ; view(90 ,90)

end
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