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Abstract: DEA (Data Envelopment Analysis) production games combine DEA theory with 

cooperation games and assess the benefits to production organizations with single-stage structure. 

However, in practical production problems, the production organizations are always with network 

structures. The structure of the production organization not only affects its own benefits, but also 

relates to the cooperation among organizations. Therefore, it is necessary to study DEA production 

games with network structures. In this paper, we consider the production organizations with 

two-stage processes, wherein the organizations are assumed to possess available resources and own 

technologies. The technology level of each organization is reflected by the observed units based on 

the network DEA (NDEA) production possibility set. Suppose that the organizations can cooperate 

through the ways of pooling the initial resources and (or) sharing the technology in each production 

process. According to the different cooperation styles of each stage in the alliance, seven types of 

cooperation among organizations are considered. The models of maximizing the revenues of 

coalitions, namely the NDEA production games, are established corresponding to the seven types, by 

which the maximal revenue for each coalition can be calculated. We prove that two-stage DEA 

production games have the super-additive property, and can be expressed as linear programming 

games. Hence, they are equivalent to the linear production games, and they are totally balanced. 

Therefore, the proposed cooperative games have a non-empty core, and hence have nucleolus, and 

the Owen set belongs to the core. In addition, based on the basic conceptions of the nucleolus and the 

Owen set, the revenue can be allocated among organizations in the alliance. Finally, a numerical 

example and an empirical application to 17 bank branches of the China Construction Bank in the 

Anhui Province are presented to illustrate the applicability of the proposed approach, and the 
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relationship between the cooperative manners and the revenue allocation is reflected in analytical 

results. 

Keywords: data envelopment analysis; two-stage network DEA production game; linear production 

game; nucleolus; Owen set 
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1. Introduction 

As a classic data-oriented mathematical programming approach [17], DEA (Data Envelopment 

Analysis), proposed by Charnes et al. [5], is a very useful non-parametric method to simulate the 

production frontier and reflect the production technology as well as measure the relative efficiency of 

units that consume multiple inputs to produce multiple outputs [23,25]. The DEA method has been 

extensively applied in many management decision-making fields [1,9,15,36]. 

According to DEA theory, the PPS (Production Possibility Set) is inferred from the known input 

and output vectors of DMUs (Decision-Making Units), and then the production technology is 

expressed by the frontier of the PPS. In traditional DEA models, the frontier of the PPS is often used 

to assess the relative efficiency of each DMU. For the inefficient DMU, the input reductions or 

output increases can be obtained through projecting the DMUs onto the efficient frontier of the PPS. 

Furthermore, the efficient frontier of the PPS can be extended outward if other DMUs with fewer 

inputs and more outputs are added into the PPS [21,31,39]. Therefore, the larger the set of 

input-output data is available, the more complete the description of the PPS is and the more reliable 

the estimation of the true efficient frontier is [27]. Frequently, when the organization can only use its 

own observed DMUs, the input reductions and output increases that can be obtained are limited and 

are lower than those that might be obtained if the input-output data of the observed DMUs of 

different organizations are pooled in order to obtain a better estimation of the PPS. 

Inspired by the above characteristics of PPS, DEA production games are proposed by Lozano [28]. 

These games are expressed by the cooperative linear production models in which a set of 

observations (DMUs) of the production organization are employed to express the current production 

technology by the frontier of the PPS. Different organizations are assumed to possess their own 

technologies, and cooperative games arise from the possibility of pooling their available resources 

and (or) merging their respective technologies. Furthermore, according to the characters of these 

production games, the revenue of coalitions are allocated on the basis of the nucleolus and Owen set 

solutions. DEA production games are shown to be proper generalizations of the related linear 

production games, such as the Linear Production (LP) games of Owen [32], the Non-Centralized 

Linear Production (NCLP) games of Fernández et al. [11], and the extended Linear Transformation 

of Products (LTP) games of Timmer et al. [37]. 

DEA production games give answers to the problems of both cooperative manners and revenue 

allocation schemes among production organizations. Furthermore, the research methods of sharing 

resources and technologies provided in DEA production games have important practical application 

values. In practice, common resources, such as capital, materials, labor and information, and 

technologies are usually the basic and important factors for production organizations to gain 

revenues [12]. Using the resources and technologies jointly can bring more profit than using them 
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separately [14]. Specifically, according to the principle of collaboration, whenever some 

organizations have redundant resources or lack the advanced productive technologies, pooling their 

resources and (or) sharing their technologies may lead to higher cooperative benefits. This creates a 

win-win situation of cooperation. 

In view of the theoretical and application values of DEA production games, many scholars have 

done further research and discussion on DEA production games. Lozano et al. [29] proposed 

set-valued DEA production games for the situation of the price in which at least one output is 

unreliable or unavailable. Borrero et al. [4] established the links between the class of DEA 

production games and the classes of linear programming games and linear production games. 

Moreover, they analyzed the Owen set of DEA production games and discussed the interpretation of 

these allocations for different levels of the cooperation between the agents. Furthermore, for 

selecting the best cooperative partner (DMU), Wu et al. [40] considered the problem of reallocating 

the pooled input resources based on cooperative game theory in two scenarios, one of which was 

resource pooling, and the other was best-practice sharing. Hinojosa et al. [15] extended DEA 

production games to the case of fuzzy unit output prices and introduced the Preference Least Core 

solution concept for these fuzzy games. They obtained the fuzzy total revenue of the grand coalition 

and a fuzzy allocation in the preference least core by solving a single linear programming model. 

Although the works mentioned above have given detailed and embedded study on DEA 

production games, the production organization is always regarded as a “black box” and their internal 

structures are ignored. With the continuous expansion of the production scale, the internal structures 

of the production process are becoming more and more complex. The structure of the production 

organization not only affects its own benefits, but also relates to the cooperation among organizations. 

Consequently, opening the “black box” of the production process is necessary. DEA production 

games with internal structure are worthy of further study and discussion. 

Färe and Grosskopf [10] opened the “black box” and established network DEA theory. Network 

DEA considers the internal structures of production organizations and can provide more meaningful and 

informative results compared with traditional DEA [20]. From then on, many researchers have started to 

look into the internal structures and analyze the relationship among different stages [6,19,20,21,24,26]. 

According to the types of the structure of production process, Kao [19] provided a thorough 

classification of network DEA, in which the series process and the parallel process are two typical 

structures studied extensively in the literature. In the study of these two typical structures, the 

two-stage network structure is the simplest; hence, it is popular and has been widely researched by 

scholars. Yang et al. [41] proposed the two-level network DEA model to evaluate efficiencies of all 

divisions as well as all DMUs at the same time based on the weak-link approach and the maximin 

ratio efficiency model, respectively. Furthermore, they discussed the cross-efficiency evaluation 

problem in the framework of the two-level maximin network DEA model. 

Recently, combining network DEA theory with game theory, and especially with cooperative 

game theory, is a hot research topic in the field of network DEA. The research problems mainly 

focus on the evaluation of efficiency for each individual stage and the decomposition of the 

efficiency for the overall multi-stage process, as well as the resource or cost allocation among 

different sub-stages [2,8,18,22,30,43]. The approaches of solving these problems can be roughly 

divided into two categories. One is known as the centralized approach, and the other is the 

decentralized (or non-cooperative) approach [26]. The centralized method is based on the 

cooperative game from the aspect of system optimization, supposing that the whole production 
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organization is arranged by a central controller. On the contrary, from the perspective of individual 

optimum, the decentralized approach assumes that different stages have different priorities which are 

characterized by the Stackelberg or leader-follower game [31]. Considering a two-stage network 

structure, Li, Zhu, & Chen [22] used the DEA methodology to determine the relative efficiency by 

taking the internal structure and possible allocated costs into account. Moreover, they demonstrated 

the existence of an efficient allocation set based on a common weight, which leads all DMUs as well 

as their sub-stages to be simultaneously efficient. From the point of view of size, they provided an 

algorithm by repeatedly minimizing the maximum deviation between the efficient allocations and 

size allocations, thus guaranteeing the uniqueness of the final allocation. An, Wen, Ding, et al. [3] 

considered a three-stage system in which the resource sharing exists among various stages. They 

constructed network models to calculate the potential gains obtained after the resource pooling, and 

allocate the increased profits among stages based on the Shapely value. Wen et al. [39] explored the 

internal cooperation in a double-level system from the perspective of relative performance and 

proposed double-level DEA game models. They proved that these new games have the characters of 

monotone, super-additive, and have non-empty core. 

In practical cases, we often encounter such problems that, in the start-up stage of a new 

enterprise, some shareholders invest in common resources and some invest in technologies such as 

knowledge and skills. The participation manners of the shareholders will affect the revenue of the 

enterprise. At the same time, whether the income allocation is fair or not, in return, will directly 

affect the stability of operation of the enterprise. 

From the literature review described above, we know that the previous studies on the 

combination of game theory and network DEA have made much achievement, yet there is little 

literature on the cooperative manners among multi-stage production organizations. Therefore, we 

propose the two-stage network DEA (NDEA) production games so as to fill in this gap. 

In this paper, we combine DEA production games with network DEA theory and focus on the 

series structure production process. We study the problems of the revenue of alliance in different 

cooperative manners, specifically resource pooling and (or) technology sharing, and consider seven 

types of cooperation among organizations. We also prove the properties of the proposed production 

games and illustrate the applicability of the proposed models by a numerical example and an 

empirical example. Our main contributions are as follows: 

1) Formulating NDEA production games in a two-stage series environment. 

2) Considering initial resources and technology sharing in each production process of the 

organization. 

3) Establishing seven NDEA production models according to seven types of cooperation. 

4) Proving the properties of two-stage DEA production games: super-additive property, totally 

balanced property, and having a non-empty core. 

5) Allocating the coalition revenue among organizations based on the nucleolus and the Owen set. 

6) Demonstrating the validity of the proposed methods by using a numerical example and an 

empirical application. 

The rest of this paper is organized as follows: In Section 2, we introduce some basic notations 

for two-stage network DEA models. In Section 3, we identify seven types of cooperation by 

considering the cooperative manners among each corresponding stage. In Section 4, we prove the 

properties of the characteristic function of the proposed cooperative production games, such as the 

super-additive property. Furthermore, we prove that the seven NDEA production games proposed by 
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us can be expressed as linear programming games (LPGG). Therefore, they are totally balanced 

games and have stable revenue allocation solutions. In Section 5, based on the nucleolus and the 

Owen set, a numerical example and an empirical application of 17 commercial bank branches of the 

China Construction Bank in the Anhui Province are presented to illustrate the applicability of the 

proposed approach. Finally, some conclusions are drawn in Section 6 and several issues for further 

research are suggested. 

2. Preliminaries 

In this section, we introduce the definitions of core, the nucleolus and the Owen set. 

Furthermore, we give the two-stage production process and present a two-stage network DEA model 

with the goal of maximizing the production organization revenue. 

Definition 2.1. [33] For a game (𝑁, 𝑣), a payoff distribution 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) ∈ Rn is 

• Efficient if 𝑥(𝑁) = 𝑣(𝑁); 

• Individually rational if 𝑥𝑖 ≥ 𝑣({𝑖}) for all 𝑖 ∈ 𝑁; 

• Coalitionally rational if 𝑥(𝑆) ≥ 𝑣(𝑆) for all nonempty coalitions 𝑆. 

The core of (𝑁, 𝑣) is the set 

𝐶(𝑁, 𝑣) = {𝑥 ∈ 𝑅𝑛 | 𝑥(𝑁) = 𝑣(𝑁) and 𝑥(𝑆) ≥ 𝑣(𝑆) for all ∅ ≠ 𝑆 ⊆ 𝑁}. 

So, the core of (𝑁, 𝑣) is the set of all efficient and coalitionally rational payoff distributions. 

Definition 2.2. [33] The nucleolus of an essential game (𝑁, 𝑣) is defined as follows: First, for every 

imputation 𝑥, compute all excesses. Then, select those imputations for which the maximal excesses 

are the smallest. If this is the case at a unique imputation, then that imputation is the nucleolus of the 

game. If not, then consider the second maximal excesses of the selected imputations and make a 

further selection by taking those imputations for which these second maximal excesses are smallest. 

If this happens at a unique imputation, then that is the nucleolus. Otherwise, continue with the third 

maximal excesses, etc., until a unique imputation is found: this is the nucleolus. 

Definition 2.3. [38] Let (A, B, c) ∈ ℒ. The Owen set of (A, B, c) is defined as Owen(A, B, c): =

{𝑦B | 𝑦 ∈ Omin(A, B, c)}. 

The vectors of Omin(A, B, c) can be seen as the shadow prices for the resources. The agents are 

paid for their resources according to the shadow price vector, which yields an Owen vector. 

Suppose that there are 𝑛 independent and homogeneous organizations 𝑂𝑖  (𝑖 ∈ 𝑁 = {1, . . . , 𝑛}) 

with two-stage internal structure, and each organization 𝑖 has 𝐾(𝑖) (𝑖 ∈ 𝑁) observed values, denoted 

as 𝐷𝑀𝑈𝑗 , 𝑗 = 1, . . . , 𝐾(𝑖). The production process of each organization is shown in Figure 1, where 

𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑚)𝑇 denotes the 𝑚  initial inputs, 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑠)𝑇
 represents the 𝑠 

intermediate products, and 𝑍 = (𝑧1, 𝑧2, . . . , 𝑧𝑡) 𝑇 stands for the 𝑡 final outputs. Specifically, 𝑋𝑗(𝑖), 

𝑌𝑗(𝑖), and 𝑍𝑗(𝑖) (𝑗 = 1, . . . , 𝐾(𝑖)) are the observed values corresponding to the initial inputs, the 

intermediate products, and the final outputs of the organization 𝑂𝑖, respectively. For each organization 

𝑖 ∈ 𝑁 , we denote 𝐷(𝑖) = {(𝑋𝑗(𝑖), 𝑌𝑗(𝑖), 𝑍𝑗(𝑖)) ∈ 𝑅𝑚 × 𝑅𝑠 × 𝑅𝑡 , 𝑗 = 1, . . . , 𝐾(𝑖)}  as the 

corresponding set of recorded observations. We denote 𝑋(𝑖)  = [𝑋1(𝑖), . . . , 𝑋𝐾(𝑖)(𝑖)] ∈ 𝑅𝑚×𝐾(𝑖) , 

𝑌(𝑖) = [𝑌1(𝑖), . . . , 𝑌𝐾(𝑖)(𝑖)] ∈ 𝑅𝑠×𝐾(𝑖) , and 𝑍(𝑖) = [𝑍1(𝑖), . . . , 𝑍𝐾(𝑖)(𝑖)] ∈ 𝑅𝑡×𝐾(𝑖) . Furthermore, we 

use 𝐵(𝑖) to indicate the initial resource of 𝑂𝑖 (𝑖 = 1, . . . , 𝑛), 𝐹(𝑖) to represent the number of facilities 

that belong to 𝑂𝑖, and 𝑃𝑓(𝑖) to denote the prices of the final outputs decided by the facility 𝑓 of 𝑂𝑖. 
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Figure 1. Two-stage production process. 

According to the observed 𝐷𝑀𝑈𝑠 of each organization, we establish the network DEA model 
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It can also be regarded as the prediction of the input and output of each stage under the goal of 

maximizing the revenue of the organization 𝑂𝑖. Based on network DEA theory, by using the current 

technology which is expressed by the frontier of the production possibility set (PPS), we can forecast 

the maximal revenue 𝑅(𝑖) of the discussed organization with resource constraint. The current 
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With the similar notations to that of the single-stage model [28], the two-stage model for the 
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where 𝜆𝑗
𝑓

(𝑖) and 𝜇𝑗
𝑓

(𝑖) represent the parameters for the first stage and the second stage of facility 

𝑓 of 𝑂𝑖, respectively. 

We assume that both stages are with variable returns to scale, which are demonstrated by the 



4931 

AIMS Mathematics  Volume 9, Issue 2, 4925–4961. 

constraints ∑ 𝜆𝑗
𝑓

(𝑖) = 1
𝐾(𝑖)
𝑗=1  and ∑ 𝜇𝑗

𝑓
(𝑖) = 1

𝐾(𝑖)
𝑗=1 . Based on this linear programming model, the 

organization 𝑂𝑖 can plan its production process with (𝑋0
𝑓

(𝑖), 𝑌0
𝑓

(𝑖), 𝑍0
𝑓

(𝑖)) 
 
by using its own current 

technology, and gains maximal revenue 𝑅(𝑖) with the resource constraint ∑ 𝑋0
𝑓

(𝑖) ≤ 𝐵(𝑖)
𝐹(𝑖)
𝑓=1 . 

For intuition, we give the main indices, parameters, and decision variables mentioned above in 

Table 1. 

Table 1. Notation list for indices, parameters, and decision variables. 

Symbol Definition 

𝑂𝑖 The 𝑖-th organization 

𝑁 = {1, . . . , 𝑛} The set of organizations 

𝐾(𝑖) (𝑖 ∈ 𝑁) The observed values of the 𝑖-th organization 

 𝐷𝑀𝑈𝑗 , 𝑗 = 1, . . . , 𝐾(𝑖) The 𝑗-th observation object of 𝑂𝑖 

𝑚 The number of initial inputs of each 𝐷𝑀𝑈 

𝑠 The number of intermediate products of each 𝐷𝑀𝑈 

𝑡 The number of final outputs of each 𝐷𝑀𝑈 

𝐹(𝑖) The number of facilities that belong to 𝑂𝑖 

𝑃𝑓(𝑖) The prices of the final outputs decided by the facility 𝑓 of 𝑂𝑖 

𝐵(𝑖) The initial resource of 𝑂𝑖 

𝑋𝑗(𝑖), 𝑗 = 1, . . . , 𝐾(𝑖), 𝑖 ∈ 𝑁 The column vector of the initial inputs of 𝐷𝑀𝑈𝑗 belonging to 𝑂𝑖 

𝑌𝑗(𝑖), 𝑗 = 1, . . . , 𝐾(𝑖), 𝑖 ∈ 𝑁 
The column vector of the intermediate products of 𝐷𝑀𝑈𝑗 belonging 

to 𝑂𝑖 

𝑍𝑗(𝑖), 𝑗 = 1, . . . , 𝐾(𝑖), 𝑖 ∈ 𝑁 
The column vector of the final outputs of 𝐷𝑀𝑈𝑗 belonging to 𝑂𝑖 

𝐷(𝑖) The set of recorded observations of 𝑂𝑖 

(𝑋0
𝑓

(𝑖), 𝑌0
𝑓

(𝑖), 𝑍0
𝑓

(𝑖)) (𝑓 =

1,2, . . . , 𝐹(𝑖)) 

The production process of the discussed organization 𝑂𝑖 

𝑅(𝑖) The maximal revenue of 𝑂𝑖 

𝜆𝑗
𝑓

(𝑖) 
The parameters for the first stage of facility 𝑓 of 𝑂𝑖 

𝜇𝑗
𝑓

(𝑖) 
The parameters for the second stage of facility 𝑓 of 𝑂𝑖 

3. Cooperative game models for the two-stage production process 

In this section, according to different cooperation manners, we identify seven distinct types of 

cooperation of organizations with a two-stage process. 

For the 𝑛 independent and homogeneous organizations with two-stage structure, we consider 

that the organizations can cooperate with each other to form an alliance through the styles of 

resource-pooling and technology-sharing of each stage. We establish the cooperative game models of 

maximizing revenues of the coalitions to indicate seven cooperative styles, by which the maximal 

revenue corresponding to each alliance member is calculated. In the following, we denote coalition 

𝑆 as a subset of 𝑁, which is the set of all the organizations under consideration, and propose seven 

types of models for coalition 𝑆. It should be noted that, since we assume that the intermediate 
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product could not be disposed freely, only the initial inputs could be shared in resource-pooling. As a 

result, resource sharing only occurs in the first stage. It is reasonable not to consider the resource 

sharing of intermediate products, because for the two-stage production process, the intermediate 

products are only the connection products of the first and the second stages, and usually do not enter 

the market circulation. 

We present the cooperative manner corresponding to these seven types respectively through 

Table 2. 

Table 2. Cooperative manners corresponding to the seven types. 

 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

Resource-pooling √  √  √  √ 

Technology-sharing of stage I  √ √   √ √ 

Technology-sharing of stage II    √ √ √ √ 

For each coalition 𝑆 ⊆ 𝑁, we denote 𝐷(𝑆) = ⋃𝑖∈𝑆𝐷(𝑖), 𝐾(𝑆) = ∑ 𝐾(𝑖)𝑖∈𝑆 , 𝐹(𝑆) = ∑ 𝐹(𝑖)𝑖∈𝑆 , 

and 𝐵(𝑆) = ∑ 𝐵(𝑖)𝑖∈𝑆 . Moreover, we use 𝑋(𝑆) = ⋃𝑖∈𝑆𝑋(𝑖) ∈ 𝑅𝑚×𝐾(𝑆) , 𝑌(𝑆) = ⋃𝑖∈𝑆𝑌(𝑖) ∈

𝑅𝑠×𝐾(𝑆), and 𝑍(𝑆) = ⋃𝑖∈𝑆𝑍(𝑖) ∈ 𝑅𝑡×𝐾(𝑆) to express the matrix whose columns are all the observed 

initial inputs, the intermediate products, and the final outputs of all the members of coalition 𝑆, 

respectively. If we denote |𝑆| to be the number of players in 𝑆, then we can relabel the players in 𝑆 

as 1, 2, . . ., |𝑆|. Moreover, we assume that 𝑋(𝑆), 𝑌(𝑆), and 𝑍(𝑆) are in the order in which the 

recorded observations of coalition 𝑆 are arranged. 

We establish the models of maximizing revenues of coalitions corresponding to the seven types, 

by which the maximal revenue for each coalition is calculated. The models for the seven types are 

described in detail as follows: 

Type 1. Only the first stage shares the resource, while the second stage keeps everything 

isolated. The revenue model for coalition S is presented as 
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In model (𝑃1(S)), the objective function is to maximize the revenue of coalition S. In the 

constraint conditions, inequalities (1.1) and (1.2) mean that each organization 𝑂𝑖 in coalition 𝑆 

keeps its own technology level unchanged in the first stage, but they pool their initial resource 

together and form an alliance, which is illustrated by inequality (1.5). Meanwhile, inequality (1.5) 

means that the total amount of initial resources consumed cannot exceed the total amount resulting 

from the pooling of resources available to coalition 𝑆. Furthermore, inequalities (1.3) and (1.4) 

imply that the second stage of each organization 𝑂𝑖 keeps its own technical level unchanged. 

Without loss of generality, we suppose the production processes are with variable returns to scale, 

and this can be seen from constraint conditions (1.6)–(1.8). 

Type 2. Only the first stage shares the technology, while the second stage keeps everything 

isolated. The revenue model for coalition S is expressed by model (𝑃2(𝑆)). 

In the model of technology sharing, it is important to note that there will be changes in the 

representation of weight parameters and recorded observations compared with models that only share 

resources. For example, for 𝑆 = {1,2}, each organization has two recorded observations and two 

facilities, i.e., 𝐾(𝑖) = 2 and 𝐹(𝑖) = 2, where 𝑖 = 1,2. In this case, there are 4 recorded observations, 

and the inputs for each observation are 𝑋1(1), 𝑋2(1), 𝑋1(2), and 𝑋2(2), respectively. The decision 

constraint for organization 𝑖 and factory 𝑓 is expressed by the inequality 
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can be expressed as 

( )

0

1

( )
,

0

1

( )
,

0

1

( )

0

1

2

( ) max ( ) ( ),

( ) ( ) ( ), , 1, 2, , ( ), (2.1)

( ) ( ) ( ), , 1, 2, , ( ), (2.2)

( ) ( ) ( ), , 1, 2, , ( ), (2.3

( ( ))

F i
II T f

f

i S f

K i
i f f

j j

h S j

K i
i f f

j j

h S j

K i
f f

j j

j

R S P i Z i

h X h X i i S f F i

h Y h Y i i S f F i

i Y i Y i i S f F i

P S







 =

 =

 =

=

=

  =

  =

  =









( )

0

1

( )

0

1

( )
,

1

( )

1

,

)

( ) ( ) ( ), , 1, 2, , ( ), (2.4)

( ) ( ), (2.5)

( ) 1, , 1,2, , ( ), (2.6)

( ) 1, , 1,2, , ( ), (2.7)

( ) 0, ( ) 0, , 1,2,..., ( )

K i
f f

j j

j

F i
f

f

K i
i f

j

h S j

K i
f

j

j

i f f

j j

i Z i Z i i S f F i

X i B i i S

h i S f F i

i i S f F i

h i h S j K i







 

=

=

 =

=

  =

 

=  =

=  =

   =









, , 1, 2, , ( ). (2.8)i S f F i



























  =



 

In this type, the coalition is formed by the way of technology-sharing of the first stage, which can be 

reflected by inequalities (2.1), (2.2), and (2.6). In this scenario the cooperating organizations share their 

best practices so that “all the facilities of the coalition can operate at operation points that are feasible in 

the expanded joint technology that results from merging their respective technologies” [28]. 
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Type 3. Only the first stage shares both the resource and the technology, while the second stage 

keeps everything isolated. We give the revenue model for coalition S as 
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Comparing inequality (2.5) with (3.5), we can find the difference between the models (𝑃2(𝑆)) 

and (𝑃3(𝑆)). In the model (𝑃3(𝑆)), there is resource-sharing of the first stage among organizations of 

the alliance, but not in the model (𝑃2(𝑆)). 

Type 4. Only the second stage shares the technology, while the first stage keeps everything 

isolated. The revenue model for the coalition S is given as 
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Similar to Type 2, in the model (𝑃4(𝑆)), we use inequalities (4.3), (4.4), and (4.7) to express the 

second stage adopting technology sharing of each organization in coalition 𝑆. 
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Type 5. The first stage only shares the resources, and the second stage only shares the 

technology. We use the model (𝑃5(𝑆)) to express this scenario: 
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In the model (𝑃5(𝑆)), from the constraints it is not difficult to see that Type 5 is a combination 

of Types 1 and 4. Constraint inequalities (5.1), (5.2), and (5.5) reflect that the cooperation mode of 

Stage 1 is resource pooling. Meanwhile, inequalities (5.3), (5.4), and (5.7) show that stage 2 

cooperates in a technology-sharing manner. 

Type 6. The two stages only share the technology, and keep the resources isolated. The revenue 

model for coalition S is given as 
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The constraints of the sixth model (𝑃6(𝑆)) exhibit the scenario of technical cooperation in 

both stages. Among them, constraints (6.1), (6.2), and (6.6) give the technology sharing in the first 

stage, and the similar constraints (6.3), (6.4), and (6.7) reflect the second stage. Furthermore, 

inequality (6.5) indicates that the initial resources are not shared. 

Type 7. The first stage shares the resources, and both stages share the technology. The revenue 

model for coalition S is given as 
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This situation is the most beneficial for the coalition, because it is the most adequate way of 

cooperation; at the same time, it is also the most difficult to achieve since it needs to be based on a higher 

degree of trust and participation than any other cooperation types. Constraints (7.1), (7.2), and (7.6), as 

well as inequality (7.5), illustrate the technical cooperation and resource pooling between the first 

stages of each organization in the alliance, respectively. Technology sharing is implemented between 

the second stage of each member in coalition 𝑆, which can be expressed by inequalities (7.3), (7.4), 

and (7.7). 

So far, under the styles of resource pooling and technology sharing, we have developed seven 

models of cooperative games with two-stage production processes. Then, a natural question is: what 

characteristics do these games have? We discuss this issue in the following section. 

4. Properties of cooperative production games 

In this section, we discuss two issues: one is the basic properties of the seven NDEA production 

games, including the super-additive property and the relationships among the seven types of NDEA; 

the other is the relationship between our NDEA production games and the linear production games in 

the two-stage scenario, and we draw the conclusion that the NDEA production games are equivalent 

to the linear production games, and thus the NDEA production games are totally balanced. 
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4.1. Basic properties of the seven NDEA production games 

In this subsection, we show the properties of the production games proposed in Section 3. For 

simplicity, we denote the cooperative problems as (𝑁, 𝑅), in which the characteristic functions of the 

cooperative games are the revenue function  𝑅 of coalition 𝑆, and, corresponding to the seven 

models, 𝑅 can be expressed by ),(,),(),( SRSRSR VIIIII   respectively. 

It is obvious that when coalition 𝑆  consists of a single organization 𝑖 , i.e., there is no 

cooperation among organizations, then these seven types are accordant and coincide with the 

situation expressed by the programming (𝑃0(𝑖)). Furthermore, it is easy to check that the proposed 

cooperation game (𝑁, 𝑅) is monotonic, i.e., the larger the coalition, the more revenue it gets. This 

property can be expressed mathematically as 

𝑅𝐿(𝑆′) ≤ 𝑅𝐿(𝑆′′),   ∀𝑆′ ⊆ 𝑆′′, 𝐿 = 𝐼, 𝐼𝐼, . . . , 𝑉𝐼𝐼. 

Other properties of the seven proposed DEA production games are given by the following 

propositions: 

Proposition 1. The seven cooperative production games with two-stage processes are super-additive, 

i.e., 

𝑅𝐿(𝑆′) + 𝑅𝐿(𝑆′′) ≤ 𝑅𝐿(𝑆′ ∪ 𝑆′′), ∀𝑆′ ⊆ 𝑁, 𝑆′′ ⊆ 𝑁, 𝑆′⋂𝑆′′ = ∅, 𝐿 = 𝐼, 𝐼𝐼, . . . , 𝑉𝐼𝐼. 

Proof. For simplicity, we give a detailed proof for Type 1, and the other six types can be proved 

similarly. 

For the disjoint coalitions 𝑆′ and 𝑆′′, we let 

{(𝜆𝑗
𝑓

(𝑖))𝑆′
∗ , (𝜇𝑗

𝑓
(𝑖))𝑆′

∗ , [𝑋0
𝑓

(𝑖)]𝑆′
∗ , [𝑌0

𝑓
(𝑖)]𝑆′

∗ , [𝑍0
𝑓

(𝑖)]𝑆′
∗ , ', 1,2,..., ( ), 1,2,..., ( )i S j K i f F i = = } 

and 

{(𝜆𝑗
𝑓

(𝑖))𝑆′′
∗ , (𝜇𝑗

𝑓
(𝑖))𝑆′′

∗ , [𝑋0
𝑓

(𝑖)]𝑆′′
∗ , [𝑌0

𝑓
(𝑖)]𝑆′′

∗ , , [𝑍0
𝑓

(𝑖)]𝑆′′
∗ , '', 1,2,..., ( ), 1,2,..., ( )i S j K i f F i = = } 

be the optimal solutions of the models (𝑃1(𝑆′)) and (𝑃1(𝑆′′)), respectively. Let organization 𝑖 

belong to the coalition 𝑆′ ∪ 𝑆′′. Then, the solution {𝜆̃𝑗
𝑓

(𝑖), 𝜇̃𝑗
𝑓

(𝑖), 𝑋̃0
𝑓

(𝑖), 𝑌̃0
𝑓

(𝑖), 𝑍̃0
𝑓

(𝑖)} of the form 

𝜆̃𝑗
𝑓

(𝑖) = {
(𝜆𝑗

𝑓
(𝑖))𝑆′

∗ ,     𝑖𝑓  𝑖 ∈ 𝑆′, 𝑗 = 1,2, . . . , 𝐾(𝑖), 𝑓 = 1,2, . . . , 𝐹(𝑖)

(𝜆𝑗
𝑓

(𝑖))𝑆′′
∗ ,     𝑖𝑓 𝑖 ∈ 𝑆′′, 𝑗 = 1,2, . . . , 𝐾(𝑖), 𝑓 = 1,2, . . . , 𝐹(𝑖)

             (𝑎) 

𝜇̃𝑗
𝑓

(𝑖) = {
(𝜇𝑗

𝑓
(𝑖))𝑆′

∗ ,     𝑖𝑓  𝑖 ∈ 𝑆′, 𝑗 = 1,2, . . . , 𝐾(𝑖), 𝑓 = 1,2, . . . , 𝐹(𝑖)

(𝜇𝑗
𝑓

(𝑖))𝑆′′
∗ ,     𝑖𝑓 𝑖 ∈ 𝑆′′, 𝑗 = 1,2, . . . , 𝐾(𝑖), 𝑓 = 1,2, . . . , 𝐹(𝑖)

             (𝑏) 

and 

[𝑋̃0
𝑓

(𝑖), 𝑌̃0
𝑓

(𝑖), 𝑍0
𝑓

(𝑖)] = {
[𝑋0

𝑓
(𝑖), 𝑌0

𝑓
(𝑖), 𝑍0

𝑓
(𝑖)]𝑆′

∗ ,         𝑖𝑓 𝑖 ∈ 𝑆′, 𝑓 = 1,2, . . . , 𝐹(𝑖)

[𝑋0
𝑓

(𝑖), 𝑌0
𝑓

(𝑖), 𝑍0
𝑓

(𝑖)]𝑆′′
∗ ,         𝑖𝑓 𝑖 ∈ 𝑆′′, 𝑓 = 1,2, . . . , 𝐹(𝑖)

           (𝑐) 
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is a feasible solution to (𝑃1(𝑆′ ∪ 𝑆′′)). Corresponding to this feasible solution, the value of the 

objective function for the coalition 𝑆′ ∪ 𝑆′′ is expressed by 

∑ ∑ 𝑃𝑓(𝑖)𝑇

𝐹(𝑖)

𝑓=1

𝑍0
𝑓

(𝑖)

𝑖∈𝑆′∪𝑆′′ 

= ∑ ∑ 𝑃𝑓(𝑖)𝑇

𝐹(𝑖)

𝑓=1

𝑍0
𝑓

(𝑖)

𝑖∈𝑆′ 

+ ∑ ∑ 𝑃𝑓(𝑖)𝑇

𝐹(𝑖)

𝑓=1

𝑍0
𝑓

(𝑖)

𝑖∈𝑆′′ 

. 

According to (c), we can see that, if 𝑖 ∈ 𝑆′, then [𝑋̃0
𝑓

(𝑖), 𝑌̃0
𝑓

(𝑖), 𝑍̃0
𝑓

(𝑖)] = [𝑋0
𝑓

(𝑖), 𝑌0
𝑓

(𝑖), 𝑍0
𝑓

(𝑖)]𝑆′
∗  is 

the optimal solution to the model (𝑃1(𝑆′)), which means ∑ ∑ 𝑃𝑓(𝑖)𝑇𝑍̃0
𝑓

(𝑖)
𝐹(𝑖)
𝑓=1𝑖∈𝑆′ = 𝑅𝐼(𝑆′) is the 

optimal value of the model (𝑃1(𝑆′)) ; meanwhile, if 𝑖 ∈ 𝑆′′ , then [𝑋̃0
𝑓

(𝑖), 𝑌̃0
𝑓

(𝑖), 𝑍̃0
𝑓

(𝑖)] =

[𝑋0
𝑓

(𝑖), 𝑌0
𝑓

(𝑖), 𝑍0
𝑓

(𝑖)]𝑆′′
∗  is the optimal solution to the model (𝑃1(𝑆′′)) , and so 

∑ ∑ 𝑃𝑓(𝑖)𝑇𝐹(𝑖)
𝑓=1 𝑍̃0

𝑓
(𝑖)𝑖∈𝑆′′ = 𝑅𝐼(𝑆′′) is the corresponding optimal value. As a result, 

𝑅𝐼(𝑆′ ∪ 𝑆′′) = 𝑚𝑎𝑥 ∑ ∑ 𝑃𝑓(𝑖)𝑇

𝐹(𝑖)

𝑓=1

𝑍0
𝑓

(𝑖)

𝑖∈𝑆′∪𝑆′′ 

≥ 𝑅𝐼(𝑆′) + 𝑅𝐼(𝑆′′). 

This inequality means that the game (𝑁, 𝑅𝐼) is super-additive. The results for the other six types are 

analogous, and hence the proof is completed. 

It should be noted that, since the the solution {𝜆̃𝑗
𝑓

(𝑖), 𝜇̃𝑗
𝑓

(𝑖), 𝑋̃0
𝑓

(𝑖), 𝑌̃0
𝑓

(𝑖), 𝑍̃0
𝑓

(𝑖)} may not be a 

feasible solution to the model (𝑃1(𝑆′⋂𝑆′′)), as a result we cannot draw the conclusion that the seven 

NDEA production games have the character of convexity. 

Proposition 2. There exist many relationships among the seven NDEA production games proposed 

by us. For any 𝑆 ⊆ 𝑁, we have 

(i) 𝑅𝐼(𝑆), 𝑅𝐼𝐼(𝑆), 𝑅𝐼𝐼𝐼(𝑆), 𝑅𝐼𝑉(𝑆), 𝑅𝑉(𝑆), 𝑅𝑉𝐼(𝑆) ≤ 𝑅𝑉𝐼𝐼(𝑆); 

(ii) 𝑅𝐼(𝑆) ≤ 𝑅𝐼𝐼𝐼(𝑆), 𝑅𝐼(𝑆) ≤ 𝑅𝑉(𝑆); 

(iii) 𝑅𝐼𝐼(𝑆) ≤ 𝑅𝐼𝐼𝐼(𝑆), 𝑅𝐼𝐼(𝑆) ≤ 𝑅𝑉𝐼(𝑆); 

(iv) 𝑅𝐼𝑉(𝑆) ≤ 𝑅𝑉(𝑆), 𝑅𝐼𝑉(𝑆) ≤ 𝑅𝑉𝐼(𝑆); 

(v) ∑ 𝑅(𝑖) ≤𝑖∈𝑁 𝑅𝐼(𝑁), 𝑅𝐼𝐼(𝑁), 𝑅𝐼𝐼𝐼(𝑁), 𝑅𝐼𝑉(𝑁), 𝑅𝑉(𝑁), 𝑅𝑉𝐼(𝑁) ≤ 𝑅𝑉𝐼𝐼(𝑁). 

Proof. According to the constraint sets of the seven NDEA production games 

(𝑃1(𝑆)), (𝑃2(𝑆)), . . . , (𝑃7(𝑆)), we can naturally obtain the relationships of the optimal values of the 

seven linear programs. 

Specifically, let the set of constraints for the seven linear programming models be 𝑇1,𝑇2,. . . , 𝑇7, 

respectively. Then, we have 

𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6 ⊂ 𝑇7;        𝑇1 ⊂ 𝑇3 , 𝑇1 ⊂ 𝑇5;         𝑇2 ⊂ 𝑇3, 𝑇2 ⊂ 𝑇6;         𝑇4 ⊂ 𝑇5, 𝑇4 ⊂ 𝑇6. 

Moreover, as these seven cooperative production games (𝑁, 𝑅𝐼), 𝐿 = 𝐼, 𝐼𝐼, . . . , 𝑉𝐼𝐼  are 

super-additive, we have 

∑ 𝑅(𝑖) ≤𝑖∈𝑁 𝑅𝐼(𝑁), 𝑅𝐼𝐼(𝑁), 𝑅𝐼𝐼𝐼(𝑁), 𝑅𝐼𝑉(𝑁), 𝑅𝑉(𝑁), 𝑅𝑉𝐼(𝑁) ≤ 𝑅𝑉𝐼𝐼(𝑁). 

In summary, the above five groups of relationships between the seven NDEA production games 

have been established, and hence the proof is completed. 
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4.2. The relationship between the NDEA production games and the linear production games 

González-Díaz et al. [13] proved that the class of linear production games coincides with the 

class of non-negative totally balanced games. Curiel [7] drew the conclusion that the class of linear 

programming games is equivalent to the class of totally balanced games. Therefore, any non-negative 

totally balanced games are equivalent to the linear production games and are also equivalent to the 

linear programming games. Following the approach of Lozano [28] and Borrero et al. [4], we will 

demonstrate that the aforementioned NDEA games can be formulated as the linear programming 

games, and thus they are equivalent to the linear production games, and, therefore, are totally balanced 

games. 

Owen [32] considered that there are n players who can decide whether to pool their available 

resources to produce some outputs, and each player 𝑖 (𝑖 ∈ 𝑁 = {1,2, . . . , 𝑛}) possesses its own 

resource 𝐵(𝑖). Here, each player can pool its resource together with other players’ resources to form 

a coalition 𝑆 to produce the outputs 𝑌𝑆. The main characteristics of linear production games are 

that there exists a linear production function with a technological matrix 𝐴. The market price vector 

𝑤 ∈ 𝑅𝑠 is known. The total resources available in coalition 𝑆 is 𝐵(𝑆) = ∑ 𝐵(𝑖)𝑖∈𝑆 . Then, the 

maximization problem of the revenue obtained by coalition 𝑆 can be formulated as 

( ) max

. . ( )

0

T S

S

S

v S w Y

s t AY B S

Y

= 





 (Linear Production Game, LPDG). 

An extension of linear production games is the so-called linear programming game [7]. These 

are games whose characteristic function is obtained by solving linear programming problems in 

which the right-hand sides in the constraints depend on the coalitions. In terms of form, the linear 

programming games have an additional set of equality constraints compared to linear production 

games, which can be expressed as 

( ) max

. . ( )

( )

0

T S

S

S

S

v S w Y

s t AY B S

QY D S

Y

= 



=



 (Linear Programming Game, LPGG). 

It should be noted that the matrices 𝐴 and 𝑄 on the left-hand sides of the constraints do not 

change with colation 𝑆, and a change in alliance 𝑆 only affects the vectors 𝐵(𝑆) and 𝐷(𝑆) on the 

right-hand sides. 

In order to make a game with practical meaning, the linear programming problems need to be 

feasible and bounded for every coalition. In the case of DEA production games with variable returns 

to scale, for some coalitions  𝑆 ⊆ 𝑁 the problems may turn out to be infeasible. This happens, for 

example, if the resources no longer permit the recorded observations to be supported [4]. The rest of 

the results in this subsection are referred to as the subclass of DEA production games with variable 

returns to scale for which all the coalitions are feasible. 

Proposition 3. The seven NDEA production games (𝑁, 𝑅𝐿), 𝐿 = 𝐼, 𝐼𝐼, . . . , 𝑉𝐼𝐼 proposed by us, in 

which all the coalitions are feasible, can be expressed as linear programming games. 
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Proof. First, for the seven NDEA models 𝑃𝑙(𝑆), 𝑙 = 1,2, . . . ,7 proposed by us, we can see that, in 

any optimal solution, constraint (l.4) (the fourth constraint condition of the model 𝑃𝑙(𝑆)), which 

defines the target final outputs of each facility 𝑍0
𝑓

(𝑖), holds as equality. So, we can use the left-hand 

side of (l.4) to replace the 𝑍0
𝑓

(𝑖) in the objective function. Furthermore, there exists an optimal 

solution to the model 𝑃𝑙(𝑆) ( 𝑙 = 1,2, . . . ,7) for which the corresponding constraints that define the 

target inputs 𝑋0
𝑓

(𝑖) of each facility also hold as equality, so we can use the left-hand side of (l.1) to 

substitute the 𝑋0
𝑓

(𝑖) in the left-hand side of (l.5) [16]. Meanwhile, we can omit 𝑌0
𝑓

(𝑖) and merge (l.2) 

and ( l .3) together. In this way, the simplified model will only contain variables λ  and μ . 

Furthermore, for simplicity, we assume that 𝑃𝑓(𝑖) = 𝑃 ∈ 𝑅𝑡, and, taking the model (𝑃1(𝑆)) as an 

example, it can be written as 

( ) ( )

1 1

( ) ( )

1 1

( )

1

1

( ) ( )

1 1

( ) max ( ) ( ),

( ) ( ) ( )

( ( )) ( ( ) ( )) ( ) 0, , 1,2, , ( )

( ) 1, ( ) 1, , 1,2, , ( )

( ) 0,

F i K i
I T f

j j

i S f j

F i K i
f

j j

i S f j i S

K i
f f

j j j

j

K i K i
f f

j j

j j

f f

j j

R S P i Z i

i X i B i

P S i i Y i i S f F i

i i i S f F i

i





 

 

 

 = =

 = = 

=

= =

=



−   =

= =  =





 



 

( ) 0, 1,2,..., ( ), , 1, 2, , ( ).i j K i i S f F i
















 =  =


 

As shown in the above model, the simplified model (𝑃̃1(𝑆)) has three constraints. The first 

constraint is related to the initial inputs, the second constraint pertains to intermediate products, and 

the third constraint is the requirement that the weight coefficients sum up to 1, representing the 

constraint of variable returns to scale. 

In order to write the games (𝑁, 𝑅𝐿), 𝐿 = 𝐼, 𝐼𝐼, . . . , 𝑉𝐼𝐼 as linear programming games, we need 

to establish the following stacked matrices. Based on the different collaboration scenarios between 

each stage, we conduct the following classification discussions for 𝑋, 𝑌, and 𝑍, as well as for the 

weight coefficients λ and μ. We refer to Section 2 for the definitions of the variables such as 𝑋(𝑁) 

and 𝑋(𝑖). 

(1) For the initial inputs 𝑋, we consider the following four scenarios for the stacked matrix of 𝑋: 

(i) The first stage shares both the resources and the technology, 

1

(1) (2) ( ) ( ( ) ( ))

( ), , ( ) , ( ), , ( ), , ( ), , ( )

F F F n m K N F N

X X N X N X N X N X N X N

 

 
 =
 
 

.

 

(ii) The first stage only shares the resources, 

1

2

(1) (2) ( ) ( ) ( )

(1), , (1) , (2), , (2), , ( ), , ( )
n

i

F F F n m K i F i

X X X X X X n X n

=
 

 
 =
 
  

.

 

(iii) The first stage only shares the technology,

 



4941 

AIMS Mathematics  Volume 9, Issue 2, 4925–4961. 

(1)

3
(2)

( ) ( ) ( ( ) ( ))

( ), , ( ) 0 0

0 ( ), , ( ) 0

0 0 ( ), , ( )

F

F

F n m n K N F N

X N X N

X N X N

X

X N X N

  

 
 
 
 
 =
 
 
 
 
 

.

 

(iv) There is no collaboration in terms of resources or technology in the first stage, 

1

(1)

4
(2)

( ) ( ) ( ) ( )

(1), , (1) 0 0

0 (2), , (2) 0

0 0 ( ), , ( )
n

i

F

F

F n m n K i F i

X X

X X

X

X n X n

=
  

 
 
 
 
 =
 
 
 
 
  

.

 

(2) For the intermediate products 𝑌, we consider the following two scenarios for the stacked 

matrix of 𝑌: 

(i) The stage under consideration (either the first or second stage) is with technology collaboration,

 
 

1

( ( )) ( ( ) ( ))

(1) 0 0

0 (2) 0

0 0 ( )
s F N K N F N

Y

n






  

 
 
 =
 
 
 

,

 

where 

( ( )) ( ( ) ( ))

( ) 0 0

0 ( ) 0
( )

0 0 ( )
s F i K N F i

Y N

Y N
i

Y N



  

 
 
 =
 
 
  .

 

(ii) The stage under consideration (either the first or second stage) is without technology 

collaboration, 

1

2

( ( )) ( ) ( )

(1) 0 0

0 (2) 0

0 0 ( ) n

i
s F N K i F i

Y

n






=

  

 
 
 =
 
 
  

,

 

where

 

( ( )) ( ( ) ( ))

( ) 0 0

0 ( ) 0
( )

0 0 ( )
s F i K i F i

Y i

Y i
i

Y i



  

 
 
 =
 
 
 

.

 

(3) For the final outputs 𝑍, we consider the following two scenarios for the stacked matrix of 𝑍: 
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(i) There is technology collaboration in the second stage, 

1

(1) (2) ( ) ( ( ) ( ))

( ), , ( ) , ( ), , ( ), , ( ), , ( )

F F F n t K N F N

Z Z N Z N Z N Z N Z N Z N

 

 
 =
 
 

.

 

(ii) There is no technology collaboration in the second stage, 

1

2

(1) (2) ( ) ( ) ( )

(1), , (1) , (2), , (2) , , ( ), , ( )
n

i

F F F n t K i F i

Z Z Z Z Z Z n Z n

=
 

 
 =
 
  

.

 

(4) For the weight coefficients 𝜆 and 𝜇, we consider the following four scenarios: 

From the above construction of the matrices, it is not difficult to observe that the dimensions of the 

weight coefficients λ and μ are related to the existence of technology collaboration. 

(i) There is technology collaboration in the first stage, 

( )1

1 ( ( ) ( ))
( ) (1), (2), , ( )T

K N F N
n   

 
= ,

 

where 

,1 ,1 ,2 ,2 , ( ) , ( )

1 ( ) 1 ( ) 1 ( )

( ) ( ) ( ) 1 ( ( ) ( ))

( ) (1), , ( ) , (1), , ( ) , , (1), , ( )i i i i i F i i F i

K n K n K n

K N K N K N K N F i

i n n n      

 

 
 =
 
 

. 

(ii) There is no technology collaboration in the first stage,

 ( )
1

2

1 ( ) ( )
( ) (1), (2), , ( ) n

i

T

K i F i
n   

=
 

=


,
 

where 

,1 ,1 ,2 ,2 , ( ) , ( )

1 ( ) 1 ( ) 1 ( )

( ) ( ) ( ) 1 ( ( ) ( ))

( ) ( ), , ( ), ( ), , ( ), , ( ), , ( )i i i i i F i i F i

K i K i K i

K i K i K i K i F i

i i i i i i i      

 

 
 =
 
 

. 

(iii) There is technology collaboration in the second stage, 

( )1

1 ( ( ) ( ))
( ) (1), (2), , ( )T

K N F N
n   

 
= ,

 

where 

,1 ,1 ,2 ,2 , ( ) , ( )

1 ( ) 1 ( ) 1 ( )

( ) ( ) ( ) 1 ( ( ) ( ))

( ) (1), , ( ), (1), , ( ), , (1), , ( )i i i i i F i i F i

K n K n K n

K N K N K N K N F i

i n n n      

 

 
 =
 
 

. 

(iv) There is no technology collaboration in the second stage, 

( )
1

2

1 ( ) ( )
( ) (1), (2), , ( ) n

i

T

K i F i
n   

=
 

=


,
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where 

,1 ,1 ,2 ,2 , ( ) , ( )

1 ( ) 1 ( ) 1 ( )

( ) ( ) ( ) 1 ( ( ) ( ))

( ) ( ), , ( ), , ( ), , ( ), , ( ), , ( )i i i i i F i i F i

K i K i K i

K i K i K i K i F i

i i i i i i i      

 

 
 =
 
 

.

 

(5) In order to ensure that the matrix on the left-hand side of the linear programming game 

remains unchanged, the stacked matrices constructed above include all the observed values of all the 

organizations. In the practical computation process, for a given coalition 𝑆, we must set the weight 

coefficients of the organizations not in coalition 𝑆 to 0. This requirement can be achieved by 

constructing the following matrix 𝐺: 

(i) The stage under consideration (either the first or second stage) is with technology collaboration, 

1

(1) (2) ( ) ( ( ) ( ))

, , , , , , , , ,

F F F n n K N F N

G H H H H H H

 

 
 =
 
 

,

 

where 

(1)

(2)

( ) ( )

1, ,1 0 0

0 1, ,1 0

0 0 1, ,1

K

K

K n n K N

H



 
 
 
 

=  
 
 
  
 

.

 

For the matrix 𝐻, if 𝑗 ∈ 𝐷(𝑖), then ℎ𝑖𝑗 = 1; otherwise, ℎ𝑖𝑗 = 0.

 

(ii) The stage under consideration (either the first or second stage) is without technology 

collaboration, 

1

2

( ) ( )
(0) n

i
n K i F i

G
=

 
=


.
 

(6) We ensure that the sum of weight coefficients is equal to 1 by constructing the matrix 𝑉. For 

the matrix 𝑉, we also consider two scenarios: 

(i) The stage under consideration (either the first or second stage) is with technology collaboration, 

1

( ) ( ( ) ( ))

(1) 0 0

0 (2) 0

0 0 ( )
F N K N F N

C

C
V

C n
 

 
 
 =
 
 
 

,

 

where 
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( )

( )

( ) ( ) ( ( ) ( ))

1, ,1 0 0

0 1, ,1 0

( )

0 0 1, ,1

K N

K N

K N F i K N F i

C i

 

 
 
 
 

=  
 
 
  
 

.

 

(ii) The stage under consideration (either the first or second stage) is without technology 

collaboration, 

1

2

( ) ( ) ( )

(1) 0 0

0 (2) 0

0 0 ( ) n

i
F N K i F i

C

C
V

C n
=

 

 
 
 =
 
 
  

,

 

where 

( )

( )

( ) ( ) ( ( ) ( ))

1, ,1 0 0

0 1, ,1 0

( )

0 0 1, ,1

K i

K i

K i F i K i F i

C i

 

 
 
 
 

=  
 
 
  
 

.

 

(7) We construct three new vectors, 𝑏(𝑖), 𝑞(𝑖), and 𝑔(𝑖), on the right-hand side. 

First, let us consider the resource vector 𝑏(𝑖): 

(i) There is resource collaboration in the first stage, 

 ( ) ( ) ( )1

1 1
( ) ( ) ( ), , ( ) ,

T T

m m
b i B i B i B i i N


= =  . 

(ii) There is no resource collaboration in the first stage, 

( )2

1

1 ( )

( ) 0, ,0, ,0, ,0, ( ), , ( ) , 0, ,0, ,0, ,0
T

m

m m m mm m n

b i B i B i

 

 
 =
 
 

. 

Then, the vectors 𝑞(𝑖) and 𝑔(𝑖) are constructed as follows: 

For each player 𝑖 ∈ 𝑁, a vector 𝑒(𝑖) ∈ 𝑅𝑛 is a standard unit vector such that 𝑒(𝑖)𝑖 = 1 and 

𝑒(𝑖)𝑗 = 0 for all 𝑗 ≠ 𝑖. We denote 𝑞(𝑖) = 𝑀 × 𝑒(𝑖) ∈ 𝑅𝑛 with a sufficiently large 𝑀 in order not 

to limit the value of the corresponding λ and μ. 

We define 𝑔(𝑖) ∈ 𝑅𝐹(𝑁), such that 𝑔(𝑖)𝑗 = 1 if 𝑗 ∈ 𝐷(𝑖); and 𝑔(𝑖)𝑗 = 0 otherwise: 

( )
(1) ( 1) ( ) ( 1) ( ) 1 ( )

( ) 0, ,0, ,0, ,0, 1, ,1, 0, ,0, ,0, ,0
T

F F i F i F i F n F N

g i

− + 

 
 =
 
 

. 

Denote 𝑏𝑐(𝑆) = ∑ 𝑏𝑐(𝑖)𝑖∈𝑆 , 𝑐 = 1,2 , where 𝑐 = 1  represents resource cooperation, while 
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𝑐 = 2 represents resource non-cooperation, 𝑞(𝑆) = ∑ 𝑞(𝑖)𝑖∈𝑆 , and 𝑔(𝑆) = ∑ 𝑔(𝑖)𝑖∈𝑆 . 

For example, we consider the organizations with only one stage, 𝑁 = {1,2,3}, 𝑆 = {1,2}, 

𝐾(𝑖) = 1, and 𝐹(𝑖) = 1. If there exists technology collaboration, then 

3 3

1,0,0

0,1,0 ,

0,0,1

H



 
 

=  
 
 

       

1

3 9

1,0,0,1,0,0,1,0,0

0,1,0,0,1,0,0,1,0 ,

0,0,1,0,0,1,0,0,1

G



 
 

=  
 
   

( )
1 3

( ) 1,1,1 ,C i


=

        

1

3 9

1,1,1,0,0,0,0,0,0

0,0,0,1,1,1,0,0,0 ,

0,0,0,0,0,0,1,1,1

V



 
 

=  
 
   

( ),1 ,1 ,1

1 1 1 1 31 3
( ) (1), (2), (3) ( (1), (2), (3)) ,simplyi i i i i ii       

= ⎯⎯⎯→

 ( )1 1 1 1 2 2 2 3 3 3

1 9
( ) (1), (2), (3), (1), (2), (3), (1), (2), (3) ,T         


=

 

3 1 3 1( ) ( ) , ( ) ( ) , 1,2,3,q i M e i g i e i i =  = =
 

𝑞(𝑆) = ∑ 𝑞(𝑖)𝑖∈𝑆 = 𝑞(1) + 𝑞(2) = (𝑀, 𝑀, 0)𝑇, 𝑔(𝑆) = ∑ 𝑔(𝑖)𝑖∈𝑆 = 𝑔(1) + 𝑔(2) = (1,1,0)𝑇. 

The inequality 𝐺1𝜆1 ≤ 𝑞(𝑆)   guarantees that 𝜆𝑖(3) = 0, 𝑖 = 1,2,3. Simultaneously, by taking 

𝑀  as a sufficiently large number, it allows 𝜆𝑖(1) and 𝜆𝑖(2)  ( 𝑖 = 1,2,3 ) to take any values. 

Furthermore, the equality 𝑉1𝜆1 = 𝑔(𝑆) guarantees that 𝜆𝑖(1) + 𝜆𝑖(2) + 𝜆𝑖(3) = 1 (𝑖 = 1,2) and 

𝜆3(1) + 𝜆3(2) + 𝜆3(3) = 0. 

Then, the models 𝑃𝑙(𝑆), 𝑙 = 1,2, . . . ,7 can be written as linear programming games. Taking the 

model 𝑃̃1(𝑆) for example, it can be written as 

2

2 2 2 2

2

2

2 2 2 2 1 1

2

2

2 2 2 2 2 2

2

2

2 2 2 2

2
1

2

2 2 2 2

2

( ) max 0 (0 ) ,

0 ( 0) ( ) ( ),

( ) ( ) 0,

0 ( 0) ( ) ( ),
ˆ( ( ))

0 (0 ) ( )

I T T

i S

i S

R S P Z P Z

X X b S b i

Y Y Y Y

G G q S q i
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G G q S q


 




 




 




 




 







 
= + =   

 

 
+ =  =  

 

 
− − = −   

 

 
+ =  =  

 

 
+ =  =  

 





2

2 2 2 2

2

2

2 2 2 2

2

2 2
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

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For the other models 𝑃𝑙(𝑆), 𝑙 = 2, . . . ,7,  as long as we consider the cases of resource 

collaboration and technology collaboration, we can fill in the corresponding values of 𝑋, 𝑌, 𝑍,

𝜆, and 𝜇 to obtain the respective forms of the linear programming games. 

According to González-Díaz et al. [13] and Curiel [7], it is known that any non-negative totally 

balanced game is equivalent to a linear production game and is also equivalent to a linear 

programming game. This means that the linear production games, the linear programming games, 

and the totally balanced games are equivalent. In conclusion, the NDEA game belongs to the class of 

linear programming games, thus making it equivalent to a linear production game and, therefore, a 

totally balanced game. 

According to Owen [32], Curiel [7], Lozano [28], and Borrero et al. [4], we can compute the 

dual problems of ˆ ( )lP N ( 1,2, ,7)l = and obtain the shadow prices corresponding to the respective 

constraints, denoted as 𝛿1,  𝛿2, 𝛿3, 𝛿4, 𝛿5, 𝛿6, and 𝛿7. Consequently, we can obtain a special core 

solution of the linear programming game, known as the Owen set 

1 2 3 4 5 6( ) 0 ( ) ( ) ( ) ( ),iu b i q i q i g i g i i N     = + + + + +  ,
 

where, if there is resource collaboration in the first stage, 𝑏(𝑖) = 𝑏1(𝑖); otherwise, 𝑏(𝑖) = 𝑏2(𝑖). 

Due to the sufficient largeness of 𝑀, the strict inequality constraints on 𝑞(𝑁) always hold in 

the
 
optimal solution of the model P̂i(𝑁). Therefore, according to the complementary slackness 

conditions, we have
 

δ3 = δ4 =  0. Consequently, the Owen set can be further simplified to 𝑢𝑖 =

δ1𝑏(𝑖) + δ5𝑔(𝑖) + δ6𝑔(𝑖), 𝑖 ∈ 𝑁, in which δ1 represents the shadow price of the initial inputs, 

while δ5 and δ6 represent the dual variable of the constraints ∑ 𝜆 = 1 and ∑ 𝜇 = 1, respectively. 

On the other hand, Shapley [35] showed that a balanced game has a non-empty core. In 

particular, when the core is non-empty, the nucleolus, proposed by Schmeidler [34], always belongs 

to the core and it is unique. Because the seven games (𝑁, 𝑅𝐿), 𝐿 = 𝐼, 𝐼𝐼, . . . , 𝑉𝐼𝐼 are balanced, the 

proposed games will always have stable nucleolus allocations among organizations. In the 

subsequent numerical and empirical
 
analysis, we will provide the nucleolus and Owen sets for the 

corresponding games, respectively. 

5. Numerical and practical examples 

In order to demonstrate the validity of the proposed approach, we provide a numerical example 

to illustrate its effectiveness. Additionally, we apply the proposed approach to an empirical analysis 

of 17 branches of the China Construction Bank scattered throughout the Anhui Province. 

5.1. A numerical example 

To investigate the synergy resulting from the cooperative methods of resource pooling and 

technology sharing on the revenue of the coalition, an example which incorporates one initial input, 

one intermediate product, and a single final output is employed to demonstrate the effectiveness of 

the suggested approach. Moreover, by making use of the essential characterizations of the nucleolus 

and the Owen set, the correlation between the cooperative maneuvers and the revenue allocation to 

each participant in the coalition is studied. We analyze the example from the five aspects given 

below: 
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1) The efficiency of two stages and the production frontiers. 

Suppose that there are four organizations (A, B, C, and D) with five observed decision-making 

units (DMUs) each, resulting in a total of twenty DMUs. The last two columns of Table 3 present the 

output-oriented technical efficiencies of Stages I and II for these twenty DMUs, which were 

randomly generated. Given the technology sharing and initial resource pooling occurring between the 

same stages of production, this study utilizes the single-stage DEA efficiency values to evaluate the 

effect of each organization on the production possibility set within the same stage. The observations 

of each organization are then used to analyze how such entities may shift the frontier edge of the 

given production stage. 

Table 3 offers evidence that, for Organization A, DMU1 is efficient in Stage II, and DMU3 is 

revealed to be efficient in both Stages I and II. Additionally, Organization B boasts two technically 

efficient DMUs (DMU6 and DMU9) in Stage I; in contrast, Organization C has only one DMU 

(DMU14) attaining efficiency in Stage II. No technically efficient DMU is present in Organization D. 

Table 3. Random data and the corresponding efficiency of two stages. 

 

DMU 

(observed 

values) 

Input 
Intermediate  

product 
Output 

Efficiency 

Stage I Stage II 

A 

1 10 25 45 0.89 1 

2 25 29 36 0.73 0.77 

3 21 38 50 1 1 

4 29 33 36 0.83 0.75 

5 36 31 35 0.78 0.74 

B 

6 10 28 40 1 0.87 

7 16 32 45 0.96 0.94 

8 25 30 46 0.76 0.98 

9 26 40 48 1 0.96 

10 21 37 41 0.97 0.83 

C 

11 21 26 43 0.68 0.95 

12 37 28 32 0.7 0.69 

13 27 24 30 0.6 0.71 

14 15 24 42 0.74 1 

15 20 24 32 0.65 0.76 

D 

16 22 36 45 0.94 0.91 

17 23 31 40 0.8 0.85 

18 24 28 45 0.71 0.98 

19 28 34 38 0.85 0.78 

20 25 37 42 0.93 0.85 

In order to gain an insight into the production capabilities of the four organizations and the 

entire production system, Figure 2 displays the production frontiers of the respective entities. 
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Figure 2. Production frontiers. 

As depicted in production frontiers (Figure 2), the letter F represents the first stage, whereas the 

letter S symbolizes the second stage. Meanwhile, the numbers on the right-hand side of the symbols 

correspond with the respective sets of observations. When looking at the four organizations together, 

the two bold lines denote the leading edge of both stages I and II, respectively. The remaining eight 

thin lines exhibit the fronts of the four organizations in Stages I and II. 

As illustrated in Figure 2, it appears that the technology of Organizations A and B is 

significantly more advanced than that of Organizations C and D. This observation is also consistent 

with the findings of Lozano [28], which highlights that it is not the average efficiency of the 

organization, but rather the specific observation points located at the edge of the organization that 

determine the benefits acquired by the organization from the conglomerate. This can be interpreted to 

imply that the extent to which a production organization is able to push the production frontier of the 

colation beyond its limit is a precise reflection of its contribution to the colation. Therefore, it can be 

seen from Figure 2 that the observation points of Organizations A and B constitute the production 

frontier, while the observation points of Organizations C and D are mostly located inside the frontier. 

As the DEA efficiency value represents the relative technology level, we may conclude that 

Organization A has a relatively higher overall technology level, Organization D has a relatively lower 

overall technology level, Organization B has a higher technology level in the first stage, and 

Organization C has a higher technology level in the second stage. 

2) The maximal revenue of coalitions in seven types. 

For the sake of convenience, suppose the price of the final output is 1, i.e., 𝑃 = 1 for all the 

outputs, each organization has three facilities, and the original inputs of resources for the four 

organizations are 50, 40, 70, and 80, respectively. 

We first deal with the maximum revenue problem in the case where there is no cooperation 

among the organizations. The numerical results based on the model (𝑃0(𝑖)) are listed in Table 4. 

Table 4 shows that when the organizations have certain initial resources and do not cooperate 

with each other, both Organizations A and B will use up their initial resources and obtain the 

maximum profits of 144.09 and 138.44, respectively. Meanwhile, Organizations C and D, at their 

current technological levels, will have the initial resource balances of 7 and 14, respectively, and 

correspondingly obtain the maximum profits of 129 and 135, respectively. 



4949 

AIMS Mathematics  Volume 9, Issue 2, 4925–4961. 

Table 4. Numerical results based on model (P0(i)). 

 Facility 
Resource consumed 

𝑋0
𝑓

(𝑖) 
Revenue 𝑃𝑍0

𝑓
(𝑖) 

Revenue of organization 𝑖 

 

Resource 

surplus 

A 

F1 21 50 

144.09 0 F2 19 49.09 

F3 10 45 

B 

F1 15.11 46.44 

138.44 0 F2 12.44 46 

F3 12.44 46 

C 

F1 21 43 

129 7 F2 21 43 

F3 21 43 

D 

F1 22 45 

135 14 F2 22 45 

F3 22 45 

sum  219 546.53 546.53 21 

With a balance of initial resources, if the organizations can cooperate with each other, 

depending on the method of cooperation, the resources will be fully utilized or effectively saved, and 

the benefits will increase. So, we discuss the cases where the organizations can cooperate with each 

other and form coalitions of the seven types, and the maximized revenue of the corresponding fifteen 

coalitions are shown in Table 5. 

Table 5. Maximized revenue of the coalitions. 

Coalition 
Maximal revenue of coalitions in seven types 

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

A 144.09 144.09 144.09 144.09 144.09 144.09 144.09 

B 138.44 138.44 138.44 138.44 138.44 138.44 138.44 

C 129 129 129 129 129 129 129 

D 135 135 135 135 135 135 135 

AB 283.3 284.07 284.64 285.7 287.1 287.41 287.41 

AC 278 273.09 279 280.58 285.38 294.09 297.27 

AD 285 279.09 285 292.94 297.82 294.09 300 

BC 268.58 267.44 273 269.02 269.58 281.48 281.78 

BD 275.73 273.44 279 280.64 282.33 282.44 283.42 

CD 264 264 264 266.16 267.47 270 270 

ABC 416.44 413.07 422.12 422.19 427.55 437.41 439.86 

ABD 423.6 419.07 428.92 434.55 439.62 437.41 443.36 

ACD 414 408.09 414 429.43 434.87 444.09 450 

BCD 405.87 402.44 408 411.79 413.97 425.48 426.72 

ABCD 553.75 548.07 558 571.04 579.65 587.41 595.8 


 )(

0 )(

iFf

f
iPZ
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According to the maximal revenue of coalitions in the seven types (Table 5), it is not difficult to 

find that, under the seven types of cooperation, the revenue of the cooperation among the 

organizations is not less than the sum of non-cooperation among organizations. For example, under 

Type 1, the revenue of the colation ABC is 416.44, while without cooperation, the sum of the 

revenue of Organizations A, B, and C is 144.09+138.44+129=411.53, and it is apparent that 416.44> 

411.53. 

3) The resource surplus and revenue increase in seven cooperative types. 

In order to imply the effect of saving the initial resource of these seven cooperative types, we 

consider the situation that all the organizations form a grand coalition (coalition ABCD), and the 

consumption data of resources for each organization in each type are given in Table 6. Note that, 

according to the hypothesis, the initial resources of a grand coalition total 240. To facilitate 

comparison, we denote the non-cooperative situation as Type 0, which is given in the second column 

in Table 6 according to the resource use and savings in Table 4. 

Table 6. Resources consumption of the organizations. 

 Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

A 50 63 50 63 50 63 50 63 

B 40 48 40 78 40 57 40 63 

C 63 63 30 30 70 54 63 63 

D 66 66 30 30 75 66 63 51 

Resource surplus 21 0 90 39 5 0 24 0 

According to the resource consumption of the organizations (Table 6), we can see that the 

following three types can both save resources and increase the revenue in the grand coalition: Type 2 

(where only the first stage shares the technology, for the total revenue, we have 548.07>546.53 

(=144.09+138.44+129+135), and for the resource surplus we have 90>21), Type 3 (where only the 

first stage shares both the technology and resources), and Type 6 (where the two stages only share the 

technology and keep the resources isolated). For Type 7 (where all the stages cooperate completely, 

the total revenue there is 595.8>546.53), although the original resources cannot be saved, the revenue 

of the grand coalition can be maximized and hence is the maximal of these seven types.  

4) The revenue allocation based on the nucleolus and the Owen set. 

According to Table 5, we analyze the allocation of coalition revenues among the organizations 

based on the basic definitions of the nucleolus and the Owen set. Since the seven NDEA production 

games are balanced, and the nucleolus and the Owen set are in the core, the nucleolus and the Owen 

set reflects the stability of the allocation scheme. Therefore, here we choose these two solution 

concepts as a result of the assignment. We use the R language with the CoopGame package to obtain 

the nucleolus, and use the proof method of Proposition 3 to calculate the Owen set, which are shown 

in Table 7. 

For the convenience of comparison, the cooperative surplus (i.e., the negative quantity of the 

excess) obtained for each organization in the seven types of cooperation based on the concepts of the 

nucleolus and the Owen set are given in Table 8. 
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Table 7. Allocations of coalition revenue among the organizations 

Organization A B C D 

Type1 
Nucleolus 147.87 138.52 130.14 137.22 

Owen Set 147.87 138.44 130.15 137.29 

Type2 
Nucleolus 144.86 139.21 129 135 

Owen Set 145.45 138.62 129 135 

Type3 
Nucleolus 149.96 143.96 129.04 135.04 

Owen Set 150 144 129 135 

Type4 
Nucleolus 153.54 140.02 132.75 144.73 

Owen Set 144.09 141.61 136.49 148.85 

Type5 
Nucleolus 157.12 141.61 134.52 146.41 

Owen Set 145.91 141.61 140.03 152.1 

Type6 
Nucleolus 155.46 140.88 145.3 145.78 

Owen Set 145.45 141.96 150 150 

Type7 
Nucleolus 159.01 142.12 146.05 148.62 

Owen Set 145.45 141.96 152.45 155.94 

Table 8. The cooperative surplus under the nucleolus and the Owen set. 

 Organization Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

Nucleolus 

A 3.78 0.77 5.87 9.45 13.03 11.37 14.92 

B 0.09 0.77 5.52 1.59 3.17 2.44 3.68 

C 1.14 0 0.04 3.75 5.52 16.3 17.05 

D 2.22 0 0.04 9.73 11.41 10.78 13.62 

Owen set 

A 3.78 1.36 5.91 0 1.82 1.36 1.36 

B 0 0.18 5.56 3.17 3.17 3.52 3.52 

C 1.15 0 0 7.49 11.03 21 23.45 

D 2.29 0 0 13.85 17.1 15 20.94 

Among the seven types of cooperation, there is no technical cooperation in Stage II in Types 1 

to 3, and technical cooperation exists in Stage II in Types 4 to 7. From Table 3, the second group of 

cooperative types (Types 4 to 7) creates more cooperative surplus than the first group (Types 1 to 3). 

The reason is that, under the setting of initial resource quantity, there is a relative excess of output in 

the first stage, so the cooperation in the second stage is particularly important. 

According to Table 8, we can see that the cooperative surplus of both the nucleolus and the 

Owen set are relatively similar in the first group of cooperative types (Types 1 to 3) where there is no 

technical cooperation in Stage II, but in the second group of cooperative types (Types 4 to 7) where 

technical cooperation exists in Stage II there are some differences in cooperative surplus for the 

nucleolus and the Owen set. 

5) Investigating each type of cooperation. 

First, we investigate the first group of cooperation types (Types 1 to 3), in which the 

cooperation only exists in the first stage. As shown in Figure 2, the technology of Organizations A 

and B is relatively advanced, while Organizations C and D have abundant resources. 

Type 1: There is only resource cooperation in the first stage. Comparing Type 0 with Type 1 in 
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Table 6, we can see that Organizations A and B add 13 and 8 units of inputs, respectively, and 

Organizations C and D provide 7 and 14 inputs correspondingly. Organization A has more potential 

production capacity, and Organization D provides more input resources, so Organizations A and D 

receive the most cooperative surplus. 

Type 2: There is only technology cooperation in the first stage. As shown in Figure 2, 

Organizations C and D do not create value for the alliance, so they are not assigned. Intuitively, even 

if Organizations C and D are relatively unadvanced, after obtaining the cutting-edge technology of 

Organizations A and B they can still increase the output and thus contribute to the alliance. However, 

Organizations C and D have two-stage production processes and have variable returns to scales, and 

they have excess inputs in Stage II, so even if the technology in the first stage is improved and the 

output of the first stage is increased, the output of the second stage cannot increase and thus create 

value for the colation. Therefore, the final cooperative surplus of Organizations C and D is 0. 

Type 3: There is technological cooperation and resource sharing in the first stage. Resources 

can flow from Organizations C and D to Organizations A and B, thus creating more revenue for the 

coalition. At this time, besides resource pooling, technology sharing should also be considered when 

discussing the contribution of Organizations A and B to the colation. The contribution of 

Organizations A and B is relatively greater than that in Type 1. As a result, they gain more 

cooperative surplus. 

Next, we investigate the second group of cooperation types (Types 4 to 7), with technical 

cooperation in the second stage. Type 7 gains the most cooperative surplus because it has the most 

cooperative manner by sharing both resources and technology in the first stage. 

Type 4: There is only technology cooperation in the second stage. Since the second stage can 

have technology cooperation, the resources of Organizations C and D are relatively fully utilized. 

Furthermore, in the second stage, Organizations A and D have a relatively higher technology level, 

and so they also play a greater role in the cooperation. In the nucleolus, Organizations A and D 

obtain the most cooperative surplus, while in the Owen set, Organizations C and D receive the most 

cooperative surplus. The difference may be due to the fact that the Owen set pays greater attention to 

the resources. 

Type 5: There is resource pooling in the first stage and technology sharing in the second stage. 

From Table 8, we can see that Organization A has the most cooperative surplus in the nucleolus due 

to its high technology level, while Organization D has the most cooperative surplus in the Owen set 

because of its rich initial resources.  

The distribution of cooperative surplus obtained by each organization is similar in Types 6 and 7. 

Organization C has a relatively high cooperative surplus in both the nucleolus and the Owen set 

because Organization C is rich in initial resources and has a high technology level in the second stage. 

On the other hand，Organization A receives the second highest cooperative surplus in the nucleolus 

because it has a high technology level in both stages, and Organization D obtains the second highest 

cooperative surplus in the Owen set due to the fact that it has the most initial resources. 

To summarize, we obtain the following conclusions: 

a) From the aspect of production frontiers, the specific observation points located at the edge of 

the organization determine the benefits acquired by the organization from the colation. These 

phenomena are consistent with the findings of Lozano [28]. 

b) Organization A has a relatively higher overall technology level, Organization B has a higher 

technology level in the first stage, Organization C performs a higher technological level in the 
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second stage, and Organization D has a relatively lower overall technological level. 

c) The cooperation of production organizations can increase the total revenue. 

d) Cooperation can increase revenue, and the most gains with realized with full cooperation 

(Type 7). 

e) The second group of cooperative types (Types 4 to 7) creates more cooperative surplus than 

the first group (Types 1 to 3). 

f) The cooperative surplus of both the nucleolus and the Owen set are relatively similar in the 

first group of cooperative types (Types 1 to 3), but have some differences in the second group of 

cooperative types (Types 4 to 7). 

5.2. A practical example 

In this subsection, we examine 17 commercial bank branches located in the Anhui Province, 

China, and analyze their revenue distribution among subsidiaries across different types of 

cooperation. 

We adopt a methodology similar to that of Yang et al. [42] to model commercial bank activities 

as a two-stage network process. The first stage involves fundraising, and the second stage involves 

profit earning. The model includes three initial inputs: Fixed Assets (denoted as 𝑋1), Employees (𝑋2), 

and Expenditure (𝑋3); two intermediate products: Credit (𝑌1) and Interbank Loans (𝑌2); and two final 

outputs: Loans (𝑍1) and Profit (𝑍2). All variables are measured in units of 100-thousand CNY, and 

specific data can be found in Table 9. 

Table 9. Input, intermediate product, output, and efficiency. 

 Name 𝑋1 𝑋2 𝑋3 𝑌1 𝑌2 𝑍1 𝑍2 Stage I Stage II 

A 

Bengbu 0.5915 0.611 0.4758 50.1164 1.7634 19.4829 0.66 0.8 0.71 

Huainan 0.7237 0.645 0.6061 48.2831 3.4098 34.412 0.7713 0.67 0.74 

Huaibei 0.515 0.486 0.3763 35.0704 2.348 15.2804 0.3203 0.75 0.44 

Fuyang 1.2481 0.638 0.4574 45.0508 1.7237 9.2354 0.3019 0.75 0.35 

Suzhou 0.705 0.575 0.4036 38.1625 2.2492 12.0171 0.3138 0.73 0.39 

Bozhou 0.3418 0.256 0.1594 13.4364 0.4064 2.5326 0.0057 1 1 

B 

Hefei 1.0168 1.221 1.2215 166.9755 8.3098 122.1954 3.7569 1 1 

Anqing 1.2363 0.713 0.5547 37.4954 4.0825 20.6013 0.4864 0.68 0.61 

Chuzhou 0.6446 0.432 0.4012 30.1676 2.3354 13.813 0.3772 0.78 0.61 

Luan 0.7239 0.51 0.3709 26.5391 1.3416 5.0961 0.1453 0.56 0.28 

Chaohu 0.6678 0.423 0.3471 22.1848 1.1767 9.2348 0.2002 0.56 0.48 

C 

Maanshan 0.4775 0.526 0.3848 49.9174 5.4613 34.9897 0.843 1 0.78 

Tongling 0.6125 0.407 0.3407 23.1052 1.2413 32.5778 0.4616 0.63 1 

Wuhu 0.7911 0.708 0.4407 39.459 1.1485 30.2331 0.6732 0.68 1 

Huangshan 0.446 0.443 0.3419 20.9846 0.6897 8.6332 0.1288 0.53 0.65 

Xuancheng 0.5538 0.442 0.3555 22.2093 0.9886 13.6085 0.3614 0.53 1 

Chizhou 0.3363 0.322 0.2334 16.1235 0.4889 5.9803 0.0928 1 1 
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The Anhui Province comprises 17 cities: Hefei, Bengbu, Huainan, Huaibei, Maanshan, Tongling, 

Wuhu, Anqing, Huangshan, Fuyang, Suzhou, Chuzhou, Luan, Xuancheng, Chizhou, Chaohu, and 

Bozhou. Based on historical and cultural factors, the province can be divided into three regions: 

northern (including 6 cities), central (including 5 cities), and southern (including 6 cities). Therefore, 

we have divided the 17 commercial bank branches into three groups labeled as A (northern), B 

(central), and C (southern), respectively. In the last two columns of Table 9, we present the 

output-oriented technical efficiencies of Stage I and Stage II for these 17 commercial bank branches. 

As shown, Organizations A and B each have one efficient DMU in both Stage I and Stage II, while 

Organization C has two efficient DMUs in Stage I and four efficient DMUs in Stage II. 

We now proceed to analyze the maximum benefits that the organizations can achieve in the 

absence of cooperation among them. For each organization, we compute its initial resources as the 

sum of initial inputs, and its revenue as the sum of the final outputs of its commercial bank branches. 

The maximum revenues of the three organizations, along with their corresponding resource balances, 

are presented in Table 10. 

Table 10. Numerical results based on the model (𝑃0(𝑖)). 

 Name Input Revenue Rev_org. Resource surplus 

  X1 X2 X3 Z1 Z2  X1 X2 X3 

A 

Bengbu 0.52 0.49 0.38 22.89 0.49 

150.56 0.84 0 0 

Huainan 0.52 0.49 0.38 22.89 0.49 

Huaibei 0.7 0.62 0.58 32.91 0.74 

Fuyang 0.52 0.49 0.38 22.89 0.49 

Suzhou 0.52 0.49 0.38 22.89 0.49 

Bozhou 0.52 0.62 0.38 22.89 0.49 

B 

Hefei 0.69 0.46 0.36 10.65 0.24 

202.3 0.4 0 0 

Anqing 0.67 0.42 0.35 9.23 0.2 

Chuzhou 1.02 1.22 1.22 122.2 3.76 

Luan 0.8 0.69 0.6 41.68 1.22 

Chaohu 0.72 0.51 0.37 12.8 0.31 

C 

Maansha

n 
0.38 0.38 0.28 32.81 0.5 

209.68 0.57 0 0.02 

Tongling 0.48 0.53 0.38 34.99 0.84 

Wuhu 0.48 0.53 0.38 34.99 0.84 

Huangsha

n 
0.48 0.53 0.38 34.99 0.84 

Xuanchen

g 
0.48 0.53 0.38 34.99 0.84 

Chizhou 0.37 0.36 0.26 32.58 0.46 

sum 9.87 9.36 7.44 549.27 13.24 562.54 1.8 0 0.02 

As shown in Table 10, Organization C generates the highest returns, while Organization A has the 

lowest revenue. Additionally, Organizations A, B, and C have excess fixed assets, while Organization C 
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has excess expenditure. However, all organizations have fully utilized their employees. 

If the three organizations cooperate with each other to form different colations, we can calculate 

the revenues of each colation under seven different types of cooperation. The results are presented in 

Table 11. 

Table 11. Maximized revenue of the coalitions. 

Coalition Type1 Type2 Type3 Type4 Type5 Type6 Type7 

A 150.56 150.56 150.56 150.56 150.56 150.56 150.56 

B 202.3 202.3 202.3 202.3 202.3 202.3 202.3 

C 209.68 209.68 209.68 209.68 209.68 209.68 209.68 

AB 420.33 406.76 443.16 369.07 426.88 448.63 448.63 

AC 375.4 421.76 423.56 415.28 419.36 425.66 426.43 

BC 468.63 459.93 523.66 555.85 565.73 594.43 594.43 

ABC 686.23 683.39 791.46 822.35 865.68 926.27 926.27 

Regarding the maximal revenue of the coalitions (Table 11), we can observe that different 

partners and cooperation types can improve the revenue of each organization to varying degrees. In 

terms of initial resource utilization, we present the surplus of the three initial resources under 

different types of cooperation in Table 12. For comparison purposes, we also record the surplus of 

the initial resources of the three organizations under the condition of no cooperation as Type 0, and 

the details are provided in column 3 of Table 12. 

Table 12. Resource consumption of the organizations. 

Input Organization Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

X1 

A 3.29 2.05 3.49 2.83 3.26 2.51 2.98 3.25 

B 3.89 4.67 3.03 3.67 3.89 4.21 3.03 2.83 

C 2.65 2.19 2.72 2.27 2.65 2.86 2.74 2.67 

surplus 1.8 2.72 2.39 2.87 1.83 2.05 2.87 2.87 

X2 

A 3.21 1.54 3.21 3.08 3.21 2.19 3.21 3.49 

B 3.3 5.11 3.3 4.28 3.3 4.01 3.3 3.12 

C 2.85 2.18 2.85 2 2.85 3.16 2.85 2.75 

surplus 0 0.53 0 0 0 0 0 0 

X3 

A 2.48 0.96 2.48 2.25 2.48 1.53 2.48 2.89 

B 2.9 4.93 2.9 3.91 2.9 3.63 2.9 2.6 

C 2.08 1.59 2.1 1.31 2.08 2.31 2.1 1.99 

surplus 0.02 0 0 0 0.02 0 0 0 

Upon comparison, we observe that, under the seven cooperative modes, the surplus of the three 

initial resources can either be greater or smaller than the balance in the non-cooperative situations. 

This suggests that cooperation does not necessarily save the utilization of resources. 

Specifically speaking, according to Table 12, we can see that all the cooperation types save the 

resources for input X1, Type 2 saves resources for input X2, while for input X3, no type of 

cooperation can save the resources.  

We can obtain the revenue distribution results for each organization based on the nucleolus and 
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the Owen set using the maximal revenue of the coalitions (Table 11). The assignment results are 

presented in Table 13. 

To illustrate the value of different types of cooperation for each organization, we present the 

cooperative surplus of each organization in Table 14. 

Table 13. Allocations of revenue among the organizations. 

Organization A B C 

Type 1 
Nucleolus 184.08 264.36 237.79 

Owen Set 217.59 202.74 265.89 

Type 2 
Nucleolus 197.35 235.52 250.52 

Owen Set 211.1 261.5 210.8 

Type 3 
Nucleolus 209.18 300.94 281.34 

Owen Set 237.04 268.13 286.3 

Type 4 
Nucleolus 208.53 303.22 310.6 

Owen Set 266.5 286.67 269.18 

Type 5 
Nucleolus 225.25 316.52 323.9 

Owen Set 299.17 286.99 279.53 

Type 6 
Nucleolus 241.2 341.41 343.66 

Owen Set 314.15 334.22 277.9 

Type 7 
Nucleolus 241.2 341.41 343.66 

Owen Set 314.15 334.22 277.9 

Table 14. The cooperative surplus of each organization. 

 Organization Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

Nucleolus 

A 33.52 46.79 58.62 57.97 74.69 90.64 90.64 

B 62.06 33.22 98.64 100.92 114.22 139.11 139.11 

C 28.11 40.84 71.66 100.92 114.22 133.98 133.98 

Owen set 

A 67.04 60.54 86.48 115.94 148.61 163.59 163.59 

B 0.44 59.2 65.83 84.37 84.69 131.92 131.92 

C 56.21 1.12 76.62 59.5 69.85 68.22 68.22 

Based on Table 14, it can be observed that the second cooperation style (Type 2) results in the 

lowest excess return, whereas the seventh cooperation mode (Type 7) yields the highest cooperative 

surplus. The profit-earning activities are considered in the second stage, wherein Credit and 

Interbank Loans are utilized to generate Loans and Profit. In the second type of cooperation, only the 

first stage shares technology, which indicates that all the branches of commercial banks perform 

inadequately in profitable activities. 

Furthermore, in the seventh type of cooperation, both resource pooling and technology sharing are 

utilized in the first stage, while only technology sharing is used in the second stage. This is identified as 

the most effective mode of cooperation among the seven considered. As Table 14 indicates, greater 

cooperation among organizations leads to greater benefits for all parties involved. Additionally, the fact 

that the second cooperation type results in the lowest benefits suggests that resource pooling and 

technology sharing in the second stage play a dominant role in the seventh cooperation mode. 
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It is noteworthy that the cooperative surplus of the nucleolus and the Owen set has some 

differences. Generally speaking, in the nucleolus, Organization B, who is with rich initial input, 

obtains a relatively higher cooperative surplus, while in the Owen set, Organization A, who has the 

second highest initial input and technology level, receives a higher cooperative surplus. 

The managerial implications with related observations in the results could be re-organized as 

follows. 

1) From the aspect of cooperation manners. 

a) Different partners and cooperation types can improve the revenue of each organization to 

varying degrees. 

b) Cooperation does not necessarily save the utilization of resources. 

c) The second cooperation style (Type 2) results in the lowest excess return, whereas the 

seventh cooperation mode (Type 7) yields the highest cooperative surplus. 

d) Greater cooperation among organizations leads to greater benefits for all parties involved. 

2) From the perspective of each organization. 

a) Organization A 

Organization A has the second highest initial resources, whose overall technology level also ranks 

the second, but its performance in profit transformation is relatively poor. As a result, in the nucleolus, 

Organization A obtains relatively less cooperative surplus, especially under the last four types of 

cooperation. However, in the first three cooperation types where technology sharing is involved in the 

first stage, the cooperative surplus of Organization A is relatively high. In particular, in the second 

cooperation type where only the first stage shares technology, Organization A has the highest 

cooperative surplus, indicating that Organization A has a significant advantage in raising funds. 

Meanwhile in the Owen set, Organization A receives the highest cooperative surplus, which shows that 

the relative equivalence of resources and technology increases the contribution of Organization A. 

b) Organization B 

Organization B has more initial resources compared with Organizations A and C. Additionally, 

Organization B has a higher profit conversion capacity in the second stage, where the main focus is 

on lending money and generating profit (Loans and Profit) (Yang et al., 2011). As a result, 

Organization B generates more profits in the second stage, as reflected by its revenue of 202.3 in the 

non-cooperative situation in Table 10. Therefore, in the nucleolus，Organization B gains more 

cooperative surplus compared to other partners, while in the Owen set, Organization B obtains the 

second highest cooperative surplus. 

c) Organization C 

Organization C has the lowest initial resources among the three organizations. However, Table 9 

shows that Organization C has relatively high efficiency values at both stages, indicating strong 

financing and profit-earning abilities. As a result, in the nucleolus, despite having fewer initial 

resources, the gap between the cooperative surplus of Organization C and the other organizations is 

not significant, particularly in the second cooperation type. In the Owen set, Organization C obtains 

relatively less cooperative surplus, which indicates that the Owen set pays more attention to the 

resources than the nucleolus. 

Upon analyzing the commercial bank organizations with two-stage processes, i.e., financing and 

profit-earning, and different ways of cooperation between stages, we can extract rich management 

information by calculating and distributing cooperative surplus. This highlights the significance of 

the method proposed in this paper. 
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6. Conclusions 

In many managerial applications, the production process often has a multi-stage structure. In this 

paper, we consider the simplest form of a two-stage production organization, and suppose that the 

organizations can cooperate through methods of pooling the initial resource and (or) sharing the 

technology of each production process. Although the two-stage series production process we discuss 

in this paper is relatively simple, it is enough to fully reflect the internal cooperation mode. 

Compared with the analysis on the single-stage implemented by Lozano, the discussion on the 

two-stage cooperation among the organizations can bring out more helpful management information. 

Our proposed models can give the optimal revenue of the alliance under different cooperation types; 

the research conclusions can provide valuable information for managers in the selection of 

cooperation mode, full utilization of initial resources, and fair distribution of benefits, etc. 

The main work we do in this paper is as follows: 

(1) We prove that two-stage DEA production games have the super-additive property, and can 

be expressed as linear programming games, and hence they are equivalent to linear production games 

and are totally balanced. Therefore, the proposed cooperative games have a non-empty core and have 

that the nucleolus and the Owen set belong to the core. 

(2) We discuss the influence of seven different cooperation types on the coalition revenue. 

Furthermore, the coalition revenue is decomposed under the two concepts of the nucleolus and the 

Owen set, and the distribution income of each organization reflects its resource advantages and (or) 

technological advantages. 

(3) We use a numerical example and an empirical application of 17 commercial banks to 

illustrate the applicability of our proposed approach and give a detailed discussion about the 

relationship between the manners of cooperation and the revenue distribution. 

The following conclusions can be deduced from this study: 

(1) Cooperation can generate cooperative surplus. According to Table 8 and Table 14, it can be 

seen that almost every organization can obtain cooperative surplus based on the nucleolus and the 

Owen set. 

(2) The higher the degree of cooperation, the higher the revenue of the coalition. Among the 

seven cooperation types that we discuss, the seventh cooperation mode is the most complete method, 

and gives each organization the most cooperative surplus. 

(3) In some cases, cooperation can save resources. According to Table 6, we can see that there 

exist three types that can both save the resources and increase the revenue in the grand coalition. 

From Table 12, we see that all the cooperation types save the resources for input X1. 

(4) Relative advantages and disadvantages of each organization can be obtained. By comparing the 

sizes of the cooperative surplus obtained by each organization, we can get the relative advantages and 

disadvantages of each organization in terms of the number of resources and technological level. 

We would like to point out that the proposed method cannot be used for a production process 

with fuzzy data. Therefore, extending the proposed method to address this shortcoming is an 

interesting avenue in future research. Furthermore, for future studies, the production system with 

other types of network structure, such as parallel connection, multi-stage series connection, and 

mixed series parallel connection, can be considered so as to study the ways of cooperation and the 

scheme of resource allocation for different stages under varying production structures. Moreover, the 

research methods can be utilized to analyze other practical problems such as merger, acquisitions, 
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reconstruction, and optimal partner selection for banks, insurance companies, and chain hotels, so as 

to supply theoretical support on resource sharing and achieving mutually beneficial win-win 

cooperation for the enterprises. 
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