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stability and bifurcation analyses. In our pursuit of devising qualitative techniques for infectious
disease analysis, we introduced a model that incorporates state-dependent transmission interventions.
Through the introduction of state-dependent control, characterized by a non-linear action threshold
contingent upon the combination of susceptible population density and its rate of change, we employ
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existence, stability, and bifurcation phenomena concerning disease-free periodic solutions (DFPS).
The analysis of the established Poincaré map leads us to the conclusion that DFPS indeed exists
and maintains stability under specific conditions. Significantly, we have formulated a distinctive
single-parameter family of discrete mappings, leveraging the bifurcation theorems of discrete maps
to dissect the transcritical bifurcations around DFPS with respect to parameters such as ET and η1.
Under particular conditions, these phenomena may give rise to effects like backward bifurcation and
bistability. Through the analytical methodologies developed in this study, our objective is to unveil a
more comprehensive understanding of infectious disease models and their potential relevance across
diverse domains.
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1. Introduction

Infectious diseases have consistently posed a significant challenge to public health globally.
Historically, pandemics such as the plague, black death, and the 1918 Spanish influenza have led to
the loss of millions, even tens of millions, deeply affecting the political, social, and economic
structures of societies. Today, despite major advancements in medical and healthcare sciences,
outbreaks like SARS, H1N1, Ebola, and COVID-19 continue to threaten global health.

In the fight against infectious diseases, mathematical modeling has become an indispensable tool,
offering insights into the study, understanding, and management of disease spread [1–10]. By
establishing appropriate mathematical models, we can analyze the effectiveness of control measures
quantitatively or qualitatively. Among these models, the state-dependent pulse model is particularly
noteworthy for its ability to effectively describe infectious disease control [11, 12]. The model
operates under the assumption that no control measures are implemented when the number of
susceptible populations is within a certain range. However, comprehensive measures, including
immunization of susceptible populations and treatment of infected individuals, are implemented when
the size of the susceptible population reaches or exceeds the control threshold. Subsequently, scholars
have developed numerous state-dependent pulse models tailored to different types of infectious
disease characteristics, delving into the impact of state-dependent pulse control strategies on dynamic
behaviors, such as disease elimination and epidemics.

Nevertheless, many existing mathematical models of infectious diseases assume continuous
interventions like vaccination, drug treatment, or isolation. These models frequently overlook
real-world challenges, including resource constraints, high costs, and the impracticality of sustained
interventions. Addressing these issues, pulse control strategies, involving periodic interventions like
vaccination or patient isolation, have garnered significant attention in the field of mathematical
modeling. Pulse control proves particularly beneficial in resource-limited scenarios and is extensively
researched for its potential in infectious disease control [13–20]. Furthermore, state-dependent
feedback control, as represented by pulse semi-dynamic systems, finds application across various
fields and sciences, such as fisheries harvesting [21–23], integrated pest management [24–26], and
interactions among biological populations [27–29].

In the realm of infectious disease modeling, the selection of the ratio-dependent action threshold
method is driven by a meticulous consideration of the limitations inherent in traditional control
strategies and the imperative need for a more realistic representation of disease dynamics. The
foundational premise of triggering interventions based on a fixed population density threshold, a
cornerstone of state-dependent feedback control, tends to oversimplify the intricate dynamics of
real-world scenarios. This conventional approach may overlook crucial factors, such as situations
where the transmission rate remains high despite a low population density or vice versa. In both
scenarios, a high population density may not necessarily warrant immediate control intervention if the
transmission rate remains low. To address this limitation, the adoption of a more effective control
strategy becomes imperative. This strategy considers both population density and its rate of change,
leading to the formulation of a nonlinear threshold control policy known as the “ratio-dependent
action threshold”. In this approach, the decision to implement control measures hinges on the ratio of
population density to its rate of change, providing a more adaptive and realistic representation of
infectious disease scenarios.
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The significance of the ratio-dependent action threshold method lies in its capacity to capture the
nuanced dynamics of infectious diseases. Recent research has delved into nonlinear threshold
strategies, revealing diverse and dynamic behaviors in various contexts [30–36]. This method not only
challenges prevailing assumptions in pulse control models, where the rate of change is assumed to
directly correlate with population density following the introduction of control measures but also
offers a more accurate representation by acknowledging inherent constraints in this relationship.
Furthermore, the adoption of a saturated form that includes a nonlinear function enhances the realism
of infectious disease models. This nuanced approach considers the complexities of disease dynamics,
contributing to a more comprehensive understanding of infectious diseases and facilitating the
development of intervention strategies aligned with the dynamic nature of disease transmission. In
summary, the ratio-dependent action threshold method is chosen for its ability to address real-world
complexities, offering a more accurate and adaptive representation of infectious disease dynamics in
modeling and control strategies.

Our efforts aim to integrate a nonlinear threshold strategy within an infectious disease transmission
model with a saturated incidence rate. In Section 2, we introduce an SIR state-dependent pulse model
with a saturated incidence rate and adopt a rate-related nonlinear action threshold. Section 3 delves
into constructing the corresponding Poincaré map by defining the pulse set and phase set range and
discussing the essential attributes of the Poincaré map. In Section 4, conditions for the existence
and stability of 1st order periodic solutions are established. Section 5 analyzes the bifurcation of the
discrete mapping’s one-parameter family concerning a critical parameter near the trivial fixed point
when the model possesses a local disease equilibrium. Sensitivity analysis of the model is conducted
in Section 6, where variations in parameters lead to complex dynamics. The analysis of the intricate
interplay remains a challenging and underexplored frontier in this domain. Finally, a comprehensive
conclusion and detailed discussions wrap up our study.

2. Model

In our current study, we have chosen an SIR model with a saturated incidence rate, and extended the
model presented in [37] by considering the density of susceptible individuals and their rate of change
as action thresholds. The model is given by the following equation:



dS (t)
dt
= Λ −

βS I
1 + αS

− δS ,

dI(t)
dt
=
βS I

1 + αS
− (γ + δ)I,

 u1S (t) + v1
dS (t)

dt
< ET,

S (t+) = (1 − η1)S (t),

I(t+) = (1 − η2)I(t),

 u1S (t) + v1
dS (t)

dt
= ET.

(1)

Here, S (t) and I(t) denote the numbers of susceptible and infected individuals, respectively. Λ is the
birth rate, δ is the mortality rate, γ indicates the rate of recovery, β is the rate at which transmission
occurs, and α is the half-saturation constant. Additionally, we define q as q = γ + δ. The parameters
u1, v1, and ET are all positive constants, and to simplify the model, we set u1 + v1 = 1. When the
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population density of susceptible individuals reaches the action threshold given by

u1S (t) + v1
dS (t)

dt
= ET

control measures will be implemented to update the numbers of susceptible individuals and infected
individuals as follows: (1 − η1)S (t) and (1 − η2)I(t). In this context, η1 and η2 represent the maximum
vaccination rate and maximum treatment rate, respectively. The parameters u1, v1, ET , η1, and η2

are pivotal factors within the control of decision-makers, intricately associated with infectious disease
control measures. The values of these parameters can be effectively determined through practical
applications in the field of infectious disease control.

The dynamic analysis of the non-pulsed model in [37] has been extremely valuable for our research.
We define the non-pulsed model as M0, and, based on [37], it is evident that M0 possesses a disease-
free equilibrium point, denoted as E0(K, 0), where E0 is stable when R0 < 1, and it becomes unstable
when R0 > 1, where

R0 =
Λ(β − αq)
δq

, K =
Λ

δ
.

Furthermore, M0 has an endemic equilibrium point denoted as E∗(S ∗, I∗) for R0 > 1, where

S ∗ =
q

β − αq
, I∗ =

Λ(β − αq) − δq
q(β − αq)

.

In cases where ∆ ≥ 0, E(S , I∗) is a stable node, while for ∆ < 0, it behaves as a stable focus, where

∆ =
δ2(β − αq)2(R0 − 1)2

β2 +
δ(2δ − 4q)(β − αq)(R0 − 1)

β
+ δ2.

It follows from
u1S (t) + v1

dS (t)
dt
= ET

that we have
u1S + v1

(
Λ −

βS I
1 + αS

− δS
)
= ET,

and we can define the impulsive curve as

LM : I =
(u1S + v1(Λ − δS ) − ET )(1 + αS )

v1βS
.

Since
S (t+) = (1 − η1)S (t) and I(t+) = (1 − η2)I(t),

we can define the corresponding phase space as

LN : I = (1 − η2)LM(
S

1 − η1
).

According to
dS
dt
= 0, we can denote the vertical isocline as

L1 : I =
(Λ − δS )(1 + αS )

βS
.
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There is an intersection point between L1 and LM for

LM(S ) − L1(S ) = 0,

where

LM = L1 +
(u1S − ET )(1 + αS )

v1βS
,

and the intersection point denote as
PET = (S ET , IET ),

where

S ET =
ET
u1

and

IET =
(Λu1 − δET )(u1 + αET )

u1βET
.

If K >
ET
u1

, then there is a unique intersection PET where all coordinates are positive. However, when

u1 = 0, the inequality LM(S ) < L1(S ) always holds, indicating that lines LM and L1 do not intersect.

3. Poincaré map for R0 < 1

The trajectory starting from any point P+k = (S +k , I
+
k ) on LN will definitely reach LM after finite time

t, and its intersection with LM is
Pk+1 = (S k+1, Ik+1),

and it will pulse to point P+k+1 ⊂ LN . Therefore, we can denote

P+k+1 = (S +k+1, I
+
k+1)

with
S +k+1 = (1 − η1)S k+1, I+k+1 = (1 − η2)Ik+1,

and we define the Poincaré map PM as

PM(I+k ) = (1 − η2)Ik+1 = I+k+1.

There exists a point on LN , denoted as PT = (S T , IT ). The trajectory starting from PT reaches LM at
point PT1 = (S T1, IT1) (see Figure 1). Therefore, we define the impulsive set and phase set as

M = {(S , I)|S Z ≤ S ≤ S T1,, 0 ≤ I ≤ IT1},

N = {(S +, I+)|S +Z ≤ S + ≤ (1 − η1)S T1, 0 ≤ I+ ≤ (1 − η2)IT1}.
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(a) (b)

Figure 1. The trajectories of system (1) for R0 < 1, where Λ = 1, β = 0.015, α = 0.001,
δ = 0.08, γ = 0.3, η1 = 0.5, η2 = 0.1, u1 = 0.7, v1 = 0.3, and ET = 4.

We denote continuous functions Q1(S (t), I(t)) and Q2(S (t), I(t)) as

Q1(S (t), I(t)) = Λ −
βS I

1 + αS
− δS , Q2(S (t), I(t)) =

βS I
1 + αS

− γI − δI,

so we consider the following scalar differential equation:
dI
dS
=

Q2(S (t), I(t))
Q1(S (t), I(t))

= G(S , I),

I(ET ) = I+0 .
(2)

G(S , I) is a continuously differentiable function. Now we denote S +0 = S c, I+0 = Y with (S +0 , I
+
0 ) ∈ N.

Then, we have
I(S ) = I(S ; S c,Y) = I(S ,Y)

and

I(S ,Y) = Y +
∫ S

S c

G(x, I(x,Y))dx,

where the value of S is between the LM and the LN .
Therefore, the Poincaré map PM has the following form

PM(Y) = (1 − η2)I(S ,Y).

Theorem 1. For model (1) with R0 ≤ 1, the Poincaré map PM exhibits the subsequent characteristics:

(i) PM has a domain spanning [0,+∞) and encompasses a range of [0, PM(IT )].

(ii) Within the interval [0, IT ], PM exhibits an upward trend, but shows a decline for (IT ,+∞). It
remains continuous and exhibits a concave nature over [0, IT ].

(iii) The singular stable fixed point for PM is at I = 0. Hence, model (1) possesses a stable disease-
free periodic solution (DFPS).
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Proof. It follows from the first function of system (2) that we have

∂G(S , I)
∂I

=
AB(C − qB)

D2 ,
∂2G(S , I)
∂I2 =

2CAB(C − qB)
D3 ,

where A = Λ − δS , B = 1 + αS , C = βS , and

D = (Λ − δS )(1 + αS ) − βS I = AB −CS .

Given that S < K and R0 ≤ 1, it follows that A > 0 and C − qB < 0, and for I < IT , D > 0, whereas for
I > IT , D < 0. From these observations, it is clear that both

∂G(S , I)
∂I

< 0 and
∂2G(S , I)
∂I2 < 0

hold true for every I < IT .
From the principles of the Cauchy-Lipschitz theorem applied to the scalar differential equation, we

can deduce that
∂I(S ,Y)
∂Y

= exp
( ∫ S

S c

∂G(x, I(x,Y))
∂I

dx
)
> 0

and
∂2I(S ,Y)
∂Y2 = exp

( ∫ S

S c

∂G(x, I(x,Y))
∂I

dx
) ∫ S

S c

∂2G(x, I(x,Y))
∂I2

∂I(x,Y)
∂Y

dx < 0.

Moreover, according to
PM(Y) = (1 − η2)I(S ,Y),

we have
∂PM(Y)
∂Y

= (1 − η2)
∂I(S ,Y)
∂Y

= (1 − η2) exp
( ∫ S

S c

∂G(x, I(x,Y))
∂I

dx
)

and

∂2PM(Y)
∂Y2 = (1 − η2)

∂2I(S t,Y)
∂Y2

= (1 − η2) exp
( ∫ S

S c

∂G(x, I(x,Y))
∂I

dx
) ∫ S

S c

∂2G(x, I(x,Y))
∂I2

∂I(x,Y)
∂Y

dx.

Given that (1 − η2) > 0, for Y ∈ (0, I(T )], it is evident that

∂PM(Y)
∂Y

> 0 and
∂2PM(Y)
∂Y2 < 0.

This suggests that PM(Y) is both continuously differentiable and concave within the interval (0, IT ].
Additionally, PM(Y) consistently rises within (0, IT ] and falls in the range (IT ,+∞).

Therefore, when R0 ≤ 1, and taking into account that
ET
u1
< K, it follows that for every Y in the sets

(0, IT ] and (IT ,K), the inequality Y ≥ I(S ,Y) > PM(Y) holds true. This implies that the Poincaré map
PM exhibits a singular fixed point which is globally stable. As a result, model (1) maintains a distinct
DFPS that demonstrates global stability. □
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4. The existence and stability of boundary order-1 periodic solution

If we define the function
f (S ) = u1S + v1(Λ − δS ) − ET,

solving LM = 0 yields the intersection points of LM with the x-axis, which is equivalent to solving
f (S ) = 0. When I = 0, the model can be simplified as follows:

dS (t)
dt
= Λ − δS , f (S ) < 0,

S (t+) = (1 − η1)S (t), f (S ) = 0.
(3)

Furthermore, it follows from f (S ) = 0 that we have

S Z =
ET − v1Λ

u1 − v1δ
,

so model (3) is equivalent to 
dS (t)

dt
= Λ − δS , S < S Z,

S (t+) = (1 − η1)S (t), S = S Z.

(4)

Denoting the initial value S +Z = (1 − η1)S Z, we have the following results:

Theorem 2. If R0 ≤ 1, then system (1) has a globally stable boundary order-1 limit cycle (S T (t), 0)
with period T , where

S T (t) = K + (S +Z − K) exp(−δt)

and
T = −

1
δ

ln(
K − S Z

K − S +Z
).

Proof. Based on the premise that the solution S (t) of the system moves from the initial value S 0 to
S Z within a finite time T , by solving the system with initial value S 0 = S +Z , we can conclude that the
periodic solution

S T (t) = K + (S +Z − K) exp(−δt)

and ∫ S Z

S +Z

1
Λ − δS

dS = T.

Furthermore, it follows from in [38, Lemma A.1] that we have

µ2 = ∆K exp
∫ T

0

(
∂P(S T (t), 0)
∂S

dt +
∂Q(S T (t), 0)

∂I
dt
)
,

where

∆K =

P+
(
∂β

∂I
∂ϕ

∂S
−
∂β

∂S
∂ϕ

∂I
+
∂ϕ

∂S

)
+ Q+

(
∂α

∂S
∂ϕ

∂I
−
∂α

∂I
∂ϕ

∂S
+
∂ϕ

∂I

)
P
∂ϕ

∂S
+ Q
∂ϕ

∂I

,
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P(S , I) = Λ −
βS I

1 + αS
− δS , Q(S , I) =

βS I
1 + αS

− γI − δI,

α(S , I) = −η1S , β(S , I) = −η2Iϕ(S , I) = u1S + v1P(S , I) − ET.

By simple calculations, we have

∂ϕ(S T (t), 0)
∂S

= u1 − v1δ,
∂β(S T (t), 0)
∂I

= −η2

and
Q(S T (t), 0) = Q(S T+(t), 0) = 0,

which yields

∆K =
(1 − η2)(K − S +Z )

K − S Z
.

Moreover, we can obtain

exp
∫ T

0

(
∂P(S T (t), 0)
∂S

dt +
∂Q(S T (t), 0)

∂I
dt
)
= exp

∫ T

0

(
βS T (t)

1 + αS T (t)
− δ − q

)
dt,

where ∫ T

0

βS T (t)
1 + αS T (t)

dt =
∫ S Z

S +Z

βS
(1 + αS )(Λ − δS )

dS

= −
β

Λα + δ

(1
δ

ln
1 + αS Z

1 + αS +Z
+ K ln

K − S Z

K − S +Z

)
,

∫ T

0
(−δ) = ln

K − S Z

K − S +Z
and ∫ T

0
(−q) =

q
δ

ln
K − S Z

K − S +Z
.

Therefore,

µ2 = (1 − η2) exp
(
−

1
Λα + δ

[
β

α
ln

1 + αS Z

1 + αS +Z
+ q(R0 − 1) ln

K − S Z

K − S +Z

])
,

so we can know that µ2 < 1 for R0 < 1, which means that the boundary order-1 limit cycle (S T (t), 0) is
orbitally asymptotically stable.

Once it is established that the boundary order-1 limit cycle (S T (t), 0) is globally attractive, it is
tantamount to demonstrating its global stability. Thus, we make the assumption that the pulse point
sequence I+k for k ≥ 0 lies entirely on the line LN and I+k ∈ [0, (1 − η2)IT1]. Given that R0 ≤ 1, we

can deduce that
dI
dt
< 0 for S < K. Consequently, we can ascertain that I+k forms a strictly decreasing

sequence, with
lim

k→+∞
I+k = I0.

Additionally, the monotonicity of I(t), as depicted in Figure 2a, dictates that I0 = 0. As a result, the
boundary order-1 limit cycle (S T (t), 0) for model (1) is globally attractive. This completes the proof of
Theorem 2. □
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(a) (b)

Figure 2. Illustration of the global stability of the DFPS with ET = 3 in (a) and bistability
with ET = 19.15 in (b). The fixed parameter values are Λ = 2.5, β = 0.015, α = 0.001,
δ = 0.08, γ = 0.3, η1 = 0.4, η2 = 0.1, u1 = 0.7, v1 = 0.3.

5. Bifurcations for R0 > 1

5.1. Transcritical bifurcations for ET

According to

S Z =
ET − v1Λ

u1 − v1δ
,

taking the derivative of µ2 with respect to ET as

dµ2

dET
=

dµ2

dS Z

dS Z

dET
=

µ2

u1 − v1δ
(g(S Z) − (1 − η1)g(S +Z )),

where
g(S ) =

(β − αq)S − q
(1 + αS )(Λ − δS )

,

taking the derivative of g(S ) with respect to S yields

g
′

(S ) =
(β − αq)((1 + αS )(Λ − δS ) − (S − S ∗)(αΛ − δ − 2αδS ))

((1 + αS )(Λ − δS ))2

=
(β − αq)g2(S )

((1 + αS )(Λ − δS ))2 ,

where
g2(S ) = (αδS 2 − 2αδS ∗S + (αΛ − δ)S ∗ + Λ).

By simple calculations, we know that g2(S ) has a minimum value (−αδ(S ∗)2 + (αΛ − δ)S ∗ +Λ) for
S = S ∗, and if

−
1
α
< S ∗ < K, (i.e., R0 > 1),
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then
(−αδ(S ∗)2 + (αΛ − δ)S ∗ + Λ) > 0,

and then g
′

(S ) > 0.
Based on the above discussion, if

S Z > S ∗ ≥ S +Z ,

then
g(S Z) > 0 ≥ g(S +Z )

and
g(S Z) − (1 − η1)g(S +Z ) > 0.

If
S Z > S +Z > S ∗,

then
g(S Z) > g(S +Z ) > 0

and
g(S Z) − (1 − η1)g(S +Z ) > 0.

Moreover, it is clear that ∫ S Z

S +Z

g(S )dS < 0

as S Z approaches S ∗, and ∫ S Z

S +Z

g(S )dS = +∞

as S Z approaches K. According to the monotonicity of
∫ S Z

S +Z
g(S )dS , it can be inferred that there is an

ET ∗ ∈ ((u1 − v1δ)S ∗ + v1Λ, (u1 − v1δ)K + v1Λ),

such that µ2 = 1.
It is clear that

PM(0, ET ) = I(S Z, 0) = 0,

and it follows from the definition of PM that we have

∂PM(0, ET ∗)
∂Y

= µ2(ET ∗) = (1 − η2) exp
( ∫ S Z

S +Z

∂G(x, I(x,Y))
∂I

dx
)
= 1.

According to the monotonicity of g(S ), it can be known that

∂2PM(0, ET ∗)
∂Y∂ET

=
dµ2(ET ∗)

dET
> 0,

∂2PM(0, ET ∗)
∂Y2 = (1 − η2) exp

( ∫ S

S c

∂G(x, I(x,Y))
∂I

dx
) ∫ S

S c

∂2G(x, I(x,Y))
∂I2

∂I(x,Y)
∂Y

dx.
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To simplify symbols, now we denote

E1(x) =
∫ x

S +Z

(β − αq)x − q
(Λ − δx)(1 + αx)

dx,

E2(x) = (1 − η2) exp(E1(x)),

E3(x) =
∂2

∂I2 G(x, I(x, 0)) =
2βx((β − αq)x − q)
((Λ − δx)(1 + αx))2 ,

E4(x) =
E3(x)
E′1(x)

=
2βx

(Λ − δx)(1 + αx)
.

By simple calculations, we have

E2(S +Z ) = 1 − η2 and E2(S Z) = µ2(ET ).

For convenience, we derive the derivative of E1(x) with respect to x as

E
′

1(x) =
(β − αq)x − q

(Λ − δx)(1 + αx)
.

Therefore, through inequality A, we can obtain

∂2PM(0, ET ∗)
∂Y2 =

∫ S Z

S +Z

∂2

∂I2 (G(x, I(x, 0)))
∂I(x, 0)
∂Y

dx

=
1

1 − η2

∫ S Z

S +Z

E3(x)E2(x)dx

=
1

1 − η2

∫ S Z

S +Z

E3(x)
E′1(x)

d(E2(x))

=
1

1 − η2

∫ S Z

S +Z

E4(x)d(E2(x)).

According to the monotonicity of E1(x), we know that the function E2(x) is monotonically
decreasing for x ∈ [S +Z , S

∗] and monotonically increasing for x ∈ [S ∗, S Z]. Thus, if ET = ET ∗, then

E2(S +Z ) = 1 − η2 and E2(S Z) = µ2(ET ∗) = 1,

which indicates that E2(S ∗) < E2(x) ≤ 1 for all x ∈ [S +Z , S Z]. Moreover, we have

E
′

4(x) =
2β(Λ + δαx2)

((Λ − δx)(1 + αx))2 > 0,

and thus, E4(x) > 0 is monotonically increasing on [S +Z , S Z]. Furthermore, we have∫ S Z

S +Z

E4(x)d(E2(x)) = E2(x)E4(x)|S Z
S +Z
−

∫ S Z

S +Z

E2(x)E
′

4(x)dx

= E4(S Z) − (1 − η2)E4(S +Z ) −
∫ S Z

S +Z

E2(x)E
′

4(x)dx

> E4(S Z) − E4(S +Z ) −
∫ S Z

S +Z

E2(x)E
′

4(x)dx.
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By simple calculations, we have

E4(S Z) − E4(S +Z ) −
∫ S Z

S +Z

E2(x)E
′

4(x)dx =
∫ S Z

S +Z

(1 − E2(x))E
′

4(x)dx,

which means that
∂2PM(0, ET ∗)
∂Y2 > 0.

The above calculations demonstrate that the conditions of in [38, Lemma A.2] are satisfied. Therefore,
we have the following conclusion:

Theorem 3. Given that S ∗ < S Z < K and R0 > 1, PM(Y, ET ) undergoes a transcritical bifurcation
at ET = ET ∗. This indicates the emergence of an unstable positive fixed point for PM(Y, ET ) as ET
transitions across ET ∗ from the right to the left side. Consequently, we posit that for some sufficiently
small value ϵ > 0, system (1) exhibits an unstable positive periodic solution when ET lies in the
interval (ET ∗ − ϵ, ET ∗).

The emergence of a positive fixed point as elucidated in Theorem 3 indicates an unstable positive
periodic solution for system (1). This suggests a concurrent local stability of the internal equilibrium
(S ∗, I∗) and the DFPS in system (1), leading to what we refer to as a bistable impulsive system, as
shown Figure 2b. A more precise description is provided below.

Theorem 4. Given conditions S ∗ < S Z < K, R0 > 1, and ET ∈ (ET ∗ − ϵ, ET ∗), where ϵ > 0 is
sufficiently small, it can be concluded that system (1) exhibits bistability.

5.2. Transcritical bifurcations for η1

Here we take η1 as the key factor for bifurcation. Thus, we have

µ2(η1) = (1 − η2) exp
( ∫ S Z

S +Z

(β − αq)S − q
(1 + αS )(Λ − δS )

dS
)
.

By simple calculation, we have

dµ2(η1)
dη1

= S Z(1 − η2)
(β − αq)S +Z − q

(1 + αS +Z )(Λ − δS +Z )
exp
( ∫ S Z

S +Z

(β − αq)S − q
(1 + αS )(Λ − δS )

dS
)
,

and solving
dµ2(η1)

dη1
= 0

yields a unique root S +Z = S ∗, i.e.,
dµ2(η1)

dη1
= 0,

where

η1 = 1 −
S ∗

S Z
.
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From the given information, for η1 in the range (0, η1), it is evident that

S +Z > S ∗ and
dµ2(η1)

dη1
> 0.

Conversely, for η1 in the interval (η1, 1), we observe that

S +Z < S ∗ and
dµ2(η1)

dη1
< 0.

According to the monotonicity of
dµ2(η1)

dη1
, it is clear that the value of µ2(0) is less than that of µ2(η1),

denoting that µ2(η1) shows an increasing trend in the interval [0, η1] and a decreasing trend when η1

lies between (η1, 1). Moreover, guided by the trend in the rate of change, if µ2(η1) > 1, a particular
value η∗1 exists in the interval (0, η1) for which µ2(η∗1) = 1. Similarly, if µ2(1) < 1, there exists a singular
value η∗∗1 in the range (η1, 1) such that µ2(η∗∗1 ) = 1. If η1 = η1, it follows from

ln
K − S +Z
K − S Z

> 1 −
K − S Z

K − S +Z
=

S Z − S +Z
K − S +Z

and
ln

1 + αS Z

1 + αS +Z
<

1 + αS Z

1 + αS +Z
,

that we have

1
Λα + δ

(
q(R0 − 1) ln

K − S +Z
K − S Z

−
β

α
ln

1 + αS Z

1 + αS +Z

)
>

1
Λα + δ

(
q(R0 − 1)

S Z − S +Z
K − S +Z

−
β(1 + αS Z)
α(1 + αS +Z )

)
>

1
Λα + δ

(
q(R0 − 1)

η1S Z

K − S Z
−
β(1 + αS Z)
α

)
.

If
1

Λα + δ

(
q(R0 − 1)

η1S Z

K − S Z
−
β(1 + αS Z)
α

)
> ln

1
1 − η2

,

then
1 > η1 >

(
(Λα + δ) ln

1
1 − η2

+
β(1 + αS Z)
α

) (K − S Z)
q(R0 − 1)S Z

,

and then µ2(η1) > 1.
If η1 = 1, then S +Z = 0. It follows from

ln
K − S +Z
K − S Z

<
K − S +Z
K − S Z

and

ln
1 + αS Z

1 + αS +Z
>
α(S Z − S +Z )

1 + αS Z
,
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that we have
1

Λα + δ

(
q(R0 − 1) ln

K − S +Z
K − S Z

−
β

α
ln

1 + αS Z

1 + αS +Z

)
<

1
Λα + δ

(
q(R0 − 1)

K
K − S Z

−
βS Z

(1 + αS Z)

)
.

If
1

Λα + δ

(
q(R0 − 1)

K
K − S Z

−
βS Z

(1 + αS Z)

)
< ln

1
1 − η2

,

then
1 < R0 < 1 +

(K − S Z)
Kq

(
(Λα + δ) ln

1
1 − η2

+
βS Z

(1 + αS Z)

)
,

and then µ2(1) < 1.
Therefore, from the above discussion, we can derive the following results according to in [38,

Lemma A.2].

Theorem 5. Given the conditions S ∗ < S Z < K and µ2(η1) > 1 > µ2(1), there exist transcritical
bifurcation points denoted by η1 = η

∗
1 and η1 = η

∗∗
1 for PM(Y, η1). This indicates that, as the parameter

η1 surpasses η∗1 in the decreasing direction, or goes beyond η∗∗1 in the increasing direction, PM(Y, η1)
establishes an unstable positive equilibrium point. Under the presumption of a sufficiently diminutive
value ϵ > 0, system (1) demonstrates an unstable positive periodic solution when η1 is situated in
either the interval (η∗1 − ϵ, η

∗
1) or (η∗∗1 , η

∗∗
1 + ϵ).

Proof. It is obvious that
PM(0, η1) = I(S Z, 0) = 0.

It follows from the proof of Theorem 1 that we have

∂PM(0, η1)
∂Y

= (1 − η2) exp
( ∫ S Z

S +Z

(β − αq)S − q
(1 + αS )(Λ − δS )

dS
)
= µ2(η1).

Thus,
∂PM(0, η∗1)
∂Y

= µ2(η∗1) = 1,

and we have
∂2PM(0, η1)
∂Y∂η1

=
dµ2(η1)

dη1
,

which means that
∂2PM(0, η∗1)
∂Y∂η1

=
dµ2(η∗1)

dη1
> 0

and
∂2PM(0, η∗∗1 )
∂Y∂η1

=
dµ2(η∗∗1 )

dη1
< 0.

Through the similarity method in the proof process of Theorem 3, we have

∂2PM(0, η∗1)
∂Y2 > 0 and

∂2PM(0, η∗∗1 )
∂Y2 > 0.

Consequently, under the conditions S ∗ < S Z < K, µ2(η1) > 1, and 1 > µ2(1), PM(Y, η1) results in
an unstable fixed point when η1 transitions past η∗1 in a right-to-left direction or η∗∗1 in a left-to-right
direction. Moreover, given η1 ∈ (η∗1 − ϵ, η

∗
1) or η1 ∈ (η∗∗1 , η

∗∗
1 + ϵ), where ϵ > 0 is sufficiently small,

system (1) has an unstable positive periodic solution. This concludes our demonstration. □
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6. Numerical simulation and analysis

We observe the extent to which the model is affected by varying the weighted coefficients, u1 and
v1, of the action threshold. When we set u1 and v1, as shown in Figure 3a, LM and LN become two lines
perpendicular to the x-axis. At this point, the model is simplified to a pulse system with the threshold
based solely on the density of susceptible individuals. Such systems have been extensively studied and
widely applied in infectious diseases and population dynamics.

(a) (b) (c)

(d) (e) (f)

Figure 3. The trajectories of system (1) under various action thresholds. ET = 20 in (a)–(c);
u1 = 0.7, v1 = 0.3 in (d)–(f). The fixed parameter values are Λ = 2.5, β = 0.015, α = 0.001,
δ = 0.08, γ = 0.3, η1 = 0.4, η2 = 0.1.

However, when the rate of change is introduced into the action threshold, LM and LN become two
curves, and the curvature of these curves varies with changes in u1 and v1, Figure 3b,c highlights the
influence of the rate of change of susceptible individuals in the implementation of a comprehensive
control strategy. Properly choosing the coefficients can lead to the virus becoming extinct after a finite
number of control measures.

When v1 is non-zero, LM and LN represent two curves, and there is a possibility of intersection
between them. We define U = LM − LN . By varying the value of ET , we can observe whether there are
intersections between the pulse set and phase set. Figure 3d–f shows that as ET increases, the number
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of intersections decreases from 2 to 0. The presence of intersections poses challenges in the analysis
of Poincaré maps, leading to highly complex dynamics. This complexity is a primary focus of our
ongoing research.

In previous sections, we explored the possibility of bifurcations with respect to individual
parameters, as depicted in Figure 4. To examine the sensitivity of the model, we further investigated
the impact of different weighted coefficients for the action threshold as influencing factors on
bifurcations.

(a) (b)

Figure 4. The graph illustrates the Floquet multiplier µ2 as a function of the parameters ET
and η1. Parameter η1 = 0.2 in (a); ET = 20 in (b); and other fixed parameter values are
Λ = 2.5, β = 0.015, α = 0.001, δ = 0.08, γ = 0.3, η2 = 0.1, u1 = 0.7, v1 = 0.3.

In Figure 5a,b, as the parameter v1 increases, the trajectories of µ2 concerning ET intersect with
the line µ2 = 1 at two distinct points. Specifically, with v1 rising from 0.5 to 0.65, two intersections
with the line µ2 = 1 are highlighted. However, Figure 5c,d depict that, as v1 decreases, the peak
values of µ2’s trajectories in relation to η1 diminish, eventually dropping below 1. Collectively, these
patterns suggest that considering the rate of change in the action threshold is a more comprehensive
approach for managing infectious diseases, emphasizing the importance of monitoring not just the
current thresholds, but their evolution over time.

In Figure 6a–c, the float multiplier µ2 response to the action threshold ET is closely related to
multiple parameters. First, with an increase in the birth rate, Λ, the initial value of µ2 in the low ET
region rises, suggesting that a higher threshold might be needed to maintain stability of µ2 at a higher
birth rate. Further considering the maximum vaccination rate η1, its increase results in a slight rise
in the initial point of µ2 at low ET , indicating an enhanced sensitivity of µ2 to the threshold under
high vaccination scenarios. Additionally, for the maximum treatment rate η2, similar µ2 trajectories
are given at low ET values, but with a higher value of η2, the decline trend of µ2 is more rapid. This
reveals that, in a high treatment rate environment, µ2 responds more quickly to threshold changes. In
summary, these analyses present how the relationship between µ2 and ET is influenced by the three
parameters Λ, η1, and η2.

On the other hand, in Figure 6d–f, the relationship between µ2 and the maximum vaccination rate

AIMS Mathematics Volume 9, Issue 2, 4781–4804.



4798

η1 is significantly affected by different parameters. For instance, when the birth rate Λ rises from 2.3
to 2.7, the peak value of µ2 consistently increases and shifts to the right. For scenarios where η1 is
close to 1, all µ2 trajectories are approximately 0. When the focus is on the maximum treatment rate
η2, even though peak positions of the trajectories are similar, with the growth of η2, the peak gradually
decreases; especially in parts where η1 is larger, the decline of µ2 is more pronounced. For the threshold
ET , as it increases from 18 to 21, the maximum value of µ2 seems to decrease, and its peak position
shifts to the right. This aligns with the observation of µ2 trajectories approaching 0 when η1 is near 1.
These shifts provide a comprehensive view of how the system adjusts based on different parameter
values.

(a) (b)

(c) (d)

Figure 5. The figure illustrates how the Floquet multiplier µ2 varies as a function of the
parameters ET and η1, under the influence of changing values of u1 and v1. Parameter η1 =

0.2 in (a), (b); ET = 20 in (c), (d). The fixed parameter values are Λ = 2.5, β = 0.015,
α = 0.001, δ = 0.08, γ = 0.3, η2 = 0.1.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Comprehensive analysis of the response of µ2 to ET and η1 and its relationship
with various parameters. η1 = 0.2 in (a), (c); η2 = 0.1 in (a), (b), (d) and (e); Λ = 2.5 in (b),
(c), (e) and (f); ET = 20 in (d), (f). The fixed parameter values are β = 0.015, α = 0.001,
δ = 0.08, γ = 0.3, u1 = 0.7, v1 = 0.3.

7. Conclusions and discussion

In conclusion, state-dependent impulsive semi-dynamic systems represent a category of highly
discontinuous and non-smooth systems. These systems have been applied in various fields, including
integrated pest management, viral dynamical systems, and diabetes treatment [26, 39–41]. In recent
years, significant progress has been made in the research of such systems, encompassing analytical
techniques, qualitative analyses, and practical applications [30, 42]. Notably, the Poincaré map serves
as a mathematical tool promoting comprehensive exploration of impulsive systems with nonlinear
impulsive functions, enabling the study of the existence and global stability of k-order periodic
solutions.

In our research, we examined a state-dependent impulsive model, which incorporates a saturation
incidence rate and describes the interaction between susceptibles and infectives. A highlight is that the
action threshold in our model is determined by the density of susceptibles and its rate of change. This
differentiates our work from previous literature [37,38], which primarily operated under the assumption
of a fixed action threshold. Our innovation lies in introducing an action threshold determined by the
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density of the affected susceptibles and its rate of change, thereby translating the impulse set and phase
set into more intricate nonlinear curves.

By analyzing the various positional relationships between system trajectories and equilibrium
points, we derived the respective impulse and phase sets, as depicted in Figure 1. Utilizing these
conditions, we constructed the Poincaré map and studied the conditions for the emergence of a
first-order periodic solution within the system framework. Furthermore, we undertook a thorough
examination of the stability of these first-order periodic solutions. Our theoretical findings were
corroborated by numerical simulations, confirming the existence of the first-order periodic solution.
Additionally, based on the results of the single parameter’s influence on µ2, we conducted a sensitivity
analysis by fixing other parameters and selecting one parameter as a benchmark to observe the
trajectory changes of µ2, as shown in Figure 4. Under certain conditions, the threshold parameter ET
or vaccination rate η1 can induce a transcritical bifurcation, leading to unstable positive periodic
solutions. Boundary periodic solutions and equilibrium points of the impulse-free system can coexist,
suggesting the possibility of backward bifurcations. Importantly, when the action threshold ET is
weighted by the density of susceptible individuals and its rate of change, the impulse curve and phase
curve become nonlinear, as shown in Figure 3. The system’s impulse curve, phase curve, and the
intricate and mutable positional relationships between them and two isoclines introduce complexity,
making the precise definition of the boundaries of impulse and phase sets challenging. Furthermore,
based on Figure 5, variations in the weighted values of the susceptible individual density and its rate
of change also impact the bifurcation results of the model. According to Figure 6, µ2 responds to the
action threshold ET based on several parameters, including birth rate, maximum vaccination rate, and
maximum treatment rate. Among them, the relationship between µ2 and vaccination rate η1 is also
significantly influenced by the birth rate, maximum treatment rate, and action threshold.

Finally, we emphasize the critical role of mathematical models and control strategies in the field
of infectious disease control. Future research directions may delve deeper into considering the growth
rate of infected individuals as a threshold for studying disease control strategies, thereby advancing
the development of more complex nonlinear pulse control methods. The further application of this
technology holds the potential to have a profound impact on infectious disease control and other related
fields, providing valuable directions for future research and application.
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