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Abstract: As is well known, the utility function is significant for solving the real-time pricing
problem of smart grids. Based on a new utility function, the social welfare maximization model is
considered in this paper. First, we transform the social welfare maximization model into a smooth
system of equations using Krush-Kuhn-Tucker (KKT) conditions, then propose a two-step smoothing
Levenberg-Marquardt method with global convergence, where an LM step and an approximate LM
step are computed at every iteration. The local convergence of the algorithm is cubic under the local
error bound condition, which is weaker than the nonsingularity. The simulation results show that,
the algorithm can not only reduce the user’s electricity consumption but also improve the total social
welfare at the most time when compared with the fixed pricing method. Additionally, when different
values of the approximating parameter are adopted in a smoothing quasi-Newton method, the price
tends to that obtained by the present algorithm. Furthermore, the CPU time of the one-step smoothing
Levenberg-Marquardt algorithm and the proposed algorithm are also listed.
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1. Introduction

In the last two decades, the traditional power grid has becoming unsuitable for the electrical market,
with the significantly growing demand for electricity and the shortage of electrical energy. By 2050,
the global energy demand is projected to be more than double its current status. Consequently, energy
conservation and the development of renewable energy sources are crucial and have attracted a lot of
attention from researchers [1–6].

The concept of smart grids and microgrids are popular in this decade, which refer to the intelligent
upgrade of the power system as a whole and the energy internet in a small range, respectively.
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Moreover, they are both important directions for the development of renewable energy technology. The
former, smart grid (SG), termed as “Grid 2.0”, has a better performance in terms of reliability, self-
healing, interactivity, and is proposed and recognized as the future power grid. The latter, microgrid,
is a local power supply system that uses renewable energy and traditional point source energy in a
small range through energy micro-net technology, which includes converting renewable energy into
electricity, storing electricity through energy storage, and intelligent scheduling technology to provide
users with an independent power supply. It is usually used in small commercial buildings, public
facilities, residential areas, and so on.

In a smart grid, the real-time pricing (RTP) scheme is ideal for application. It is different from the
common electricity pricing strategies, such as the traditional fixed price scheme, which is a simple cost
allocation, and the ladder price scheme, which may lead to insufficient supply in the peak period and
insufficient demand in the low period. The RTP is determined prior to the deal happening through the
intercommunication between the supply and demand of electricity and it is a real-time interaction
process between the user and supplier. Generally, the existing research in the field of the RTP
mechanism can be divided into two categories. One is based on the game theory, which can obtain
an optimal decision of multiple parties on the premise of satisfying certain rules [7–10], the other is
based on the optimization method to solve the model, which is always either from the social welfare
maximization model (SWMM) or its modified version [11–16]. In a microgrid, the computer system
that assures the effective management operation is called the energy management system (EMS),
which encompasses both the supply-side and demand-side management, while ensuring that system
constraints are respected. EMSs are usually divided into centralized and decentralized according to
their mode of operation. In the centralized mode, the management system is located in a central station
and connected to the distributed energy resources (DERs) via communication lines for control and data
exchange. In the decentralized model, each DER operates independently and manages itself using a
local controller, thus eliminating the need for communication [17]. Many optimization algorithms have
been proposed to handle EMS problems by far [18–21].

In this paper, we focus on the real-time pricing in a smart grid, where some algorithms have already
existed. For example, Zhang [11] proposed a fast distributed dual subgradient algorithm by smoothing
the original dual subgradient twice. Zhu et al. [12] considered the relationship between the two stages
of the user’s electricity demand and proposed an improved simulated annealing algorithm. Wang and
Gao [13] first transformed the SWMM into a nonsmooth system of equations based on KKT conditions,
then solved the SWMM by a smoothing quasi-Newton method. Li et al. [14,15] proposed a smoothing
Newton method based on a new smoothing approximation cosh function and a new form of the utility
function. Yang et al. [16] proposed a new smoothing conjugate gradient method based on a smoothing
Fischer-Burmeister function. These optimization methods played an important role for solving the
SWMM. However, the convergence of some intelligent algorithms [12] could not be guaranteed, the
results were feasible but may be not necessarily optimal, and there was a dual gap between the dual
problem and the original problem in some Lagrangian dual methods [11], which may increase the
direct error of the results. Recently, the smoothing algorithms are proposed. However, Refs. [13, 16]
focused on a system of equations such that

Hµ(x) = 0,
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which is the approximation of a nonsmooth system transformed from the SWMM as follows

H(x) = 0,

where Hµ : Rn → Rn is a smoothing approximation function of the nonsmooth function H : Rn → Rn,
µ > 0 is called an approximating parameter, there exists gaps between the approximate smoothing
system and the original nonsmooth system [13, 16]. Refs. [14, 15] focused on an equivalent smooth
system, and proposed a smoothing Newton method, where the nonsingular property is necessary.
Here, we first transform the social welfare maximization model into a smooth system of equations
based on KKT conditions, then propose a two-step smoothing Levenberg-Marquardt(LM) method.
The contributions of the research are as follows. (1) Using the KKT conditions, we transform the
optimization model into a nonlinear complementary problem, then construct an equivalent smooth
system based on a symmetric perturbed smoothing function with strongly Jacobi consistency, namely,
the smoothing approximation function has a better one-order approximation property than the Jacobi
consistency [17]. (2) A two-step smoothing LM method is proposed. It is worth mentioning that an
adaptive parameter strategy is adopted in the proposed algorithm, which has proven effectiveness when
the initial point is far from the optimal solution. (3) By proving the locally Lipschitzian continuous
of the corresponding function and its Jacobian matrix, we show the global convergence and locally
cubic convergence under the local error bound, which is weaker than the nonsingular property. (4) We
adopt a new utility function based on the logistic function, which is significant for solving the real-
time pricing problem of smart grids. (5) We compare the proposed algorithm with the traditional
fixed method, the smoothing quasi-Newton method, and one-step smoothing algorithms, and prove its
effectiveness.

The outline of the paper is as follows. In Section 2, we introduce the social welfare maximization
model, and its transformation from the SWMM into a smooth system based on the KKT conditions.
Additionally, we investigate the locally Lipschitz continuous of the relate function, which is necessary
to illustrate the local cubic convergence. In Section 3, a smoothing LM algorithm is proposed, and
its global and local convergent result are discussed. In Section 4, numerical evaluations are shown to
illustrate the effectiveness of the present algorithm.

2. The social welfare maximization model and equivalent smooth system

In this section, we introduce the social welfare maximization model, and its transformation from
the SWMM into an equivalent smooth system.

2.1. RTP optimization model

Consider a smart grid system that contains one supplier and one type of users. The energy provider
and all users are connected with each other through an information communication infrastructure.
Divide the whole cycle into K periods and let N = {1, 2, ..., N} the set of users requiring electricity,
xi(k) represent the power consumption demand at the time slot k of the i-th users, Ck(.) represent the
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cost function of the energy provider. The optimization model of SWMM [23, 24] is as follows:

max
K∑

k=1

(
N∑

i=1

U(xi(k),ωi(k)) −Ck(Lk))

s.t.
N∑

i=1

xi(k) ≤ Lk, k = 1, 2, ..., K,

(2.1)

where the constraint conditions mean the electricity consumption of all users does not exceed the total
generating capacity, and Lk is the generation capacity of the residential users at the time slot k.

In general, the cost function Ck(Lk) and the utility function U(xi(k),ωi(k)) in model (2.1) are
important in economics, where Ck(Lk) is always adopted as a quadratic function [23] such that

C(Lk) = akL2
k + bkLk + ck, ak > 0, bk, ck ≥ 0.

U(xi(k),ωi(k)) represents the relationship between the consuming utility and the number of a
commodity. The utility function U(xi(k),ωi(k)) has the properties [16] such that

∂U(xi(k),ωi(k))
∂xi(k)

≥ 0,

and

∂U2(xi(k),ωi(k))
∂2xi(k)

≤ 0.

In this paper, we adopted the utility function as follows [15]:

U(xi(k),ωi(k)) =
K̃eωi(k)xi(k) − 1

eωi(k)xi(k) + 1
,

where K̃ > 0 is a predetermined parameter, and ωi(k) > 0 varies with the time slots of the user’s
satisfaction in a power system.

2.2. Equivalent nonsmooth system based on KKT conditions

Mathematically, for each period k ∈ 1, 2, ..., K, the model (2.1) can be expressed as an optimization
problem such that

max
N∑

i=1

U(xi(k),ωi(k)) −Ck(Lk)

s.t.
N∑

i=1

xi(k) ≤ Lk,

(2.2)

which is equivalent to finding a minimum of a convex problem, since U(xi(k),ωi(k)) is concave,
Ck(Lk) is convex, and the constraint conditions is affine.
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Denote vk := (x1(k), x2(k), ..., xN(k), Lk)T ∈ RN+1, and the KKT conditions of the problem (2.2)
is such that 

∇vk(
N∑

i=1
U(xi(k),ωi(k)) −Ck(Lk)) + λk∇vk(Lk −

N∑
i=1

xi(k)) = 0,

λk(Lk −
N∑

i=1
xi(k)) = 0,

λk ≥ 0, Lk −
N∑

i=1
xi(k) ≥ 0.

Since 
λk(Lk −

N∑
i=1

xi(k)) = 0,

λk ≥ 0, Lk −
N∑

i=1
xi(k) ≥ 0,

is a complementarity problem, we obtain the equivalent nonsmooth system of model (2.2) as follows:
∇vk(

N∑
i=1

U(xi(k),ωi(k)) −Ck(Lk)) + λk∇vk(Lk −
N∑

i=1
xi(k)) = 0,

ϕ(λk, Lk −
N∑

i=1
xi(k)) = 0,

where ϕ is an “nonlinear complementarity problem (NCP)” function, such as the “min” function
ϕ(a, b) := min{a, b}, the Fischer-Burmeister function ϕFB(a, b) :=

√
a2 + b2 − a − b and so

on [25, 26]. It is worth mentioning that the solution λk is the optimal price in the k period, namely
the shadow price in economics by virtue of Refs. [23, 27].

2.3. Equivalent smooth system

Using the KKT conditions, the model (2.2) is transformed into a nonsmooth system of equations.
Here, we use an improved Fischer-Burmerister smoothing function to derive the equivalent smooth
system of the model (2.3). Meanwhile, the Lipschitz continuous of the corresponding smoothing
function is discussed, which is crucial for the proposed algorithm.

As is well known, the Fischer-Burmerister function is an NCP function, though nonsmooth at the
point (0, 0). According to [26], we adopt an improved Fischer-Burmerister smoothing function as
follows:

ϕµ(µ, a, b) := a+b−
√
µ2+(a−b)2

2 .

Denote

yk := (vk, λk)T ∈ RN+2,

f (yk) := ( f1, ..., fN+1)T = ∇vk(
N∑

i=1
U(xi(k),ωi(k)) −Ck(Lk)) + λk∇vk(Lk −

N∑
i=1

xi(k)),

g(yk) := Lk −
N∑

i=1
xi(k).
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Model (2.2) is transformed into the following smoothing system such that

Φ(yk) :=


eµ − 1
f (yk)

ϕµ(µ, λk, g(yk))

 = 0. (2.3)

It is obvious that model (2.2) is equivalent to Eq (2.3) in the sense that their solutions are coincide.
We consider the Lipschitz continuous of the function Φ as follows, which is crucial to obtain the

locally convergent result.
Actually, a function F : Rn −→ R is locally Lipschitz continuous if there exist L > 0 and ε > 0

such that

| F(y) − F(z) |≤ L ‖ y − z ‖ for all y, z ∈ U(x; ε),

at any point x ∈ Rn. The function F is said to be Lipschitz continuous if there exist L > 0 such that

| F(y) − F(z) |≤ L ‖ y − z ‖ for all y, z ∈ Rn.

If a function F : Rn −→ R is continuously differentiable, namely, smooth at x ∈ Rn, F is locally
Lipschitz continuous at x ∈ Rn [22].
Assumption 2.1. The solution set X of Eq (2.3) is not empty.
Lemma 2.1. Let F = (F1, F2, ..., Fn)T, where Fi : Rn → R and locally Lipschitz continuous at x, and
F is locally Lipschitz continuous at x ∈ Rn.
Proof. The conclusion is obvious. Suppose

| Fi(x) − Fi(y) |≤ Li ‖ x − y ‖, i = 1, ..., n,

where x, y ∈ Rn, Li is a Lipschitz constant, there is

‖ F(x) − F(y) ‖

=‖ (F1(x) − F2(y)), ..., (Fn(x) − Fn(y)) ‖

=
√
(F1(x) − F2(y))2 + ... + (Fn(x) − Fn(y))2

≤

√
L2

1 + ... + L2
n ‖ x − y ‖

≤ nL ‖ x − y ‖,

where L = max(L1, ..., Ln). The proof is completed. �
Theorem 2.1. Φ(.) and its Jacobi J(.) are locally Lipschitz continuous at yk ∈ RN+3.
Proof. Since Φ(yk) ∈ RN+3 is smooth at yk ∈ RN+3, it is obvious locally Lipschitz continuous at yk.
We prove the Jacobian J(yk) are also locally Lipschitz continuous as follows.

By a straightforward calculation, we first obtain the Jacobi J of Φ(yk) as follows:

J(yk) =



eµ 0 . . . 0 0 0
0 ∂ f1

∂x1
. . .

∂ f1
∂xN

∂ f1
∂Lk

∂ f2
∂λk

...
... . . . ...

...
...

0 ∂ fN+1
∂x1

. . .
∂ fN+1
∂xN

∂ fN+1
∂Lk

∂ fN+1
∂λk

∂ϕµ
∂µ

∂ϕµ
∂x1

. . .
∂ϕµ
∂xN

∂∂ϕµ
∂Lk

∂ϕµ
∂λk


.
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Here, for brevity, yi means the i − th component of yk.
Denote J(yk) := J = (J1, ..., JN+3)T. Next, we focus on investigating the Lipschitz continuous of

Ji through its each component, where i = 1, ..., N + 3.
(i) For J1 := (J(1)1 , ..., J(N+3)

1 ) = (eµ, ..., 0), we have

∂eµ
∂µ = eµ, ∂eµ

∂νk
= 0, ∂eµ

∂λk
= 0,

which implies J1 is smooth and locally Lipschitz continuous at yk ∈ RN+3 .
(ii) Consider Ji := (J(1)i , ..., J(N+3)

i ) = ( ∂ fi
∂x1

, ..., ∂ fi
∂xN

, ∂ fi
∂Lk

, ∂ fi
∂λk

), i = 2, ..., N + 1. Actually, since

fi =
∂U(xi(k),ωi(k))

∂xi(k)
− λk =

2K̃eωi(k)xi(k)

(eωi(k)xi(k)+1)2 − λk, i = 1, 2, ..., N

fN+1 = λk − bk − 2akLk,

we have

∂ fi
∂x j

= 0, j , i,
∂ fi
∂xi

=
∂2U(xi(k),ωi(k))

∂xi(k)2 =
2K̃eωi(k)xi(k)(1−eωi(k)xi(k))

(eωi(k)xi(k)+1)3 ,
∂ fi
∂Lk

= 0, ∂ fi
∂λk

= −1,
∂ fN+1
∂xi

= 0, ∂ fN+1
∂Lk

= −2ak, ∂ fN+1
∂λk

= 1,

which implies that Ji is smooth and locally Lipschitz continuous at yk ∈ Rn for i = 2, ..., N + 1.
(iii) Actually, a straightforward calculation yields the following:

φ′µ(µ, a, b) = − µ

2
√
µ2+(a−b)2

,

φ′a(µ, a, b) = 1 − 2a−2b
2
√
µ2+(a−b)2

,

φ′b(µ, a, b) = 1 + 2a−2b
2
√
µ2+(a−b)2

.

It is not difficult to see that φ′µ, φ′a, φb are smooth. Since g(yk) is also smooth, we obtain that JN+3 is
locally Lipschitz continuous at yk ∈ RN+3. Then, the Jacobian J(.) are locally Lipschitz continuous at
yk ∈ RN+3 by virtue of Lemma 2.1. �

Assumption 2.2. The solution set X ⊂ U, where U ⊂ Rn is bounded and closed.
The bounded properties are reasonable in Assumption 2.2, since µ is an approximate parameter,

which is always adopted small enough, λk denotes the real-time pricing, and Lk will not exceed the
electricity production.
Lemma 2.2. (Borel finite covering theorem) [28] Suppose U is bounded and closed, which is covered
by a set of infinite open intervals Σ, U must be covered by some finite sets of open intervals from Σ.
Theorem 2.2. Φ(.) and its Jacobi J(.) are Lipschitz continuous in U.
Proof. By virtue of Theorem 2.1, Φ(.) and its Jacobian J(.) are locally Lipschitz continuous at y ∈ U.
Then, there exist δy > 0 and Lipschitz constant Ly such that

‖ Φ(x) −Φ(y) ‖≤ Ly ‖ x − y ‖,
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for ∀x ∈ V(y; δy).
Set G = {V(y; δ) : y ∈ U}, where V(y; δ) = {y′ ∈ RN+3 :‖ y′ − y ‖< δ}. It is obvious that G is

a open covering of U. Furthermore, there exist some finite sets such that V(y; δy) ∈ G covering U by
virtue of the Borel finite covering theorem. Suppose V(yi; δyi), i = 1, 2..., m, covering the set U, we
have

‖ Φ(x) −Φ(y) ‖≤ L ‖ x − y ‖,

for ∀x ∈ U, where L = max{Ly1 , ..., Lym}, namely, Φ(.) is Lipschitz continuous in U. Similarly, the
Jacobi J is also Lipschitz continuous in U. �

3. Algorithm and its convergence

3.1. A two-step smoothing Levenberg-Marquardt method

In this section, a two-step smoothing LM method is proposed to solve Eq (2.3). First, we provide
the process of solving (2.3) as follows:
Step 0. If t ∈ k, during the k-th period, one chooses the parameters based on the historical data, and
computes the electricity price, the demand productions of the users, and the minimum production in
the beginning of the pricing time.
Step 1. One updates the information of the user’s demand, the price, and the minimum productions. In
this process, the users could adjust their electricity consumption based on the price, and the electricity
provider could adjust its production based on the user’s demand.
Step 2. Repeat Step 1 until the supply and demand are in balance.

Denote

Ψ(y) = 1
2 ‖ Φ(y) ‖2,

as the merit function of Eq (2.3). Next, we give the concrete algorithm of the aforementioned process
(see Figure 3.1).

AIMS Mathematics Volume 9, Issue 2, 4762–4780.
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Algorithm 3.1. (SLM)

Start

Input initial data

k=1

t=0

Ψ(y j) ≤ ε

k = k + 1

Update λ j := µ j‖Φ j‖
δ j

Obtain d j1 by solving
(JT

j J j + λ jI)d = −JT
j Φ j

Obtain d j2 by solving
(JT

j J j + λ jI)d =

−JT
j Φ(y j + d j1 )

Set d j = d j1 + d j2

r j =
Ared j
Pred j

> p0

y j = y j + d j y j = y j

t=t+1

k > K Output the optimal solution y j

Yes No

Yes No

Figure 3.1. The flow chart of Algorithm 3.1 (SLM).

Step 0. Give an initial point y0 ∈ Rn and parameters ε > 0, 0 < m < µ0, 0 < p0 ≤ p1 ≤ p2 < 1, j := 0.
Step 1. Compute Φ j := Φ(y j) and J j := J(y j), which is the Jacobi of the function Φ(y j) . If
Ψ(y j) ≤ ε, stop. Otherwise, go to Step 2.
Step 2. Set λ j := µ j‖Φ j‖

δ j ,where δ j is such that

δ j =

 1
‖Φ j‖

, if Φ j ≥ 1,

1 + 1
j , otherwise.

Step 3. Solve the equation such that

(JT
j J j + λ jI)d = −JT

j Φ j

to obtain d j1 .
Step 4. Solve the equations such that

(JT
j1

J j1 + λ jI)d = −JT
j Φ(y j + d j1)

to obtain d j2 and set d j = d j1 + d j2 .
Step 5. Compute r j =

Ared j
Pred j

, where

Ared j := Ψ(y j + d j) −Ψ(y j),
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Pred j := ΦT
j J jd j +

1
2

dT
j JT

j J jd j.

Step 6. If r j > p0, set y j+1 = y j + d j, else y j+1 := y j.
Step 7. Update the parameter µ j as follows:

µ j+1 =


4µ j, if r j < p1,
µ j, if r j ∈ [p1, p2],
max{0.25µ j, m}, if r j > p2.

Then, set j := j + 1, and go to Step 1.
Remark 3.1. The two-step LM method was proposed by Fan to solve nonlinear equations [29].
Different from the algorithm referenced in [29], a self-adaptive adjusting strategy is adopted for the
LM parameter λ j ∈ (0, 2] to ensure that the LM step is not small, even if λ j is too large, which has
proven its effectiveness during numerical evaluations.

3.2. Convergence of Algorithm 3.1

By virtue of Theorem 2.2, we conclude that Φ(.) and its Jacobi J(.) are Lipschitz continuous in U,
where the solution set X ⊂ U . To study the global convergence, suppose there exist positive constants
L1 and L2 such that

‖ J(y) − J(z) ‖≤ L1 ‖ y − z ‖,∀y, z ∈ RN+3,

and

‖ Φ(y) −Φ(z) ‖≤ L2 ‖ y − z ‖,∀y, z ∈ RN+3.

Then, by the Lipschitzness of the Jacobi, there is

‖ Φ(y) −Φ(z) − J(y)(y − z) ‖≤ L1 ‖ y − z ‖2,∀y, z ∈ RN+3,

based on which and Theorem 2.3 in Ref. [26], we obtain the sequence generated by Algorithm 3.1
converges to the stationary point of the merit function.
Theorem 3.1. (Global convergence) Algorithm 3.1 either terminates in finite iterations or satisfies
lim
j→∞
‖JT

j Φ j‖ = 0.

Next, we give the local convergence rate of Algorithm 3.1 under the local error bound condition.
Suppose y j ∈ X, where X is the solution set of Eq (2.3), the singular value decomposition (SVD) of

J(y j), denoted as J j, is such that

J j = U jΣ jV
T
j = (U j,1, U j,2)

(
Σ j,1

0

)  V
T
j,1

V
T
j,2

 = U j,1Σ j,1V
T
j,1,

where Σ j,1 = diag(σ j,1, ...,σ j,r) with σ j,1 ≥ σ j,2 ≥ ... ≥ σ j,r > 0. Similarly, the SVD of J(y j)
denoted as J j, is such that

J j = U jΣ jVT
j = (U j,1, U j,2, U j,3)


Σ j,1

Σ j,2
0




VT
j,1

VT
j,2

VT
j,2

 = U j,1Σ j,1VT
j,1 + U j,2Σ j,2VT

j,2,
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where Σ j,1 = diag(σ j,1, ...,σ j,r) with σ j,1 ≥ σ j,2 ≥ ... ≥ σ j,r > 0, and Σ j,2 = diag(σ j,r+1, ...,σ j,r+q)
with σ j,r+1 ≥ σ j,r+2 ≥ ... ≥ σ j,r+q > 0, when we neglect the subscription j in Σ j,i, U j,i, and
V j,i, i = 1, 2, 3 for convenience, there is

J j = U1Σ1VT
1 + U2Σ2VT

2 .

Furthermore, there is

d j1 = −V1(Σ2
1 + λ jI)−1Σ1UT

1 Φ j − V2(Σ2
2 + λ jI)−1Σ2UT

2 Φ j, (3.1)

d j2 = −V1(Σ2
1 + λ jI)−1Σ1UT

1 Φ j − V2(Σ2
2 + λ jI)−1Σ2UT

2 Φ j. (3.2)

Assumption 3.1. ‖Φ‖ provides a local error bound on some neighborhood of ȳ ∈ X, i.e., there exists
constants c1 > 0 and b1 < 1 such that

‖Φ(y)‖ ≥ c1dist(y, X),∀y ∈ N(ȳ, b1), (3.3)

where dist(y, X) = inf
y∈X
‖y − ȳ‖ and N(ȳ, b1) is a neighborhood of ȳ.

Remark 3.1. The local error bound condition is weaker than the nonsingularity. Actually, if J j is
nonsingular at a solution of (2.3), the solution is an isolated one, ‖Φ j‖ provides a local error bound on
its neighborhood [29].
Lemma 3.2. The Jacobi J is Lipschitz constinous on N(ȳ, b1), which is a neighborhood of ȳ ∈ X, i.e.,

‖ J(y) − J(z) ‖≤ L1 ‖ y − z ‖,∀y, z ∈ N(ȳ, b1).

Moreover, there is

‖ Φ(y) −Φ(z) ‖≤ L2 ‖ y − z ‖,∀y, z ∈ N(ȳ, b1).

Proof. It is obvious by virtue of Theorem 2.2, we omit the proof here. �
Lemma 3.3. [29] Suppose y j, z j ∈ N(y j,

b1
2 ), y j ∈ X.

(i) There exists a positive constant M > m > 0 such that µ j ≤ M for j large enough.
(ii) There are positive constants c2, c3, c4 such that
a) ‖U1UT

1 Φ j‖ ≤ c2‖y j − y j‖
2;

b) ‖U2UT
2 Φ j‖ ≤ c3‖y j − y j‖

3;
c) ‖U3UT

3 Φ j‖ ≤ c4‖y j − y j‖
3.

(iii) There are positive constants c5, c6, c7 such that
a) ‖U1UT

1 Φ j(z j)‖ ≤ c5‖y j − y j‖
2;

b) ‖U2UT
2 Φ j(z j)‖ ≤ c6‖y j − y j‖

3;
c) ‖U3UT

3 Φ j(z j)‖ ≤ c7‖y j − y j‖
3.

Theorem 3.2. (Local convergence) Under the conditions of Assumption 3.1, the sequence generated
by Algorithm 3.1 cubically converges to some solutions of (2.3).
Proof. Suppose y j, z j ∈ N(y j,

b1
2 ), y j ∈ X. We divide the proof into three parts.

(i) We start the proof by proving ‖λ jΣ−1
1 ‖ and ‖λ jΣ−1

1 ‖ are bounded. Recalling the SVD of Ji, there
is
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‖(JT
i Ji + λiI)−1JT

i ‖

= ‖(V1, V2, V3)


(Σ2

1 + λ jI)−1Σ1
(Σ2

2 + λ jI)−1Σ2
0




UT
1

UT
2

UT
3

‖
≤ ‖


(Σ2

1 + λ jI)−1Σ1
(Σ2

2 + λ jI)−1Σ2
0

‖
≤ ‖

(
Σ1

λ−1
j Σ2

)
‖.

(3.4)

Then, we have the following:

‖diag(Σ1 − Σ1, Σ2, 0)‖ ≤ ‖J j − J j‖ ≤ L1‖y j − y j‖,

which is based on the theory of a matrix perturbation [29] and the Lipschitzness of J j, and yields

‖diag(Σ1 − Σ1, Σ2, 0)‖ ≤ L1‖y j − y j‖ and ‖Σ2‖ ≤ L1‖y j − y j‖.

Since y j converges to the solution set X based on the global convergence, suppose ‖y j − y j‖ ≤
σ
2 for j

large enough. Then, it follows from (3.4) that

‖Σ−1
1 ‖ ≤

2
σ

. (3.5)

Furthermore, combining that 1 < δ j ≤ 2 for j large enough, we have the following

‖λ−1
j Σ2‖ =

‖Σ2‖

µ j‖Φ j‖
δ j
≤

L1‖y j − y j‖
1−δ j

mcδ j
1

≤
L1−δ j

1 Lδ j
1 ‖y j − y j‖

1−δ j

mc1
,

which implies that

‖λ−1
j Σ2‖ =

Σ2

µ j‖Φ j‖
δ j
≤

2σL2
1

mc1
. (3.6)

(ii) Next, we show that ‖Φ j(y j) + J jd j2‖ ≤ O‖y j − y j‖
3.

Combing (3.5), (3.6), Lemmas 3.2 and 3.3, we have

‖Φ j(z j) + J jd j2‖

= ‖λ jU1(Σ2
1 + λ jI)−1Σ1UT

1 Φ j(z j) + λ jU2(Σ2
2 + λ jI)−1Σ2UT

2 Φ j + U3UT
3 Φ j(z j)‖

≤ λ j‖Σ−2
1 ‖‖U1UT

1 Φ j(z j)‖+ λ j‖Σ−1
2 ‖‖U2UT

2 Φ j(z j)‖+ ‖U3UT
3 Φ j(z j)‖

≤ µ j‖Φ j‖
δ j

4
σ2 ‖U1UT

1 Φ j(z j)‖+ λ j‖Σ−1
2 ‖‖U2UT

2 Φ j(z j)‖+ ‖U3UT
3 Φ j(z j)‖

≤ M‖Φ j −Φ(y j)‖
δ j

4
σ2 ‖U1UT

1 Φ j(z j)‖+ O(‖y j − z j‖)
3 + O(‖y j − z j‖)

3.

(3.7)
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Moreover, since δ j ∈ (1, 2] for j is large enough, there is

‖Φ j(y j) + J jd j2‖

≤
4ML2

2

σ2 ‖y j − y j‖
(2+δ j) + O(‖y j − y j‖)

3

≤ O(‖y j − y j‖)
3.

(3.8)

(iii) We provide the proof of the conclusion. Denote z j = y j + dk1 . Since

c1‖y j+1 − y j+1‖

≤ ‖Φ(y j+1)‖

= ‖Φ(z j + d j2)‖

≤ ‖Φ(z j) + J jdk2‖+ ‖(J(z j) − J j)dk2‖+ L1‖dk2‖
2

≤ O(‖y j − y j‖)
3 + L1‖d j1‖‖d j2‖+ L1‖d j2‖

2,

and ‖d j1‖‖d j2‖ ≤ O(‖y j − y j‖)3 by virtue of the SVD of Ji, we have the following

c1‖y j+1 − y j+1‖ ≤ O(‖y j − y j‖)
3,

which implies the conclusion. �

Remark 3.3. The proof of Theorem 3.2 is similar to Theorem 3.6 in Ref. [29]. However, δi ∈ (0, 2]
is adaptive here, and δ ∈ [1, 2] is a constant in [29]. It is worth mentioning that Algorithm 3.1 has the
local cubic convergence, which is better than Newton method.

4. Numerical evaluation

In this section, we consider a smart grid system in a small area to illustrate the effectiveness of the
two-step smoothing Levenberg-Marquardt method (SLM).

Divide a day into 24 time slots with one hour for one slot, (i.e., K=24). Set a j = 0.01, b j = c j = 0
in the cost function, and K̃ = 50,ω0(k) ∈ rand(0, 5) in the initial function. Set ε = 1.0e − 6, m =
1.0e − 6, µ0 = 0, p0 = 0.0001, p1 = 0.25, p2 = 0.75.

Consider N = 10, namely 10 users. The electricity demand x j(0) was chosen randomly
from [5, 16], j = 1, 2, ..., 10.. First, we compared the price and the social benefit at different times based
on the present method with the traditional fixed method [24], where λ j = max (w j(.))− (α jL j(.))/N.
The numerical results are shown in Figure 4.1(a),(b). Then, we adopted the approximating parameters
µ = 0.1, µ = 0.01 respectively in the smoothing quasi-Newton method [13], and compared the real-
time prices with that obtained from the two-step SLM method. The numerical results are shown in
Figure 4.2(a),(b).
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Figure 4.1(a). The price at different time based on fixed price method and SLM method.

Figure 4.1(b). The social benefit at different time based on fixed price method and SLM
method.
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Figure 4.2(a). The price at different time based on SQNM with µ = 0.1 and SLM method.

Figure 4.2(b). The price at different time based on SQNM with µ = 0.01 and SLM method.

In Table 4.1, we adopted N = 5, N = 10, N = 20, N = 50, N = 100 and compared the CPU
time to obtain the optimal prices between the one-step SLM and the two-step SLM at the time slots
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k = 5, k = 10, k = 15, k = 20.

Table 4.1. The comparison of CPU time between one-step and two-step smoothing
Levenberg-Marquardt method.

one-step two-step
N k = 5 k = 10 k = 15 k = 20 k = 5 k=10 k = 15 k = 20
5 2.78 3.46 4.01 3.37 3.03 4.11 3.03 2.60
10 6.60 5.12 4.50 5.23 5.66 3.50 3.92 4.63
20 15.92 16.44 16.07 13.39 9.25 14.89 9.99 9.62
50 88.74 81.99 81.55 50.99 71.21 53.49 45.15 44.74
100 492.43 413.67 422.74 434.83 352.95 380.16 250.24 315.05

From Figure 4.1(a),(b), it can be seen that the social benefit obtained by the proposed method is
similar to that obtained by the fixed electricity price method. However, the electricity price calculated
by the proposed method is approximately 50% ∼ 70% lower, which is meaningful for users to reduce
their electricity consumption.

From Figure 4.2(a),(b), we find that the smaller µ is, the more approximate to the one obtained by
the present algorithm. When the approximating parameter is adopted as µ = 0.1, the price is a little
higher than that obtained by the proposed algorithm. When the approximating parameter is adopted as
µ = 0.01, the price obtained tends more to coincide, which means that the proposed algorithm is more
accurate and effectiveness.

From Table 4.1, we obtained that the CPU time of the present algorithm is approximately 0.25s ∼
0.65s than the one-step SLM method when N = 5 at k = 5, k = 10, where we obtained the iterative
direction by solving one LM equation. However, when the number of the users is greater, the CPU
time is less than that of the one-step smoothing method. For example, take N = 100, k = 5, the cpu
time of the two-step method is 30% less than the one-step method. The proposed algorithm is more
suitable for large scale users.

5. Conclusions

By transforming the social welfare maximization model into a smooth system of equations, we
present a two-step LM method with the global convergence and the cubic locally convergence in this
paper, which could compute the optimal electricity consumption for users, price and production for
the electricity provider at the beginning of each time slot in a smart grid. It could be seen that the
peak electricity ranges from 10 : 00 to 13 : 00, and 19 : 00 to 21 : 00 every day, users can turn off

something that is not required and use more electricity appliances during periods of low prices, which
is beneficial to peak cutting and valley filling. However, only one class of users and one electricity
supply is considered here. The effectiveness of the present algorithm for multiple types of users and
supplies will be discussed in our future topic.
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