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Abstract: The objective of this study was to analyze the complex dynamics of a discrete-time
predator-prey system by using the piecewise constant argument technique. The existence and stability
of fixed points were examined. It was shown that the system experienced period-doubling (PD)
and Neimark-Sacker (NS) bifurcations at the positive fixed point by using the center manifold and
bifurcation theory. The management of the system’s bifurcating and fluctuating behavior may be
controlled via the use of feedback and hybrid control approaches. Both methods were effective in
controlling bifurcation and chaos. Furthermore, we used numerical simulations to empirically validate
our theoretical findings. The chaotic behaviors of the system were recognized through bifurcation
diagrams and maximum Lyapunov exponent graphs. The stability of the positive fixed point within
the optimal prey growth rate range A1 < a < A2 was highlighted by our observations. When
the value of a falls below a certain threshold A1, it becomes challenging to effectively sustain prey
populations in the face of predation, thereby affecting the survival of predators. When the growth rate
surpasses a specific threshold denoted as A2, it initiates a phase of rapid expansion. Predators initially
benefit from this phase because it supplies them with sufficient food. Subsequently, resource depletion
could occur, potentially resulting in long-term consequences for populations of both the predator and
prey. Therefore, a moderate amount of prey’s growth rate was beneficial for both predator and prey
populations.
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1. Introduction

As a fundamental component of ecological investigation, the interaction between predator and prey
populations in biological ecosystems has long been a subject of interest and analysis among biologists
and mathematicians. Predator-prey systems involve the dynamic interaction of two populations, in
which the survival of one species (the predators) is dependent on the consumption of another species
(the prey). A number of researchers have conducted thorough investigations and analyses of diverse
mathematical frameworks that explicate the interrelationships between species. The fundamental
objective of these inquiries has been to examine the complex and varied dynamics that are intrinsic
to these systems. The primary areas of concern include stability analysis, limit cycles, bifurcations,
chaotic phenomena, and associated phenomena [1–8].

The Lotka-Volterra system, which is the classic predator-prey framework, was initially proposed
and established by Volterra and Lotka [9, 10]. Within the conceptual framework of this system, it is
postulated that all components adhere to linear functions, including the growth rate, predator mortality
rate, and the transformation of prey biomass into predator reproduction. However, it is crucial to
acknowledge that nonlinear components exert a substantial influence on predator-prey dynamics that
occur in nature. Scholars have suggested numerous improvements to address the system’s inability
to incorporate specific real-world events. Leslie and Gower [11, 12] introduced the classical Leslie-
Gower predator-prey system to provide a comprehensive representation of the real-world scenario.
This system incorporates the notion that the predator’s environmental carrying capacity is directly
proportional to the population density of the prey. Britton [13] suggested the following Leslie’s system: dx

dt = ax − bx2 − cxy,
dy
dt = dy − αy2

x ,
(1.1)

where x and y represent the population densities of prey and predator, respectively. The parameter
a denotes the intrinsic growth rate of prey, while b quantifies the strength of competition among
individuals of prey. The rate of change due to interaction is represented by the parameter c.
Additionally, the intrinsic growth rate of the predator is denoted by d and α signifies the density of
prey required to sustain a single predator. All parameters a, b, c, d and α are positive constants.

There are two distinct categories of modeling methodologies, namely, discrete-time systems and
continuous-time systems. Much research has been dedicated to examining the nonlinear dynamical
characteristics of continuous systems. In contrast, the investigation of discrete systems has been
relatively limited. Nevertheless, over time scholars have come to recognize that discrete systems
possess distinct dynamical qualities when compared to their continuous counterparts. The discrete-
time systems provide the most accurate description of the dynamics exhibited by animals that engage in
seasonal reproduction and have nonoverlapping generations. Furthermore, as compared to continuous-
time systems, these discrete systems demonstrate much more complicated dynamical patterns [14–21].
Hence, discrete systems possess more attraction in comparison to continuous systems. It is crucial
to use suitable numerical techniques for discretizing the continuous systems. The forward Euler
strategy [22–26] has been widely used due to its simplicity. However, there needs to be more dynamic
consistency when comparing the discrete version to its continuous equivalents. The discrete system
produced by the use of the Euler approach lacks realism. Certain parameters and initial values may
attribute the presence of negative values for the prey and predator population sizes. Nevertheless,
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using the piecewise constant argument approach [27–30] eliminates negative values. Khan et al. [31]
investigated the discrete form of the system (1.1) as follows:xn+1 = (1 + ah)xn − bhx2

n − chxnyn,

yn+1 =
(1+dh)xnyn−αhy2

n
xn

.
(1.2)

They obtained the discretization using the forward Euler technique. They investigated stability
analysis and demonstrated the occurrence of the Neimark-Sacker (NS) bifurcation in the system. The
authors used the hybrid control methodology to regulate the chaotic behavior in the system. In this
study, we use the piecewise constant argument as an alternative method for discretizing the continuous-
time system (1.1). By utilizing piecewise constant arguments to solve nonlinear differential equations
and considering the regular time interval for the average growth rate in both populations, we can rewrite
system (1.1) as follows:  1

x(t)
dx
dt = a − bx[t] − cy[t],

1
y(t)

dy
dt = d − αy[t]

x[t] ,
(1.3)

where [t] represents the integer part of t and 0 < t < ∞. Furthermore, integrating system (1.3) on an
interval [n, n + 1) with n = 0, 1, 2, · · · yields the following system:

x(t) = xne

(
a−bxn−cyn

)
(t−n)

,

y(t) = yne

(
d− αyn

xn

)
(t−n)

.

(1.4)

Taking t → n + 1, we obtain the following discrete-time system:xn+1 = xnea−bxn−cyn ,

yn+1 = yned− αyn
xn .

(1.5)

The subsequent sections of the paper are structured in the following manner: The objective of
Section 2 is to investigate the presence and topological classification of fixed points. Section 3 provides
a comprehensive examination of the bifurcation analysis pertaining to the period-doubling (PD) and
NS bifurcations occurring at the positive fixed point. Section 4 employs two control methodologies in
order to effectively regulate bifurcations and chaos. In order to validate and explicate the theoretical
findings, numerical examples are presented in Section 5. The analysis performed in this research is
ultimately summarized in Section 6.

2. Topolgical classification of fixed points

The understanding of fixed point stability holds significant importance within the context of a
predator-prey system. The fixed points represent equilibrium states wherein the populations of
predators and prey have achieved a condition of balance. By conducting an analysis of their stability,
we are able to make predictions about the long-term patterns exhibited by these ecological systems,
gaining a deeper understanding of the various factors that contribute to the overall dynamics of the
ecosystem.
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2.1. Existence of fixed points

The fixed points for system (1.5) can be obtained by solvingx = xea−bx−cy,

y = yed− αy
x ,

(2.1)

for x and y. It is obtained that system (1.5) has two fixed points E1 = ( a
b , 0), E2 = ( aα

cd+bα ,
ad

cd+bα ).

2.2. Stability of fixed points

To classify the fixed points, we employ the following results.

Lemma 2.1. [32] Let Λ(ξ) = ξ2 + K1ξ + K0 be the characteristic polynomial of Jacobian matrix
computed at fixed point (x, y) and ξ1, ξ2 satisfy Λ(ξ) = 0, then (x, y) is a
(1) sink (locally asymptotically stable (LAS)) when |ξ1| < 1 along with |ξ2| < 1,
(2) source when |ξ1| > 1 along with |ξ2| > 1,
(3) saddle point (SP) when |ξ1| < 1 and |ξ2| > 1 (or |ξ1| > 1 and |ξ2| < 1),
(4) non-hyperbolic point (NHP) when the modulus of either of ξ1 and ξ2 is one.

Lemma 2.2. [32] Consider the quadratic function Λ(ξ) = ξ2 + K1ξ + K0. Suppose that Λ(1) > 0. If ξ1

and ξ2 both satisfy the equation Λ(ξ) = 0, then
(1) |ξ1| < 1 along with |ξ2| < 1 if Λ(−1) > 0 and K0 < 1,
(2) |ξ1| < 1 and |ξ2| > 1 (or |ξ1| > 1 and |ξ2| < 1) if Λ(−1) < 0,
(3) |ξ1,2| > 1 if Λ(−1) > 0 and K0 > 1,
(4) |ξ2| , 1 and ξ1 = −1 if Λ(−1) = 0 and K1 , 0, 2,
(5) ξ1, ξ2 ∈ C along with |ξ1,2| = 1 if K2

1 − 4K0 < 0 and K0 = 1.

Through simple computations, one can obtain the Jacobian matrix at an arbitrary fixed point (x, y)
as follows:

J(x, y) =

e
a−bx−cy(1 − bx) −cea−bx−cyx

ed− yα
x y2α

x2
ed− yα

x (x−yα)
x

 .
The Jacobian matrix of system (1.5) computed at E1 is shown as follows:

J(E1) =

1 − a −ac
b

0 ed

 .
Also, the Jacobian matrix at E2 is given by

J(E2) =

1 − abα
cd+bα − acα

cd+bα

d2

α
1 − d

 . (2.2)

Proposition 2.1. The boundary fixed point E1 is
(1) never LAS,
(2) a source if a > 2,
(3) SP if 0 < a < 2,
(4) NHP if a = 2.
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Next, we classify the positive fixed point E2 of system (1.5) according to the above Jacobian matrix
and Lemma 2.2. We obtain

J(E2) =

1 − abα
cd+bα − acα

cd+bα

d2

α
1 − d

 . (2.3)

The characteristic polynomial of J(E2) is

Λ(ξ) = ξ2 +

(
− 2 + d +

abα
cd + bα

)
ξ + (−1 + a)(−1 + d) +

acd
cd + bα

.

It can be obtained through calculations that

Λ(0) = (−1 + a)(−1 + d) +
acd

cd + bα
, Λ(−1) = (−2 + a)(−2 + d) +

2acd
cd + bα

, Λ(1) = ad.

Theorem 2.1. The following holds for the interior fixed point E2 of the system (1.5):
(1) E2 is a sink if one of the following conditions holds:

(a) d < 2 and if one of the following conditions holds:
(i) b +

c(−4+d)d2

(−2+d)2α
≤ 0 and a < d(cd+bα)

cd2+b(−1+d)α ,

(ii) b +
c(−4+d)d2

(−2+d)2α
> 0 and a < 2(−2+d)(cd+bα)

cd2+(−2+d)α ,
(b) d = 2 and a < 4c+2bα

4c+bα ,
(c) 2 < d < 4, b +

c(−4+d)d2

(−2+d)2α
< 0, and

2(−2 + d)(cd + bα)
cd2 + (−2 + d)α

< a <
d(cd + bα)

cd2 + b(−1 + d)α
,

(2) E2 is a saddle point if one of the following conditions holds:
(a) 0 < d < 2, b > cd2

(2−d)α , and a > 2(−2+d)(cd+bα)
cd2+b(−2+d)α ,

(b) d > 2 and 0 < a < 2(−2+d)(cd+bα)
cd2+b(−2+d)α ,

(3) E2 is a source if one of the following conditions holds:
(a) d = 2 and a > 4c+2bα

4c+bα ,
(b) d > 4 and a > 2(−2+d)(cd+bα)

cd2+b(−2+d)α ,
(c) a > d(cd+bα)

cd2+b(−1+d)α and if one of the following conditions holds:

(i) 0 < d < 2 and b ≥ cd2

(2−d)α ,

(ii) 2 < d ≤ 4 and b +
c(−4+d)d2

(−2+d)2α
≤ 0,

(d) d < 2, cd2

(2−d)α < b < − c(−4+d)d2

(−2+d)2α
and

d(cd + bα)
cd2 + b(−1 + d)α

< a <
2(−2 + d)(cd + bα)
cd2 + b(−2 + d)α

,

(e) 2 < d ≤ 4, b +
c(−4+d)d2

(−2+d)2α
> 0, and a > 2(−2+d)(cd+bα)

cd2+b(−2+d)α ,
(4) E2 is non-hyperbolic point and experiences PD bifurcation if a = A1 =

2(−2+d)(cd+bα)
cd2+b(−2+d)α and if one of

the requirements listed below is satisfied:
(a) b +

c(−4+d)d2

(−2+d)2α
< 0 and if one of the following conditions holds:

(i) 2 < d ≤ 4,
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(ii) d < 2 and b > cd2

(2−d)α ,

(b) d ∈ (0, 2) ∪ (2, 4] and b +
c(−4+d)d2

(−2+d)2α
> 0,

(c) d > 4,
(5) E2 is non-hyperbolic point and experiences NS bifurcation if a = A2 =

d(cd+bα)
cd2+b(−1+d)α and if one of the

requirements listed below is satisfied:
(a) d = 2,
(b) d ∈ (0, 2) ∪ (2, 4) and b +

c(−4+d)d2

(−2+d)2α
< 0.

3. Bifurcation analysis

This section is focused on conducting a comprehensive investigation of the bifurcation phenomenon
involving PD and NS bifurcation in the system (1.5) at the positive fixed point E2. In order to
obtain a thorough treatment of bifurcation analysis, we recommend that readers refer to [33, 34]. The
bifurcation holds significant implications for the dynamics of the system, shedding light on scenarios
where even slight modifications to parameters yield substantial alterations in the dynamics of predator-
prey relationships. In addition, gaining knowledge about PD and NS bifurcations contributes to a
deeper comprehension of ecosystem dynamics. This understanding, in turn, facilitates the formulation
of effective conservation and management strategies aimed at sustaining the enduring coexistence of
predator and prey populations. This study initiates by investigating the PD bifurcation at E2 based
on condition (4-c) as presented in Theorem 2.1. By applying a small perturbation δ (|δ|≪ 1) to the
bifurcation parameter around the critical value A1, the system (1.5) is changed toxn+1 = xne(A1+δ)−bxn−cyn ,

yn+1 = yned− αyn
xn .

(3.1)

We transform the fixed point E2 to the origin by considering the change of variables un = xn −
(a+δ)α
cd+bα , vn = yn −

(a+δ)d
cd+bα . As a result, the system (3.1) is transformed into the following form:un+1

vn+1

 =


cd2−b(−2+d)α
cd2+b(−2+d)α −

2c(−2+d)α
cd2+b(−2+d)α

d2

α
1 − d


un

vn

 +

F(un, vn, δ)

G(un, vn, δ)

 , (3.2)

where

F(un, vn, δ) = a1u2
n + a2u2

nvn + a3v2
n + a4v3

n + a5unv2
n + a6unvn + a7u3

n + a8unδ + a9vnδ

+ a10unvnδ + a11u2
nδ + a12v2

nδ + O((|un| + |vn| + |δ|)4),
G(un, vn, δ) = b1v2

n + b2unvn + b3v3
n + b4u2

nvn + b5unv2
n + b6u3

n + b7u2
n + b8v2

nδ + b9unvnδ

+ b10u2
nδ + O((|un| + |vn| + |δ|)4),

a1 = −
bcd2

cd2 + b(−2 + d)α
, a2 =

bc2d2

cd2 + b(−2 + d)α
, a3 =

c2(−2 + d)α
cd2 + b(−2 + d)α

,

a4 = −
c3(−2 + d)α

3(cd2 + b(−2 + d)α)
, a5 =

c2(cd2 − b(−2 + d)α)
2(cd2 + b(−2 + d)α)

, a6 =
c(−cd2 + b(−2 + d)α)

cd2 + b(−2 + d)α
,
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a7 =
b2(3cd2 + b(−2 + d)α)
6(cd2 + b(−2 + d)α)

, a8 = −
bα

cd + bα
, a9 = −

cα
cd + bα

,

a10 =
bcα

cd + bα
, a11 =

b2α

2cd + 2bα
, a12 =

c2α

2cd + 2bα
,

b1 =
cd2 + b(−2 + d)α

4
, b2 = −

d(cd2 + b(−2 + d)α)
2α

, b3 = −
(−3 + d)(cd2 + b(−2 + d)α)2

24(−2 + d)2 ,

b4 = −
d(4 − 5d + d2)(cd2 + b(−2 + d)α)2

8(−2 + d)2α2 , b5 =
(2 − 4d + d2)(cd2 + b(−2 + d)α)2

8(−2 + d)2α
,

b6 =
(6 − 6d + d2)(cd3 + b(−2 + d)dα)2

24(−2 + d)2α3 , b7 =
cd4 + b(−2 + d)d2α

4α2 ,

b8 = −
(cd2 + b(−2 + d)α)2

8(−2 + d)(cd + bα)
, b9 =

d(cd2 + b(−2 + d)α)2

4(−2 + d)α(cd + bα)
, b10 = −

(cd3 + b(−2 + d)dα)2

8(−2 + d)α2(cd + bα)
.

Next, the system (3.2) is diagonalized through the consideration of the following transformation:un

vn

 =

 (−2+d)α
d2

2cα
cd2−2bα+bdα

1 1


en

fn

 . (3.3)

Upon applying the mapping (3.3), the system (3.2) undergoes the alteration as follows:en+1

fn+1

 =

−1 0

0 ξ


en

fn

 +

Γ(en, fn, δ)

Υ(en, fn, δ)

 , (3.4)

where

ξ = −
c(−3 + d)d2 + b(2 − 3d + d2)α

cd2 + b(−2 + d)α
,

Γ(en, fn, δ) = c1e2
n + c2e3

n + c3en fn + c4e2
n fn + c5 f 2

n + c6 f 3
n + c7en f 2

n + c8 fnδ

+ c9en fnδ + c10enδ + c11 f 2
n δ + c12e2

nδ + O((|en| + | fn| + |δ|)4),
Υ(en, fn, δ) = d1e3

n + d2e2
n + d3e2

n fn + d4en fn + d5 f 2
n + d6 f 3

n + d7en f 2
n + d8 fnδ

+ d9enδ + d10e2
nδ + d11en fnδ + d12 f 2

n δ + O((|en| + | fn| + |δ|)4),

where the values of coefficients are given in Appendix A. Next, assume that QC is the center manifold
of (3.4) intended at origin in a close neighborhood of δ = 0. It can be approximated as follows:

QC =

{
(en, fn, δ) ∈ R3

+

∣∣∣∣∣ fn = p1e2
n + p2enδ + p3δ

2 + O((|en| + |δ|)3)
}
,

where

p1 =
d2

1 − ξ
, p2 = −

d9

1 + ξ
, p3 = 0.

As a result, the system (3.4) is limited to QC in the manner as follows:
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F̃ := en+1 = −en + c1e2
n + c10enδ +

(
c2 +

c3d2

1 − ξ

)
e3

n −

( c8d9

1 + ξ

)
enδ

2

+

(
c12 +

c8d2

1 − ξ
−

c3d9

1 + ξ

)
e2

nδ + O
(
(|en| + |δ|)4

)
. (3.5)

For the function (3.5) to go through PD bifurcation, it is necessary that the following two quantities
possesses nonzero values:

l1 = F̃δF̃enen + 2F̃enδ

∣∣∣∣∣
(0,0)

= 2c10, (3.6)

l2 =
1
2

(F̃enen)
2 +

1
3

F̃enenen

∣∣∣∣∣
(0,0)

= 2
(
c2

1 + c2 +
c3d2

1 − ξ

)
. (3.7)

From the previous discussion, we get the following theorem:

Theorem 3.1. Assume that condition (4-c) of Theorem 2.1 holds true. The system (1.5) experiences PD
bifurcation at E2 if l1, l2 given in (3.6) and (3.7) are nonzero and a fluctuates in a close neighborhood
of A1 =

2(−2+d)(cd+bα)
cd2+b(−2+d)α . Moreover, if l2 > 0 (respectively, l2 < 0), then a period-2 orbit of the system (1.5)

emerges and it is stable (respectively, unstable).

Next, we proceed to investigate the NS bifurcation at E2 under condition (5-a) stated in Theorem 2.1.
By applying a small perturbation δ (|δ|≪ 1) to the bifurcation parameter around the critical value A2,
the system (1.5) is changed to xn+1 = xne(A2+δ)−bxn−cyn ,

yn+1 = yned− αyn
xn .

(3.8)

We transform the fixed point E2 to the origin by considering the change of variables un = xn −
(a+δ)α
cd+bα , vn = yn −

(a+δ)d
cd+bα . As a result, the system (3.8) is transformed into the following form:un+1

vn+1

 =

8c2+2bcα(1−2δ)−b2α2(1+δ)
(2c+bα)(4c+bα) −

cα(4c(1+δ)+bα(2+δ))
(2c+bα)(4c+bα)

4
α

−1


un

vn

 +

F(un, vn)

G(un, vn)

 , (3.9)

where

F(un, vn) = a1u2
n + a2u2

nvn + a3unv2
n + a4v2

n + a5v3
n + a6u3

n + a7unvn + O((|un| + |vn|)4),
G(un, vn) = b1v3

n + b2u3
n + b3u2

nvn + b4unv2
n + O((|un| + |vn|)4),

a1 =
b(−16c2 + 4bcα(−2 + δ) + b2α2δ)

2(2c + bα)(4c + bα)
, a2 = −

bc(−16c2 + 4bcα(−2 + δ) + b2α2δ)
2(2c + bα)(4c + bα)

,

a3 =
c2(8c2 + 2bcα(1 − 2δ) − b2α2(1 + δ))

2(2c + bα)(4c + bα)
, a4 =

c2α(4c(1 + δ) + bα(2 + δ))
2(2c + bα)(4c + bα)

,

a5 = −
c3α(4c(1 + δ) + bα(2 + δ))

6(2c + bα)(4c + bα)
, a6 = −

b2(−24c2 + b2α2(−1 + δ) + 2bcα(−7 + 2δ))
6(2c + bα)(4c + bα)

,
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a7 =
c(−8c2 + b2α2(1 + δ) + 2bcα(−1 + 2δ))

(2c + bα)(4c + bα)
, b1 =

(2c + bα)2

6(4c+2bα
4c+bα + δ)2

,

b2 = −
4(2c + bα)2

3α3( 4c+2bα
4c+bα + δ)2

, b3 =
2(2c + bα)2

α2( 4c+2bα
4c+bα + δ)2

, b4 = −
(2c + bα)2

α( 4c+2bα
4c+bα + δ)2

.

The characteristic equation of the Jacobian matrix of system (3.9) estimated at origin is

ξ2 − α(δ)ξ + β(δ) = 0, (3.10)

where

α(δ) = −
bα(4c(1 + δ) + bα(2 + δ))

(2c + bα)(4c + bα)
, β(δ) =

bα(1 + δ) + c(2 + 4δ)
2c + bα

.

The complex solutions for (3.10) are calculated as:

ξ1,2 =
α(δ)

2
±

i
2

√
4β(δ) − α2(δ). (3.11)

Moreover, we obtain (d|ξ1|

dδ

)
δ=0

=

(d|ξ2|

dδ

)
δ=0

=
4c + bα

4c + 2bα
> 0.

Additionally, it is required that ξk
1,2 , 1 when δ=0 for k = 1, 2, 3, 4, which corresponds to

α(0) , −2, 2, 0, 1. We obtain

α(0) = −
2bα

4c + bα
< 0.

Moreover, α(0) = −2 is equivalent to c = 0, which is not possible. Next, to change (3.9) into normal
form at δ = 0, we use the following transformation:un

vn

 =


− 2cα

4c+bα 0

− 4c
4c+bα −1

2

√
4 − 4b2α2

(4c+bα)2


Xn

Yn

 . (3.12)

Upon application of the mapping (3.12), the system (3.9) takes the following form:

Xn+1

Yn+1

 =


− bα

4c+bα −1
2

√
4 − 4b2α2

(4c+bα)2

1
2

√
4 − 4b2α2

(4c+bα)2 − bα
4c+bα


Xn

Yn

 +

Γ(Xn,Yn)

Υ(Xn,Yn)

 , (3.13)

where

Γ(Xn,Yn) = c1X2
nYn + c2XnY2

n + c3X2
n + c4Y2

n + c5XnYn + c6X3
n + c7Y3

n + O((|Xn| + |Yn|)4),
Υ(Xn,Yn) = d1X2

nYn + d2XnYn + d3XnY2
n + d4X2

n + d5Y2
n + d6X3

n + d7Y3
n + O((|Xn| + |Yn|)4),

and

c1 = 8
√

2c2 (c(2c + bα))3/2

(4c + bα)3 , c2 = −
4bc3α(2c + bα)

(4c + bα)3 , c3 =
4c2(2c + bα)
(4c + bα)2 ,
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c4 = −
4c2(2c + bα)
(4c + bα)2 , c5 = −

2
√

2bcα
√

c(2c + bα)
(4c + bα)2 , c6 =

2c2(2c + bα)2(8c + bα)
3(4c + bα)3 ,

c7 = −
1

48
c2(4 −

4b2α2

(4c + bα)2 )3/2, d1 = −
16c4(2c + bα)

(4c + bα)3 , d2 =
4bc2α

(4c + bα)2 ,

d3 =
4
√

2bc3α
√

c(2c + bα)
(4c + bα)3 , d4 = −

4
√

2c2√c(2c + bα)
(4c + bα)2 , d5 =

4
√

2c2√c(2c + bα)
(4c + bα)2 ,

d6 = −
2
3

√
2c

(c(2c + bα))3/2(8c + bα)
(4c + bα)3 , d7 =

c(160c4 + 176bc3α + 72b2c2α2 + 14b3cα3 + b4α4)
3(4c + bα)3 .

The map (3.13) can undergo NS bifurcation if the following quantity is nonzero:

L =

(
− Re

( (1 − 2ξ1)ξ2
2

1 − ξ1
τ20τ11

)
−

1
2
|τ11|

2 − |τ02|
2 + Re(ξ2τ21)

)
δ=0
, (3.14)

where

τ20 =
1
8

(
ΓXnXn − ΓYnYn + 2ΥXnYn + i(ΥXnXn − ΥYnYn − 2ΓXnYn)

)
,

τ11 =
1
4

(
ΓXnXn + ΓYnYn + i(ΥXnXn + ΥYnYn)

)
,

τ02 =
1
8

(
ΓXnXn − ΓYnYn − 2ΥXnYn + i(ΥXnXn − ΥYnYn + 2ΓXnYn)

)
,

τ21 =
1

16

(
ΓXnXnXn + ΓXnYnYn + ΥXnXnYn + ΥYnYnYn + i(ΥXnXnXn + ΥXnYnYn − ΓXnXnYn − ΓYnYnYn)

)
.

Therefore, the result derived from the above analysis is as follows:

Theorem 3.2. Suppose that condition (5-a) of Theorem 2.1 holds true. If L given in (3.14) holds a
nonzero value, then system (1.5) experiences NS bifurcation at E2 as long as a fluctuates in a close
neighborhood of A2 =

d(cd+bα)
cd2+b(−1+d)α . Furthermore, in instances where L is negative (alternatively,

positive), the NS bifurcation encountered in system (1.5) at E2 is categorized as supercritical
(subcritical), giving rise to the presence of a unique closed invariant curve originating from E2, that
is, attracting (repelling).

4. Chaos control

The aim of optimizing dynamical systems in order to meet particular performance criteria and
minimize chaotic behavior is a highly desirable objective. Chaos control techniques are extensively
employed in several fields of applied research and engineering. Historically, bifurcations and unstable
oscillations have been regarded in a negative light within the field of mathematical biology due to their
detrimental impact on the reproductive capacity of biological populations. It is possible to design a
controller that may modify the bifurcation features of a nonlinear system in order to achieve specific
desired dynamical attributes and effectively control chaos under the effects of PD and NS bifurcations.
Multiple strategies exist for the purpose of managing chaos in a discrete-time system. This section is
dedicated to examining two distinct control methods, namely, state feedback control and hybrid control
approaches.
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Initially, the state feedback control strategy, as described in references [35, 36], is employed to
regulate the chaotic behavior of the system (1.5). The suggested methodology entails the conversion of
the chaotic system into a piecewise linear system in order to obtain an optimal controller that effectively
reduces the upper limit. Following this, the problem of optimization is carried out subject to certain
constraints. The technique described above is utilized in order to attain stabilization of chaotic orbits
situated at an unstable fixed point within the system (1.5). The controlled system under consideration
for this purpose is as follows: xn+1 = xnea−bxn−cyn − Un,

yn+1 = yned− αyn
xn ,

(4.1)

where Un = κ1

(
xn −

aα
cd+bα

)
+ κ2

(
yn −

ad
cd+bα

)
is the feedback controlling force with feedback gains κ1 and

κ2. Through simple calculations, it is obtained that for system (4.1) we have

J(E2) =

−
cd(−1+κ1)+b(−1+a+κ1)α

cd+bα −κ2 −
acα

cd+bα

d2

α
1 − d

 . (4.2)

The matrix J(E2) has the following characteristic equation:

ξ2 + K1ξ + K0 = 0, (4.3)

where

K1 =
cd(−2 + d + κ1) + b(−2 + a + d + κ1)α

cd + bα
,

K0 =
cd(d2κ2 + α − κ1α + d(−1 + a + κ1)α) + bα(d2κ2 − (−1 + a + κ1)α + d(−1 + a + κ1)α)

α(cd + bα)
.

Let ξ1 and ξ2 be the roots of (4.3), then we have

ξ1 + ξ2 = −
cd(−2 + d + κ1) + b(−2 + a + d + κ1)α

cd + bα
, (4.4)

ξ1ξ2 =
cd(d2κ2 + α − κ1α + d(−1 + a + κ1)α) + bα(d2κ2 − (−1 + a + κ1)α + d(−1 + a + κ1)α)

α(cd + bα)
. (4.5)

The lines of marginal stability are derived by solving ξ1 = ±1 and ξ1ξ2 = 1. These conditions ensure
that |ξ1,2| < 1. Assume that ξ1ξ2 = 1, then Eq (4.5) implies that

L1 :
(
− 1 + d

)
κ1 +

(d2

α

)
κ2 +

(−1 + a)cd2 + b(a(−1 + d) − d)α
cd + bα

= 0. (4.6)

Next, we take ξ1 = 1 and, utilizing Eqs (4.4) and (4.5), we obtain

L2 : dκ1 +

(d2

α

)
κ2 + ad = 0. (4.7)

Next, we take ξ1 = −1 and, utilizing Eqs (4.4) and (4.5), we obtain
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L3 :
(
− 2 + d

)
κ1 +

(d2

α

)
κ2 +

cd(4 + (−2 + a)d) + (−2 + a)b(−2 + d)α
cd + bα

= 0. (4.8)

The stable eigenvalues are enclosed within the triangular region bounded L1, L2 and L3.
Next, we apply the hybrid control approach [37] for controlling chaos through both types of

bifurcation effects. The hybrid control technique refers to a methodology that integrates the utilization
of state feedback and parameter adjustment in order to achieve stabilization of unstable periodic orbits
that are present within the chaotic attractor of a given system. The controlled system of (1.5), when
the hybrid control approach is used, becomesxn+1 = ρ

(
xnea−bxn−cyn

)
+ (1 − ρ)xn,

yn+1 = ρyned− αyn
xn + (1 − ρ)yn,

(4.9)

where ρ ∈ (0, 1). The parameter ρ serves as a control parameter, which balances the influence of the
original system (1.5) in comparison to the modified system (4.9). If the value of ρ is negative, it might
suggest the reverse impact of the original system (1.5). If the value of ρ is more than 1, it suggests that
the original system (1.5) has an intensifying impact on the modified system (4.9), perhaps resulting in
impractical or unfeasible outcomes. Systems (4.9) and (1.5) share the same fixed points. We obtain

J(E2) =

1 −
abαρ

cd+bα −
acαρ

cd+bα

d2ρ

α
1 − dρ

 , (4.10)

then, its characteristic equation is as follows:

ξ2 + K1ξ + K0 = 0, (4.11)

where

K1 =
cd(−2 + dρ) + bα(−2 + aρ + dρ)

cd + bα
,

K0 =
bα(−1 + aρ)(−1 + dρ) + cd(1 + dρ(−1 + aρ))

cd + bα
.

Theorem 4.1. The fixed point E2 of the controlled system (4.9) is LAS if

|K1| < 1 + K0 < 2.

5. Numerical examples

In this section, we provide empirical evidence to support our theoretical conclusions for system (1.5)
through the implementation of numerical simulations. The numerical simulations will include the
depiction of bifurcation diagrams, phase portraits, time series plots, and graphs illustrating the
maximum Lyapunov exponent (MLE).
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Example 5.1. We assume that b = 0.5, c = 0.8, d = 2, α = 2.5, then system (1.5) experiences NS
bifurcation as a varies in small neighborhoods of a2 ≈ 1.280899. The positive fixed point is obtained as
E2 = (1.123596, 0.898876) for a = 1.280899. The eigenvalues of J(E2) are ξ1,2=−0.280899±0.959737i
with |ξ1,2| = 1. Moreover, some careful calculations give

τ20 = 0.224618 − 0.084112i, τ11 = −2.77556 × 10−17 + 2.498 × 10−16i,

τ02 = 0.14382 − 0.191947i, τ21 = 0.449327 − 0.076779i.

Thus, it is obtained that L = −0.257431 < 0, which proves the correctness of Theorem 3.2. The
bifurcation diagrams of system (1.5) are given in Figure 1(a) and (b), while the MLE is plotted in
Figure 1(c) by using initial conditions x0 = 1.10 and y0 = 0.90 and varying a ∈ [1.05, 2.25].

(a) Bifurcation diagram in (a, xn) plane. (b) Bifurcation diagram in (a, yn) plane.

(c) MLE graph.

Figure 1. Bifurcation diagrams and MLE graph of system (1.5) with respect to a for a
∈ [1.05, 2.25]. Fixed parameter values are b = 0.5, c = 0.8, d = 2, α = 2.5 and initial
conditions are x0 = 1.10, y0 = 0.90.

Next, Figure 2(a)–(f) show phase portraits of system (1.5) for various values of a. The positive fixed
point E2 remains stable when a < 1.280899. However, owing to an NS bifurcation, it loses stability at
a = 1.280899. This results in the formation of an invariant closed curve, the radius of which expands
as a grows. Furthermore, the MLE graph demonstrates that negative values of the MLE indicate
a range of periodic orbits. For instance, orbit-7 in Figure 2(d), orbit-11 in Figure 2(f), orbit-15 in
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Figure 2(h), orbit-4 in Figure 2(l) and orbit-8 in Figure 2(m) exhibit this behavior. Conversely, positive
MLE values suggest that the system is chaotic. Figure 2(o) and (p) exhibit the presence of strange
attractors, indicating the chaotic character that results from positive MLE values.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. Phase portraits of (1.5) for various values of a and fixing b = 0.5, c = 0.8,
d = 2, α = 2.5, x0 = 1.10, y0 = 0.90.

Example 5.2. We assume that b = 0.5, c = 0.8, d = 3.15, α = 2.5, then system (1.5) experiences
both PD bifurcation and NS bifurcation as a varies in small neighborhoods of A1 ≈ 0.924857 and
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A2 ≈ 1.11764, respectively. The positive fixed point is obtained as E2 = (0.613301, 0.772759) for
a = A1. The eigenvalues of J(E2) are ξ1 = −1 and ξ2 = −0.45665 with |ξ2| , 1. The positive
fixed point is obtained as E2 = (0.741142, 0.933838) for a = A2. The eigenvalues of J(E2) are
ξ1,2=−0.760285±0.649589i with |ξ1,2| = 1. The bifurcation diagrams of system (1.5) are given in
Figure 3(a) and (b), while the MLE is plotted in Figure 3(c) by using initial conditions x0 = 0.60 and
y0 = 0.75 and varying a.

(a) Bifurcation diagram in (a, xn) plane. (b) Bifurcation diagram in (a, yn) plane.

(c) MLE graph.

Figure 3. Bifurcation diagrams of system (1.5) with respect to a for a ∈ [0.20, 1.20] and MLE
graph for a ∈ [0.20, 1.35]. Fixed parameter values are b = 0.5, c = 0.8, d = 3.15, α = 2.5 and
initial conditions are x0 = 0.60, y0 = 0.75.

Next, Figure 4(a)–(l) show phase portraits of system (1.5) for various values of a. One can observe
that E2 is LAS for 0.924857 < a < 1.11764, but loses stability at a = 0.924857 when the system (1.5)
experiences PD bifurcation. For a ≥ 1.11764, the system (1.5) experiences NS bifurcation and an
invariant curve emerges from E2, the radius of which grows as a grows. It leads to a strange chaotic
attractor presented in Figure 4(l).

Therefore, it can be concluded that the positive fixed point E2 of the system (1.5) exhibits stability
when the growth rate of the prey population falls within the range (A1, A2). When the growth rate of
the prey falls below the threshold value of A1, it experiences difficulties in maintaining its population
against predation, leading to a reduction that subsequently affects the survival of predators that rely on
it. When the growth rate exceeds the value of A2, rapid growth sustains predators initially but carries
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the potential for resource exhaustion, therefore affecting both prey and predators over a long period of
time.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. Phase portraits of (1.5) for various values of a and fixing b = 0.5, c = 0.8,
d = 3.15, α = 2.5, x0 = 0.60, y0 = 0.75.

Subsequently, our objective is to assess the effectiveness of the feedback control strategy. Given
the values a = 1.15, b = 0.5, c = 0.8, d = 3.15, and α = 2.5, together with the initial conditions
x0 = 0.60 and y0 = 0.75 for the controlled system (4.1), the marginal stability lines may be determined
as follows:

L1 : κ2 = −0.022978 − 0.541698κ1,

L2 : κ2 = −0.912698 − 0.793651κ1,

and
L3 : κ2 = −0.141068 − 0.289746κ1.

The stability region of system (4.1) is shown in Figure 5(a), which is bounded by lines L1, L2 and L3.
The instability of the fixed point E2 of system (1.5) has been shown for the specified parametric values.
The system described by Eq (4.1) is analyzed using feedback gains κ1 = −3.01 and κ2 = 1.60. Figure 5
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illustrates the graph of xn as shown in Figure 5(c), yn as shown in Figure 5(d), and the phase portrait
as presented in Figure 5(b) for the system (4.1). Hence, it may be inferred that the use of the feedback
control approach seems to be efficacious in managing bifurcation and chaos.

(a) (b)

(c) (d)

Figure 5. Stability region, phase portrait, and time series plots of system (4.1) using a=1.15,
b = 0.5, c = 0.8, d = 3.15, α = 2.5, κ = −3.01, κ2 = 1.60 and initial conditions are
x0=0.60, y0 = 0.75.

The effectiveness of the hybrid control strategy will now be assessed. We assume ρ = 0.95, b=0.5,
c = 0.8, d = 3.15, α = 2.5 and vary a for the controlled system (4.9). If 0.897012 < a < 1.183794,
the positive fixed point E2 is LAS. One can observe that the stability region has been expanded. The
bifurcation diagrams are presented in Figure 6(a) and (b) by using initial conditions x0 = 0.60, y0=0.75
and varying a ∈ [0.20, 1.20].
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(a) Bifurcation diagram in (a, xn) plane of
system (4.9).

(b) Bifurcation diagram in (a, yn) plane of
system (4.9).

Figure 6. Bifurcation diagrams of system (4.9) by fixing ρ = 0.95, b = 0.5, c = 0.8, d = 3.15,
α = 2.5, x0 = 0.60, y0 = 0.75 and varying a ∈ [0.20, 1.20].

6. Conclusions

Our study focused on a discrete-time system, which provided a more accurate depiction of animal
dynamics in seasonal reproduction with nonoverlapping generations. These discrete systems, in
comparison to continuous-time systems, displayed more detailed and rich dynamical patterns, making
them more attractive. When discretizing continuous systems, it was critical to use proper numerical
approaches. In this paper, we used the piecewise constant argument methodology to discretize
the system (1.1), leading to a discrete system (1.5) that consistently preserved positive solutions.
This approach presented a benefit in comparison to the Euler method, which was susceptible to
producing negative solutions, thereby posing challenges for population systems. This study conducted
a comprehensive analysis of the existence and stability of fixed points, focusing specifically on local
bifurcations that occur at the positive fixed point. It was observed that our system (1.5) undergoes
bifurcations in both PD and NS at a positive fixed point, whereas prior investigations [31] only reported
NS bifurcations. Hybrid control and feedback control techniques were employed to effectively manage
bifurcation and disorder within the system denoted as (1.5). In order to validate our theoretical findings,
we employed numerical simulations that incorporated a range of graphical representations, such as time
series plots, phase portraits, bifurcation diagrams, and MLE graphs.

It can be inferred that the stability of the positive fixed point E2 is maintained when the prey
population growth rate lies within the interval (A1, A2). In situations where the prey’s growth rate fell
below a certain threshold value denoted as A1, it encountered challenges in sustaining its population in
the face of predation, resulting in a decline that ultimately impacts the viability of predators dependent
on it. When the growth rate exceeded the value of A2, rapid growth sustained predators initially but
carried the potential for resource exhaustion, therefore affecting both prey and predators over a long
period of time.
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Appendix A.

c1 = −
2c(cd2 + b(−2 + d)α)

c(−4 + d)d2 + b(−2 + d)2α
, c2 =

(cd2 + b(−2 + d)α)2(cd2(16 − 24d + 4d2 + d3) + b(−2 + d)4α)
6(−2 + d)2d4(c(−4 + d)d2 + b(−2 + d)2α)

,

c3 = −
c(cd3 + b(−4 + d2)α)

c(−4 + d)d2 + b(−2 + d)2α
, c4 =

2c(−1 + d)(cd2 + b(−2 + d)α)(c(−2 + d)d2 + b(−2 − 2d + d2)α)
(−2 + d)d2(c(−4 + d)d2 + b(−2 + d)2α)

,
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c5 = −

(
cd2(c3d4(12 − 6d + d2) + bc2d2(−16 + 36d − 18d2 + 3d3)α + 3b2c(−2 + d)3dα2 + b3(−2 + d)3α3)

)
/(

2(cd2 + b(−2 + d)α)2(c(−4 + d)d2 + b(−2 + d)2α)
)
,

c6 =

(
cd2(cd + bα)2(c3d4(8 + 8d − 5d2 + d3) + bc2(−2 + d)2d2(6 − 7d + 3d2)α + b2c(−2 + d)2(−12 + 12d

− 11d2 + 3d3)α2 + b3(−3 + d)(−2 + d)3α3)
)/(

12(cd2 + b(−2 + d)α)3(c(−4 + d)d2 + b(−2 + d)2α)
)
,

c7 =

(
c
(
3c3d4(8 − 4d + d2) + bc2d2(−40 + 72d − 40d2 + 9d3)α + b2cd(−48 + 72d − 44d2 + 9d3)α2

+ b3(−8 + 24d − 16d2 + 3d3)α3
))/(

4(cd2 + b(−2 + d)α)(c(−4 + d)d2 + b(−2 + d)2α)
)
,

c8 = −
cd3

c(−4 + d)d2 + b(−2 + d)2α
, c9 =

2cd(cd2 + b(−2 + d)α)
c(−4 + d)d2 + b(−2 + d)2α

,

c10 = −
(cd2 + b(−2 + d)α)2

(cd + bα)(c(−4 + d)d2 + b(−2 + d)2α)
, c11 =

cd2(cd + bα)(cd3 + b(−2 + d)2α)
4(cd2 + b(−2 + d)α)(c(−4 + d)d2 + b(−2 + d)2α)

,

c12 =
(cd2 + b(−2 + d)α)2(cd3 + b(−2 + d)2α)

2(−2 + d)d2(cd + bα)(c(−4 + d)d2 + b(−2 + d)2α)
,

d1 = −
(8 − 11d + 3d2)(cd2 + b(−2 + d)α)3

3(−2 + d)d4(c(−4 + d)d2 + b(−2 + d)2α)
, d2 =

(−2 + d)(cd2 + b(−2 + d)α)2

c(−4 + d)d4 + b(−2 + d)2d2α
,

d3 = −
(cd2 + b(−2 + d)α)2(cd(8 − 7d + 2d2) + b(4 − 7d + 2d2)α)

2d3(c(−4 + d)d2 + b(−2 + d)2α)
,

d4 =
(c2d3(8 − 5d + d2) + bc(−2 + d)2d(−3 + 2d)α + b2(−2 + d)3α2)

c(−4 + d)d3 + b(−2 + d)2dα
,

d5 =

(
c4d6(8 + 8d − 6d2 + d3) + 4bc3d4(4 − 12d + 16d2 − 7d3 + d4)α + 2b2c2(−2 + d)2d2(−4 + 12d

− 12d2 + 3d3)α2 + 4b3c(−2 + d)4(−1 + d)dα3 + b4(−2 + d)5α4
)

/(
4(cd2 + b(−2 + d)α)2(c(−4 + d)d2 + b(−2 + d)2α)

)
,

d6 = −

(
cd + bα)2(c4d6(64 − 44d + 22d2 − 7d3 + d4) + 2bc3d4(−96 + 164d − 130d2 + 62d3
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− 17d4 + 2d5)α + 6b2c2(−2 + d)3d2(−6 + 6d − 4d2 + d3)α2 + 2b3c(−2 + d)4(−6 + 6d − 7d2 + 2d3)α3

+ b4(−3 + d)(−2 + d)5α4)
)/(

24(cd2 + b(−2 + d)α)3(c(−4 + d)d2 + b(−2 + d)2α
)
,

d7 = −

(
c4d7(28 − 16d + 3d2) + 4bc3d4(16 − 40d + 44d2 − 19d3 + 3d4)α + 2b2c2(−2 + d)2d2(−12 + 28d

− 30d2 + 9d3)α2 + 4b3c(−2 + d)2d(−8 + 16d − 13d2 + 3d3)α3 + b4(−2 + d)3(4 − 10d + 3d2)α4)
)

/(
8d2(cd2 + b(−2 + d)α)(c(−4 + d)d2 + b(−2 + d)2α)

)
,

d8 =
cd3

c(−4 + d)d2 + b(−2 + d)2α
, d9 =

(cd2 + b(−2 + d)α)2

(cd + bα)(c(−4 + d)d2 + b(−2 + d)2α)
,

d10 = −
(cd2 + b(−2 + d)α)3

d2(cd + bα)(c(−4 + d)d2 + b(−2 + d)2α)
, d11 = −

(cd2 + b(−2 + d)α)(cd3 + b(−2 + d)2α)
2(c(−4 + d)d3 + b(−2 + d)2dα)

,

d12 = −
(cd + bα)(c2d4(8 − 4d + d2) + 2bc(−2 + d)3d2α + b2(−2 + d)4α2)

8(cd2 + b(−2 + d)α)(c(−4 + d)d2 + b(−2 + d)2α)
.
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