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1. Introduction

The bootstrap method, as introduced by [1], is a nonparametric statistical method proposed to
specify the variability of sample estimates. The method has been widely used in the literature for
a variety of statistical problems [2] because it is rather easy to apply and efficient to provide well
results. In case of having little information about a suitable distribution, the bootstrap method could be
of great practical use [3].

For univariate real-valued data, [1] introduced the bootstrap method and the method is used in
several real applications; see [2–4] for more presentation details. The method can be described as
multiple resamples of size n from the original dataset are created, and the function of interest is
computed based on each bootstrap sample. The empirical distribution of the results can be used as a
good proxy for the distribution of the function of interest. In the case of finite support, [5] smoothed the
bootstrap method by linear interpolation between consecutive observations. Banks’ bootstrap method
starts with ordering the observations of the original sample and creating n+1 intervals. Each interval is
assigned with probability 1

n+1 . To generate one Banks’ bootstrap sample, n intervals are resampled, then
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one observation is drawn uniformly from each chosen interval; of course, if an interval has been drawn
twice or several times, all observations will be drawn from that interval. With Banks’ bootstrap method,
it is allowed to sample from the whole support and ties do not exist in the bootstrap samples. This is
contrary to Efron’s method, where the process is restricted to resampling from the original dataset [1].
In the case of underlying distributions with infinite support, [6] generalized Banks’ bootstrap method
by assuming distribution tail(s) for the last interval(s).

For univariate right-censored data, [7] presented the bootstrap method and the method is widely
used for survival analysis; see [5,8–10]. This bootstrap version is very similar to the method presented
for univariate real-valued data. The method creates multiple bootstrap samples of size n by resampling
from the original sample, and the function of interest is computed based on each bootstrap sample.
The empirical distribution of those resulting values can be used as a good proxy for the distribution of
the function of interest. [11] generalized Banks’ bootstrap method based on the right-censoring A(n)
assumption [12]. The generalized bootstrap method has been introduced for better results; see [11,13]
for more presentation details.

In 1986, [8] introduced the bootstrap method for bivariate data, and the method is built by the
same technique used for univariate real-valued data. Multiple bootstrap samples are generated by
resampling from the original dataset, and the function of interest is computed based on each bootstrap
sample. The empirical distribution of the resulting values can be a good proxy for the distribution of the
function of interest. However, Efron’s bootstrap method provides poor results for small datasets, and
this motivated [14] to propose three smoothed bootstrap (SB) methods. The SB methods are built based
on nonparametric predictive inference with parametric and nonparametric copulas and uniform kernels.
Those bootstrap methods have been introduced for better results; see [13, 14] for more presentation
details.

In the literature, the classical statistical methods have been widely used for testing statistical
hypotheses; and they are considered as the standard methods although their underlying assumptions
are often not met, particularly if the observed dataset is complicated. To avoid the mathematical
assumptions, [8,15,16] used Efron’s bootstrap method, which is considered as the classical or standard
bootstrap method, to test statistical hypotheses. Efron’s bootstrap method is easy to implement with
good approximation results, but it may provide poor results for small datasets and ties could occur
in the bootstrap samples. These drawbacks motivate me to use a smoothed bootstrap (SB) method
for double-censored data to test statistical hypotheses and to compare the results to those of Efron’s
method introduced for double-censored data. Tests based on double-censored data will be considered
in this paper.

The rest of the paper is organized as follows: In Section 2, several bootstrap methods for univariate
real-valued data, univariate right-censored data and bivariate real-valued data are overviewed.
Section 3 introduces Efron’s bootstrap technique for data including double-censored observations,
along with a SB technique. Through simulations, comparisons are conducted between Efron’s
bootstrap method and the suggested bootstrap method in terms of computing the Type I error rates for
quartiles’ hypothesis tests, which is presented in Section 4. The final section presents some conclusions
and discussions for future research.
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2. Bootstrap methods for different data types

This section presents several bootstrap methods for univariate real-valued data, univariate right-
censored data, and bivariate real-valued data.

2.1. Bootstrap methods for univariate real-valued data

This section describes Efron’s bootstrap method and Banks’ bootstrap method for data including
real-valued observations only [1, 5]. Let F be a continuous distribution defined on the interval
[a, b] and θ(F) be the function of interest. Furthermore, let X1, X2, . . . , Xn be independent and
identically distributed random quantities from the distribution F, and the corresponding observations
are x1, x2, . . . , xn.

Efron’s bootstrap method [1] is a nonparametric method proposed to measure the variability of
sample estimates. It relies on the empirical distribution function of the original sample. This means
that each observation has the same probability to be selected. A large number B of resamples of size
n are created by the original sample, then we calculate the function of interest, θ̂, for each sample.
This provides θ̂1, θ̂2, . . . , θ̂B. The empirical distribution of the results θ̂1, θ̂2, . . . , θ̂B approximates the
sampling distribution of θ(F). This method is used for hypothesis testing and it provides good results;
see [2] for more presentation details.

David L. Banks [5] introduces a SB method for univariate real-valued data. The original data
points are ordered as x(1), x(2), . . . , x(n), then the sample space [a, b] is divided into n + 1 intervals
by the observations, where the end points x(0) and x(n+1) are equal to a and b, respectively. Each
interval (x(i), x(i+1)) for i = 0, 1, 2, . . . , n is assigned probability 1

n+1 . To generate a bootstrap sample, we
sample intervals n times with replacement, then we draw one observation uniformly from each of those
intervals. Based on the bootstrap sample, we calculate the function of interest. This action is repeated
B times to create B bootstrap samples and find the statistics θ̂1, θ̂2, . . . , θ̂B. The empirical distribution
of the resulting values θ̂1, θ̂2, . . . , θ̂B approximates the sampling distribution of θ(F). In the reference
of [13], Banks’ bootstrap method is used for hypothesis testing and it is compared to Efron’s bootstrap
method. From the comparisons, Banks’ bootstrap method provides better results than those of Efron’s
bootstrap method, especially for small datasets.

2.2. Bootstrap methods for univariate right-censored data

This section presents Efron’s bootstrap method [7] and the SB method for right-censored data
[9–11, 13]. Let T1,T2, . . . ,Tn be independent and identically distributed event random variables
from a distribution F supported on R+ and let C1,C2, . . . ,Cn be independent and identically
distributed right-censored random variables from a distribution G supported on R+. Furthermore,
let (X1,D1), (X2,D2), . . . , (Xn,Dn) be the right-censored random variables, where each pair can be
derived by

Xi = min(Ti,Ci), (2.1)

Di =

{
1 if Ti ≤ Ci (uncensored),
0 if Ti > Ci (censored),

(2.2)

where i = 1, 2, . . . , n. Let (x1, d1), (x2, d2), . . . , (xn, dn) be the observations of the corresponding random
quantities (X1,D1), (X2,D2), . . . , (Xn,Dn) and θ(F) is the function of interest, where this function can
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be estimated by θ(F̂).
Bradley Efron [7] proposed a nonparametric bootstrap method for data including right-censored

observations. This bootstrap technique is nearly identical to the method proposed for univariate real-
valued data. The empirical distribution function of the original sample is used, so that each observation
has a probability 1

n , regardless to the observation type whether it is event or censored. A large number
of B bootstrap samples of size n are generated by sampling with replacement from the original dataset,
then the function of interest based on each bootstrap sample is calculated. These steps result the values
θ̂1, θ̂2, . . . , θ̂B, where the empirical distribution of the values θ̂1, θ̂2, . . . , θ̂B can be a good estimate for the
sampling distribution of θ(F). This bootstrap method is used to test equality of average lifetimes over
two populations [17] and it provides good results.

The SB method for right-censored data is presented by [9–11, 13]. This method is a generalization
of Banks’ bootstrap method for right-censored data, and it is built based on the generalization of
A(n) assumption proposed for data including right-censored observations by [12]. To implement this
bootstrap method, the data support is partitioned into n + 1 intervals by the original data, and the right-
censored A(n) assumption is used to assign specific probabilities to those intervals. For one bootstrap
sample, we resample n intervals with the assignment probabilities, and from each interval, we sample
one observation. An iteration of these steps B times creates B bootstrap samples, then the function of
interest is computed based on each bootstrap sample. The values θ̂1, θ̂2, . . . , θ̂B will be derived, and the
empirical distribution of θ̂1, θ̂2, . . . , θ̂B will be used to estimate the sampling distribution of θ(F). [13]
used the SB method for hypothesis testing and compared it to Efron’s bootstrap method. From the
comparisons, the SB method provides better results than those of Efron’s bootstrap method, especially
for small and medium datasets.

The SB method and Efron’s bootstrap method for right-censored data differ in several aspects. First,
Efron’s bootstrap method uses the empirical distribution to create the bootstrap samples while the SB
method uses the right-censored A(n) assumption. Second, Efron’s bootstrap samples often include ties
and right-censored observations due to the resampling process, and this is not the case with the SB
samples. Third, Efron’s method resamples from the original sample; so no observation will be out of
the data, contrary to the SB method, which allows it to sample from the whole data range.

2.3. Bootstrap methods for bivariate real-valued data

This section presents Efron’s bootstrap method [8] and three SB methods for bivariate real-valued
data [13,14]. Let the random quantities (Xi,Yi) ∈ R2, for i = 1, 2, . . . , n, be independent and identically
distributed with distribution H, and let the observation corresponding to (Xi,Yi) be denoted by (xi, yi).
Furthermore, let the function of interest be θ(H), which can be estimated by θ(Ĥ).

Bradley Efron and Robert Tibshirani [8] used the empirical distribution to implement the bootstrap.
Multiple bootstrap samples, e.g., B = 1000, of size n are created by resampling with equal probability
from the observed data, and based on each bootstrap sample, the function of interest is calculated. This
leads to B resulting values, and the empirical distribution of these B values is used as a proxy for the
distribution of the function of interest; this is the same basic idea as for univariate real-valued data.
Several references use this bootstrap method for hypothesis testing; see [18–20] for more details.

In [13, 14], the authors introduced a SB method based on a semi-parametric predictive method
proposed by [21, 22]. The semi-parametric predictive method divides the sample space into (n + 1)2

squares by the original sample and it assigns a certain probability to each square. To create one
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bootstrap sample, n squares are resampled with the assignment probabilities, and from each chosen
square, we sample one observation. This technique is repeated multiple times, e.g., B = 1000, and
based on each bootstrap sample, the function of interest is calculated. This leads to B resulting values,
and the empirical distribution of these B values is used to estimate the distribution of the function of
interest.

In [13,14], the authors introduced another SB method based on a nonparametric predictive method,
which is proposed by [22, 23]. The nonparametric predictive method partitions the sample space into
(n + 1)2 squares by the observed data points and it assigns a certain probability to each square. To
create one bootstrap sample, n squares are resampled with the assignment probabilities, and from each
chosen square, we sample one observation. This technique is repeated multiple times, e.g., B = 1000,
and based on each bootstrap sample, the function of interest is calculated. This leads to B resulting
values, and the empirical distribution of these B values is a good estimate for the distribution of the
function of interest.

Also in [13, 14], the authors introduced a smoothed Efron’s bootstrap method based on uniform
kernels, and this method is the third SB method. Each data point is surrounded by a block of size bX×bY

and the observation is located in the center of its corresponding block. To create one bootstrap sample,
n blocks are sampled with replacement, and from each chosen block, we sample one observation
uniformly. This procedure is iterated multiple times, e.g., B = 1000, and based on each bootstrap
sample, the function of interest is calculated. This leads to B resulting values, and the empirical
distribution of these B values is a good estimate for the distribution of the function of interest.

3. Bootstrap methods for double-censored data

This section introduces two bootstrap techniques for double-censored data. Let T1,T2, . . . ,Tn

be independent and identically distributed event random variables from a distribution G supported
on R+ and let RC1,RC2, . . . ,RCn be independent and identically distributed right-censored random
variables from a distribution H supported on R+. Furthermore, let LC1, LC2, . . . , LCn be independent
and identically distributed left-censored random variables from a distribution F supported on R+

and let (X1,D1), (X2,D2), . . . , (Xn,Dn) be the double-censored random variables, where the pairs
(X1,D1), (X2,D2), . . . , (Xn,Dn) are derived by

Xi = max [min(Ti,RCi), LCi] , where i = 1, 2, . . . , n, (3.1)

Di =


1 if Xi = Ti (event),
2 if Xi = RCi (right-censored),
3 if Xi = LCi (left-censored).

(3.2)

Let (x1, d1), (x2, d2), . . . , (xn, dn) be the observations of the corresponding random quantities
(X1,D1), (X2,D2), . . . , (Xn,Dn) and θ(G) is the function of interest, where this function can be estimated
by θ(Ĝ).

3.1. Efron’s bootstrap method

Based on Efron’s bootstrap methods proposed for univariate real-valued data, univariate right-
censored data and bivariate real-valued data, Efron’s bootstrap method can be generalized for univariate

AIMS Mathematics Volume 9, Issue 2, 4649–4664.



4654

double-censored data by using the empirical distribution function. The empirical function gives a
probability 1

n to each observation with no regards to the observation type.

3.1.1. Efron’s bootstrap algorithm

Efron’s bootstrap technique for double-censored data can be illustrated in steps as follows:

(i) Resample n pairs (xi, di) from the original data. This step leads to create one bootstrap sample,
which is referred to by

S ample∗boot = {(x∗1, d
∗
1), (x∗2, d

∗
2), . . . , (x∗n, d

∗
n)}.

(ii) Compute the function of interest θ̂∗ = θ̂(S ample∗boot) using the self-consistency algorithm [24].

(iii) Perform steps (i) and (ii) B times; this will provide θ̂∗1, θ̂∗2, . . . , θ̂∗B.

3.1.2. Practical notes

Two notes are important to be pointed out when applying Efron’s bootstrap technique.

(i) Efron’s bootstrap datasets have to contain censored observations and ties due to the resampling
process. The double-censored observations and ties may cause some complications in
computations, especially for small samples and large censoring proportions.

(ii) Efron’s bootstrap technique for double-censored data will be reduced to Efron’s bootstrap
technique proposed for univariate real-valued data if the censoring proportion in the original
sample is zero.

3.2. The SB method

For data including only event observations, [25,26] introduced the A(n) assumption, which provides
a partial probability distribution for one future observation Xn+1 using the original sample. The support
is partitioned, based on the original sample, into n + 1 intervals, and each interval has a probability 1

n+1 ,
where x(0) = −∞ and x(n+1) = +∞ (for positive random variables; x(0) = 0 and x(n+1) = +∞).

This A(n) assumption is generalized for the case of data including double-censored observations
by [27], and this version is called by the double-censored A(n) assumption. The double-censored A(n)

assumption divides the support by the original data points into n + 1 intervals, and the assumption
assigns certain probabilities to those created intervals. Let X1, X2, . . . , Xn be exchangeable and positive
random quantities, and suppose that ties occur with probability zero; for simplicity. Let x1, x2, . . . , xn be
the observations corresponding to the random variables X1, X2, . . . , Xn, where the observations include
u event times, t(1) < t(2) < . . . < t(u), v right-censored times, rc(1) < rc(2) < . . . < rc(v), and k = n− (u+v)
left-censored times, lc(1) < lc(2) < . . . < lc(k). Furthermore, let the support limits be t(0) and t(u+1), which
are equal to 0 and ∞, respectively. The probabilities for the next future observation Xn+1 to be in the
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intervals (t(i), t(i+1)), (rc( j), trc( j)), and (tlc(w) , lc(w)) can be computed by the following functions:

P
(
Xn+1 ∈ (t(i), t(i+1))

)
=

1
n + 1

+

v∑
j=1

I(rc( j) < t(i))
(n + 1)(#{t(.) > rc( j)} + 1)

+

k∑
w=1

I(lc(w) > t(i+1))
(n + 1)(#{t(.) < lc(w)} + 1)

,

P
(
Xn+1 ∈ (rc( j), trc( j))

)
=

1
(n + 1)(#{t(.) > rc( j)} + 1)

,

P
(
Xn+1 ∈ (tlc(w) , lc(w))

)
=

1
(n + 1)(#{t(.) < lc(w)} + 1)

,

(3.3)

where i = 0, 1, 2, . . . , u, j = 1, 2, . . . , v, and w = 1, 2, . . . , k, with t(0) = 0 and t(u+1) = ∞. I(.) is the
indicator function, trc( j) is the first event time greater than rc( j), and tlc(w) is the first event time less than
lc(w).

Several notes should be pointed out to deeply demonstrate the double-censored A(n) assumption.
First, each event interval has a probability greater than or equal 1

n+1 because the censored observations’
probabilities are divided and added to the event intervals. Second, any right-censored interval has a
probability less than or equal to 1

n+1 because its own probability is spread forward to the observations
greater than that right-censored observation. Third, any left-censored interval has a probability less
than or equal to 1

n+1 because its own probability is spread backward to the observations less than that
left-censored observation. Lastly, if data includes event observations only, the double-censored A(n)

assumption will return to the original A(n) assumption.

3.2.1. The SB algorithm

To develop a SB technique for data including double-censored observations, the double-censored
A(n) assumption will be used; and the SB technique algorithm is as follows:

(i) Divide the sample space into n + 1 intervals in the form of (t(i), t(i+1)), (rc( j), trc( j)), and (tlc(w) , lc(w))
and compute their assignment probabilities by Eq (3.3).

(ii) Resample n intervals with the assignment probabilities.

(iii) From each finite interval, draw one observation uniformly. For the case of infinite interval
(x(i),∞), where the limit x(i) could be a right-censored observation or an event observation,
an exponential tail is assumed with rate parameter λ(i) based on the corresponding assignment
probabilities, then sample one observation from the tail for the interval (x(i),∞).

(iv) Compute the function of interest θ̂∗.

(v) Steps from (ii) to (iv) should be performed B times. This repetition will generate B bootstrap
datasets along with their functions of interest.

3.2.2. Practical notes

Three practical notes should be listed to have a wide picture of the SB method.
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(i) One of the SB technique’s advantages is that the sampling will be from the whole data support,
and this prevents ties to occur.

(ii) The SB datasets’ observations are all event, and this eases the calculations to find the functions
of interest. This is contrary to Efron’s bootstrap datasets, which often contain ties and censored
observations due to the resampling process.

(iii) The SB technique will return to Banks’ bootstrap technique proposed for event data in case of
zero censoring proportion in the original dataset.

In this paper, ties are assumed to not exist in the dataset, but in the real world applications; however,
this is not always the case. We may experience seven cases of ties which are: tied left-censoring times,
tied event times, tied right-censoring times, ties among event and left-censoring times, ties among event
and right-censoring times, ties among event and left-censoring times with right-censoring times, and
ties among left-censoring and right-censoring times. With the first three cases, the tied observations
are split by adding a tiny number to those ties. With the fourth case, we assume that the left-censoring
times occur before the event observations. With the fifth case, the right-censoring times are assumed
to occur after the event observations, and this assumption is widely proposed in the literature [28, 29].
With the sixth case, the right-censoring times are assumed to occur after the event observations and the
left-censoring times are assumed to occur before the event times. With the last case, the right-censoring
times are assumed to occur after the left-censoring times.

4. Comparison with Efron’s bootstrap method

In this section, the SB method is compared to Efron’s bootstrap method proposed for double-
censored data through simulation studies. The comparisons are in terms of computing the Type I
error rates of quartiles’ hypothesis tests. Through the simulations, we consider different scenarios
by using Eqs (3.1) and (3.2), and all scenarios are presented in Table 1 with the distributions’
parameters and censoring proportions. For each scenario, we consider three distributions; the first
one is used to create event times, the second one is used to create right-censored times, and the third
one is used to create left-censored times. To generate one double-censored data from any scenario, n
observations are generated from each distribution of that scenario, then Eqs (3.1) and (3.2) are used.
The references [13, 30] are good to help in determining the censoring proportions.

To conduct comparisons between Efron’s bootstrap method and the SB method, we generate N =

1000 datasets from each scenario proposed in Table 1. For each generated dataset, we apply the
methods B = 1000 times. This leads to having 1000 bootstrap samples based on each method. We
then compute the quartile of interest at each bootstrap sample, and from the resulting values, we can
define the 100(1 − 2α)% bootstrap confidence interval for the quartile. We count one if the value of
the quartile specified in the null hypothesis is not included in the confidence interval; otherwise, we
count zero. We repeat this procedure for all N = 1000 generated datasets, then count the number of
times the null hypothesis was rejected over the 1000 trials. This ratio will be the Type I error rate of
the quartile’s hypothesis test with significance level 2α.

Tables 2–19 present the Type I error rates for the quartiles’ hypothesis tests with significance
levels 0.10 and 0.05. In scenarios 1 and 3, where the censoring proportion is 20% (10% for right-
censored observations and 10% for left-censored observations), Efron’s bootstrap method makes the
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discrepancies between the nominal and actual error rates for the first quartile larger than those of the SB
method, especially for small datasets. This can be seen in Tables 2 and 8. As the censoring proportion
increases to 30% (15% for right-censored observations and 15% for left-censored observations), which
is indicated in scenarios 2 and 4, Efron’s bootstrap method provides poor results for the first quartile
even with large sample sizes, and the results are presented in Tables 5 and 11. It is perhaps because
more left-censored times occur at the beginning and the self-consistency algorithm provides under
estimates. With scenarios 5 and 6, where the censoring proportions are 32.5% and 29%, respectively,
Efron’s bootstrap method continues providing poor results as it appears in Tables 14 and 17. In contrast,
the SB method mostly provides well results as it makes the discrepancies between the nominal and
actual error rates for the first quartile small, regardless to the censoring proportions; this could be
considered as one of the advantages over Efron’s method.

Tables 3, 6, 9, 12, 15, and 18 present the Type I error rates for the second quartiles hypothesis tests
with significance levels 0.10 and 0.05 in all scenarios with different censoring proportion. It seems that
Efron’s bootstrap method provides larger discrepancies between the actual and nominal error rates in
comparison to those of the SB method when n = 20. As the sample size increases, Efron’s bootstrap
method improves the outcomes. The SB method with all different sample sizes mostly leads to better
results. It makes the discrepancies between the actual and nominal error rates smaller than those of
Efron’s method regardless to the censoring proportions.

In Tables 4, 7, 10, 13, 16, and 19, the Type I error rates for the third quartile hypothesis tests are
presented with significance levels 0.10 and 0.05. When the sample size is 20 and 40 in all scenarios with
different censoring proportions, the SB method mostly provides better results than Efron’s method. As
the sample size increases, the method still provides good results, but Efron’s method is better. This
could be because the third quartile located in the tail and exponential tails proposed for the infinite
intervals are pulled in due to the assignment probabilities; therefore, they do not cover the true third
quartile.

Table 1. The density functions for the distributions used in each scenario to create double-
censored data.

Scenario Event distribution RC Distribution LC distribution Censoring proportion
1 Weibull(α = 0.65, β = 1.5) Exp(λ1 = 0.06) Exp(λ2 = 20) 10% RC and 10% LC
2 Weibull(α = 0.65, β = 1.5) Exp(λ1 = 0.10) Exp(λ2 = 10) 15% RC and 15% LC
3 Log-normal(µ = 0, σ = 1) Exp(λ1 = 0.08) Exp(λ2 = 4.5) 10% RC and 10% LC
4 Log-normal(µ = 0, σ = 1) Exp(λ1 = 0.14) Exp(λ2 = 3.5) 15% RC and 15% LC
5 Uniform(a=0, b=1) Log-normal(µ = 1, σ = 3) Beta(α = 0.5, β = 7) 18.5% RC and 14% LC
6 Beta(α = 0.5, β = 3) Exp(λ = 1.2) Beta(α = 0.15, β = 7) 13% RC and 16% LC

Table 2. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q1 = 0.2207
based on the SB method and Efron’s method (first scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.115 0.141 0.089 0.103 0.103 0.107 0.108 0.118 0.099 0.107
0.05 0.057 0.076 0.062 0.051 0.060 0.068 0.051 0.065 0.060 0.066
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Table 3. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q2 = 0.8525
based on the SB method and Efron’s method (first scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.105 0.128 0.112 0.127 0.108 0.111 0.105 0.111 0.108 0.110
0.05 0.060 0.068 0.057 0.060 0.056 0.055 0.058 0.058 0.055 0.060

Table 4. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q3 = 2.4785
based on the SB method and Efron’s method (first scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.100 0.125 0.109 0.114 0.116 0.123 0.105 0.102 0.113 0.096
0.05 0.057 0.069 0.053 0.061 0.070 0.059 0.056 0.053 0.056 0.048

Table 5. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q1 = 0.2207
based on the SB method and Efron’s method (second scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.119 0.160 0.097 0.136 0.119 0.175 0.123 0.165 0.117 0.194
0.05 0.055 0.088 0.047 0.091 0.070 0.110 0.067 0.106 0.069 0.109

Table 6. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q2 = 0.8525
based on the SB method and Efron’s method (second scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.110 0.128 0.110 0.125 0.107 0.103 0.106 0.111 0.111 0.103
0.05 0.064 0.069 0.061 0.057 0.054 0.047 0.058 0.054 0.055 0.058

Table 7. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q3 = 2.4785
based on the SB method and Efron’s method (second scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.117 0.146 0.113 0.114 0.123 0.117 0.112 0.102 0.121 0.104
0.05 0.063 0.084 0.066 0.065 0.079 0.068 0.061 0.058 0.068 0.041
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Table 8. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q1 = 0.5092
based on the SB method and Efron’s method (third scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.096 0.173 0.105 0.129 0.101 0.128 0.090 0.145 0.090 0.173
0.05 0.055 0.077 0.052 0.090 0.040 0.076 0.050 0.073 0.061 0.102

Table 9. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q2 = 1 based
on the SB method and Efron’s method (third scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.099 0.106 0.107 0.103 0.099 0.099 0.095 0.096 0.103 0.109
0.05 0.049 0.060 0.048 0.055 0.050 0.050 0.045 0.048 0.050 0.056

Table 10. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q3 = 1.9632
based on the SB method and Efron’s method (third scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.086 0.125 0.093 0.101 0.101 0.101 0.108 0.100 0.111 0.103
0.05 0.044 0.060 0.057 0.055 0.049 0.052 0.060 0.056 0.056 0.053

Table 11. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q1 = 0.5092
based on the SB method and Efron’s method (fourth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.120 0.235 0.114 0.200 0.133 0.217 0.105 0.279 0.119 0.307
0.05 0.064 0.108 0.063 0.146 0.063 0.136 0.060 0.172 0.064 0.214

Table 12. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q2 = 1 based
on the SB method and Efron’s method (fourth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.104 0.113 0.110 0.107 0.097 0.100 0.100 0.104 0.104 0.094
0.05 0.049 0.067 0.054 0.061 0.049 0.047 0.048 0.053 0.052 0.051
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Table 13. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q3 = 1.9632
based on the SB method and Efron’s method (fourth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.107 0.126 0.113 0.097 0.117 0.102 0.131 0.107 0.124 0.107
0.05 0.060 0.079 0.066 0.053 0.061 0.050 0.074 0.054 0.072 0.048

Table 14. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q1 = 0.25
based on the SB method and Efron’s method (fifth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.119 0.234 0.113 0.199 0.132 0.216 0.104 0.278 0.118 0.306
0.05 0.063 0.107 0.062 0.145 0.062 0.135 0.059 0.171 0.063 0.213

Table 15. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q2 = 0.5
based on the SB method and Efron’s method (fifth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.103 0.112 0.109 0.106 0.096 0.099 0.099 0.103 0.103 0.093
0.05 0.048 0.066 0.053 0.060 0.048 0.046 0.047 0.052 0.051 0.050

Table 16. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q3 = 0.75
based on the SB method and Efron’s method (fifth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.106 0.125 0.112 0.096 0.116 0.101 0.130 0.106 0.123 0.106
0.05 0.059 0.078 0.065 0.052 0.060 0.049 0.073 0.053 0.071 0.047

Table 17. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q1 = 0.018
based on the SB method and Efron’s method (sixth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.118 0.233 0.112 0.198 0.131 0.215 0.103 0.277 0.117 0.305
0.05 0.062 0.106 0.061 0.144 0.061 0.134 0.058 0.170 0.062 0.212
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Table 18. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q2 = 0.079
based on the SB method and Efron’s method (sixth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.102 0.111 0.108 0.105 0.095 0.098 0.099 0.102 0.102 0.094
0.05 0.047 0.067 0.052 0.064 0.046 0.045 0.046 0.051 0.051 0.054

Table 19. Type I error rates with significance level 2α = 0.10 and 0.05 for H0 : Q3 = 0.212
based on the SB method and Efron’s method (sixth scenario).

n 20 40 60 80 100
2α SB Efron SB Efron SB Efron SB Efron SB Efron

0.10 0.104 0.121 0.108 0.092 0.112 0.101 0.130 0.102 0.122 0.102
0.05 0.055 0.073 0.061 0.051 0.060 0.045 0.072 0.052 0.072 0.043

5. Conclusions

In this paper, a SB method for double-censored data has been used for hypothesis testing. It is easy
to implement and efficient to provide well results. Through simulation studies, the SB method has
been compared to Efron’s bootstrap method for double-censored data in terms of computing the Type
I error rates for quartiles’ hypothesis tests. The SB technique mostly performs better in comparison to
Efron’s technique, in particular when the data size is small and medium. The bootstrap samples created
by Efron’s bootstrap method contained ties and double-censored observations due to the restriction of
resampling process. This could lead to complications in computations and poor results, specifically
for the events of small datasets and large censoring proportions. These disadvantages can be avoided
by the SB method, which generates only event observations for the bootstrap samples with no ties by
using the double-censored A(n) assumption [27].

The implementation of the SB method in R software required nearly 15% more time than Efron’s
bootstrap method. The SB method consumed more time because we ordered the observations and
created the n + 1 intervals first, then we computed the probabilities corresponding to those intervals.
After these steps, we drew observations from the intervals to generate the bootstrap samples. These
steps led to consume more time when applying the SB technique in R software.

A problem often experienced by applied researchers is the analysis of time to event data. Such
data examples can be in public health, engineering, economics, medicine, biology, epidemiology, and
demography. The SB method and Efron’s method are applicable to all these disciplines and the focus
can be on applications of the techniques to biology and medicine because they usually include double-
censored data, for example, duration of response to treatment, time to recurrence of a disease, time to
development of a disease, analyzing data on the time to death from a certain cause, or simply time to
death.
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Due to the results obtained from the application of the SB method, it is good to investigate the
approach for testing and computing Type II error rates through simulation studies. Also, it is believed
that the SB method can provide well outcomes for survival and reliability inferences. All these topics
will be left for future research.
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