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Abstract: Soft ω-almost-regularity, soft ω-semi-regularity, and soft ω-T2 1
2

as three novel soft
separation axioms are introduced. It is demonstrated that soft ω-almost-regularity is strictly between
“soft regularity” and “soft almost-regularity”; soft ω-T2 1

2
is strictly between “soft T2 1

2
” and “soft T2”,

and soft ω-semi-regularity is a weaker form of both “soft semi-regularity” and “soft ω-regularity”.
Several sufficient conditions for the equivalence between these new three notions and some of their
relevant ones are given. Many characterizations of soft ω-almost-regularity are obtained, and a
decomposition theorem of soft regularity by means of “soft ω-semi-regularity” and “soft ω-almost-
regularity” is obtained. Furthermore, it is shown that soft ω-almost-regularity is heritable for specific
kinds of soft subspaces. It is also proved that the soft product of two soft ω-almost regular soft
topological spaces is soft ω-almost regular. In addition, the connections between our three new
conceptions and their topological counterpart topological spaces are discussed.

Keywords: soft almost regularity; soft ω-openness; soft Rω-openness; soft regularity; soft
ω-regularity; soft semi-regularity
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1. Introduction and preliminaries

The need for theories that cope with uncertainty emerges from daily experiences with complicated
challenges requiring ambiguous facts. Molodstov’s [1] soft set is a contemporary mathematical
approach to coping with these difficulties. Soft collection logic is founded on the parameterization
principle, which argues that complex things must be seen from several perspectives, with each aspect
providing only a partial and approximate representation of the full item. Molodstov [1] was a pioneer
in the application of soft sets in a variety of domains, emphasizing their advantages over probability
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theory and fuzzy set theory, which deal with ambiguity or uncertainty.
Following that, Maji et al. [2] began researching soft set operations such as soft unions and soft

intersections. To overcome the shortcomings of these operations, Ali et al. [3] created and showed
new operations such as limited union, intersection, and complement of a soft set. Babitha and Sunil [4]
investigated numerous aspects of linkages and functions in a soft setting. Qin and Hong [5] developed
novel kinds of soft equal relations and showed some algebraic properties of them. Their pioneering
work paved the way for subsequent papers (for more detail, see [6, 7] and the references listed therein).
Soft set theory has lately been a popular method among academics for dealing with uncertainty in a
wide range of fields, including information theory [8], computer sciences [9], engineering [10], and
medical sciences [11].

Soft topology was introduced by Shabir and Naz in [12]. Since then, many soft topological notions,
including soft separation axioms [13–16], soft covering axioms [17–22], soft connectedness [23–26],
and different weak and strong types of soft continuity, have been developed and investigated in recent
years. The equivalence between the enriched and extended soft topologies was discussed in [27].

Separation axioms provide a way to study certain properties of compact and Lindelof spaces, as well
as a way to categorize spaces and mappings into distinct families. As a result, topological scholars
who presented various kinds of soft separation axioms became interested in soft separation axioms.
Generally speaking, they can be separated into two classes: Soft points and ordinary points, based on
the subjects being studied. While the authors in [14–16, 28] examined soft separation axioms using
ordinary points, the authors in [13, 29–33] and others have applied the concept of soft points. In the
present work, we introduce soft ω-almost-regularity, soft ω-semi-regularity, and soft ω-T2 1

2
as three

novel soft separation axioms.
This article is organized as follows:
In Section 1, after the introduction, we provide a few definitions that are relevant to this paper.
In Section 2, we define soft ω-almost-regularity as a new soft separation axiom that lies between

soft regularity and soft almost-regularity. We introduce many characterizations of this type of soft
separation axiom. Also, we provide several sufficient conditions establishing the equivalence between
this newly introduced axiom and its relevant counterparts. Moreover, we establish that soft ω-almost-
regularity is heritable for specific types of soft subspaces. Furthermore, we show that soft ω-almost-
regularity is a productive soft property. In addition, we investigated the links between this class of soft
topological spaces and its analogs in general topology.

In Section 3, we define soft ω-semi-regularity and soft ω-T2 1
2

as two new soft separation axioms.
We show that softω-semi-regularity is a weaker form of both soft semi-regularity and softω-regularity,
and soft ω-T2 1

2
lies strictly between soft T2 1

2
and soft T2. Also, we provide several sufficient conditions

establishing the equivalence between these newly introduced axioms and their relevant counterparts.
Moreover, a decomposition theorem for soft regularity through the interplay of soft ω-semi-regularity
and soft ω-almost-regularity is obtained. In addition, we investigated the links between these classes
of soft topological spaces and their analogs in general topology.

This paper follows the notions and terminologies as appear in [34–36]. Topological spaces and soft
topological spaces, respectively, shall be abbreviated as TS and STS.

The following definitions will be used in the remainder of the paper:
Definition 1.1. A TS (H, β) is called

(a) [37] almost-regular (A-R, for simplicity) if for every z ∈ H and every N ∈ S C(H, β) such that
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z ∈ H − N, we find U,V ∈ β such that z ∈ U, N ⊆ V , and U ∩ V = ∅;
(b) [38] semi-regular (S-R, for simplicity) if RO(H, β) forms a base for β;
(c) [39] ω-almost-regular (ω-A-R, for simplicity) if for every z ∈ H and every N ∈ SωC(H, β) such

that z ∈ H − N, we find U,V ∈ β such that z ∈ U, N ⊆ V , and U ∩ V = ∅;
(d) [39] ω-semi-regular (ω-S-R, for simplicity) if RωO(H, β) forms a base for β.

Definition 1.2. A STS (H, ϕ,Σ) is called
(a) [13] soft T2 if for every two soft points as, bt ∈ S P(H,Σ), we find K,W ∈ ϕ such that as∈̃K,

by∈̃W, and K∩̃W = 0Σ;
(b) [13] soft regular if for every az ∈ S P(H,Σ) and every K ∈ ϕ such that az∈̃K, we find G ∈ ϕ such

that az∈̃G⊆̃Clϕ (G) ⊆̃K;
(c) [32] soft T2 1

2
if for every two soft points as, bt ∈ S P(H,Σ), we find K,W ∈ ϕ such that as∈̃K,

by∈̃W, and Clϕ (K) ∩̃Clϕ (W) = 0Σ;
(d) [31] soft almost-regular (soft A-R, for simplicity) if for every rz ∈ S P(H,Σ) and every G ∈

S C(H, ϕ,Σ) such that rz∈̃1Σ −G, we find S ,T ∈ ϕ such that rz∈̃S , G⊆̃T , and S ∩̃T = 0Σ.
(d) [33] soft ω-regular for every az ∈ S P(H,Σ) and every K ∈ ϕ such that az∈̃K, we find G ∈ ϕ such

that az∈̃G⊆̃Clϕω (G) ⊆̃K.
(e) [22] fully if G(r) , ∅ for every G ∈ ϕ − {0Σ} and r ∈ Σ.

2. Soft ω-almost-regular spaces

In this section, we define soft ω-almost-regularity as a new soft separation axiom that lies between
soft regularity and soft almost-regularity. We introduce many characterizations of this type of soft
separation axiom. Also, we provide several sufficient conditions establishing the equivalence between
this newly introduced axiom and its relevant counterparts. Moreover, we establish that soft ω-almost-
regularity is heritable for specific types of soft subspaces. Furthermore, we show that soft ω-almost-
regularity is a productive soft property. In addition, we investigated the links between this class of soft
topological spaces and its analogs in general topology.

Definition 2.1. An STS (H, ϕ,Σ) is called soft ω-almost-regular (soft ω-A-R, for simplicity) if for
every rz ∈ S P(H,Σ) and every G ∈ SωC(H, ϕ,Σ) such that rz∈̃1Σ −G, we find S ,T ∈ ϕ such that rz∈̃S ,
G⊆̃T , and S ∩̃T = 0Σ.

Several characterizations of soft ω-almost-regularity are listed in the following theorem.
Theorem 2.2. The following are equivalent for any STS (H, ϕ,Σ):

(1) (H, ϕ,Σ) is soft ω-A-R.
(2) For every rz ∈ S P(H,Σ) and every K ∈ SωO(H, ϕ,Σ) such that rz∈̃K, we find L ∈ ϕ such that

rz∈̃L⊆̃Clϕ (L) ⊆̃K.
(3) For every rz ∈ S P(H,Σ) and every K ∈ SωO(H, ϕ,Σ) such that rz∈̃K, we find L ∈ S O(H, ϕ,Σ)

such that rz∈̃L⊆̃Clϕ (L) ⊆̃K.
(4) For every rz ∈ S P(H,Σ) and every K ∈ SωO(H, ϕ,Σ) such that rz∈̃K, we find L ∈ SωO(H, ϕ,Σ)

such that rz∈̃L⊆̃Clϕ (L) ⊆̃K.
(5) For every rz ∈ S P(H,Σ) and every K ∈ ϕ such that rz∈̃K, there is L ∈ SωO(H, ϕ,Σ) such that

rz∈̃L⊆̃Clϕ (L) ⊆̃Intϕ
(
Clϕω (K)

)
.
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(6) For every rz ∈ S P(H,Σ) and every K ∈ ϕ such that rz∈̃K, there is L ∈ ϕ such that
rz∈̃L⊆̃Clϕ (L) ⊆̃Intϕ

(
Clϕω (K)

)
.

(7) For every rz ∈ S P(H,Σ) and every G ∈ SωC(H, ϕ,Σ) such that rz∈̃1Σ − G, there are S ,T ∈ ϕ
such that rz∈̃S , G⊆̃T , and Clϕ (S ) ∩̃Clϕ (T ) = 0Σ.

(8) For every G ∈ SωC(H, ϕ,Σ), G = ∩̃
{
Clϕ (K) : K ∈ ϕ and G⊆̃K

}
.

(9) For every G ∈ SωC(H, ϕ,Σ), G = ∩̃
{
Y : Y ∈ ϕc and G⊆̃Intϕ (Y)

}
.

(10) For every L ∈ S S (H,Σ) and every M ∈ SωO(H, ϕ,Σ) such that L∩̃M , 0Σ, there is K ∈ ϕ such
that L∩̃K , 0Σ and Clϕ(K)⊆̃M.

(11) For every L ∈ S S (H,Σ) − {0Σ} and every M ∈ SωC(H, ϕ,Σ) such that L∩̃M = 0Σ, there are
S ,T ∈ ϕ such that L∩̃S , 0Σ and M⊆̃T .
Proof. (1) −→ (2): Let rz ∈ S P(H,Σ) and K ∈ SωO(H, ϕ,Σ) such that rz∈̃K. Then, rz<̃1Σ − K ∈
SωC(H, ϕ,Σ) and by (a) there exist L,T ∈ ϕ such that rz∈̃L, 1Σ − K⊆̃T , and L∩̃T = 0Σ. Thus,
rz∈̃L⊆̃1Σ − T ⊆̃K with 1Σ − T ∈ ϕc, and so rz∈̃L⊆̃Clϕ (L) ⊆̃1Σ − T ⊆̃K. This ends the proof.

(2) −→ (3): Let rz ∈ S P(H,Σ) and K ∈ SωO(H, ϕ,Σ) such that rz∈̃K. By (2) we find M ∈ ϕ

such that rz∈̃M⊆̃Clϕ (M) ⊆̃K. Set L = Intϕ
(
Clϕ(M)

)
. Then, L ∈ S O(H, ϕ,Σ). Since L⊆̃Clϕ(M)⊆̃K,

Clϕ (L) ⊆̃Clϕ(M)⊆̃K. This completes the proof.
(3) −→ (4): Let rz ∈ S P(H,Σ) and K ∈ SωO(H, ϕ,Σ) such that rz∈̃K. By (3) we find

L ∈ S O(H, ϕ,Σ) such that rz∈̃L⊆̃Clϕ (L) ⊆̃K. Since L ∈ S O(H, ϕ,Σ), and by Theorem 3 of [36], we
have RO(H, ϕ,Σ)⊆̃RωO(H, ϕ,Σ), L ∈ SωO(H, ϕ,Σ). This completes the proof.

(4) −→ (5): Let rz ∈ S P(H,Σ) and K ∈ ϕ such that rz∈̃K. Since by Theorem 9 of [36]
Intϕ

(
Clϕω (K)

)
∈ SωO(H, ϕ,Σ), by (4) there is L ∈ SωO(H, ϕ,Σ) such that

rz∈̃L⊆̃Clϕ (L) ⊆̃Intϕ
(
Clϕω (K)

)
. This completes the proof.

(5) −→ (6): Let rz ∈ S P(H,Σ) and K ∈ ϕ such that rz∈̃K. Then, by (5) we find L ∈ SωO(H, ϕ,Σ)
such that rz∈̃L⊆̃Clϕ (L) ⊆̃Intϕ

(
Clϕω (K)

)
. Since by Theorem 3 of [36] we have RωO(H, ϕ,Σ)⊆̃ϕ, then

L ∈ ϕ. This completes the proof.
(6) −→ (7): Let rz ∈ S P(H,Σ) and G ∈ SωC(H, ϕ,Σ) such that rz∈̃1Σ − G. Since by Theorem 3

of [36] RωO(H, ϕ,Σ)⊆̃ϕ, we have rz∈̃1Σ − G ∈ ϕ. So, by (6) we find N ∈ ϕ such that
rz∈̃N⊆̃Clϕ (N) ⊆̃Intϕ

(
Clϕω (1Σ −G)

)
= 1Σ − G. Again, by (6) we find S ∈ ϕ such that

rz∈̃S ⊆̃Clϕ (S ) ⊆̃Intϕ
(
Clϕω (N)

)
⊆̃Clϕ (N) ⊆̃1Σ − G. Let T = 1Σ − Clϕ (N). Then, S ,T ∈ ϕ and rz∈̃S .

Since Clϕ (N) ⊆̃1Σ −G, then G⊆̃1Σ −Clϕ (N) = T .
Claim. Clϕ (S ) ∩̃Clϕ (T ) = 0Σ.
Proof of Claim. Suppose to the contrary that there is ax∈̃Clϕ (S ) ∩̃Clϕ (T ). Since ax∈̃Clϕ (T ) and
ax∈̃Clϕ (S ) ⊆̃Intϕ

(
Clϕω (N)

)
∈ ϕ, then Intϕ

(
Clϕω (N)

)
∩̃T , 0Σ. Since Intϕ

(
Clϕω (N)

)
⊆̃Clϕ (N), then

Clϕ (N) ∩̃T = Clϕ (N) ∩̃
(
1Σ −Clϕ (N)

)
, 0Σ, a contradiction.

This completes the proof.
(7) −→ (8): Let G ∈ SωC(H, ϕ,Σ). Then, for each rz∈̃1Σ − G, there exist S rz ,Trz ∈ ϕ such that

rz∈̃S rz , G⊆̃Trz , and Clϕ
(
S rz

)
∩̃Clϕ

(
Trz

)
= 0Σ. Thus, G⊆̃Trz and rz<̃Clϕ

(
Trz

)
.

Claim. G = ∩̃
{
Clϕ

(
Trz

)
: rz∈̃1Σ −G

}
.

Proof of Claim. For every rz∈̃1Σ − G, we have G⊆̃Trz⊆̃Clϕ
(
Trz

)
, and so G⊆̃∩̃

{
Clϕ

(
Trz

)
: rz∈̃1Σ −G

}
.

To show that ∩̃
{
Clϕ

(
Trz

)
: rz∈̃1Σ −G

}
⊆̃G, let rz∈̃1Σ − G. Then, rz<̃Clϕ

(
Trz

)
, and thus
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rz<̃∩̃
{
Clϕ

(
Trz

)
: rz∈̃1Σ −G

}
.

By the above claim, we conclude that G⊆̃∩̃
{
Clϕ (T ) : T ∈ ϕ with G⊆̃T

}
⊆̃∩̃

{
Clϕ

(
Trz

)
: rz∈̃1Σ −G

}
=

G. This completes the proof.
(8) −→ (9): Obvious.
(9) −→ (10): Let L ∈ S S (H,Σ) and M ∈ SωO(H, ϕ,Σ) such that L∩̃M , 0Σ. Pick ax∈̃L∩̃M. Since

M ∈ SωO(H, ϕ,Σ), 1Σ−M ∈ SωC(H, ϕ,Σ), and by (9) 1Σ−M = ∩̃
{
Y : Y ∈ ϕc with 1Σ − M⊆̃Intϕ (Y)

}
.

Since ax∈̃M, then ax<̃∩̃
{
Y : Y ∈ ϕc with 1Σ − M⊆̃Intϕ (Y)

}
, and thus we find Y ∈ ϕc such that 1Σ −

M⊆̃Intϕ (Y) and ax<̃Y . Let S = 1Σ − Y . Then, S ∈ ϕ, S ⊆̃1Σ − Intϕ (Y) ⊆̃M, and ax∈̃S ∩̃L. Since
1Σ − Intϕ (Y) ∈ ϕc and S ⊆̃1Σ − Intϕ (Y) ⊆̃M, then Clϕ(S )⊆̃M. This completes the proof.

(10) −→ (11): Let L ∈ S S (H,Σ)−{0Σ} and M ∈ SωC(H, ϕ,Σ) such that L∩̃M = 0Σ. Then, 1Σ−M ∈
SωO(H, ϕ,Σ) such that L∩̃ (1Σ − M) = L , 0Σ. Thus, by (10) we find S ∈ ϕ such that L∩̃S , 0Σ and
Clϕ(S )⊆̃1Σ − M. Let T = 1Σ −Clϕ(S ). Then, T ∈ ϕ, M⊆̃T , and S ∩̃T = S ∩̃

(
1Σ −Clϕ(S )

)
= 0Σ.

(11) −→ (1): rz ∈ S P(H,Σ) and every G ∈ SωC(H, ϕ,Σ) such that rz∈̃1Σ −G. Then, rz∩̃G = 0Σ, and
by (11) there exist S ,T ∈ ϕ such that rz∩̃S , 0Σ, G⊆̃T , and S ∩̃T = 0Σ. Since rz∩̃S , 0Σ, then rz∈̃S .
This ends the proof.

In Theorems 2.3, 2.4, 2.7, and Corollary 2.8, we discuss the connections between soft
almost-regularity and its analog in traditional topological spaces. Also, in Theorems 2.5, 2.6, 2.9, and
Corollary 2.10, we discuss the connections between soft ω-almost-regularity and its analog in
traditional topological spaces.
Theorem 2.3. If (H, ϕ,Σ) is full and soft A-R, then (H, ϕr) is A-R for all r ∈ Σ.
Proof. Let (H, ϕ,Σ) be full and soft A-R. Let r ∈ Σ. Let z ∈ H and let W ∈ ϕr such that z ∈ W.
Choose K ∈ ϕ such that K (r) = W. Since rz∈̃K ∈ ϕ, by Theorem 3.4 (iv) of [31], we find L ∈ ϕ
such that rz∈̃L⊆̃Clϕ (L) ⊆̃Intϕ

(
Clϕ (K)

)
. By Proposition 7 of [12], Clϕr (L (r)) ⊆

(
Clϕ (L)

)
(r). Also, by

Theorem 12 (c) of [36],
(
Intϕ

(
Clϕ (K)

))
(r) = Intϕ

(
Clϕ (K (r))

)
. Therefore, we have

z ∈ L(r)
⊆ Clϕr (L (r))
⊆

(
Clϕ (L)

)
(r)

⊆
(
Intϕ

(
Clϕ (K)

))
(r)

= Intϕ
(
Clϕ (K (r))

)
= Intϕr

(
Clϕr (W)

)
.

Hence, by Theorem 2.2 (d) of [37], it follows that (H, ϕr) is A-R.

Theorem 2.4. Let (D,L) be a TS. Then, for any set Σ, (D,C (L) ,Σ) is soft A-R iff (D,L) is A-R.
Proof. Necessity. Let (D,C (L) ,Σ) be soft A-R. Pick r ∈ Σ. Since it is clear that (D,C (L) ,Σ) is full,
then by Theorem 2.3, (D, (C (L))r) = (D,L) is A-R.

Sufficiency. Let (D,L) be A-R. Let rz ∈ S P(D,Σ) and let CU ∈ C (L) such that rz∈̃CU . Then, we
have z ∈ U ∈ L. So, by Theorem 2.2 (d) of [37], we find V ∈ L such that
z ∈ V ⊆ ClL(V) ⊆ IntL (ClL (U)). Thus, we have CV ∈ C (L) and
rz∈̃CV⊆̃ClC(L)(CV) = CClL(V)⊆̃CIntL(ClL(U)) = IntC(L)

(
ClC(L)(CU)

)
. Therefore, by Theorem 3.4 (iv)

of [39], (D,C (L) ,Σ) is soft A-R.
Theorem 2.5. Let (D,L) be a TS. Then, for any set Σ, (D,C (L) ,Σ) is soft ω-A-R iff (D,L) is ω-A-R.
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Proof. Necessity. Let (D,C (L) ,Σ) be soft ω-A-R. Let z ∈ D and U ∈ L such that z ∈ U. Pick
r ∈ Σ. Then, we have rz∈̃CU ∈ C (L). Since (D,C (L) ,Σ) is soft ω-A-R, by Theorem 2.2 (5) we
find V ∈ L such that rz∈̃CV⊆̃ClC(L)(CV) = CClL(V)⊆̃IntC(L)

(
Cl(C(L))ω(CV)

)
= CIntL(ClLω (U)). Therefore,

z ∈ V ⊆ ClL(V) ⊆ IntL
(
ClLω (U)

)
. This shows that (D,L) is ω-A-R.

Sufficiency. Let (D,L) be ω-A-R. Let rz ∈ S P(D,Σ) and let CU ∈ C (L) such that rz∈̃CU . Then, we
have z ∈ U ∈ L. So, by Theorem 2.1 (e) of [39], we find V ∈ L such that
z ∈ V ⊆ ClL(V) ⊆ IntL

(
ClLω (U)

)
. Thus, we have CV ∈ C (L) and

rz∈̃CV⊆̃ClC(L)(CV) = CClL(V)⊆̃CIntL(ClLω (U)) = IntC(L)

(
Cl(C(L))ω(CV)

)
. Therefore, (D,C (L) ,Σ) is soft

ω-A-R.
Theorem 2.6. Let (D,L) be a TS. Then, for any set Σ, (D,C (L) ,Σ) is soft regular iff (D,L) is regular.
Proof. Necessity. Let (D,C (L) ,Σ) be soft regular. Let z ∈ D and U ∈ L such that z ∈ U. Pick
r ∈ Σ. Then, we have rz∈̃CU ∈ C (L). Since (D,C (L) ,Σ) is soft regular, we find V ∈ L such that
rz∈̃CV⊆̃ClC(L)(CV) = CClL(V)⊆̃CU . Therefore, z ∈ V ⊆ ClL(V) ⊆ U. This shows that (D,L) is regular.

Sufficiency. Let (D,L) be regular. Let rz ∈ S P(D,Σ) and let CU ∈ C (L) such that rz∈̃CU . Then, we
have z ∈ U ∈ L. So, we find V ∈ L such that z ∈ V ⊆ ClL(V) ⊆ U. Thus, we have CV ∈ C (L) and
rz∈̃CV⊆̃CClL(V) = ClC(L)(CV)⊆̃CU . Therefore, (D,C (L) ,Σ) is soft regular.
Theorem 2.7. Let {(H,Lr) : r ∈ Σ} be a collection of TSs. Then, (H,⊕r∈ΣLr,Σ) is soft A-R iff (H,Lr)
is A-R for every r ∈ Σ.
Proof. Necessity. Let (H,⊕r∈ΣLr,Σ) be soft A-R and let r ∈ Σ. Let z ∈ H and let U ∈ Lr such that
z ∈ U. Then, rz∈̃rU ∈ ⊕r∈ΣLr. So, by Theorem 3.4 (iv) of [31], we find L ∈ ⊕r∈ΣLr such that
rz∈̃L⊆̃Cl⊕r∈ΣLr (L) ⊆̃Int⊕r∈ΣLr

(
Cl⊕r∈ΣLr (rU)

)
. Thus, we have z ∈ L (r) ∈ Lr and

z ∈ L (r) ⊆
(
Cl⊕r∈ΣLr (L)

)
(r) ⊆

(
Int⊕r∈ΣLr

(
Cl⊕r∈ΣLr (rU)

))
(r).

In contrast, by Lemma 4.9 of [40],
(
Cl⊕r∈ΣLr (L)

)
(r) = ClLr (L (r)) and

(
Int⊕r∈ΣLr

(
Cl⊕r∈ΣLr (rU)

))
(r) =

IntLr

((
ClLr (rU)

)
(r)

)
= IntLr

(
ClLr (U)

)
. Thus, by Theorem 3.4 (iv) of [31], (H,Lr) is A-R.

Sufficiency. Let (H,Lr) be A-R for every r ∈ Σ. Let rz ∈ S P(H,Σ) and let K ∈ ⊕r∈ΣLr such that
rz∈̃K. By Theorem 3.5 of [34], we find U ∈ Lr such that rz∈̃rU⊆̃K. Then, we have z ∈ U ∈ Lr. So, by
Theorem 2.1 (d) of [39], we find V ∈ Lr such that z ∈ V ⊆ ClLr (V) ⊆ IntLr

(
ClLr (U)

)
. Thus, we have

rV ∈ ⊕r∈ΣLr and

rz ∈̃ rV

⊆̃ rClLr (V)

= Cl⊕r∈ΣLr (rV)
⊆̃ rIntLr (ClLr (U))
= Int⊕r∈ΣLr

(
Cl⊕r∈ΣLr (rU)

)
⊆̃ Int⊕r∈ΣLr

(
Cl⊕r∈ΣLr (K)

)
.

Corollary 2.8. Let (D,L) be a TS. Then, for any set Σ, (D, τ (L) ,Σ) is soft A-R iff (D,L) is A-R.
Proof. For each r ∈ Σ, set Lr = L. Then, τ (L) = ⊕r∈ΣLr, and by Theorem 2.7 we get the result.
Theorem 2.9. Let {(H,Lr) : r ∈ Σ} be a collection of TSs. Then, (H,⊕r∈ΣLr,Σ) is soft ω-A-R iff
(H,Lr) is ω-A-R for every r ∈ Σ.
Proof. Necessity. Let (H,⊕r∈ΣLr,Σ) be soft ω-A-R and let r ∈ Σ. Let z ∈ H and let U ∈ Lr such that
z ∈ U. Then, rz∈̃rU ∈ ⊕r∈ΣLr. So, by Theorem 2.2 (e), we find L ∈ ⊕r∈ΣLr such that
rz∈̃L⊆̃Cl⊕r∈ΣLr (L) ⊆̃Int⊕r∈ΣLr

(
Cl(⊕r∈ΣLr)ω (rU)

)
. Thus, we have z ∈ L (r) ∈ Lr and

z ∈ L (r) ⊆
(
Cl⊕r∈ΣLr (L)

)
(r) ⊆

(
Int⊕r∈ΣLr

(
Cl⊕r∈ΣLr (rU)

))
(r).
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In contrast, by Lemma 4.9 of [40] and Theorem 8 of [35],
(
Cl⊕r∈ΣLr (L)

)
(r) = ClLr (L (r)) and

Int⊕r∈ΣLr

(
Cl(⊕r∈ΣLr)ω (rU)

)
(r) = IntLr

((
Cl(Lr)ω (rU)

)
(r)

)
= IntLr

(
Cl(Lr)ω (U)

)
. Thus, by Theorem 2.1 (e)

of [39] (H,Lr) is ω-A-R.
Sufficiency. Let (H,Lr) be ω-A-R for every r ∈ Σ. Let rz ∈ S P(H,Σ) and let K ∈ ⊕r∈ΣLr such that

rz∈̃K. By Theorem 3.5 of [34] we find U ∈ Lr such that rz∈̃rU⊆̃K. Then, we have z ∈ U ∈ Lr. So, by
Theorem 2.1 (e) of [39] we find V ∈ Lr such that z ∈ V ⊆ ClLr (V) ⊆ IntLr

(
Cl(Lr)ω (U)

)
. Thus, we have

rV ∈ ⊕r∈ΣLr and

rz ∈̃ rV

⊆̃ rClLr (V)

= Cl⊕r∈ΣLr (rV)
⊆̃ rIntLr (Cl(Lr )ω (U))
= Int⊕r∈ΣLr

(
Cl(⊕r∈Σ(Lr)ω) (rU)

)
⊆̃ Int⊕r∈ΣLr

(
Cl⊕r∈Σ(Lr)ω (K)

)
= Int⊕r∈ΣLr

(
Cl

(
⊕r∈ΣLr

)
ω (K)

)
.

Corollary 2.10. Let (D,L) be a TS. Then, for any set Σ, (D, τ (L) ,Σ) is softω-A-R iff (D,L) isω-A-R.
Proof. For each r ∈ Σ, set Lr = L. Then, τ (L) = ⊕r∈ΣLr and by Theorem 2.9 we get the result.
Theorem 2.11. Soft regular STSs are soft ω-A-R.
Proof. Let (H, ϕ,Σ) be soft regular. Let rz ∈ S P(H,Σ) and K ∈ SωO(H, ϕ,Σ) such that rz∈̃K. Since by
Theorem 3 of [36] we have RωO(H, ϕ,Σ) ⊆ ϕ, then K ∈ ϕ. Since (H, ϕ,Σ) is soft regular, then we find
G ∈ ϕ such that rz∈̃G⊆̃Clϕ (G) ⊆̃K. Thus, by Theorem 2.2 (2) (H, ϕ,Σ) is soft ω-A-R.
Theorem 2.12. Soft ω-A-R STSs are soft A-R.
Proof. Let (H, ϕ,Σ) be soft ω-A-R. Let rz ∈ S P(H,Σ) and K ∈ S O(H, ϕ,Σ) such that rz∈̃K. Since by
Theorem 3 of [36] we have RO(H, ϕ,Σ) ⊆ RωO(H, ϕ,Σ), then K ∈ SωO(H, ϕ,Σ). Since (H, ϕ,Σ) is soft
ω-A-R, then by Theorem 2.2 (b) there is G ∈ ϕ such that rz∈̃G⊆̃Clϕ (G) ⊆̃K. Thus, by Theorem 2.2 (b)
of [31], (H, ϕ,Σ) is soft A-R.
Theorem 2.13. Soft L-C soft ω-A-R STSs are soft regular.
Proof. Let (H, ϕ,Σ) be soft L-C and soft ω-A-R. Let rz ∈ S P(H,Σ) and K ∈ ϕ such that rz∈̃K. Since
(H, ϕ,Σ) is soft L-C, then by Theorem 5 of [36] K ∈ SωO(H, ϕ,Σ). Since (H, ϕ,Σ) is soft ω-A-R, then
by Theorem 2.2 (2) there is G ∈ ϕ such that rz∈̃G⊆̃Clϕ (G) ⊆̃K. Therefore, (H, ϕ,Σ) is soft regular.
Theorem 2.14. Soft anti-L-C soft A-R STSs are soft ω-A-R.
Proof. Let (H, ϕ,Σ) be soft anti-L-C and soft A-R. Let rz ∈ S P(H,Σ) and K ∈ SωO(H, ϕ,Σ) such
that rz∈̃K. Since (H, ϕ,Σ) is anti-L-C, then by Theorem 6 of [36] K ∈ S O(H, ϕ,Σ). Since (H, ϕ,Σ) is
soft A-R, then by Theorem 3.4 (ii) of [31] there is G ∈ ϕ such that rz∈̃G⊆̃Clϕ (G) ⊆̃K. Therefore, by
Theorem 2.2 (b), (H, ϕ,Σ) is soft ω-A-R.
Theorem 2.15. For any STS (H, ϕ,Σ), (H, ϕω,Σ) is soft A-R iff (H, ϕ,Σ) is soft ω-A-R.
Proof. Necessity. Let (H, ϕω,Σ) be soft A-R. Let rz ∈ S P(H,Σ) and K ∈ SωO(H, ϕ,Σ) such that rz∈̃K.
By Theorem 7 of [36] K ∈ S O(H, ϕω,Σ). Since (H, ϕω,Σ) is soft A-R, then by Theorem 3.4 (ii) of [31]
there is G ∈ ϕ such that rz∈̃G⊆̃Clϕ (G) ⊆̃K. Therefore, by Theorem 2.2 (b) (H, ϕ,Σ) is soft ω-A-R.

Sufficiency. Let (H, ϕ,Σ) be soft ω-A-R. Let rz ∈ S P(H,Σ) and K ∈ S O(H, ϕω,Σ) such that rz∈̃K.
By Theorem 7 of [36] K ∈ SωO(H, ϕ,Σ). Since (H, ϕ,Σ) is soft ω-A-R, then by Theorem 2.2 (2) there
is G ∈ ϕ such that rz∈̃G⊆̃Clϕ (G) ⊆̃K. Therefore, by Theorem 3.4 (ii) of [31] (H, ϕω,Σ) is soft A-R.
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The previously mentioned theorems lead to the following implications, yet Examples 2.16 and 2.17
that follow demonstrate that the opposite of these implications is false.

Soft regular −→ Soft ω-A-R −→ Soft A-R.

The following two examples show that any of the conditions soft L-C and soft anti-L-C in
Theorems 2.13 and 2.14 cannot be dropped:
Example 2.16. Consider (R,C (Θ) ,Z), where Θ is the cofinite topology on R. Since (R,Θ) is not
regular, by Theorem 2.6 (R,C (Θ) ,Z) is not soft regular. In contrast, since (R,C (Θ) ,Z) is anti-L-C,
then by Theorem 6 of [36] RωO(R,C (Θ) ,Z) = RO(R,C (Θ) ,Z) = {0Z, 1Z}, and thus (R,C (Θ) ,Z) is
soft ω-A-R.
Example 2.17. Consider (N,C (Θ) , {a, b}), where Θ is the cofinite topology on N. Since (N,Θ) is not
regular, by Theorem 2.6 (N,C (Θ) , {a, b}) is not soft regular. Since (N,C (Θ) , {a, b}) is soft L-C, then by
Theorem 2.13 (N,C (Θ) , {a, b})is not softω-A-R. In contrast, since RO(N,C (Θ) , {a, b}) =

{
0{a,b}, 1{a,b}

}
,

then (N,C (Θ) , {a, b}) is soft A-R.
The following lemma will be used in the next main result:

Lemma 2.18. Let (H, ϕ,Σ) be an STS. If CY is a soft dense subset of (H, ϕω,Σ), then for any soft subset
H ∈ S S (Y,Σ) IntϕY (Cl(ϕω)Y

(H)) = Intϕ(Clϕω(H))∩̃CY .
Proof. Suppose that CY is a soft dense subset of (H, ϕω,Σ) and let H ∈ S S (Y,Σ). To see that
IntϕY (Cl(ϕω)Y

(H))⊆̃Intϕ(Clϕω(H))∩̃CY , let ax∈̃IntϕY (Cl(ϕω)Y
(H)). Since IntϕY (Cl(ϕω)Y

(H)) ∈ ϕY , then there
is M ∈ ϕ such that IntϕY (Cl(ϕω)Y

(H)) = M∩̃CY . Thus, we have ax∈̃M∩̃CY⊆̃Cl(ϕω)Y
(H) =

(
Clϕω(H)

)
∩̃CY .

Claim. M⊆̃Clϕω(H).
Proof of Claim. Suppose to the contrary that M∩̃

(
1Σ −Clϕω(H)

)
, 0Σ. Since 1Σ − Clϕω(H) ∈ ϕω and

M ∈ ϕ ⊆ ϕω, then M∩̃
(
1Σ −Clϕω(H)

)
∈ ϕω. Since CY is soft dense in (H, ϕω,Σ), then

M∩̃
(
1Σ −Clϕω(H)

)
∩̃CY , 0Σ. Choose by∈̃M∩̃

(
1Σ −Clϕω(H)

)
∩̃CY . Thus, we have by∈̃1Σ − Clϕω(H)

and by∈̃M∩̃CY⊆̃
(
Clϕω(H)

)
∩̃CY⊆̃Clϕω(H), a contradiction.

Therefore, by the above Claim, we must have ax∈̃M⊆̃Clϕω(H), and hence ax∈̃Intϕ(Clϕω(H). Hence,
ax∈̃Intϕ(Clϕω(H))∩̃CY .

To see that Intϕ(Clϕω(H))∩̃CY⊆̃IntϕY (Cl(ϕω)Y
(H)), let ax∈̃Intϕ(Clϕω(H))∩̃CY . Since

ax∈̃Intϕ(Clϕω(H)) ∈ ϕ, then there is M ∈ ϕ such that ax∈̃M⊆̃Clϕω(H) and so
ax∈̃M∩̃CY⊆̃Clϕω(H)∩̃CY = Cl(ϕω)Y

(H). Since M∩̃CY ∈ ϕω, then ax∈̃IntϕY (Cl(ϕω)Y
(H)).

Theorems 2.19 and 2.21 establish that soft ω-almost-regularity is heritable for specific types of soft
subspaces.
Theorem 2.19. If (H, ϕ,Σ) is a soft ω-A-R STS and CY is a soft dense subspace of (H, ϕω,Σ), then
(Y, ϕY ,Σ) is soft ω-A-R.
Proof. Let ax ∈ S P (Y,Σ) and let H ∈ SωO(Y, ϕY ,Σ) such that ax∈̃H. Since H ∈ SωO(Y, ϕY ,Σ), then
IntϕY (Cl(ϕY )ω(H)) = H. Since by Theorem 15 of [35] (ϕω)Y = (ϕY)ω, then IntϕY (Cl(ϕω)Y

(H)) = H. So,
by Lemma 2.18 H = Intϕ(Clϕω(H))∩̃CY . Thus, we have ax∈̃Intϕ(Clϕω(H)) ∈ SωO(H, ϕ,Σ). Since
(H, ϕ,Σ) is soft ω-A-R, then by Theorem 2.2 (2) there is L ∈ ϕ such that ax∈̃L⊆̃Clϕ(L)⊆̃Intϕ(Clϕω(H)).
Therefore, we have ax∈̃L∩̃CY ∈ ϕY and ClϕY (L∩̃CY) = Clϕ(L∩̃CY)∩̃CY⊆̃Intϕ(Clϕω(H))∩̃CY = H. This
shows that (Y, ϕY ,Σ) is soft ω-A-R.

The following lemma will be used in the next main result:
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Lemma 2.20. Let (H, ϕ,Σ) be an STS and let CY ∈ SωO(H, ϕ,Σ) − {0Σ}, then
RωO(Y, ϕY ,Σ) ⊆ RωO(H, ϕ,Σ).
Proof. Let CY ∈ SωO(H, ϕ,Σ) − {0Σ} and let H ∈ SωO(Y, ϕY ,Σ). Then, H = IntϕY (Cl(ϕY )ω(H)).
Since by Theorem 15 of [35], (ϕω)Y = (ϕY)ω, then Cl(ϕY )ω(H) = Cl(ϕω)Y

(H) = Clϕω(H)∩̃CY . Since
by Theorem 3 of [36] RωO(H, ϕ,Σ) ⊆ ϕ, then CY ∈ ϕ and so IntϕY (Cl(ϕY )ω(H)) = Intϕ((Cl(ϕY )ω(H))).
Thus, H = Intϕ(Clϕω(H)∩̃CY) = Intϕ(Clϕω(H))∩̃Intϕ(CY) = Intϕ(Clϕω(H))∩̃CY . Since H⊆̃CY , then
Intϕ(Clϕω(H))⊆̃Intϕ(Clϕω(CY)) = CY and thus, Intϕ(Clϕω(H))∩̃CY = Intϕ(Clϕω(H)). Therefore, H =

Intϕ(Clϕω(H)). Hence, H ∈ SωO(H, ϕ,Σ).
Theorem 2.21. If (H, ϕ,Σ) is a soft ω-A-R STS and CY ∈ SωO(H, ϕ,Σ) − {0Σ}, then (Y, ϕY ,Σ) is soft
ω-A-R.
Proof. Let ax ∈ S P (Y,R) and let H ∈ SωO(Y, ϕY ,Σ) such that ax∈̃H. By Lemma 2.20,
H ∈ SωO(H, ϕ,Σ). Since (H, ϕ,Σ) is soft ω-A-R, then by Theorem 2.2 (2) there is L ∈ ϕ such that
ax∈̃L⊆̃Clϕ(L)⊆̃H. Therefore, we have ax∈̃L∩̃CY ∈ ϕY and ClϕY (L) = Clϕ(L)∩̃CY⊆̃H. Hence, (Y, ϕY ,Σ)
is soft ω-A-R.

The following lemma will be used in Theorems 2.23 and 3.33:
Lemma 2.22. For any two STSs (Z, δ,Σ) and (W, ρ,Ψ), (δ × ρ)δω ⊆ δδω × ρδω .
Proof. Let T ∈ (δ × ρ)δω and (e, f )(z,w) ∈̃T . Then, by Theorem 20 of [36] we find S ∈ SωO(Z ×
W, δ × ρ,Σ × Ψ) such that (e, f )(z,w) ∈̃S = Intδ×ρ

(
Cl(δ×ρ)ω (S )

)
⊆̃T . Choose L ∈ δ and M ∈ ρ such that

(e, f )(z,w) ∈̃L × M⊆̃S ⊆̃T . By Proposition 3 (b) of [33] we have Clδω (L) × Clρω (M) ⊆̃Cl(δ×ρ)ω (L × M),
and so

L × M ⊆̃ Intδ
(
Clδω (L)

)
× Intρ

(
Clρω (M)

)
⊆̃ Intδ×ρ

(
Clδω (L) ×Clρω (M)

)
⊆̃ Intδ×ρ

(
Cl(δ×ρ)ω (L × M)

)
⊆̃ T .

By Theorem 9 and Corollary 7 of [36], Intδ
(
Clδω (L)

)
∈ δδω and Intρ

(
Clρω (M)

)
∈ ρδω . It follows that

T ∈ δδω × ρδω .
The following result shows that soft ω-almost-regularity is a productive soft property:

Theorem 2.23. The soft product of two soft ω-A-R STSs is soft ω-A-R.
Proof. Let (Z, δ,Σ) and (W, ρ,Ψ) be two soft ω-A-R STSs. Let (e, f )(z,w) ∈̃S P (Z ×W,Σ × Ψ) and let
K ∈ SωO(Z ×W, δ × ρ,Σ × Ψ) such that (e, f )(z,w) ∈̃K. Then, by Corollary 7 of [36] G ∈ (δ × ρ)δω . So,
by Lemma 2.22 K ∈ δδω × ρδω . Thus, there are L ∈ δδω and M ∈ ρδω such that (e, f )(z,w) ∈̃L × M⊆̃K.
By Corollary 7 of [36] we find S ∈ SωO(Z, δ,Σ) and T ∈ SωO (W, ρ,Ψ) such that (e, f )(z,w) ∈̃S ×
T ⊆̃L × M⊆̃G. So, by Theorem 2.2 (2) there are M ∈ δ and N ∈ ρ such that ez∈̃M⊆̃Clδ (M) ⊆̃S
and fw∈̃N⊆̃Clρ (N) ⊆̃T . Therefore, we have M × N ∈ δ × ρ and (e, f )(z,w) ∈̃M × N⊆̃Clδ×ρ (M × N) =

Clδ (M) ×Clρ (N) ⊆̃S × T ⊆̃L × M⊆̃K. Again, by Theorem 2.2 (2) (Z ×W, δ × ρ,Σ × Ψ) is soft ω-A-R.
The following result shows that soft almost-regularity is a productive soft property:

Theorem 2.24. Let (Z, δ,Σ) and (W, ρ,Ψ) be two STSs. Then (Z × W, δ × ρ,Σ × Ψ) is soft A-R iff
(Z, δ,Σ) and (W, ρ,Ψ) are both soft A-R.
Proof. Necessity. Let (Z×W, δ×ρ,Σ×Ψ) be soft A-R. To see that (Z, δ,Σ) is soft A-R, let ez ∈ S P (Z,Σ)
and G ∈ S O(Z, δ,Σ) such that ez∈̃G. Choose fw∈̃S P(W, F). Then, (e, f )(z,w) ∈̃ ∈ G× 1Ψ ∈ S O(Z ×W, δ×
ρ,Σ×Ψ). Thus, by Theorem 3.4 (ii) of [31] we find H ∈ δ×ρ such that (e, f )(z,w) ∈̃H⊆̃Clδ×ρ (H) ⊆̃G×1Ψ.
Choose M ∈ δ and N ∈ ρ such that (e, f )(z,w) ∈̃M × N⊆̃H. Thus,
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(e, f )(z,w) ∈̃ M × N
⊆̃ Clδ (M) ×Clρ (N)
= Clδ×ρ (M × N)
⊆̃ Clδ×ρ (H)
⊆̃ G × 1Ψ.

Therefore, we have ez∈̃M⊆̃Clδ (M) ⊆̃G. Hence, by Theorem 3.4 (ii) of [31] (Z, δ,Σ) is soft A-R.
Similarly, we can show that (W, ρ,Ψ) is soft A-R.

Sufficiency. Let (Z, δ,Σ) and (W, ρ,Ψ) be soft A-R. Let (e, f )(z,w) ∈̃S P (Z ×W,Σ × Ψ) and let K ∈
S O(Z×W, δ×ρ,Σ×Ψ) such that (e, f )(z,w) ∈̃K. Choose M ∈ δ and N ∈ ρ such that (e, f )(z,w) ∈̃M×N⊆̃K.
Since ez∈̃M and fw∈̃N, by Theorem 3.4 (iv) of [31] there are S ∈ S O(Z, δ,Σ) and T ∈ S O(W, ρ,Ψ)
such that ez∈̃S ⊆̃Clδ (S ) ⊆̃Intδ (Clδ (M)) and fw∈̃T ⊆̃Clρ (T ) ⊆̃Intρ

(
Clρ (N)

)
. Thus, we have S × T ∈

S O(Z ×W, δ × ρ,Σ × Ψ) and

(e, f )(z,w) ∈̃ S × T
⊆̃ Clδ (S ) ×Clρ (T )
= Clδ×ρ (S × T )
⊆̃ Intδ (Clδ (M)) × Intρ

(
Clρ (N)

)
= Intδ×ρ

(
Clδ×ρ (M × N)

)
⊆̃ Intϕ×ρ

(
Clδ×ρ (M × N)

)
= K.

Therefore, by Theorem 3.4 (iv) of [31] (Z ×W, δ × ρ,Σ × Ψ) is soft A-R.

3. Soft ω-semi-regular and soft ω-T2 1
2

spaces

In this section, we define soft ω-semi-regularity and soft ω-T2 1
2

as two new soft separation axioms.
We show that softω-semi-regularity is a weaker form of both soft semi-regularity and softω-regularity,
and soft ω-T2 1

2
lies strictly between soft T2 1

2
and soft T2. Also, we provide several sufficient conditions

establishing the equivalence between these newly introduced axioms and their relevant counterparts.
Moreover, a decomposition theorem for soft regularity through the interplay of soft ω-semi-regularity
and soft ω-almost-regularity is obtained. In addition, we investigated the links between these classes
of soft topological spaces and their analogs in general topology.

Definition 3.1. An STS (H, ϕ,Σ) is called soft ω-semi-regular (soft ω-S-R, for simplicity) if
RωO(H, ϕ,Σ) forms a soft base for ϕ.

Two characterizations of soft ω-semi-regularity are listed in the following theorem.
Theorem 3.2. For any STS (H, ϕ,Σ), T.F.A.E:

(a) (H, ϕ,Σ) is soft ω-S-R.
(b) For every H ∈ ϕ − {0Σ} and every rz∈̃H, we find K ∈ ϕ such that rz∈̃K⊆̃Intϕ

(
Clϕω(K)

)
⊆̃H.

(c) ϕδω = ϕ.
Proof. (a) −→ (b): Let H ∈ ϕ − {0Σ} and let rz∈̃H. By (a) we find K ∈ SωO(H, ϕ,Σ) such that
rz∈̃K = Intϕ

(
Clϕω(K)

)
⊆̃H.

AIMS Mathematics Volume 9, Issue 2, 4632–4648.



4642

(b) −→ (c): By Theorem 21 of [36] we have ϕδω⊆̃ϕ. To show that ϕ ⊆ ϕδω , let H ∈ ϕ− {0Σ}, then for
every rz∈̃H we find Krz ∈ ϕ such that rz∈̃Krz⊆̃Intϕ

(
Clϕω(Krz)

)
⊆̃H. Let K = ∪̃rz∈̃HIntϕ

(
Clϕω(Krz)

)
. Since

for every rz∈̃H Intϕ
(
Clϕω(Krz)

)
∈ SωO(H, ϕ,Σ) ⊆ ϕδω , then K ∈ ϕδω .

(c) −→ (a): Since RωO(H, ϕ,Σ) is a soft base for ϕδω , and by (c) ϕδω = ϕ, then RωO(H, ϕ,Σ) is a
soft base for ϕ. Therefore, (H, ϕ,Σ) is soft ω-S-R.
Corollary 3.3. Every soft ω-regular STS is soft ω-S-R.
Proof. The proof follows from Theorem 25 of [36] and Theorem 3.2.
Theorem 3.4. Every soft S-R STS is soft ω-S-R.
Proof. Let (H, ϕ,Σ) be soft S-R. Then ϕδ = ϕ. So, by Theorem 21 of [36] ϕ = ϕδ ⊆ ϕδω ⊆ ϕ, and thus
ϕδω = ϕ. Therefore, by Theorem 3.2, (H, ϕ,Σ) is soft ω-S-R.
Theorem 3.5. Every soft ω-S-R soft anti-L-C STS is soft S-R.
Proof. Let (H, ϕ,Σ) be soft ω-S-R soft anti-L-C. Since (H, ϕ,Σ) is soft ω-S-R, then RωO(H, ϕ,Σ) is a
soft base for ϕ. Since (H, ϕ,Σ) is soft anti-L-C, then by Theorem 6 of [36],
RO(H, ϕ,Σ) = RωO(H, ϕ,Σ). So, RO(H, ϕ,Σ) is a soft base for ϕ. Hence, (H, ϕ,Σ) is soft S-R.

The following implications come from the previous theorems; nevertheless, Examples 3.15 and 3.16
show that the converses of these implications are not true.

soft S-R −→ soft ω-S-R
↑

soft ω-regular.

Theorem 3.6. Soft L-C STSs are soft ω-S-R.
Proof. Let (D, ϕ,Σ) be soft L-C. Then, by Theorem 5 of [36] RωO(D, ϕ,Σ) = ϕ. So, RωO(D, ϕ,Σ) is a
soft base for ϕ. Hence, (D, ϕ,Σ) is soft ω-S-R.
Theorem 3.7. Let (D, ϕ,Σ) be an STS. If (D, ϕω,Σ) is soft ω-S-R, then (D, ϕω,Σ) is soft S-R.
Proof. Let (D, ϕω,Σ) be soft ω-S-R. Then, RωO(D, ϕω,Σ) is a soft base for ϕω. Since by Theorem 7
of [36] RωO(D, ϕω,Σ) = RO(D, ϕω,Σ), then RO(D, ϕω,Σ) is a soft base for ϕω. Hence, (D, ϕω,Σ) is
soft S-R.

In Theorems 3.8, 3.9, 3.11, and Corollary 3.12, we discuss the connections between soft
semi-regularity and its analog in traditional topological spaces. Also, in Theorems 3.10, 3.13, and
Corollary 3.14, we discuss the connections between soft ω-semi-regularity and its analog in
traditional topological spaces.
Theorem 3.8. If (H, ϕ,Σ) is full and soft S-R, then (H, ϕr) is S-R for all r ∈ Σ.
Proof. Let (H, ϕ,Σ) be full and soft S-R. Let r ∈ Σ. Let z ∈ H and let W ∈ ϕr such that z ∈ W. Choose
K ∈ ϕ such that K (r) = W. Since (H, ϕ,Σ) is soft S-R and rz∈̃K ∈ ϕ, we find L ∈ S O(H, ϕ,Σ) such
that rz∈̃L⊆̃K and so z ∈ L (r) ⊆ K (r) = W. In contrast, by Theorem 13 of [36], L (r) ∈ S O(H, ϕr). This
shows that (H, ϕr) is S-R for all r ∈ Σ.
Theorem 3.9. Let (D,L) be a TS. Then, for any set Σ, (D,C (L) ,Σ) is soft S-R iff (D,L) is S-R.
Proof. Necessity. Let (D,C (L) ,Σ) be soft S-R. Pick r ∈ Σ. Since it is clear that (D,C (L) ,Σ) is full,
then by Theorem 3.8 (D, (C (L))r) = (D,L) is S-R.

Sufficiency. Let (D,L) be S-R. Let rz ∈ S P(D,Σ) and let CU ∈ C (L) such that rz∈̃CU . Then, we
have z ∈ U ∈ L. So, we find V ∈ S O (D,L) such that z ∈ IntL (ClL (V)) ⊆ U. Thus, we have
CV ∈ C (L) and rz∈̃CIntL(ClL(V)) = IntC(L)

(
ClC(L)(CV)

)
⊆̃CU . This shows that (D,C (L) ,Σ) is soft S-R.

Theorem 3.10. Let (D,L) be a TS. Then, for any set Σ, (D,C (L) ,Σ) is soft ω-S-R iff (D,L) is ω-S-R.
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Proof. Necessity. Let (D,C (L) ,Σ) be soft ω-S-R. Let z ∈ D and U ∈ L such that z ∈ U. Pick r ∈ Σ.
Then, we have rz∈̃CU ∈ C (L). Since (D,C (L) ,Σ) is soft ω-S-R, we find CV ∈ SωO(D,C (L) ,Σ) such
that rz∈̃CV⊆̃CU . Therefore, we have z ∈ V ∈ SωO (D,L) and V ⊆ U. This shows that (D,L) is ω-S-R.

Sufficiency. Let (D,L) be ω-S-R. Let rz ∈ S P(H,Σ) and let CU ∈ C (L) such that rz∈̃CU . Then, we
have z ∈ U ∈ L. So, we find V ∈ SωO (D,L) such that z ∈ V ⊆ U. Thus, we have RωO(D,C (L) ,Σ)
and rz∈̃CV⊆̃CU . This shows that (D,C (L) ,Σ) is soft ω-S-R.
Theorem 3.11. Let {(H,Lr) : r ∈ Σ} be a collection of TSs. Then (H,⊕r∈ΣLr,Σ) is soft S-R iff (H,Lr)
is S-R for every r ∈ Σ.
Proof. Necessity. Let (H,⊕r∈ΣLr,Σ) be soft S-R and let r ∈ Σ. Let z ∈ H and let U ∈ Lr such
that z ∈ U. Then, rz∈̃rU ∈ ⊕r∈ΣLr. So, we find L ∈ S O(H,⊕r∈ΣLr,Σ) such that rz∈̃L⊆̃rU and thus,
z ∈ L (r) ⊆ (rU) (r) = U. In contrast, by Theorem 14 of [36] L (r) ∈ S O(H,Lr). This shows that
(H,Lr) is S-R.

Sufficiency. Let (H,Lr) be S-R for every r ∈ Σ. Let rz ∈ S P(H,Σ) and let K ∈ ⊕r∈ΣLr such that
rz∈̃K. Then, we have z ∈ K (r) ∈ Lr and so we find V ∈ S O(H,Lr) such that z ∈ V ⊆ U. Now, we have
rz∈̃rV⊆̃rU⊆̃K, and by Theorem 14 of [36] rV ∈ S O(H,⊕r∈ΣLr,Σ). This shows that (H,⊕r∈ΣLr,Σ) is soft
S-R.
Corollary 3.12. Let (D,L) be a TS. Then, for any set Σ, (D, τ (L) ,Σ) is soft S-R iff (D,L) is S-R.
Proof. For each r ∈ Σ, set Lr = L. Then, τ (L) = ⊕r∈ΣLr and by Theorem 3.11 we get the result.
Theorem 3.13. Let {(H,Lr) : r ∈ Σ} be a collection of TSs. Then, (H,⊕r∈ΣLr,Σ) is soft ω-S-R iff
(H,Lr) is ω-S-R for every r ∈ Σ.
Proof. Necessity. Let (H,⊕r∈ΣLr,Σ) be soft ω-S-R and let r ∈ Σ. Let z ∈ H and let U ∈ Lr such
that z ∈ U. Then, rz∈̃rU ∈ ⊕r∈ΣLr. So, we find L ∈ SωO(H,⊕r∈ΣLr,Σ) such that rz∈̃L⊆̃rU , and thus
z ∈ L (r) ⊆ (rU) (r) = U. In contrast, by Theorem 15 of [36] L (r) ∈ SωO(H,Lr). This shows that
(H,Lr) is ω-S-R.

Sufficiency. Let (H,Lr) be ω-S-R for every r ∈ Σ. Let rz ∈ S P(H,Σ) and let K ∈ ⊕r∈ΣLr such that
rz∈̃K. Then, we have z ∈ K (r) ∈ Lr and so we find V ∈ SωO(H,Lr) such that z ∈ V ⊆ U. Now, we
have rz∈̃rV⊆̃rU⊆̃K, and by Theorem 15 of [36] rV ∈ SωO(H,⊕r∈ΣLr,Σ). This shows that (H,⊕r∈ΣLr,Σ)
is soft ω-S-R.
Corollary 3.14. Let (D,L) be a TS. Then, for any set Σ, (D, τ (L) ,Σ) is soft ω-S-R iff (D,L) is ω-S-R.
Proof. For each r ∈ Σ, set Lr = L. Then, τ (L) = ⊕r∈ΣLr and by Theorem 3.13 we get the result.

The following two examples show, respectively, that each of Theorem 3.4 and Corollary 3.3 does
not have to be true in all cases:
Example 3.15. Consider (H, ϕ,Σ) in Example 2.17. RO(H, ϕ,Σ) = {0Σ, 1Σ} is not a soft base for ϕ and
thus (H, ϕ,Σ) is not soft S-R. In contrast, by Theorem 3.6 (H, ϕ,Σ) is soft ω-S-R.
Example 3.16. Let (D,L) be as in Example 3.9 of [39]. It is proved in [39] that (D,L) is ω-S-R but
not ω-regular. Therefore, by Corollaries 3.14 and 19 of [33], (D, τ (L) ,Σ) is soft ω-S-R but not soft
ω-regular.

The following main result introduces a decomposition of soft regularity in terms of soft ω-semi-
regularity and soft ω-almost-regularity:
Theorem 3.17. An STS (H, ϕ,Σ) is soft regular iff it is soft ω-S-R and soft ω-A-R.
Proof. Necessity. Let (H, ϕ,Σ) be soft regular. Then, by Theorem 15 of [33] and Corollary 3.3 (H, ϕ,Σ)
is soft ω-S-R. In contrast, by Theorem 2.11 (H, ϕ,Σ) is soft ω-A-R.

Sufficiency. Let (H, ϕ,Σ) be soft ω-S-R and soft ω-A-R. Let H ∈ ϕ − {0Σ} and let rz∈̃H. Since
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(H, ϕ,Σ) is soft ω-S-R, then there is G ∈ SωO(H, ϕ,Σ) such that rz∈̃G⊆̃H. Since (H, ϕ,Σ) is soft ω-
A-R, then by Theorem 2.2 (2) there is T ∈ ϕ such that rz∈̃T ⊆̃Clϕ (T ) ⊆̃G⊆̃H. Hence, (H, ϕ,Σ) is soft
regular.
Definition 3.18. An STS (H, ϕ,Σ) is called soft ω-T2 1

2
if for every rx, sy ∈ S P(H,Σ) such that rx , sy,

we find K,G ∈ ϕ such that rx∈̃K, sy∈̃G, and Clϕω (K) ∩̃Clϕω (G) = 0Σ.
In Theorems 3.19, 3.21, and Corollary 3.12, we discuss the connections between soft T2 1

2
spaces and

their analogs in traditional topological spaces. Also, in Theorems 3.20, 3.23, and Corollary 3.24, we
discuss the connections between soft ω-T2 1

2
spaces and their analogs in traditional topological spaces.

Theorem 3.19. If (H, ϕ,Σ) is soft T2 1
2
, then (H, ϕr) is T2 1

2
for every r ∈ Σ.

Proof. Suppose that (H, ϕ,Σ) is soft T2 1
2

and let r ∈ Σ. Let x, y ∈ Z such that x , y. Then, rx, ry ∈

S P (S ,D) such that rx , ry. Since (H, ϕ,Σ) is soft T2 1
2
, we find K,G ∈ ϕ such that rx∈̃K, ry∈̃G, and

Clϕ (K) ∩̃Clϕ (G) = 0Σ. Thus, we have x ∈ K (r) ∈ ϕr, y ∈ G (r) ∈ ϕr, and by Proposition 7 of [12]
Clϕr (K (r)) ∩ Clϕr (G (r)) ⊆

(
Clϕ (K)

)
(r) ∩

(
Clϕ (G)

)
(r) =

(
Clϕ (K) ∩̃Clϕ (G)

)
(r) = ∅. This shows that

(H, ϕr) is T2 1
2
.

Theorem 3.20. If (H, ϕ,Σ) is soft ω-T2 1
2
, then (H, ϕr) is ω-T2 1

2
for every r ∈ Σ.

Proof. Suppose that (H, ϕ,Σ) is soft ω-T2 1
2

and let r ∈ Σ. Let x, y ∈ Z such that x , y. Then,
rx, ry ∈ S P (S ,D) such that rx , ry. Since (H, ϕ,Σ) is soft ω-T2 1

2
, we find K,G ∈ ϕ such that rx∈̃K,

ry∈̃G, and Clϕω (K) ∩̃Clϕω (G) = 0Σ. Thus, we have x ∈ K (r) ∈ ϕr, y ∈ G (r) ∈ ϕr, and by Proposition 7
of [12] Cl(ϕω)r

(K (r)) ∩ Cl(ϕω)r
(G (r)) ⊆

(
Clϕω (K)

)
(r) ∩

(
Clϕω (G)

)
(r) =

(
Clϕω (K) ∩̃Clϕω (G)

)
(r) = ∅.

But by Theorem 7 of [35], (ϕω)r = (ϕr)ω. This shows that (H, ϕr) is ω-T2 1
2
.

Theorem 3.21. Let {(H,LR) : r ∈ Σ} be a collection of TSs. Then, (H,⊕r∈ΣLr,Σ) is soft T2 1
2

iff (H,Lr)
is T2 1

2
for every r ∈ Σ.

Proof. Necessity. Suppose that (H,⊕r∈ΣLr,Σ) is soft T2 1
2

and let r ∈ Σ. Then, by Theorem 3.19
(H, (⊕r∈ΣLr)r) is T2 1

2
. On the other hand, by Theorem 3.7 of [34] (⊕r∈ΣLr)r = Lr.

Sufficiency. Suppose that (H,Lr) is T2 1
2

for every r ∈ Σ. Let rx, sy ∈ S P(H,Σ) such that rx , sy.
Case 1. r , s. Then, rx∈̃rZ ∈ ⊕r∈ΣLr, sy∈̃sZ ∈ ⊕r∈ΣLr, and Cl⊕r∈ΣLr (rZ) ∩̃Cl⊕r∈ΣLr (sZ) = 0Σ.
Case 2. r = s. Then, x , y. Since (H,Lr) is T2 1

2
, we find U,V ∈ Lr such that x ∈ U, y ∈ V ,

and ClLr (U) ∩ ClLr (V) = ∅. Then, we have rx∈̃rU ∈ ⊕r∈ΣLr, sy∈̃sV ∈ ⊕r∈ΣLr and Cl⊕r∈ΣLr (rU) ∩
Cl⊕r∈ΣLr (sV) = 0Σ.
Corollary 3.22. Let (D,L) be a TS. Then, for any set Σ, (D, τ (L) ,Σ) is soft T2 1

2
iff (D,L) is T2 1

2
.

Proof. For each r ∈ Σ, put Lr = L. Then, τ (L) = ⊕r∈ΣLr. We get the result as a consequence of
Theorem 3.21.
Theorem 3.23. Let {(H,Lr) : r ∈ Σ} be a collection of TSs. Then, (H,⊕r∈ΣLr,Σ) is soft ω-T2 1

2
iff

(H,Lr) is ω-T2 1
2

for every r ∈ Σ.
Proof. Necessity. Suppose that (H,⊕r∈ΣLr,Σ) is soft ω-T2 1

2
and let r ∈ Σ. Then, by Theorem 3.20

(H, (⊕r∈ΣLr)r) is ω-T2 1
2
. In contrast, by Theorem 3.7 of [35], (⊕r∈ΣLr)r = Lr.

Sufficiency. Suppose that (H,Lr) is ω-T2 1
2

for every r ∈ Σ. Let rx, sy ∈ S P(H,Σ) such that rx , sy.
Case 1. r , s. Then, rx∈̃rZ ∈ ⊕r∈ΣLr, sy∈̃sZ ∈ ⊕r∈ΣLr, and Cl(⊕r∈ΣLr)ω (rZ) ∩̃Cl(⊕r∈ΣLr)ω (sZ) = 0Σ.
Case 2. r = s. Then, x , y. Since (D,L) is ω-T2 1

2
, we find A, B ∈ Lr such that x ∈ A, y ∈ B, and

A ∩ B = ∅. Then, we have rx∈̃rA ∈ ⊕r∈ΣLr, sy∈̃sB ∈ ⊕r∈ΣLr and Cl(⊕r∈ΣLr)ω (rA) ∩̃Cl(⊕r∈ΣLr)ω (sB) = 0Σ.
Corollary 3.24. Let (D,L) be a TS. Then, for any set Σ, (D, τ (L) ,Σ) is soft ω-T2 1

2
iff (D,L) is ω-T2 1

2
.

Proof. For each r ∈ Σ, put Lr = L. Then, τ (L) = ⊕r∈ΣLr. The result follows from Theorem 3.23.
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Theorem 3.25. If (H, ϕ,Σ) is soft T2 1
2
, then (H, ϕ,Σ) is soft ω-T2 1

2
.

Proof. Let (H, ϕ,Σ) be soft T2 1
2

and let rx, sy ∈ S P(H,Σ) such that rx , sy. Then, we find K,G ∈ ϕ such
that rx∈̃K, sy∈̃G, and Clϕ (K) ∩̃Clϕ (G) = 0Σ. Since Clϕω (K) ∩̃Clϕω (G) ⊆̃Clϕ (K) ∩̃Clϕ (G) = 0Σ, then
Clϕω (K) ∩̃Clϕω (G) = 0Σ. This shows that (H, ϕ,Σ) is soft ω-T2 1

2
.

Theorem 3.26. If (H, ϕ,Σ) is soft anti-L-C and soft ω-T2 1
2
, then (H, ϕ,Σ) is soft T2 1

2
.

Proof. Let (H, ϕ,Σ) be soft anti-L-C and soft ω-T2 1
2
. Let rx, sy ∈ S P(H,Σ) such that rx , sy. Since

(H, ϕ,Σ) is soft ω-T2 1
2
, then we find K,G ∈ ϕ such that rx∈̃K, sy∈̃G, and Clϕω (K) ∩̃Clϕω (G) = 0Σ. Since

(H, ϕ,Σ) is anti-L-C, then by Theorem 14 of [35] Clϕ (K) ∩̃Clϕ (G) = Clϕω (K) ∩̃Clϕω (G) = 0Σ. Hence,
(H, ϕ,Σ) is soft T2 1

2
.

Theorem 3.27. Every soft ω-T2 1
2

STS is soft T2.
Proof. Let (H, ϕ,Σ) be ω-T2 1

2
and let rx, sy ∈ S P(H,Σ) such that rx , sy. Then, we find K,G ∈ ϕ such

that rx∈̃K, sy∈̃G, and Clϕω (K) ∩̃Clϕω (G) = 0Σ. Since K∩̃G⊆̃Clϕω (K) ∩̃Clϕω (G) = 0Σ, then K∩̃G = 0Σ.
Hence, (H, ϕ,Σ) is soft T2.
Theorem 3.28. If (H, ϕ,Σ) is soft L-C and soft T2, then (H, ϕ,Σ) is soft ω-T2 1

2
.

Proof. Let (H, ϕ,Σ) be soft L-C and soft T2. Let rx, sy ∈ S P(H,Σ) such that rx , sy. Since (H, ϕ,Σ) is
soft T2, then we find K,G ∈ ϕ such that rx∈̃K, sy∈̃G, and K∩̃G = 0Σ. Since (H, ϕ,Σ) is soft L-C, then
by Corollary 5 of [35] Clϕω (K) ∩̃Clϕω (G) = K∩̃G = 0Σ. Hence, (H, ϕ,Σ) is soft ω-T2 1

2
.

The following example demonstrates that Theorem 3.25’s converse does not have to be true in
general:
Example 3.29. Let (D,L) be the TS in Example 75 of [41]. Then (D,L) is T2 but not T2 1

2
. Since

(D, τ (L) ,N) is soft L-C, by Corollary 5 of [35] it is soft T2. Thus, by Theorem 3.28 (D, τ (L) ,N) is
soft ω-T2 1

2
. On the other hand, by Corollary 2.22 (D, τ (L) ,N) is not soft T2 1

2
.

The following example demonstrates why Theorem 3.27 does not have to be true in general:
Example 3.30. Let (D,L) be the TS in Example 81 of [41]. It is known that (D,L) is T2 but not T2 1

2
.

Then, by Corollary 7 of [33] and Corollary 2.22 (D, τ (L) , [0, 1]) is soft T2 but not soft T2 1
2
. Since

(D, τ (L) , [0, 1]) is soft anti-L-C, then by Theorem 3.26 (D, τ (L) , [0, 1]) is not ω-T2 1
2
.

Theorem 3.31. Every soft ω-regular T2 STS is soft ω-T2 1
2
.

Proof. Let (H, ϕ,Σ) be soft ω-regular and soft T2. Let rx, sy ∈ S P(H,Σ) such that rx , sy. Since
(H, ϕ,Σ) is soft T2, then we find K,G ∈ ϕ such that rx∈̃K, sy∈̃G, and K∩̃G = 0Σ. Since (H, ϕ,Σ) is soft
ω-regular, then we find L,M ∈ ϕ such that rx∈̃L⊆̃Clϕω (L) ⊆̃K and sy∈̃M⊆̃Clϕω (M) ⊆̃G. Therefore, we
have rx∈̃L, sy∈̃M, and Clϕω (L) ∩̃Clϕω (M) ⊆̃K∩̃G = 0Σ. This proves that (H, ϕ,Σ) is soft ω-T2 1

2
.

Question 3.32. Is it true that every soft ω-T2 1
2

STS is soft ω-regular?
Theorem 3.33. If (Z, β,Σ) and (W, ρ,Ψ) are two soft ω-S-R STSs such that the soft product (Z ×W, β×
ρ,Σ × Ψ) is soft ω-S-R, then both of (Z, β,Σ) and (W, ρ,Ψ) are soft ω-S-R.
Proof. Since (Z × W, β × ρ,Σ × Ψ) is soft ω-S-R, then by Theorem 3.2 (β × ρ)δω = β × ρ. So, by
Lemma 2.22, β × ρ⊆̃ βδω × ρδω . Hence, β = βδω and ρ = ρδω . Therefore, again by Theorem 3.2 (Z, β,Σ)
and (W, ρ,Ψ) are soft ω-S-R.

4. Conclusions

Soft separation axioms are a collection of requirements for categorizing a system of STSs based on
certain soft topological features. These axioms are often expressed in terms of classes of soft sets.
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In this work, “soft ω-almost-regular”, “soft ω-semi-regular”, and “soft ω-T2 1
2
” are defined as three

new notions of soft separation axioms (Definitions 2.1, 3.1, 3.18). Several characterizations of soft ω-
almost-regularity (Theorems 2.2) and soft ω-semi-regularity (Theorem 3.2) are given. It is proved that
soft ω-almost-regularity lies strictly between regularity and almost-regularity (Theorems 2.11, 2.12
and Examples 2.16, 2.17); soft ω-semi-regularity is a weaker form of both soft semi-regularity and soft
ω-regularity (Corollary 3.3, Theorem 3.4 and Examples 3.15, 3.16); soft ω-T2 1

2
lies strictly between

soft T2 1
2

and soft T2 (Theorems 3.25, 3.27 and Examples 3.29, 3.30). Several sufficient conditions for
the equivalence between these new three notions and some of their relevant ones are given (Theorems
2.13, 2.14, 3.5, 3.6, 3.26, 3.28). A decomposition theorem of soft regularity by means of soft ω-
semi-regularity and soft ω-almost-regularity is given (Theorem 3.17). It is shown that soft ω-almost-
regularity is heritable for specific kinds of soft subspaces (Theorems 2.19, 2.21). Soft product theorems
regarding soft almost regular spaces (Theorem 2.23), soft ω-almost regular spaces (Theorem 2.24), and
soft ω-semi-regular spaces (Theorem 3.33). Finally, the article delves into the connections between the
newly proposed as well as some known soft axioms and their counterparts in traditional topological
spaces, facilitating a bridging of concepts between the soft and classical realms (Theorems 2.3–2.7,
3.8–3.11, 3.13, 3.19–3.21, 3.23, and Corollaries 2.8, 2.10, 3.12, 3.14, 3.22, 3.24).

In the next work, we intend to: 1) Define and investigate soft ω-almost-normality; 2) investigate
the behavior of these new soft separation ideas under various kinds of soft mappings; and 3) find an
application for our new two conceptions in the “decision-making problem”, “information systems”, or
“expert systems”.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 19–31.
http://doi.org/10.1016/S0898-1221(99)00056-5

2. P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562.
http://doi.org/10.1016/S0898-1221(03)00016-6

3. M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory,
Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009

4. K. V. Babitha, J. J. Sunil, Soft set relations and functions, Comput. Math. Appl., 60 (2010), 1840–
1849. https://doi.org/10.1016/j.camwa.2010.07.014

5. K. Qin, Z. Hong, On soft equality, J. Computat. Appl. Math., 234 (2010), 1347–1355.
https://doi.org/10.1016/j.cam.2010.02.028

6. T. M. Al-shami, Investigation and corrigendum to some results related to g-soft equality and g f -
soft equality relations, Filomat, 33 (2019), 3375–3383. https://doi.org/10.2298/FIL1911375A

AIMS Mathematics Volume 9, Issue 2, 4632–4648.

http://dx.doi.org/http://doi.org/10.1016/S0898-1221(99)00056-5
http://dx.doi.org/http://doi.org/10.1016/S0898-1221(03)00016-6
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2008.11.009
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2010.07.014
http://dx.doi.org/https://doi.org/10.1016/j.cam.2010.02.028
http://dx.doi.org/https://doi.org/10.2298/FIL1911375A


4647

7. T. M. Al-shami, M. E. El-Shafei, T -soft equality relation, Turk. J. Math., 44 (2020), 1427–1441.
https://doi.org/10.3906/MAT-2005-117

8. M. Ali, H. Khan, L. H. Son, F. Smarandache, W. B. V. Kandasamy, New soft sets based class of
linear algebraic codes, Symmetry, 10 (2018), 510. https://doi.org/10.3390/sym10100510

9. N. Cagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl., 59
(2010), 3308–3314. https://doi.org/10.1016/j.camwa.2010.03.015

10. F. Karaaslan, Soft classes and soft rough classes with applications in decision making, Math. Probl.
Eng., 2016 (2016), 1584528. https://doi.org/10.1155/2016/1584528

11. S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer
risk, J. Inequal. Appl., 2013 (2013), 229. https://doi.org/10.1186/1029-242X-2013-229

12. M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799.
https://doi.org/10.1016/j.camwa.2011.02.006

13. S. Hussain, B. Ahmad, Soft separation axioms in soft topological spaces, Hacet. J. Math. Stat., 44
(2015), 559–568. https://doi.org/10.15672/HJMS.2015449426

14. M. E. El-Shafei, T. M. Al-shami, Applications of partial belong and total non-belong relations
on soft separation axioms and decision-making problem, Comput. Appl. Math., 39 (2020), 138.
https://doi.org/10.1007/s40314-020-01161-3

15. T. M. Al-shami, M. E. El-Shafei, Partial belong relation on soft separation axioms and
decision-making problem, two birds with one stone, Soft Comput., 24 (2020), 5377–5387.
https://doi.org/10.1007/s00500-019-04295-7

16. T. M. Al-Shami, On soft separation axioms and their applications on decision-making problem,
Math. Probl. Eng., 2021 (2021), 1–12. https://doi.org/10.1155/2021/8876978

17. A. Aygunoglu, H. Aygun, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012),
113–119. https://doi.org/10.1007/s00521-011-0722-3

18. E. Peyghan, B. Samadi, A. Tayebi, Some results related to soft topological spaces, Facta Univ.-Ser.
Math., 29 (2014), 325–336.

19. T. M. Al-Shami, Compactness on soft topological ordered spaces and its application on the
information system, J. Math., 2021 (2021), 1–12. https://doi.org/10.1155/2021/6699092

20. S. Al Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl.
Comput. Intell. S., 2022 (2022), 2060808. https://doi.org/10.1155/2022/9860015

21. H. H. Al-Jarrah, A. Rawshdeh, T. M. Al-shami, On soft compact and soft Lindelöf spaces via soft
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