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Abstract: Let G be a graph with adjacency matrix A(G), and let D(G) be the diagonal matrix of the
degrees of G. For any real number α ∈ [0, 1], Nikiforov defined the Aα-matrix of G as

Aα(G) = αD(G) + (1 − α)A(G).

The eigenvalues of the matrix Aα(G) form the Aα-spectrum of G. The Aα-spectral radius of G is the
largest eigenvalue of Aα(G) denoted by ρα(G). In this paper, we propose the Aα−-matrix of G as

Aα−(G) = αD(G) + (α − 1)A(G), 0 ≤ α ≤ 1.

Let the Aα−-spectral radius of G be denoted by λα−(G), and let S αβ (G) and S α
−

β (G) be the sum of the βth

powers of the Aα and Aα− eigenvalues of G, respectively. We determine the Aα−-spectra of some graphs
and obtain some bounds of the Aα−-spectral radius. Moreover, we establish a relationship between the
Aα-spectral radius and Aα−-spectral radius. Indeed, for α ∈ (1

2 , 1), we show that λα− ≤ ρα, and we prove
that if G is connected, then the equality holds if and only if G is bipartite. Employing this relation, we
obtain some upper bounds of λα−(G), and we prove that the Aα−-spectrum and Aα-spectrum are equal
if and only if G is a bipartite connected graph. Furthermore, we generalize the relation established by
S. Akbari et al. in (2010) as follows: for α ∈ [ 1

2 , 1), if 0 < β ≤ 1 or 2 ≤ β ≤ 3, then S αβ (G) ≥ S α
−

β (G),
and if 1 ≤ β ≤ 2, then S αβ (G) ≤ S α

−

β (G), where the equality holds if and only if G is a bipartite graph
such that β < {1, 2, 3}.

Keywords: Laplacian; singnless Laplacian; Aα−-spectral radius; Aα-matrix; sum of powers of
Aα-eigenvalues
Mathematics Subject Classification: 05C50

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024221


4588

1. Introduction

Let
G = (V(G), E(G))

be a simple undirected graph on n vertices such that V(G) and E(G) denote the vertex set and edge
set of G, respectively. Let V(G) = {v1, v2, · · · , vn}, for vi ∈ V(G), and dG(vi) = d(vi) = di denotes the
degree of vertex vi and the set of vertices adjacent to vi, denoted by N(vi), refers to the neighborhood of
vi. The maximum and the minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G), respectively.
λ(M), λk(M) and λmin(M) denote the largest eigenvalue, the k-th largest eigenvalue, and the smallest
eigenvalue of a matrix M, respectively. The set of all eigenvalues for a matrix M together with their
multiplicities is called the M-spectrum. A real symmetric matrix M is called positive semidefinite if
λmin(M) ≥ 0. Denote by Kn, Pn, Cn and Ks,n−s the complete graph, path, cycle, and complete bipartite
graph with n vertices, respectively. Let A(G) and D(G) be the adjacency matrix and the diagonal matrix
of the degrees of G, respectively. The signless Laplacian Q(G) of G is defined as

Q(G) = D(G) + A(G).

The Laplacian L(G) of G is defined as

L(G) = D(G) − A(G).

We denote the eigenvalues of Q(G) and L(G) by ρk(G) and λk(G), respectively, where 1 ≤ k ≤ n (we
drop G when it is clear from the context). In particular, the largest eigenvalue of Q(G) is called the
signless Laplacian spectral radius of G, denoted by ρ(G), and the largest eigenvalue of L(G) is called
the Laplacian spectral radius of G, denoted by λ(G).

In [1], Nikiforov introduced the Aα-matrix of G, which is the convex linear combination of A(G)
and D(G) defined by

Aα(G) = αD(G) + (1 − α)A(G), 0 ≤ α ≤ 1.

Clearly,
A0(G) = A(G), A1(G) = D(G) and 2A 1

2
(G) = Q(G).

Thus, the matrix Aα(G) is a generalization of the adjacency matrix and the signless Laplacian matrix.
The largest eigenvalue of Aα(G) is called the Aα-spectral radius of G, denoted by ρα(G). Nikiforov [1]
had studied the matrix Aα(G), and he has investigated many properties on Aα(G), including bounds
on the k-th largest (especially, the largest, the second largest, and the smallest) eigenvalue of Aα(G),
the positive semidefiniteness of Aα(G), etc. From then on, the study of Aα-spectra and the Aα-spectral
radius for the graph has attracted the attention of many researchers. In [2], Nikiforov et al. gave an
upper bound of the spectral radius of Aα(T∆), where T∆ is the tree of maximal degree ∆. Also, he
obtained several bounds on the spectral radius of Aα of general graphs. The graphs with

λk(Aα(G)) = αn − 1, 2 ≤ k ≤ n

had been characterized by Lin et al. in [3]. In [4], Guo and Zhou gave upper bounds for the Aα-
spectral radius for some graphs under some conditions. Guo and Zhang [5]; obtained a sharp upper
bound on the Aα-spectral radius for α ∈ [1

2 , 1), and proved that for two connected graphs G1 and G2,
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ρα(G1) > ρα(G2) under certain conditions. For further related studies, one may see [6–8].
The research on L(G) has shown that it is a remarkable matrix in many respects. Since; L(G) is

just the difference between D(G) and A(G), then to understand to what extent each of the summands
−A(G) and D(G) determines the properties of L(G), and motivated by the above works, we introduce
the Aα−-matrix defined by

Aα−(G) = αD(G) + (α − 1)A(G), 0 ≤ α ≤ 1. (1.1)

Through our study, several facts indicate that the study of the Aα−(G) family is of a unique importance.
First of all, obviously

A(G) = −A0−(G), D(G) = A1−(G) and L(G) = 2A 1
2
−(G).

Since A 1
2
−(G) is essentially equivalent to L(G), then the matrix Aα−(G) can be regarded as a

generalization of the Laplacian matrix L(G). Since

A1(G) = A1−(G) = D(G);

unless otherwise specified, we only consider the case of 0 ≤ α < 1 in this paper.
In this paper, we study some properties on Aα−(G) and obtain some bounds of the largest eigenvalue

of Aα−(G). For the relation between the Q-spectrum and L-spectrum of a connected graph G, it is well
known that G is bipartite if and only if Q(G) and L(G) has the same spectrum ( [9, Proposition 1.3.10]),
and we extend this relation on the Aα- and Aα−-spectrum. In [10], Akbari et al. proved that, for a graph
G of order n and any real number β, if 0 < β ≤ 1 or 2 ≤ β ≤ 3, then

n∑
k=1

ρ
β
k ≥

n∑
k=1

λ
β
k ;

and if 1 ≤ β ≤ 2, then
n∑

k=1

ρ
β
k ≤

n∑
k=1

λ
β
k .

In this work we present the relation between the sum of powers of Aα and Aα− eigenvalues, which is a
generalization of the relation between the sum of powers of Q(G) and L(G) eigenvalues in [10].

The rest of this paper is organized as follows. In Section 2, we give some preliminaries and lemmas
used later. In Section 3, we derive new basic properties of Aα−(G). In Section 4, we present the
Aα−-spectra of the complete graphs and the complete split graphs. Section 5 gives some bounds of
the largest eigenvalue of Aα−(G). In Section 6, we deduce the relation between the Aα- and Aα−-
spectral radius. Finally, in Section 7, we prove the relation between the sum of powers of Aα and Aα−
eigenvalues.

2. Preliminaries

Although Weyl’s inequalities have been known for almost a century (see, e.g., [11]), their equality
case was first established by So in [12], and for convenience we state Weyl and So’s complete theorem
as follows:
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Theorem 2.1. Let A and B be Hermitian matrices of order n, and let 1 ≤ i ≤ n and 1 ≤ j ≤ n. Then,

λi(A) + λ j(B) ≤ λi+ j−n(A + B), i f i + j ≥ n + 1, (2.1)

λi(A) + λ j(B) ≥ λi+ j−1(A + B), i f i + j ≤ n + 1. (2.2)

In either of these inequalities, the equality holds if and only if there exists a nonzero n-vector that is an
eigenvector to each of the three eigenvalues involved.

A simplified version of (2.1) and (2.2) gives

λk(A) + λmin(B) ≤ λk(A + B) ≤ λk(A) + λ(B). (2.3)

We shall need the following lemmas for our new results.

Lemma 2.2. [3] Let G be a graph of order n. If e ∈ E(G) and α ≥ 1
2 , then,

ρi(Aα(G)) ≥ ρi(Aα(G − e)), f or 1 ≤ i ≤ n.

Lemma 2.3. [13] Let B be a real symmetric nonnegative irreducible matrix and λ be the largest
eigenvalue of B. Z ∈ Rn. If ZtBZ = λ and ∥Z∥ = 1, then BZ = λZ.

Lemma 2.4. [5] Let G be a connected graph with n ≥ 4 vertices and m edges. If α ∈ [ 1
2 , 1), then,

ρα(G) ≤ max
{
α∆(G), (1 − α)(m −

n − 1
2

)
}
+ 2α.

Equality holds if and only if α = n−1
n+1 and G = Kn.

3. Basic properties of Aα−(G)

For a graph G of order n, suppose that λ is an eigenvalue of Aα−(G) and x is an eigenvector of Aα−(G)
with respect to λ. We use x(v) to denote the entry of x corresponding to the vertex v ∈ V(G). It is clear
that the system of eigenequations for the matrix Aα−(G) is

λx(v) = αdG(v)x(v) + (α − 1)
∑

u∈N(v)

x(u). (3.1)

If G is a graph of order n with Aα−(G) = Aα− , and x is a real vector, the quadratic form ⟨Aα− x, x⟩ can
be represented in several equivalent ways:

⟨Aα− x, x⟩ =
∑

uv∈E(G)

(αx(u)2 + 2(α − 1)x(u)x(v) + αx(v)2), (3.2)

⟨Aα− x, x⟩ = (2α − 1)
∑

u∈V(G)

x(u)2dG(u) + (1 − α)
∑

uv∈E(G)

(x(u) − x(v))2, (3.3)

⟨Aα− x, x⟩ = α
∑

u∈V(G)

x(u)2dG(u) + 2(α − 1)
∑

uv∈E(G)

x(u)x(v). (3.4)

Each of these representations can be useful in proofs.
Now, we give some of the spectral properties of the Aα−-matrix. Let us call the largest eigenvalue of

Aα−(G) the Aα−-spectral radius of G, and denote it as λα−(G). Let us also denote the smallest eigenvalue
of Aα−(G) as µα−(G). Since Aα−(G) is a real symmetric matrix, and by using Rayleigh’s principle, the
following result holds:
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Proposition 3.1. If α ∈ [0, 1) and G is a graph of order n, then

λα−(G) = max
∥x∥2=1
⟨Aα−(G)x, x⟩ and µα−(G) = min

∥x∥2=1
⟨Aα−(G)x, x⟩. (3.5)

Moreover, if x is a unit n-vector, then,

λα−(G) = ⟨Aα−(G)x, x⟩

if and only if x is an eigenvector to λα−(G), and

µα−(G) = ⟨Aα−(G)x, x⟩

if and only if x is an eigenvector to µα−(G).

By using these relations, the following result is evident:

Proposition 3.2. If α ∈ [0, 1) and G is a graph, then

λα−(G) = max{λα−(H) : H is a component o f G},

µα−(G) = min{µα−(H) : H is a component o f G}.

It is clear that if G is a d-regular graph of order n, then

Aα−(G) = αdIn + (α − 1)A(G),

and so there is a linear correspondence between the spectra of Aα−(G) and of A(G),

λk(Aα−(G)) = αd + (α − 1)λn−k+1(A(G)), 1 ≤ k ≤ n. (3.6)

In particular, if k = n, then
µα−(G) = (2α − 1)d

for any α ∈ [0, 1]. As a consequence of Weyl’s inequality (2.3), the following result is immediate:

Proposition 3.3. If α ∈ [0, 1] and G is a graph with

A(G) = A and Aα−(G) = Aα− ,

then,
αδ + (α − 1)λn−k+1(A) ≤ λk(Aα−) ≤ α∆ + (α − 1)λn−k+1(A).

An important property of the Laplacian L(G) is that it is positive semidefinite. This is certainly not
true for Aα−(G) if α < 1

2 and G is a regular graph, but if α ≥ 1
2 , then Aα−(G) is like L(G). We give this

result in the following:

Proposition 3.4. If α ≥ 1
2 , and G is a graph, then Aα−(G) is positive semidefinite, and if α > 1

2 and G
has no isolated vertices, then Aα−(G) is positive definite. Moreover, if α < 1

2 and G is a regular graph,
then Aα−(G) is not positive semidefinite.
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Proof. Let x be a nonzero vector. If α ≤ 1
2 , then for any edge uv ∈ E(G), we see that

⟨Aα−(G)x, x⟩ ≥ (2α − 1)(x(u)2 + x(v)2) + (1 − α)(x(u) − x(v))2 ≥ 0. (3.7)

Hence, Aα−(G) is positive semidefinite. Now, assume that G has no isolated vertices. Choose a vertex
u with x(u) , 0 and let uv ∈ E(G). Then, (3.7) becomes a strict inequality, and so Aα−(G) is positive
definite. Finally, suppose that G is a d−regular graph, α < 1

2 , and let A be its adjacency matrix, then
λ(A) = d. Thus

µα−(G) = (2α − 1)d < 0.
□

By the above proposition we get the following lemma which gives a relation between the Aα−
eigenvalues of G and the Aα− eigenvalues of spanning subgraphs of G.

Lemma 3.5. Let G be a graph of order n and let α ∈ [1
2 , 1). If G′ = G − e, where e ∈ E(G), then,

λi(G′) ≤ λi(G) for 1 ≤ i ≤ n.

Proof. Let e = uv such that u, v ∈ V(G). It is easy to see that

Aα−(G) = Aα−(G′) + M,

where M is the matrix of order n indexed by the vertices of G having (u, v)th and (v, u)th entries both
equal to α − 1, and the (u, u)th and (v, v)th entries both equal to α and all other entries equal to zero,
hence M is an Aα−-matrix of a graph containing only one edge. Since α ∈ [1

2 , 1), then Aα−(G), Aα−(G′)
and M are positive semidefinite and Weyl’s inequalities (2.3) imply that λi(G′) ≤ λi(G). □

4. The Aα−-spectra of some graphs

Equality (3.6) and the fact the eigenvalues of A(Kn) are {n − 1,−1, · · · ,−1} give the spectrum of
Aα−(Kn) as follows:

Proposition 4.1. The eigenvalues of Aα−(Kn) are

µα−(Kn) = (2α − 1)(n − 1) and λk(Aα−(Kn)) = α(n − 2) + 1 for 1 ≤ k ≤ n − 1.

If S ⊆ V(G), then we use G[S ] to denote the subgraph of G induced by S . Recall that G[S ] is an
independent set if no two vertices of S are adjacent and G[S ] is a clique if it is a complete subgraph
of G. The graph Kr ∨ (n − r)K1 is called a complete split graph, denoted by CS r,n−r. The work in the
following proposition is motivated by the proof of [3, Proposition 2.4].

Proposition 4.2. Let G be a graph with Aα−(G), and α ∈ [0, 1). Let S ⊆ V(G) and |S | = k. Suppose
that dG(u) = d for each vertex u ∈ S , and N(v)\{w} = N(w)\{v} for any two vertices v,w ∈ S . Then, we
have the following statements:

(i) If G[S ] is a clique, then α(d − 1) + 1 is an eigenvalue of Aα−(G) with multiplicity at least k − 1.

(ii) If G[S ] is an independent set, then αd is an eigenvalue of Aα−(G) with multiplicity at least k − 1.
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Proof. Let S = {v1, v2, · · · , vk}. Clearly, d1 = · · · = dk = d. Let z1, z2, · · · , zk−1 be vectors such that
zi(v1) = 1,

zi(vi+1) = −1,
zi(v) = 0, if v ∈ V(G)\{v1, vi+1},

for i = 1, · · · , k − 1. Assume that G[S ] is a clique. It is easy to obtain that

Aα−(G)zi = (α(d1 − 1) + 1, 0, · · · , 0, α(1 − di) − 1, 0, · · · , 0)′ = (α(d − 1) + 1)zi,

for i = 1, · · · , k− 1. Hence, α(d− 1)+ 1 is an eigenvalue of Aα−(G) and z1, z2, · · · , zk−1 are eigenvectors
of Aα−(G) corresponding to α(d − 1)+ 1. In addition, since z1, z2, · · · , zk−1 are linearly independent, the
multiplicity of α(d − 1) + 1 is at least k − 1. Now, supposing that G[S ] is an independent set, we have

Aα−(G)zi = (αd1, 0, · · · , 0,−αdi, 0, · · · , 0)′ = αdzi,

for i = 1, · · · , k − 1. Since z1, z2, · · · , zk−1 are linearly independent, it follows that αd is an eigenvalue
of Aα−(G) with multiplicity at least k − 1. Thus, the proof is completed. □

Consider an n × n real symmetric matrix

S =


S 11 S 12 · · · S 1t

S 21 S 22 · · · S 2t
...

...
. . .

...

S t1 S t2 · · · S tt

 ,
whose rows and columns are partitioned according to a partitioning P1, P2, · · · , Pt of {1, 2, · · · , n}. The
quotient matrix B of the matrix S is the t × t matrix whose entries are the average row sums of the
blocks S i j of S . The partition is equitable if each block S i j of S has constant row sum.

Lemma 4.3. [14] Let B be an equitable quotient matrix of a symmetric real matrix S . If λ is an
eigenvalue of B, then λ is also an eigenvalue of S .

Now, we can determine all Aα−-eigenvalues of CS r,n−r as follows:

Proposition 4.4. The Aα−-spectrum of CS r,n−r contains α(n − 2) + 1 with multiplicity r − 1, αr with
multiplicity n − r − 1, and the remaining two Aα−-eigenvalues are

α(n + 2(r − 1)) + 1 ±
√

(α(n + 2(r − 1)) + 1)2 + 4r(1 − 2α)(n − r + α(r − 1))
2

. (4.1)

Proof. We can write Aα−(CS r,n−r) as

Aα−(CS r,n−r) =
(
(1 − α)Jr,r + (αn − 1)Ir (1 − α)Jr,n−r

(1 − α)Jn−r,r αrIn−r,n−r

)
.

Then, the quotient matrix of Aα−(CS r,n−r) is equitable and it can be written in the form

B(Aα−(CS r,n−r)) =
(
(n − r)α + r − 1 (1 − α)(n − r)

(1 − α)r αr

)
.

Thus, by Lemma 4.3, the eigenvalues of B(Aα−(CS r,n−r)) are eigenvalues of Aα−(CS r,n−r), and according
to Proposition 4.2, we get the result. □
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5. The largest eigenvalue λα−(G)

In this section we give a few general bounds on λα−(G).

Proposition 5.1. Let G be a graph, with

∆(G) = ∆, A(G) = A and D(G) = D.

The following inequalities hold for λα−(G):

λα−(G) ≥ α∆ + (α − 1)λ(A), (5.1)
λα−(G) ≥ (2α − 1)λ(A). (5.2)

Proof. Inequality (5.1) follows by Weyl’s inequalities (2.3) because

α∆ + (α − 1)λ(A) = αλ(D) + (α − 1)λ(A)
= λ(αD) + λmin((α − 1)A)
≤ λ(αD + (α − 1)A)
= λα−(G).

To prove the inequality (5.2), let H be a component of G such that λ(A) = λ(A(H)). Let x be a
positive unit vector to λ(A(H)). For every edge uv ∈ E(H), the AM-GM inequality implies that

2x(u)x(v) = 2αx(u)x(v) + 2(1 − α)x(u)x(v)

≤ α
(x(u) + x(v))2

2
+ 2(1 − α)x(u)x(v)

=
1
2

(αx(u)2 + 2(α − 1)x(u)x(v) + αx(v)2) + (3 − 2α)x(u)x(v).

Summing this inequality over all edges uv ∈ E(H), and using (3.2), we get

λ(A) = λ(A(H)) = ⟨A(H)x, x⟩

≤
1
2
⟨Aα−(H)x, x⟩ +

1
2

(3 − 2α)λ(A);

and then we get
2λ(A) − (3 − 2α)λ(A) ≤ ⟨Aα−(H)x, x⟩ ≤ λα−(G);

hence
(2α − 1)λ(A) ≤ λα−(G).

□

Having inequality (5.2) in hand, if α ≥ 1
2 , then every lower bound of λ(A) gives a lower bound on

λα−(G), but if α < 1
2 , then every upper bound of λ(A) gives a lower bound on λα−(G). We mention just

two such bounds.

Corollary 5.2. Let G be a graph such that α ≥ 1
2 . If G is of order n and has m edges, then

λα−(G) ≥ (2α − 1)
2m
n
.
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Corollary 5.3. Let G be a connected graph such that α < 1
2 . If G is of order n and has m edges, then

λα−(G) ≥ (2α − 1)
√

2m − n + 1.

Proposition 5.4. Let G be a graph of order n. If α ∈ (1
2 , 1], then,

λα−(G) ≤ α(n − 2) + 1.

Moreover,
λα−(G) = α(n − 2) + 1

with multiplicity k − 1 if G has k vertices of degree n − 1.

Proof. Applying Lemma 3.5 leads to

λα−(G) ≤ λα−(Kn) = α(n − 2) + 1.

If G has k vertices of degree n−1, then it follows from Proposition 4.2 that α(n−2)+1 is an eigenvalue
of Aα−(G) with multiplicity at least k − 1, and since

λα−(G) ≤ α(n − 2) + 1,

we get
λα−(G) = α(n − 2) + 1

with multiplicity k − 1. □

6. The relationship between Aα−- and Aα-spectral radius

Let G be a connected graph. Merris [15] pointed out λ(L(G)) ≤ ρ(Q(G)), and the equality holds if G
is a bipartite graph. In the next result, we generalize this result to the Aα−- and Aα-spectral radius of a
connected graph.

Theorem 6.1. Let G be a graph of order n, α ∈ (0, 1), λα−(G) = λα− and ρα(G) = ρα. We have λα− ≤ ρα.
Moreover, if G is connected, then the equality holds if and only if G is bipartite.

Proof. Let
V(G) = {v1, v2, · · · , vn}, x = (x1, x2, · · · , xn)t ∈ Rn

be an arbitrary vector such that ∥x∥ = 1. Let

y = (y1, y2, · · · , yn)t ∈ Rn

be a unit eigenvector of Aα−(G) belonging to λα− and

y′ = (y′1, y′2, · · · , y
′
n)t ∈ Rn

be a unit eigenvector of Aα(G) belonging to ρα. Let

|y| = (|y1|, |y2|, · · · , |yn|)t.
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First, we prove that λα− ≤ ρα.

λα− = max xtAα− x

= max xt(αD + (α − 1)A)x

= max

α n∑
i=1

x2
i di + 2(α − 1)

∑
viv j∈E(G)

xix j


= ytAα−y

= α

n∑
i=1

y2
i di + 2(α − 1)

∑
viv j∈E(G)

yiy j

and

ρα = max xtAαx

= max xt (αD + (1 − α)A) x

= max

α n∑
i=1

x2
i di + 2(1 − α)

∑
viv j∈E(G)

xix j


= y′tAαy′

= α

n∑
i=1

y′i
2di + 2(1 − α)

∑
viv j∈E(G)

y′iy
′
j.

Thus,

λα− = α

n∑
i=1

y2
i di + 2(α − 1)

∑
viv j∈E(G)

yiy j

≤ α

n∑
i=1

y2
i di + 2(1 − α)

∑
viv j∈E(G)

|yiy j|

= |yt|Aα|y|

≤ max xtAαx

= ρα. (6.1)

Now, if G is bipartite, then the matrix Aα− and the matrix Aα are similar by a diagonal matrix D′ with
diagonal entries ±1, that is, Aα = D′Aα−D′−1. Therefore, Aα− and Aα have the same spectrum, and thus
we get λα− = ρα. Finally, when G is connected and λα− = ρα, all inequalities (6.1) must be equalities.
By Lemma 2.3 and the equality

|yt|Aα|y| = ρα;

we know that |y| is an eigenvector of Aα belonging to ρα. So, |y| = ±y′. Using the Perron-Frobenius’
theorem for Aα(G), we have y′ > 0, |y| = y′, and |yi| > 0, i = 1, 2, · · · , n.

Since

α

n∑
i=1

y2
i di + 2(α − 1)

∑
viv j∈E(G)

yiy j = α

n∑
i=1

y2
i di + 2(1 − α)

∑
viv j∈E(G)

|yiy j|;
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we get
−

∑
viv j∈E(G)

yiy j =
∑

viv j∈E(G)

|yiy j|,

hence, |yiy j| = −yiy j when viv j ∈ E(G). Therefore, yiy j < 0 if viv j ∈ E(G).
Let

U = {vi : yi > 0} and W = {v j : y j < 0}.

For each edge e = viv j, we have yiy j < 0, one of the vertices of edge e is in U, and the other is in W.
So, G is a bipartite graph. □

Remark 6.2. If G is not bipartite and is not connected, and λα− is the largest eigenvalue of Aα− for a
bipartite connected component of G, then the equality in Theorem 6.1 still holds.

Example 6.3. Take
G = C3 ∪C4.

Then, G is not bipartite and not connected. Now, A 1
4
−(G) has a spectrum 2[1], 1.25[2], 0.5[2], −1[2]

(where λ[i] means the eigenvalue λ is repeated i times in the spectrum). On the other hand, A 1
4
(G) has

a spectrum 2[2], 0.5[2], −0.25[2], −1[1]. Then, we have

λ 1
4
−(G) = ρ 1

4
(G) = 2.

Note that 2 is the largest eigenvalue of A 1
4
−(C4) as well.

Now, we introduce the relationship between the Aα−- and Aα-spectra of bipartite graphs, which is a
generalization [9, Proposition 1.3.10], and it follows from the proof of the above theorem.

Corollary 6.4. Let G be a connected graph. Then, G is bipartite if and only if the Aα−-spectrum and
Aα-spectrum are equal.

Remark 6.5. In fact, if G is bipartite and is not connected, the Aα−-spectrum still equals the Aα-
spectrum.

Example 6.6. Take G = P3 ∪ C4. Then G is bipartite and not connected. We have that A 3
4
−(G) has a

spectrum 2[1], 1.64039[1], 1.5[2], 1[1], 0.75[1], 0.609612[1]. In contrast, A 3
4
(G) has the same spectrum

as A 3
4
−(G), although G is not connected.

According to Corollary 6.4 and [1, Propositions 38 and 39], we get the following two results:

Corollary 6.7. The Aα−-spectrum and the Aα-spectrum of the complete bipartite graph Ka,b are equal,
that is, if a ≥ b ≥ 1 and α ∈ (0, 1) , the eigenvalues of Aα−(Ka,b) are

λα−(Ka,b) =
1
2

(
α(a + b) +

√
α2(a + b)2 + 4ab(1 − 2α)

)
,

µα−(Ka,b) =
1
2

(
α(a + b) −

√
α2(a + b)2 + 4ab(1 − 2α)

)
,

λk(Aα−(Ka,b)) = αa f or 1 < k ≤ b,

λk(Aα−(Ka,b)) = αb f or b < k < a + b.
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Corollary 6.8. The Aα−-spectrum and the Aα-spectrum of the star K1,n−1 are equal, that is, the
eigenvalues of Aα−(K1,n−1) are

λα−(K1,n−1) =
1
2

(
αn +

√
α2n2 + 4(n − 1)(1 − 2α)

)
,

µα−(K1,n−1) =
1
2

(
αn −

√
α2n2 + 4(n − 1)(1 − 2α)

)
,

λk(Aα−(K1,n−1)) = α f or 1 < k < n.

Indeed, many practical results of Theorem 6.1 can be deduced, and here are some of them.

Proposition 6.9. Let G be a connected graph with n ≥ 4 vertices and m edges. If α ∈ [ 1
2 , 1), then

λα−(G) < max
{
α∆(G), (1 − α)(m −

n − 1
2

)
}
+ 2α. (6.2)

Proof. Let
λα−(G) = λα− and ρα(G) = ρα.

Then, Theorem 6.1 and Lemma 2.4 lead to

λα− ≤ max
{
α∆(G), (1 − α)(m −

n − 1
2

)
}
+ 2α. (6.3)

Suppose that the equality in (6.3) holds, thus ρα = λα− , and so G is bipartite and

ρα = max
{
α∆(G), (1 − α)(m −

n − 1
2

)
}
+ 2α.

Therefore, by Lemma 2.4, G = Kn, and thus G is bipartite if and only if n = 2, but n ≥ 4, and hence
the inequality is strict. □

Theorem 6.1 and [2, Theorem 2] lead directly to the next result.

Proposition 6.10. If T is a tree of order n and α ∈ [0, 1], then

λα−(T ) ≤
nα +

√
n2α2 + 4(n − 1)(1 − 2α)

2
.

The equality holds if and only if T is the star K1,n−1.

By Theorem 6.1 and [1, Proposition 20], we get the next result.

Proposition 6.11. If G is a graph with no isolated vertices, then

λα−(G) ≤ max
u∈V(G)

αd(u) +
1 − α
d(u)

∑
uv∈E(G)

d(v)

 .
If α ∈ (1

2 , 1) and G is connected, the equality holds if and only if G is a regular bipartite graph.
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In this part we give two explicit expressions for the sums and the sum of squares of the eigenvalues
of Aα− and Aα, considering [1, Propositions 34 and 35].

Proposition 6.12. If G is a graph of order n and has m edges, then

n∑
i=1

λi(Aα−(G)) =
n∑

i=1

λi(Aα(G)) = trAα−(G) = trAα(G);

where
n∑

i=1

λi(Aα−(G)) = α
∑

u∈V(G)

d(u) = 2αm.

A similar formula for the sum of the squares of the Aα− and Aα-eigenvalues is given as follows:

Proposition 6.13. If G is a graph of order n and has m edges, then

n∑
i=1

λ2
i (Aα−(G)) =

n∑
i=1

λ2
i (Aα(G)) = trA2

α−(G) = trA2
α(G);

where
n∑

i=1

λ2
i (Aα−(G)) = α2

∑
u∈V(G)

d2(u) + 2(1 − α)2m.

Proof. Let
Aα− = Aα−(G), A = A(G) and D = D(G).

Calculating the square A2
α− and taking its trace, we find that

trA2
α− = tr(α2D2 + (1 − α)2A2 + α(α − 1)DA + α(α − 1)AD)
= α2trD2 + (1 − α)2trA2 − α(1 − α)trDA + α(α − 1)trAD

= α2
∑

u∈V(G)

d2(u) + 2(1 − α)2m.

□

7. Sum of powers of Aα− and Aα eigenvalues

Pirzada et al. [16] introduced the sum of the βth powers of the Aα eigenvalues of G as

S αβ (G) =
n∑

i=1

ρ
β
i .

Now, we have the notation

S α
−

β (G) =
n∑

i=1

λ
β
i

for the sum of the βth powers of the Aα− eigenvalues of G. The following theorem is a generalization [10,
Theorem 2].
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Theorem 7.1. Let G be a graph of order n > 1, α ∈ [ 1
2 , 1), and let β be a real number.

(i) If 0 < β ≤ 1 or 2 ≤ β ≤ 3, then
S αβ (G) ≥ S α

−

β (G).

(ii) If 1 ≤ β ≤ 2, then
S αβ (G) ≤ S α

−

β (G).

For β ∈ (0, 1) ∪ (2, 3), the equality holds in (i) if and only if G is a bipartite graph. Moreover, for
β ∈ (1, 2), the equality holds in (ii) if and only if G is a bipartite graph.

Proof. We recall that, for any real number r, the binomial series
∞∑

k=0

(
r
k

)
xk

converges to (1 + x)r if |x| < 1. This also remains true for x = −1 if r > 0 (see, e.g., [17, p. 419]). By
Lemma 3.5, we find that,

λα−(G) ≤ λα−(Kn) = α(n − 2) + 1 and ρα(G) ≤ ρα(Kn) = n − 1.

Since Aα is positive semidefinite when α ∈ [1
2 , 1), then if ρi > 0, we have

|
ρi

n
− 1| ≤ |

n − 1
n
− 1| = |

−1
n
| < 1

and if ρi = 0, we get
ρi

n
− 1 = −1.

Therefore,

S αβ (G)

nβ
= (
ρ1

n
)
β

+ · · · + (
ρn

n
)
β

=

∞∑
k=0

(
β

k

)
(
ρ1

n
− 1)k + · · · +

∞∑
k=0

(
β

k

)
(
ρn

n
− 1)k

=

∞∑
k=0

(
β

k

)
tr

(
1
n

(αD + (1 − α)A) − I
)k

.

Also, since Aα− is positive semidefinite when α ∈ [ 1
2 , 1), then if λi > 0,∣∣∣∣∣λi

n
− 1

∣∣∣∣∣ ≤ ∣∣∣∣∣α(n − 2) + 1
n

− 1
∣∣∣∣∣ = ∣∣∣∣∣(α − 1) +

1 − 2α
n

∣∣∣∣∣ < 1

and if λi = 0, we have
λi

n
− 1 = −1.

Thus, in a similar manner as above, we obtain that

S α
−

β (G)

nβ
=

∞∑
k=0

(
β

k

)
tr

(
1
n

(αD + (α − 1)A) − I
)k

.

AIMS Mathematics Volume 9, Issue 2, 4587–4603.



4601

We claim that

if k is even, tr(αD + (1 − α)A − nI)k ≤ tr(αD + (α − 1)A − nI)k;

if k is odd, tr(αD + (1 − α)A − nI)k ≥ tr(αD + (α − 1)A − nI)k.

When ((αD − nI) + (1 − α)A)k and ((αD − nI) + (α − 1)A)k are expanded in terms of the powers of
αD − nI and (1 − α)A, respectively, the terms appearing in both expansions, regardless of their signs,
are the same. To prove this claim, we identify the sign of each term in both expansions. Consider the
terms in the expansion of ((αD−nI)+ (1−α)A)k, where there are exactly j factors equal to αD−nI, for
some j = 0, 1, · · · , k. The sign of the trace for each of these terms is (−1) j or 0 because all entries of
αD − nI and (1 − α)A are non-positive and non-negative, respectively. On the other hand, in each term
in the expansion of ((αD− nI)+ (α− 1)A)k all factors are matrices with non-positive entries, hence the
sign of the trace of each term is (−1)k or 0. Therefore, the claim has been proven.

Now, note that if 0 < β < 1 or 2 < β < 3, then the sign of
(
β
k

)
is (−1)k−1, except that

(
β
2

)
> 0,

for 2 < β < 3. According to this, for 0 < β < 1 and every k,(
β

k

)
tr(αD + (1 − α)A − nI)k ≥

(
β

k

)
tr(αD + (α − 1)A − nI)k.

This inequality remains true for 2 ≤ β ≤ 3 as

tr(αD + (1 − α)A − nI)2 = tr(αD + (α − 1)A − nI)2,

since trA2
α = trA2

α− . Thus, Part (i) is proved. For 1 < β < 2, the sign of
(
β
k

)
is (−1)k−1, except that(

β
1

)
> 0. Since trAα = trAα− , we have

tr(αD + (1 − α)A − nI) = tr(αD + (α − 1)A − nI),

and so part (ii) is similarly proved.
Now, we examine the equality case. Since Aα and Aα− are similar if G is bipartite, it follows that

the equality holds in both (i) and (ii). Since for any positive integer i, trAi equals the total number of
closed walks of length i in G, then if G is not bipartite, there exists an odd integer r such that trAr > 0
(see [18, Lemma 2.5]). Hence,

tr(αD + (1 − α)A − nI)r > tr(αD + (α − 1)A − nI)r;

and so the inequalities in both (i) and (ii) are strict. □

We know that the Aα-spectra and Aα−-spectra of Kn are {(n − 1)[1], (αn − 1)[n−1]} and {((2α − 1)(n −
1))[1], (α(n − 2) + 1)[n−1]}, respectively. Therefore,

S αβ (Kn) − S α
−

β (Kn) = (n − 1)β + (n − 1)(αn − 1)β − ((2α − 1)(n − 1))β − (n − 1)(α(n − 2) + 1)β.

By Theorem 7.1 and based on our numerical experiments, we propose the following conjecture:

Conjecture 7.2. For every α ∈ ( 1
2 , 1) and each integer n ≥ 3, we have

S αβ (Kn) − S α
−

β (Kn) ≥ 0

for any β ∈ [0, 1] ∪ [2,∞) and
S αβ (Kn) − S α

−

β (Kn) ≤ 0

for any β ∈ (−∞, 0) ∪ (1, 2).
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8. Conclusions

In this paper, we have introduced the Aα−-matrix of a graph G, which is a generalization of the
Laplacian matrix L(G), and we have studied the basic properties of Aα−; and derived some bounds for
its spectral radius. Furthermore, we have determined the Aα−-spectra for the complete graph and the
complete split graph. Building upon previous results, we have extended findings related to the spectral
radius of L(G) and Q(G) matrices to the Aα- and Aα−-spectral radius. Specifically, in Theorem 6.1, we
have generalized Merris’ [15] observation that λ(L(G)) ≤ ρ(Q(G)) with equality holding for bipartite
graphs. Additionally, we have extended the known relation that G is bipartite if and only if Q(G) and
L(G) share the same spectrum, as demonstrated in Corollary 6.4. Finally, in Theorem 7.1; we have
generalized a relation established by S. Akbari et al. in [10]; which relates the sum of powers of the
eigenvalues of Q(G) and L(G). In conclusion, these findings have implications for various applications
involving graph analysis.
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