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1. Introduction

The famous Bernstein polynomial, denoted by B, (g)(\)), is defined as:

N

Bigw = " g(+ ) busw.

i=0
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where s € N (positive integers) and b, ;(\) are the Bernstein polynomials of degree s at most defined
by

byi(y) = (j)ui(l —) (i =0,1,---, 59 €[0,1])

and
bsi(q) =03 <0 or i>s),

where g € CJ[0, 1] is the function to be approximated and n is a positive integer. The Bernstein
polynomial is a linear combination of powers of 1 and (1 — 1), with coefficients given by the function
g evaluated at equidistant points between 0 and 1. The Bernstein polynomial provides a sequence of
polynomial approximations to g, which converges uniformly to g on the interval [0, 1] as n approaches
infinity. This means that the polynomial approximations become arbitrarily close to g for all values of
\ in the interval [0, 1].

It is very easy to verify the recursive relation for the Bernstein polynomials. The recursive
relationship for Bernstein polynomials b, ;(17) is very simple to prove such that

bsi(q) = (1 = by_1,;(Q) + ybs—1,i-1 ().

In 2010, Cai et al. defined the Bernstein-polynomials by the introduction of new Bézier bases with
shape parameter A € [—1, 1], known as the A-Bernstein operators as follows:

Butew =Y ()bt (1.1)

i=0

where the new Bernstein basis function Es,,'(/l; ) in terms of the Bernstein polynomial b, ;(\7) is defined
by Ye et al. [1] as follows:

- A
bso(A;q) = bso(q) — ——=by11(W),
s+1

s—2i+1

ﬁbsﬂ,i(q)

Boil) = byi() + A

-2i—-1
_ %bw,m(q)), forl<i<s—1,
sc—1
- A
bs,s(/l; Tl) = bs,s(q) - bs+l,s(q)-
s+ 1

In 2010, Gadjiev et al. introduced the recent Bernstein type Stancu polynomials by means of shifted
knots [2] such as:

s+ \" O (s pr \ s+ i
S .. u(e :( ) _ - 12
(830 m ;(i)(q s+vz) (m+vz q) g(s+v1) (1.2)
where \ € [m‘ffvz, > :5;] and u;, v;, i = 1,2 are positive real numbers provided 0 <, < u; < vy < vs.

As a result of research conducted in the approximation process, Bernstein type operators have
been obtained by researchers within the past few years, for example, a new family of Bernstein-
Kantorovich operators [3], g-Bernstein shifted operators [4], the Stancu variant of Bernstein-
Kantorovich operators [5], Genuine modified Bernstein-Durrmeyer operators [6], Bézier bases with
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Schurer polynomials [7], generalized Bernstein-Schurer operators [8], the approximation of Bernstein
type operators [9] and Bernstein operators based on Bézier bases [10], etc. For more details and recent
published research we refer the reader to [11-23].

2. Operators and basic estimation

We take the Bernstein basis function b‘;lv by means of shifted knots (see [2]) as follows:

”(q) ( )(q_siv)i(ziﬁ_q)s_i' 2.1

We take the Bézier bases function E’s‘ lv by means of Bernstein basis function b’s‘ ZV (see [1]) as follows:

bl::(\;(/l; W= b/jg(ll) 1 A+1 1(1{)
B v -2j+ 1
s=2j-1_,, .
B Sz—zlb/:-,i—l,jﬂ(q)), forl < j<s— 1,

A
Bt = B - B .

Thus, for all == < < ”” and the real number 0 < u < v, we define the new A-Bernstein shifted
knots operators B‘; L in terms of Bézier bases function b’f . as follows:

B (g:v) = (s : V)S g‘ Bl (g (é) 22)

where C[0, 1] is the set of all continuous functions defined on [0, 1] and s € N (the set of positive
integers). Clearly, for the choice u = v = 0 in the equality (2.2), our new operators B" :; reduced to the
operators of the equality (1.1) defined by Cai et al. [24].

This paper is structured generally as follows: We look at the moments and central moments
of our new operators, (2.2). We investigate a Korovkin approximation theorem, prove a local
approximation theorem, provide a convergence theorem for Lipschitz continuous functions and
produce a Voronovskaja asymptotic formula.

Lemma 2.1. Let g(r) = 1,1, then for all s € N\ {1}, the operators B, defined by (2.2), have the
following equalities:

By = 1,

= (5 5 - ) s (5 b )
s s+1
R S )
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Ir(s+vy 24 u
S’/l( 0 Ky Ky s—1 | s+v

s+tv\[s—ls+v 42 mo\?
(=)l )
s s s s S+ vV

s+VV[ (s+ 1) 1 ]( u )H‘
+ 4 + -
( s )[sz(s—l) s+ 11\ 5y
A (s+v)5(s+u )”1 A (s+v)
+ —-q| - :
S2(s—=1D\ s s+v S2(s=1D\ s
Proof. We proof the equalities as follows:
N R AN ol Yy,
mmm—(s);%ﬂm

S+HVV (v y A v s=2+1_,,
= (S D = bl + A

S

i=0
s=2-1_,, 4+1 B
_ﬂsz—_bﬁlﬂz(q) /l .v;lZ(q)
s—4-1_,, s—2(s l)+1
-4 S2—1 b}sl+13( )+.H+/l sz_l s+1s1(q)
s—2(s—1)-
-4 S2—1 s+ls() 1 s+ls(q)}
S+ VYV o y
= (22 Y
§ P
:(s+v)s(q_ i s+t )‘
K s+v s+v
:],
SHVV & -
BY(t; :( ) -0
s,/l( q) s ;S s,( q)
s—1
s+ v\ iy s — 21+1 v s=2i-1 2i—1
(S [ o+ (S w0 - )}
K s
P - b )
s,sl1 S+1 <;+1,srq
s+ v\* i,y S+HVV o 21+1
:( s );_b/;’()-i_/l( s );E 52 — ‘“’()
s+ v\ is— y
_/l( < )iZIE 2 — bﬂ+lz+1()
where we can examine the as follows:
K . s—1
s+ v\* I .y s+v e
(22 > o = (220 (a- =) Yow
S pri K S+v/)
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= ()5

s
stv is— 21+1 SHYNVT 1 i
(=) =a(=2) Ly |
S =0 Ky s2 S+ll( ) s s—1 £ P Hl’l(q IZ S+ll(q)
s+ 1 s+ v\ u s—1
=4 () (a- ) Y
2 s+ v\ u 5 $=2
a2 e S
s—1 S k! s+ v IZ(; S—l,z(q)
2 S+Vs l,[ s—1
4 - b
S(S—l)( s )(1I s+v); i (D
Y ) 5]
CTs(s=D\ s Ry | g =T
Y 1 )
s=1\ s 175y s+v =T
2 s+ Vv\* M Ky s ITERN
o) eSS -5
s(s=1) s S+ v P 1
— 1( M ) /ll(s+v)5( U )s+1
- Sq s+v K s ! S+ v
2 (stv % 2 (s+V) woH!
5 () e () (- )
s—1\ s N\ 5y s—1\ & =<
and
s—1 . .
s+ v\ is—-2i+1_ ,,
_/l( S ) E 52 1 S-’Fll+l(,q)
i=1
s+v\y 1 U = s+v =l
=-4 —\u- b (g) + A )
( N )S 1 S+V); ’() ( s S(S+1)lZ l+1(q)
s+vy 2 2 872 , Sty ) 1 "
PR e T S () o ) S
: s—1 S+Y/ S § s(s — s+v/) e
s+vy 2 S,
+/1( S ) S(sz—l)zbl;lﬂzﬂ(q)
i=1
:_ﬂ(s+v)sl(q_ u )[( Ky )S_(S+’u_q)s_(q_ U )S]
S s s+v/L\s+v s+v s+v
s+Vv s 1 KY s+1 s +l,[ s+1 /1 s+
) wolles) -G -l 55)
T s s(s+ DI\s+v sty =5y

[ .
i )

s+ v
s+vy 2 uo\? s 5! !
= (-5 1S -(e55)
s ) s—1\U sy sy 175y
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s+vy 2 u
-(57) ool
K s(s—=1) s+v

" ﬂ(sl_v)s s(s22— 1)[(s-|s-v

o )

s+v s+v

T -2 -5
e

)|

3 q)s+1 B (q 3 /,[ )S+1
s+v

:_ﬂs(ss_i-—ll) (’q— s/-lfv)_'_/l(

1 1 (s + v)s (s +u
s(s—=1D\ s s+v
which gives B’;’;(t; ).
Similarly for g(r) = 2, we find

s+—v) 2 ( u )2 1 1 (s4-v)f( u f+1
s—lll s+v s—1 K 1 s+v

y+1+/1 1 (s4—v)
1 sts—=D\ s )

s S92
iy 2. STV oy
B = (2F) Y Sy

1=

0
s=1 o
s+vy I m+1 —2i—1
:( Ky ) [;S_{ ( )+/1( S+lz( ) = —1 s+lz+1(q))}
, A
+ b{:,’S (q) 1 S+1 S(q):l
S+HVV o i2 SHVV e 2s—2i+1
= Swr AT Y S
( S ) ; S2 St Ky pr S2 S2 -1 s+1,z(q)
s—1 . .
s+ Vv\S is-2i—-1_,,
_/l( s ) 2 s;—l,i+1(q)'

By simple calculations, we get

i=0

ﬂ(s+v)“ N 2s—=2i+1
s 2 21

- s—2i—1

Thus, finally, we get B/ :;(tz; ).
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() 2 s = () S - ) () b )

S s+v

— K v+ll()_ _( _siv)+/l(szv)s:s151)(q_s':l-v)z

o

s+v

YZ( u f+ﬂ(s+vf(s+ly( U y”
s s\IT 5y s sz(s—l)q s+v/)

sV _
sriv (D) =

1 s+ 1 ( u ) /l(s+v)l( u )2
s2(s—=1) Y sy s sV  s+v
s+V\2 JTERN s+vy 1 [T
ST S 5) ) b5
s s 1 s+ v s s+ 1 1 s+ v

+/l(s+v)s(s+u_q)”l_/l(s+v) 1 .
s s+ v s Js2(s—1)

O
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Lemma 2.2. For the operators B}, we get the following central moments:

Bt —ww = [(S : v) B s(sz— D 1]”

s(s—l)(s-:v) [( sl-:v)ﬁl_(z:/:_q)ﬁl]
(5 o=tem9 5

s(s—l) s sts=D(s+v) s
Bﬂv((t_q) H) :E{(S:v)s+s—l} (S:V_s(szill))](q_sl-:v)
s 2 s+1
) [(s(zs(:—l)l) ler1+s(sq— 1))](q_sﬁv)
5l )
V)S[(ﬁ(s—l) s(sq— 1))](iiﬁ_q)m
)

- [( s2(s—=1) s(srLi 1))]'

stV

+

STV

—+

+

S

+
s
+
S
+
N
+
N

(
(
:
il

3. Convergence of operators B’

We use the properties of the modulus of smoothness in this section of the paper so that we can obtain
convergence of the sequence of operators of B/ ; defined by (2.2). We can determine the maximum
oscillation of ¢ for any 6 > 0 by taking w(f; 6), which is the modulus of smoothness of the function ¢
of order one satisfying lims_,0; w(¢; ) = 0, and

W@ = sup |000) =6 v € 10,11, 3.1)
| —o|<
600, - () |< (1 + @)ww;&. (3.2)

Theorem 3.1. [25] Let {P};>; be any sequence of positive linear operators defined in Clu,v] —
Clxi, x2] such that [\q,,,] € [u, v] then

(1) Forall ¢ € Clu,v] and g € [x1, x3], it follows that:
1Ps(¢59) — S| < [S(DIIPs(1;9) — 1]
1
P + < VP = 0% 0) VPG }w(g: 0),

(2) forall ¢' € Clu,v] and \ € [x1, x,], it follows that:

1Ps(@;7) — (| < lo(DIIP(15) = 1] + @ (DIIPs(t = ;)

1
+ Py((t =% D{ VP(1;) + 5 VP((t — 0% 0)}w(g'; 6).

AIMS Mathematics Volume 9, Issue 2, 4409-4426.



4416

Theorem 3.2. For any ¢ € C[0, 1], the set of all continuous functions on [0, 1] and \y € [0, 1], the
operators B are defined by (2.2) satisfying:

B -l < 200 \fo5w),

where 8 (1) = B ((t = q)%; ).

Proof. By taking into account (1) from Theorem 3.1 and using Lemmas 2.1 and 2.2 we are able to
prove the inequality

B, (@3 0) — ()| < l(IIBL (1) — 1] + {B” (1)

+ < B w0 B bt o).

We suppose ¢ = \/B’; (=) = \/6Y /l(q) which is our required result. O

Theorem 3.3. Let \ € [0, 1], then for any ¢’ € C[0, 1] operators B’;Z are as follows:

B (030) — ol < ¢ (I + 2 6 ) w(so,\/af:;;(q)),

where {!"/(\) = Bt — ) q)| and &, (\q) are defined by Theorem 3.2.

Proof. If we consider (2) from Theorem 3.1 and Lemmas 2.1 and 2.2, then it is easy to get

1B (030 — o()l < leIIBL (159) = 1] + | (B (2 = g3 )]
B (1 =% )

B = w1+ - Jo(e';)
<l I + 2.8 ofw's (3 w)
where we take £/ 7 (4) = mMaXyepo,1] B‘S‘:;((t —); q)|. ]

The next step is to estimate some local direct approximations of our new operators B by using
a Lipschitz-type maximal function, which we assume to be Lip?w. Thus, for any 0 < ¥ < 1, the
Lipschitz-type maximal function Lipj’w is defined in the form of any positive real parameters 3, 5,
(see [26] for more details) such that:

It —yl”
B + By + 1)*

Liph, = {d) € Cy[0,1] : | (1) — DY) < M ., t € [0, 1]}

where Cp[0, 1] is the set of all continuous and bounded functions on [0, 1] and M is any positive
constant.

AIMS Mathematics Volume 9, Issue 2, 4409-4426.
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Theorem 3.4. For all ® € Lip',, operators B., satisfy

() \E
B (@) - O] < M[———],
B (@3 ) — (q)|</\4((ﬁ]qz+ m))

where &7, (q) is given by Theorem 3.2.

Proof. We suppose that the function @ € Lip’?w is valid for all 0 < ¥ < 1. We would need to verify
first that the results of Theorem 3.4 are valid for ©# = 1. Therefore, it is easy to get the result for any
Bi, B> > 0 such that (8,1 + By + 1)"/2 < (B1y? + Boy)~'/2. Consider the Cauchy-Schwarz inequality,
thus we have

B (@39) — @) < B (10() — DOl + D) (1) — 1

< B,uv( |f—H| q)
Bg? +,3211+l)2
< MBIg + BB (1t =l )

B ((t —v)%;
SM\/ “((2 w0
B + By
As a result, we conclude that the statement is correct for 9 = 1. Next, we’ll check to see if the

statement is also true when ¢ € (0, 1). We apply the monotonicity property to the operators B Z and
use the Holder’s inequality to obtain

(@) — D(y)| < BYY

D (1) - D(y)[; 11)
(o

B (1 =)’ )\ %
- M{ t+ By + Bay }

< MBI +32H)_ﬂ/2{3§1’v( U) U)}

2-9

))g(B’;jZ(l; u))2

< M@rE + By (B -0’ w)
( G () )129
Brg® + )/

The statement is valid when 0 < < 1, thus we complete the proof. O

On the other hand, we employ the Lipschitz maximum function to establish another another local
approximation property for the operators of B/ ; Assume ® € Cg[0, 1] and ¢,y € [0, 1] have the same
class of all Lipschitz type maximal functions (see [27]).

| &) — D(y) |
Wy @) = sup P (3.3)
iy, 0] | E=q|

where 0 < ¥ < 1.

AIMS Mathematics Volume 9, Issue 2, 4409-4426.
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Theorem 3.5. For all ® € Cg[0, 1] and v € [0, 1], operators B} satisfy

BY(@:) — D()| < (830)° wa(@:),

where wy(®; V) is defined by (3.3) and 65(11) is obtained by Theorem 3.2.

Proof. One can write by taking the the Holder inequality,

B(@;q) - D(p)| < B (1D() — ()5 )
< wp(@;) | BY (1=l s )
2-9 9
< wp(@;) (BY () T (B =l )

amGDnD(BﬁX«t—uf;u»g,

where the set of all continuously bounded functions on [0, 1] was indicated by C[0, 1]. The anticipated

outcome now completes the proof.

4. Some direct theorems of operators B

O

For our new operators B’S‘; defined by Eq (2.2) this section can provide some direct approximation
findings in the space of Peetre’s K-functional. Simply, for ® € C[0, 1], we define the fundamental

concept of Peetre’s K-functional supposing K,(®;6) :
Thus for any ¢ > 0, the Peetre’s K—functional is defined by

K,(@;6) = inf {(I| © — ¢ llcjo. +6 1| ¢ llcro.1y) = ¢, ¢, ¢” € C[O, 11}.
From [28], for an absolute positive constant C we have

K,(®;6) < Cwy(®; V5), § > 0,
K, (®;6) < Clws(®; V6) + min(1, §)[|Pllcjo.n)

where ws(®D; 0) is defined for the modulus of smoothness in order two and given as:

ws(@;0) = sup  sup |[P(g+ 20) —20(y + ) + D(y)|.
0<6<6 el0,1])

Theorem 4.1. For an arbitrary ¥ € C[0, 1], let’s define the auxiliary operators A’ ; such that

AP0 = B + () - (B @3)

then, for every ® € C[0, 1] we get that

2
e ; (i) )+ w0 3).

where T,(q) = B (t —1);\) and &7(\) is defined by Theorem 3.2.

BLI(@3p) - ()| < Con(@;

4.1)

4.2)

4.3)
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Proof. Wheni = 0,1 and ¥; = ¢ are taken into consideration, it is simple to prove that Af: ’;(‘PO; q) =1

and
AG (P = BY (Ysw +u - BY (P =4

We can deduce the equality from the Taylor series expression
t
A(t) = A(Q) + (t — DA (@) + f (t — DA’ (PP, A € C*[0,1].
g
Apply A}, and then
t
AR A ) = AGY) = A GDARY (= ;) + A’;”;( f (t — DA" (9)dD:; q)
Lt
t
-5 [ - on o)
Ht .
- 5 f (t = N @)d; ) + f (1 — DA (#)d0
U y
B (1)
- f (Briw) - 9)A" @),
g

| ATTAD — A(y) | <

B*;;j( fq (= A (9)dD: q)'

B (50)
¥ ‘ f (B0 - 19)A"(19)d19‘.
q

We know the inequality

f (- ﬂ)A"(ﬂ)dﬂ’ <= A” |
q

and
2

B (1)
g

Thus we get
2
A = A 1< (B (= wPs) + (B - ) AT
On the other hand we deduce that
I B (P 111 I,

and

| AT (Y5 0) <) B (P50) |+ 1 () | +“P{Bﬁf§(‘l’;q)} <3Pl

By accounting for (4.4) and (4.5) we arrive at

B (®;) — ()| <

AN@ = Ay — (@ - A)(u)‘

+

A0 = A + o) - o (B 65|

4.4)

4.5)

AIMS Mathematics Volume 9, Issue 2, 4409-4426.
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<410 - All+ wo @3 B (= wi))
+ {Bﬁfﬁ (=) + A7 | (B” RS u)) }
Taking the infimum over all A € C?[0, 1] and applying Peetre’s K-functional properties, we get

Fenen + (B2 (@~ wiw) )
4

Vi (B’:“f o) )+l @B G- )

As a result, we have our desired proof. m]

B (@;) — ()| < 4K,,(<D; + wﬁ( ®; BY (1 = w); u))

< Ccu(;((D;

5. Approximation to operators B" ; in weighted spaces

In this section, we explore the approximation in weighted space, which is the well-known
Korovkin’s type theorems, for our new operators B. Remember that for each ¢ € CI[0, 1], the
equipped normed function on ¢(\) is given by || ¢ [|¢jo.17= SUpP,ero.17 19(DI for the real valued continuous
function ¢(\).

Theorem S5.1. [29, 30] Any positive linear operator sequences K that act on |a,b] such that
lim K (ti; q) =, are uniformly on [a, b] for all i = 0, 1,2. Then for every ¢ € Cla,b], the operators

§—00

lim K (¢) = ¢ uniformly converge for any compact subset of |a, b].

Theorem 5.2. For every ¢ € C[0, 1] and y € C[0, 1], the sequence of positive operators B, ; uniformly
convergence on each compact subset of [0, 1] such that

Bl (@:1) = o),
where = stands for uniformly.

Proof. In order to demonstrate the convergence of our new operators sufficiently so that we may utilize
the condition of uniformity for operators B.", provided by Korovkin’s theorem,

lim B} (fiu) =, i=0,1,2, s oo).
If s — co we deduce that B{";(1;1) = 1 and

lim B () =, lim B{7j(7%5 ) =
This is enough to get B (9;17) = ¢(v). o

Theorem 5.3. [31, 32] For the operator {P}s;, which acts C[0,1] — C[0,1] satisfying
im0 |1Pn(®) = llcpo.; = 0, i =0, 1,2 then f € C[0, 1], s € N it follows that

lim [|Py(f) = flicio.y = 0

AIMS Mathematics Volume 9, Issue 2, 4409-4426.
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Theorem 5.4. Assume B” "~ acts from C0, 1] to C[0, 1] and has the property lim,_,o, ||B“/l(t’) Yllerou
0. Then, for all ¢ € C|0, 1] we get the equality

}Ln‘}o I B (¢) = ¢ llcro.n=0
Proof. When we consider Theorem 5.3 and Korovkin’s Theorem, it is simple to demonstrate that

hm Il Bﬂ)(t) ¥ lleon=0, i=0,1,2.

Fori = 0, we can easily deduce that from the Lemma 2.1, || B (1)—1° |Icjo.11= sup |B‘:’;(1; ) — 1| =
’ welo1]

For i = 1, it is easy to obtain

Il B8 = lleroy () — |

= sup M(u),
yel0,1]

since s — oo, then we deduce that || B"}(#) = [lcfo,— 0. Similarly if i = 2, we have

V2 2 Ve 2, 2
I B =0 ey = sup [BE( ) — ),
yel0,1])

which gives || B! ;(tz) e llcjo.;;— O whenever s — oco. These observations help us to acquire desired
results. O

6. Voronovskaja type theorems

We begin the quantitative Voronovskaja-type approximation theorem for our new operators B’ ”;,
which is primarily driven by [8,33]. The definition of the modulus of smoothness that was covered in
the preceding section is used for this purpose. This smoothness modulus is described by:

f(q N pxz(u)) B go(q B /9)(2(11))',q N p)(z(u) < [0, 1]}'

0.0 1= sup

0<|pl<6
Here ¢ € C[0,] and y(y) = (4 — y*)'/?, and the related Peetre’s K-functional is known as

KX(90,6)= mf {Ilso gll +dllxg’ll - g" € C[0,1],6 > 0},

where w,[0,] = {g: g € C*[0,1], || xg’ ll< oo} and C*[0, 1] as for the set of absolutely continuous
functions on intervals [a, b] C [0, 1]. There exists a positive constant M such that

K (f,0) < M w\(f,9).
Theorem 6.1. Forall ¢,¢’,¢"” € C[0, 1], it follows that

v # (q) ’” C 2 77 1
B (30 — () — 77 (0’ (1) — TSD (u)‘ s X (u)wx(so ﬁ)
where y € [0,1], C > 0 is a constant, T'7,(q)) = B[, (t = q;\) and &) = B} ((t - q)z;q) are defined by

Lemma 2.2.
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Proof. For any ¢ € C[0, 1] we consider the Taylor series expansion as follows:

(1) — () — @' (Pt =) = f ¢ (0)(t — 6)do,
4

then it is easy to get

s0”(11)

(1) — o(q) — (t — ¢’ (q) — (t—v*+1) < f (t=0)¢" () — ¢"(7]do

Therefore, (6.1) give us,

@" (1)
2

(B (1 — 0% 0) + B (1)

B () — () = B (= e’ (@) —
< B

i fu ¢ @ - 6 - " () defs ).

From the right hand side of equality (6.2) we can estimate:

!
f |t =6l 1" (0) — " () dﬁ‘ <20 —gllt—w*+2 1 xg lx ' (Wl -yl
4
where ¢ € w, [0, 1]. There exists constant C > 0 such that
vV 2 (j 2 YTRY% 4 (j 4
B (1 =5y < F X @ and - BO(T = wh) < 5ok (0).

Using the Cauchy-Schwarz inequality, we can conclude that

”(u)

B (p50) — () — @' (DB (1 = q3) — (B ((t =0 0) + BY (1)
<20l¢” =gl BEY (=00 + 2 [ x (g’ II)(‘I(u)B’S‘A(It — vy’

C , )
< =W 1" = g I+2 1Ly’ Iy~ (IB (=0 WY B -0 wy

-1/2

C
< = ll¢” - g I +s77 Lxtwg’ Il |

Taking the infimum over all g € w, [0, 1], we deduce that

IRY
5,4

B (30 — () — 77 (e’ (1) — 5

90”(11)‘ < %)(z(u)wx(so”, %)

which completes the proof.

6.1)

(6.2)

(6.3)

(6.4)

O

Theorem 6.2. For all y € Cpl0, 1] which is the set of all continuous and bounded functions on [0, 1],

we have

5 (u)
hmslB‘”(slf Q) =Yg — DY () — ¢ (y )l
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Proof. Let any ¢ € Cg[0, 1], then from Taylor’s series expansion, we can write

1
Y@ =y + - Y'(g) + S- WY () + (= )? Qy(), (6.5)

where Q,(r) € C[0, 1] and is defined for the Peano form of the remainder, moreover, Q,(f) — 0 as
t — . Applying the operators B ,’;(-; 1) to the equality (6.5), it is easy to see

l/f”(u)

B () — () = ¢ (OB (=) + B (1 — )P 0) + BYY(F — 1) Qy(0): ).

From the Cauchy-Schwarz inequality, we get

B = P05 < BL(QR00) /B = 0 ). (6.6)
We clearly observe here lim,_,., B{"\( Q2 (1);q) = 0 and therefore
hm S{B“;((t — )’ Qy(); )} =

Thus, we have

lim SB i)~y = lim s{B5 ¢~ wspw' ) + L2 B

+ Bt =0 Q05 0)}-

By (=9

7. Conclusions

In the present article, we conclude that our new operators (2.2) are the shifted knots variant of the
Bézier basis of the A-Bernstein operators defined by equality (1.1). For the choice 4 = v = 0 in the
equality (2.2), then our new operators B, ; reduced to the operators by the equality (1.1) defined by Cai
et al. [24]. Consequently, we can say that the classical Bernstein-operators and A-Bernstein operators

with Bézier basis are special cases of our operators (2.2). These facts lead us to the conclusion that our
new operators are more powerful than earlier varieties of operators.
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