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1. Introduction

Computing equivalences and symmetries of geometric objects in a specific geometric setup, e.g.,
projective, affine, or Euclidean, plays a significant role in computer vision, computer graphics, pattern
recognition, and computer-aided geometric design. Specifically, the studies addressing the problems
regarding algebraic curves and surfaces have recently gained particular interest. Some of these studies
are [1–3, 5, 7, 9–12, 15, 17] for both rational and implicit curves, and [4, 6, 8, 9, 18, 19] for both rational
and implicit surfaces.

In this paper, similar to the above studies, we aim to address the problem of computing isometries
between two implicit surfaces. An isometry is a transformation that preserves the metric properties of
the underlying space. We refer the reader to [13] for an extensive account regarding isometries. We call
two surfaces isometric or congruent if one of the surfaces is the image of the other under an isometry.
Also, we call a surface symmetric if there exists an isometry, other than the identity, which leaves the
surface invariant.

For rational surfaces, there are certain approaches [4, 8, 18] addressing the detection of isometries.
However, to the best of our knowledge, there is only one algorithm [9] regarding the isometries of
implicit surfaces. In [9], the authors present a comprehensive approach to compute projective and
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affine equivalences, starting from projective equivalences between finite sets of points, possibly given
as roots of univariate polynomials. However, the approach in [9] leads to solving multivariate
polynomial equations, something that we avoid here. Also, in a very recent paper [6], a novel
approach concerning symmetries of implicit surfaces is provided. In [6], the authors present a
complete algorithm to compute four types of notable symmetries, namely, rotational, axial,
reflectional, and central symmetries. Nonetheless, the method given in [6] is not global, i.e., it
requires a separate computation for each type of symmetry. On the contrary, when applied to just one
surface, in which case we determine its symmetries, our method can determine all symmetries of a
surface in one go.

The two main features of the method presented in this paper are the reduction to isometries fixing
the origin, which allows us to transfer the problem to polynomials of smaller degree, namely some
homogeneous forms of the resulting polynomials, and the use of polynomial factoring and gcd
computation as an alternative to polynomial system solving. The reduction step employs a previous
idea already provided in [6, 7], where the problem is reduced to computing transformations fixing the
origin. In some nongeneric bad cases, it is not possible to perform the reduction step; for those cases
we provide a backup method inspired by [9]. The main algorithm is implemented in Maple and we
provide extensive tests, all of which can be found publicly in the first author’s website [16].

The paper is organized as follows. In Section 2, we recall some basic notions regarding isometries
of surfaces, and present the statement of the problem. In Section 3, which comprises three subsections,
we first explain the general strategy of the method, show how to reduce the problem to computing
isometries fixing the origin, and provide a full algorithm. In Section 4, we provide results concerning
extensive experimentation performed on the algorithm. If the reduction method fails, we provide a
backup method in Section 5. Finally, we conclude the paper in Section 6.

2. Preliminaries

Let S f ,Sg ⊂ R
3 be two algebraic surfaces, implicitly defined by f (x, y, z) = 0, g(x, y, z) = 0.

Writing x = (x, y, z)⊺, an isometry of the space is a mapping T : R3 → R3,

T (x) = Ax + b, (2.1)

where A is a 3 × 3 orthogonal matrix, i.e., AA⊺ = I, and b ∈ R3. We will use the notation

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , b =

b1

b2

b3

 , (2.2)

so

T (x, y, z) = (u(x, y, z), v(x, y, z),w(x, y, z))
= (a11x + a12y + a13z + b1, a21x + a22y + a23z + b2, a31x + a32y + a33z + b3).

We say that the surfaces S f ,Sg are congruent, if there exists an isometry T such that T (S f ) = Sg.
Under the hypothesis that the surfaces S f ,Sg are irreducible, this definition can be transferred to the
polynomials f , g defining the surfaces, so that S f ,Sg are congruent if, and only if,

f (u(x, y, z), v(x, y, z),w(x, y, z)) = λg(x, y, z), (2.3)
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where λ ∈ R − {0}.
As a special case, we say that the surface S f is symmetric if there is an isometry T other than

the identity, leaving S f invariant, i.e., T (S f ) = S f . This can be stated in terms of the polynomial f
as f (T (x)) = λ f (x). In this case, it can be shown that λ = ±1 [6].

In the rest of the paper, we will assume that none of the surfaces we are dealing with have multiple
components and that they are neither cylindrical nor surfaces of revolution. Cylindrical surfaces and
surfaces of revolution are the only surfaces admitting infinitely many symmetries [8], so under this
last hypothesis, we can be sure that the number of symmetries between S f ,Sg is finite: Indeed, if
T1 and T2 are two isometries between S f ,Sg, then T1 ◦ T

−1
2 is a symmetry of Sg and T −1

2 ◦ T1 is a
symmetry of S f . Thus, the existence of infinitely many isometries between S f ,Sg implies that S f ,Sg

have infinitely many symmetries themselves.
Since isometries preserve the degree, S f and Sg must have the same degree. In our case, we will

assume that deg(S f ) = deg(Sg) = n ≥ 3. Notice that for n = 1 where the surfaces are planes and
for n = 2 where the surfaces are quadrics, the problem can be solved easily using linear algebra. Thus,
we can summarize the problem in the following way.
Problem: Given two implicit algebraic surfaces S f ,Sg, implicitly defined by polynomials
f (x, y, z), g(x, y, z) of the same degree n ≥ 3 without multiple components, neither of them are
cylindrical or a surface of revolution. Find an algorithm to check whether or not S f ,Sg are congruent
and to compute the isometries, if any, between them in the affirmative case.

3. Detecting isometries between implicit surfaces

3.1. General strategy

Our approach consists of the following main steps.

(1) Reducing the problem to isometries fixing the origin. Isometries fixing the origin have the form
T (x) = Ax, so compared to Eq (2.1), they have three less parameters. In order to reduce our
problem to this case, we need to locate two points P and Q such that T (P) = Q. By performing
translations in each surface so that both P,Q are taken to the origin, we move to T (x) = Ax.

(2) Eliminating λ. If f (x, y, z) implicitly defines S f , where the degree of f (x, y, z) is n, then we can
write

f (x, y, z) = fn(x, y, z) + fn−1(x, y, z) + · · · + f0(x, y, z), (3.1)

where fd(x, y, z) are the homogeneous forms of f of degree d, with d = 0, 1, . . . , n; similarly for
g(x, y, z) and Sg. If T (x) = Ax is a congruence between S f ,Sg, we have that T (x) = Ax is also a
congruence between the surfaces defined by fd, gd, for all d, so

fd(T (x)) = λgd(x) (3.2)

for all d. λ can be written in terms of x and the entries of the matrix A and, therefore, it is
eliminated.

(3) Elimination and factorization. We first determine a polynomial system in the original variables
x, y, z, and the components u, v,w of the congruence T using (2.3). After computing a Gröbner
basis to eliminate, say, u, v, we can recover the functions w = w(x, y, z) as the linear factors in w
of the resulting polynomial. For u, v, we proceed in a similar way.
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In the first and third steps, we need to make use of two notions from Vector calculus, namely,
the Laplacian and Gradient, which behave nicely under isometries. Recall that the laplacian operator

∆ :=
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 satisfies [2]

∆( f (T (x))) = ∆ f (T (x)), (3.3)

and the gradient operator ∇ := (
∂

∂x
,
∂

∂y
,
∂

∂z
) satisfies [6]

∥∇ f (T (x))∥2 = ∥(∇ f )(T (x))∥2, (3.4)

where ∥ · ∥ denotes the Euclidean norm of a vector.

3.2. Reduction of the problem to isometries fixing the origin

We start by reducing the problem to finding isometries fixing the origin. In order to do this, we
form two other surfaces from the original surface, namely, the surface itself and the surfaces obtained
by taking the Laplacian ∆ f and the square of the norm ∥∇ f ∥2 of the gradient of the original surface. Let
us denote the surfaces defined by ∆ f , ∥∇ f ∥2 and by L f ,N f . Note that since f (x, y, z) is, by hypothesis,
not a plane, ∥∇ f ∥2 is not a constant. However, ∆ f might be a constant, in which case we replace ∆ f
by the Hessian of f , H f . An account regarding the invariance of the Hessian under isometries can be
found in [7].

Now, using Eqs (3.3) and (3.4), we get that if two surfaces, S f and Sg, are congruent by an
isometry T (x) = Ax + b, then the surfaces L f ,N f and Lg, Ng are also mutually congruent by the
same isometry T . Using this fact, we conclude that the intersection points of the systems {S f ,L f ,N f }

and {Sg,Lg,Ng} are congruent by T . Assume that the set of intersection points of the system
{S f ,L f ,N f } is P := {Pi}

m
i=1 and that the set of intersection points of the system {Sg,Lg,Ng}

is Q := {Qi}
m
i=1. Then, since T is an isometry and T (P) = Q, the barycenters of P and Q are also

congruent by T . Denote the barycenters of the intersection points of the above systems by P and Q,
respectively. Thus, we have the following result.

Lemma 3.1. If S f ,Sg are congruent by T , then P and Q are also congruent by T .

Let us provide a method to determine P and Q efficiently. We explain the method only for P, as the
computation for Q is the same. First, we need to compute a Gröbner basis for the system { f ,∆ f , ∥∇ f ∥2}
using a lexicographic order with z > y > x in order to eliminate the variables y, z. We denote the first
element of the basis by p1(x) =

∑m1
i=0 αixi. Since the first coordinates of the intersection points are the

roots of p1(x), using Cardano-Vieta’s formulae, we can determine the first coordinate of P as −
αm1−1

m1αm1

.

We then choose a bivariate polynomial q(x, y) in x, y in the basis and set p2(y) = Resx(p1(x), q(x, y)) :=∑m2
i=0 βiyi. Similarly, the second coordinate of P can be found as −

βm2−1

m2βm2

and the last one can be found

by a Gröbner basis of { f ,∆ f , ∥∇ f ∥2, p1(x), p2(y)} using a lexicographic order with x > y > z. We
denote the first element of the last basis by p3(z) :=

∑m3
i=0 γizi, then the third coordinate of P is −

γm3−1

m3γm3

.

Finally, we get

P = −
(
αm1−1

m1αm1

,
βm2−1

m2βm2

,
γm3−1

m3γm3

)
. (3.5)
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Remark 3.1. According to the extension Theorem [14], one needs to check whether or not the roots
obtained by eliminating y and z can be extended. To do this, we need to extend these solutions to x,y
and then to x,y,z. The key question is whether or not the leading coefficients vanish. If not, then the
solution can be extended.

Thus, whenever the intersection of the systems {S f ,L f ,N f } and {Sg,Lg,Ng} is nonempty and finite,
we can determine the barycenters P and Q efficiently. If the intersection is either empty or not finite, we
say that we fall in a FAIL case. We will provide an alternative method for these bad cases in Section 5.

Now let us assume that we are not in a fail case. Once we find P and Q, we apply translations x+ P
and x+Q to the surfaces S f and Sg so that P and Q are moved to the origin. These translated surfaces
are congruent by T (x) = Ax. We will use the following notation for the translated implicit equations
of the new surfaces:

F(x) := f (x + P),
G(x) := g(x + Q).

(3.6)

Thus, we aim to find the isometries satisfying

F(u, v,w) = λG(x, y, z), (3.7)

where (u, v,w) = (a11x + a12y + a13z, a21x + a22y + a23z, a31x + a32y + a33z).

3.3. Determining isometries fixing the origin

The polynomials F,G in Eq (3.6) satisfy F(T (x)) = λG(x), with T (x) = Ax. Denoting Ax =
(u(x, y, z), v(x, y, z),w(x, y, z)), we get F(u, v,w) = λG(x, y, z). We can write F and G in terms of their
homogeneous forms as F(x, y, z) =

∑n
i=0 Fd(x, y, z) and G(x, y, z) =

∑n
i=0 Gd(x, y, z), where Fd,Gd are

homogeneous of degree i. In turn, we get Fd(u, v,w) = λGd(x, y, z). Let d0 be the smallest integer

satisfying 0 ≤ d0 ≤ n such that Fd0 and Gd0 are not zero. Isolating λ for d0, we obtain λ =
Fd0(u, v,w)
Gd0(x, y, z)

.

Substituting the latter in Eq (3.2) and clearing the denominators, we have equations like

∆Fi(u, v,w)Gd0(x, y, z) − Fd0(u, v,w)∆Gi(x, y, z) = 0,
∥∇Fi(u, v,w)∥2G2

d0
(x, y, z) − F2

d0
(u, v,w)∥∇Gi(x, y, z)∥2 = 0,

(3.8)

where 0 ≤ i ≤ n. Let R be the polynomial system consisting of the equations of the type in Eq (3.8)
with the smallest i, where the corresponding equations in Eq (3.8) are nonzero. We compute a Gröbner
basis for R using the lexicographic order with w > v > u. Let us denote the first element of the basis
by Φ1, which can be considered as a polynomial in u with coefficients in R[x, y, z], then we have the
following result, which essentially will follow from Eq (3.7) and the Elimination Theory.

Proposition 3.1. Let SF and SG be congruent by (u, v,w) = (a11x+a12y+a13z, a21x+a22y+a23z, a31x+
a32y + a33z), then η1(u) := u − (a11x + a12y + a13z) is a linear factor of Φ1.

Let Ψ1,Ψ2 be the result of substituting u := (a11x + a12y + a13z) into two polynomials of R; notice
that Ψ1,Ψ2 are polynomials in v,w, x, y, z. Let

R(v) := Resw(Ψ1(x, y, z, v,w),Ψ2(x, y, z, v,w)), (3.9)

then we get the following result, which, again, follows from resultant properties and Eq (3.7).
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Proposition 3.2. Let SF and SG be congruent by (u, v,w) = (a11x+a12y+a13z, a21x+a22y+a23z, a31x+
a32y + a33z), then η2(v) := v − (a21x + a22y + a23z) is a linear factor of R(v).

Now, substituting the zeros of the linear factors η1 and η2 in Ψ1 and Ψ2, we get polynomials Ψ̃1, Ψ̃2

in w, x, y, z.

Proposition 3.3. Let SF and SG be congruent by (u, v,w) = (a11x+a12y+a13z, a21x+a22y+a23z, a31x+
a32y + a33z), then η3(w) := w − (a31x + a32y + a33z) is a linear factor of the common gcd of Ψ̃1 and Ψ̃2.

The following example illustrates these results.

Example 3.1. Consider the surfaces implicitly defined by the following polynomials.

f (x, y, z) = x4 + y4 − z4 −
1
2

x2 +
1
2

y2 + 2x2y2 +
1

16
,

g(x, y, z) = x4 − 8x3y + 16x3z + 8x2y2 + 8x2yz + 2x2z2 − 8xy3 + 16xy2z − 8xyz2

+ 16xz3 + 7y4 + 8y3z + 8y2z2 + 8yz3 + z4 +
20
3

x3 − 32x2y + 4x2z + 32xy2

− 32xyz − 4xz2 −
128
3

y3 − 32y2z − 32yz2 −
20
3

z3 +
45
2

x2 − 42xy + 24xz

+ 96y2 + 54yz +
51
2

z2 + 15x − 96y − 33z +
585
16
.

The first surface is called a Cassini surface, whose plotting can be seen in Figure 1. The second surface
is obtained by composing the first one with T (x) = Ax + b and multiplying the resulting polynomial
by 9, where

A =
1
3


2 −2 1
1 2 2
2 1 −2

 , b =


1
−1
0

 . (3.10)

Figure 1. Cassini Surface.
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Applying our algorithm, we find the barycenters P = (0, 0, 0) and Q = (−1
3 ,

4
3 ,

1
3 ). Translating f and

g by P and Q, we get

F(x, y, z) = x4 + y4 − z4 −
1
2

x2 +
1
2

y2 + 2x2y2 +
1

16
,

G(x, y, z) = x4 − 8x3y + 16x3z + 8x2y2 + 8x2yz + 2x2z2 − 8xy3 + 16xy2z − 8xyz2

+ 16xz3 + 7y4 + 8y3z + 8y2z2 + 8yz3 + z4 −
3
2

x2 + 6xy + 6yz +
3
2

z2 +
9
16
.

Forming the system R for F and G and computing a Gröbner basis, we have that

Φ1(u) = 9u2 − 4x2 + 8xy − 4xz − 4y2 + 4yz − z2,

which admits two linear factors

η11 = 3u + 2x − 2y + z,

η12 = 3u − 2x + 2y − z.

Substituting the above factors into R, we get Ψ1,Ψ2. Taking the resultant for each linear factor, we
obtain η1i, i ∈ {1, 2}

η21 = 3v − x − 2y − 2z,

η22 = 3v + x + 2y + 2z,

η23 = 3v − x − 2y − 2z,

η24 = 3v + x + 2y + 2z.

Substituting these factors into Ψ1,Ψ2, we get Ψ̃1, Ψ̃2. Taking their gcd, we obtain

η31 = 3w − 2x − y + 2z,

η32 = 3w + 2x + y − 2z.

All the above solutions together yields eight general solutions with λ = 1
9

1
3


2 −2 1
1 2 2
2 1 −2

 , b =


1
−1
0

 ;
1
3


−2 2 −1
1 2 2
2 1 −2

 , b =


−1
−1
0

 ;

1
3


2 −2 1
−1 −2 −2
2 1 −2

 , b =


1
1
0

 ;
1
3


−2 2 −1
−1 −2 −2
2 1 −2

 , b =


−1
1
0

 ;

1
3


2 −2 1
1 2 2
−2 −1 −2

 , b =


1
−1
0

 ;
1
3


−2 2 −1
1 2 2
−2 −1 2

 , b =


−1
−1
0

 ;

1
3


2 −2 1
−1 −2 −2
−2 −1 2

 , b =


1
1
0

 ;
1
3


−2 2 −1
−1 −2 −2
−2 −1 2

 , b =


−1
1
0

 .
Note that while the computation of the barycenters took 0.063 seconds, it took 0.125 seconds to
compute the whole example.
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IsoSurf
Input: Two surfaces S f ,Sg defined by polynomials f , g without multiple factors, which are neither
cylindrical nor surfaces of revolution.
Output: The isometries between S f ,Sg, or the text The surfaces are not congruent.

1: procedure IsoSurf( f , g)
2: Compute the barycenters P and Q.
3: if It fails to compute P and Q then
4: return FAIL
5: Assing L := ∅ and M := ∅
6: Assign F := f (x + P) and G := g(x + P)
7: Form the system R using F and G
8: Compute a Gröbner basis G for R
9: Compute Φ1(u) using G

10: Compute the linear factors η1 = u − a11x + a12y + a13z of Φ1(u)
11: for each linear factor η1 do
12: Compute R(v) using Eq (3.9)
13: Compute the linear factors η2 = v − a21x + a22y + a23z of R(v)
14: for each linear factor η2 do
15: Compute Ψ̃1 and Ψ̃2 substituting v = a21x + a22y + a23z
16: Compute the linear factors η3 = w − a31x + a32y + a33z from the gcd of Ψ̃1 and Ψ̃2

17: for each linear factor η3 do
18: Check if

u = a11x + a12y + a13z,

v = a21x + a22y + a23z,

w = a31x + a32y + a33z,

satisfy F(u, v,w) = λG(x, y, z)
19: In the affirmative case, append (u, v,w) to L.
20: if L , ∅ then
21: for each (u, v,w) in L do
22: Solve the system f (u + b1, v + b2,w + b3) = λg(x, y, z) for b1, b2, b3

23: if there is no solution then
24: next
25: else
26: Append [(u, v,w), λ, (b1, b2, b3)] to M
27: return M
28: else
29: return The surfaces are not congruent.
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4. Experimentation.

The algorithm IsoSurf was implemented in the computer algebra system Maple™ [20] and was
tested on a PC with a 2.4 GHz Intel Core i5 processor and 8 GB RAM. Technical details, examples
and source codes of the procedures are provided in the first author’s personal website [16].

In all of our tests and examples, in order to generate congruent surfaces, we take a surfaceS f defined
by the implicit equation f (x, y, z) = 0 and apply to S f the isometry in Eq (3.10) (see Section 3.3), so
that Sg is the surface implicitly defined by g(x, y, z) = 0, with g = f ◦ T .

We start by surfaces whose implicit equations are provided in Table 1.
Plots of the surfaces given in Table 1 are presented in Figure 2.

Name Implicit Eq
Cayley’s Cubic 2x3 − 6xy2 − zx2 − zy2 + 3x2 + 3y2 + z3 − 1/3z2 + z − 1
Clebsch Cubic 81x3 − (189 ∗ y + 189 ∗ z + 9)x2 + (−189y2 + (54z + 126)y − 189z2 + 126z − 9)x + 81(−3z + 1

3 + y)(z − 1
3 + y)(−1

3z − 1
9 + y)

Bohemian Dome −x4 − 2x2y2 + 2x2z2 − y4 − 2y2z2 − z4 + 4y2

Chubs Surface x4 + y4 + z4 − x2 − y2 − z2 + 1
2

Togliatti Surface 64(x − 1)(x4 − 10x2y2 + 5y4 − 4x3 − 20xy2 − 4x2 − 20y2 + 16x + 16) − 5
√

5 −
√

5(2z −
√

5 −
√

5)(4x2 + 4y2 − 4z2 + 1 + 3
√

5)2

Kusner Schmitt x2y2z2 + 3x2y2 + 3x2z2 + 3y2z2 − 32xyz + 9x2 + 9y2 + 9z2 − 5
Bohemian Star x4y4 + 2x2y6 + 2x2y4z2 + y8 + 2y6z2 + y4z4 − 4x2y4 − 16x2y2z2 − 4y4z2 + 16x2z2

C8 Surface 64x8 + 64y8 + 64z8 − 128x6 − 128y6 − 128z6 + 80x4 + 80y4 + 80z4 − 16x2 − 16y2 − 16z2 + 2

Table 1. The implicit equations of various surfaces.

(a) Cayley’s Cubic (b) Clebsch Cubic (c) Bohemian Dome (d) Chubs Surface

(e) Togliatti Surface (f) Kusner Schmitt (g) Bohemian Star (h) C8 Surface

Figure 2. Plots of the surfaces given in Table 1.

In Table 2, we provide the computation times for computing all isometries and symmetries of the
surfaces given in Table 1. The table reveals that computing the symmetries is quite faster than
computing the isometries. The reason is that the isometries make the first polynomial denser so that
the algorithm deals with a more complicated system. Still, the algorithm handles isometries in a few
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seconds, as seen in the table. In addition to this, notice that we choose examples so that the surfaces
admit lots of isometries/symmetries, including surfaces with 48 isometries/symmetries.

♯ of t t
Surface Isom./Symm. Isom. Symm.
Cayley’s Cubic 2 0.063 0.047
Clebsch Cubic 6 0.047 0.047
Bohemian Dome 16 0.172 0.031
Chubs Surface 48 0.359 0.063
Togliatti Surface 2 8.672 3.219
Kusner Schmitt 24 0.984 0.172
Bohemian Star 16 12.000 0.253
C8 Surface 48 7.891 0.485

Table 2. CPU time in seconds for isometries and symmetries of the surfaces defined by the
polynomials in Table 1.

We continue with computing symmetries of surfaces implicitly defined by random dense
polynomials. To guarantee that the randomly generated surfaces have several symmetries, we apply
the change of variables (x, y, z) → (x2, y2, z2) to the random dense polynomial f (x, y, z) defining the
surface. The surfaces generated by this method have exactly 8 symmetries

Ti jk =


(−1)i 0 0

0 (−1) j 0
0 0 (−1)k


for all i, j, k ∈ {0, 1}, where T000 is the trivial symmetry. We test these surfaces according to various
degrees and coefficient bitsizes. Recalling that the bitsize τ of an integer m is defined to be the
integer τ = ⌈log2k⌉ + 1, we call the maximum bitsize of the coefficients of the polynomial defining a
surface as the bitsize of the surface. In Table 3, we present the timings for computing symmetries of
the randomly generated implicit surfaces with degrees ranging from 4 to 12 and bitsizes ranging
from 4 to 64. In all of the cases, our algorithm can compute all 8 symmetries in a couple of seconds.

n τ = 4 τ = 8 τ = 16 τ = 32 τ = 64
4 0.015 0.010 0.010 0.010 0.010
6 0.016 0.016 0.015 0.016 0.015
8 0.063 0.078 0.063 0.078 0.422
10 0.125 0.125 0.281 0.703 0.453
12 1.906 2.047 2.344 3.656 7.250

Table 3. CPU time in seconds for computing symmetries of implicit surfaces implicitly
defined by random dense polynomials.

5. Backup method

In this section, we provide a method similar to the one presented in [9] for computing isometries
whenever the method presented in Section 3 fails; this happens when the solution set of the
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systems {S f ,L f ,N f } and {Sg,Lg,Ng} is either empty or not finite. In that case, we exploit the
relationship between the homogeneous forms of maximum degree of the polynomials defining the
surfaces we want to compare. We will consider a projective setup.

Let S f and Sg be two surfaces implicitly defined by f (x, y, z) and g(x, y, z). Let S̃F and S̃G be their
projective closures, implicitly defined by F(x, y, z, t) and G(x, y, z, t), where t is the homogenization
variable. If S̃F and S̃G are congruent, then

F(M x̄) = λG(x̄), (5.1)

where x̄ = (x, y, z, t)⊺ and

M =
(

A b
0 1

)
, (5.2)

with b ∈ R3 and A is orthogonal. Collecting F and G, with respect to the homogenization variable, we
get

F(x, y, z, t) = fn(x, y, z) + fn−1(x, y, z)t + · · · + f0(x, y, z)tn,

G(x, y, z, t) = gn(x, y, z) + gn−1(x, y, z)t + · · · + g0(x, y, z)tn,
(5.3)

where fd and gd correspond to the homogeneous forms of degree d of f and g. Let us denote

F(M x̄) = f̃n(x, y, z) + f̃n−1(x, y, z)t + · · · + f̃0(x, y, z)tn. (5.4)

Thus, if Eq (5.1) holds, then we have for all 0 ≤ d ≤ n,

f̃d(x, y, z) = λgd(x, y, z). (5.5)

For d = n, it is clear that f̃n(x, y, z) = λgn(x, y, z) implies that fn(Ax) = λgn(x), so fn(x, y, z) and
gn(x, y, z) are congruent by T (x) = Ax, where x = (x, y, z)⊺. Since T is an isometry fixing the origin,
we can develop a method similar to the method given in Section 3.3. Denoting T (x) = (u, v,w), we
get a system

fn(u, v,w) − λgn(x, y, z) = 0,
∆ fn(u, v,w) − λ∆gn(x, y, z) = 0,

∥∇ fn(u, v,w)∥2 − λ2∥∇gn(x, y, z)∥2 = 0.
(5.6)

Here, we find another equality in λ. Let us denote

∆k p(x, y, z) = ∆ ◦ ∆ ◦ · · · ◦ ∆︸            ︷︷            ︸
k times

p(x, y, z),

for a polynomial p. Consider the polynomial ∆k∥∇ fn∥
2. Here, since ∥∇ fn∥

2 is a polynomial of degree
2n− 2, we get, for all k ≥ n, ∆k∥∇ fn∥

2 = 0. Let k0 be the greatest integer satisfying 1 ≤ k0 ≤ n− 1 such
that ∆k0∥∇ fn∥

2 is not a zero polynomial. Using the second equality in system (5.6), we get that

λ2 =
∆k0∥∇ fn(u, v,w)∥2

∆k0∥∇gn(x, y, z)∥2
. (5.7)
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Substituting the above equality into the system (5.6) and clearing denominators, we get a system free
from the parameter λ.

f 2
n (u, v,w)∆k0∥∇gn∥

2 − g2
n(x, y, z)∆k0∥∇ fn∥

2 = 0,
(∆ fn)2(u, v,w)∆k0∥∇gn∥

2 − (∆gn)2(x, y, z)∆k0∥∇ fn∥
2 = 0,

∥∇ fn(u, v,w)∥2∆k0∥∇ fn∥
2 − ∥∇gn(x, y, z)∥2∆k0∥∇gn∥

2 = 0.
(5.8)

Finally, we proceed as in Section 3.3 but with replacing the system R by the above system. Once we
determine the isometry T (x) = Ax, we substitute the matrix A in M defined in Eq (5.2). Therefore, it
remains to determine b. To do this, we use the polynomial equality corresponding d = n − 1 in Eq 5.5,
which is a linear system. Let us provide an example below to illustrate the idea.

Example 5.1. Consider the surfaces implicitly defined by the polynomials

f (x, y, z) = x4 + 4x2y2 − 2x2z2 + 4y4 − 4y2z2 + z4 + 2x2 + y2 − 1,

g(x, y, z) =
4
9

x4 −
16
9

x3y +
80
9

x3z +
20
3

x2y2 −
32
3

x2yz +
140
3

x2z2 −
88
9

xy3

+
104
3

xy2z +
200
3

xyz2 +
200
9

xz3 +
121
9

y4 +
352
9

y3z +
122
3

y2z2

+
160
9

yz3 +
25
9

z4 − 16x2y − 8x2z + 32xy2 − 144xyz − 80xz2

− 88y3 − 172y2z − 104yz2 − 20z3 + 21x2 − 36xy + 132xz + 222y2

+ 240yz + 72z2 + 18x − 252y − 108z + 99.

(5.9)

For these surfaces the intersections of the systems {S f ,L f ,N f } and {Sg,Lg,Ng} are empty. Thus, the
algorithm IsoSurf fails to reduce the problem using barycenters P and Q. Applying the method given
in this section gives exactly 8 isometries between S f and Sg. These isometries are, with λ = 1

9 ,

1
3


2 −2 1
1 2 2
−2 −1 2

 , b =


1
−1
0

 ;
1
3


−2 2 −1
1 2 2
−2 −1 2

 , b =


−1
−1
0

 ;

1
3


2 −2 1
−1 −2 −2
−2 −1 2

 , b =


1
1
0

 ;
1
3


−2 2 −1
−1 −2 −2
−2 −1 2

 , b =


−1
1
0

 ;

1
3


2 −2 1
1 2 2
2 1 −2

 , b =


1
−1
0

 ;
1
3


−2 2 −1
1 2 2
2 1 −2

 , b =


−1
−1
0

 ;

1
3


2 −2 1
−1 −2 −2
2 1 −2

 , b =


1
1
0

 ;
1
3


−2 2 −1
−1 −2 −2
2 1 −2

 , b =


−1
1
0

 .
The whole computation to determine all isometries between S f and Sg using the direct method
took 0.187 seconds.
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6. Conclusions

We have provided a new and computationally efficient algorithm for computing the isometries
between two implicit algebraic surfaces, as well as computing symmetries when the input surfaces
coincide. We have implemented the algorithm in the computer algebra system Maple to test it on
various aspects. The results of the tests demonstrate that the algorithm works efficiently. Even for
highly symmetric surfaces with higher degrees, the algorithm can compute all the
isometries/symmetries in a few seconds.

The algorithm consisted of two main steps. The first step reduced the problem to finding isometries
fixing the origin. Once we reduced the problem, the second step computed the isometries by determing
their components as linear factors from polynomials originated from a Gröbner elimination process. If
the reduction step failed, we used a backup alternative method, inspired by [9].

The reason why the method was efficient is that the reduction step allowed us to replace the original
polynomials by polynomials of much smaller degrees, which are in fact homogeneous forms of the
polynomials obtained after appropriately translating the original polynomials. The main computational
tools that we employed were Gröbner basis computations, polynomial factoring and gcds. In particular,
we completely avoided multivariate polynomial system solving.

One can wonder whether our ideas can be extended to detecting other equivalences between implicit
surfaces, e.g., similarities, affine equivalences, or projective equivalences. For similarities, the behavior
of the invariants used in this paper, namely, the gradient and the laplacian, were also good, so there
might be some hope; however, for similarities, we have a new unknown, the similarity ratio, which
needs to be considered. Affine or projective equivalences are more challenging, since the behavior of
the invariants used in this paper were not good anymore.
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17. M. Hauer, B. Jüttler, Projective and affine symmetries and equivalences of
rational curves in arbitrary dimension, J. Symb. Comput., 87 (2018), 68–86.
https://doi.org/10.1016/j.jsc.2017.05.009
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19. B. Jüttler, N. Lubbes, J. Schicho, Projective isomorphisms between rational surfaces, J. Algebra,
594 (2022), 571–596. https://doi.org/10.1016/j.jalgebra.2021.11.045

20. Maple™, 2021. Maplesoft, a division of Waterloo Maple Inc. Waterloo, Ontario.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 2, 4294–4308.

http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2021.11.045
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Detecting isometries between implicit surfaces
	General strategy
	Reduction of the problem to isometries fixing the origin
	Determining isometries fixing the origin

	Experimentation.
	Backup method
	Conclusions

