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1. Introduction

Let H be a real Hilbert space equipped with an inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. In
this work, we deal with the minimization of a strongly convex smooth function over the common
fixed-point constraints, which is in the following form:

minimize f (x)

subject to x ∈
m⋂

i=1

Fix Ti,
(1.1)

where Fix Ti := {x ∈ H : Ti(x) = x} and the objective function and the constrained operators satisfy
the following assumptions:

(A1) The function f : H → R is η-strongly convex and L-smooth.

(A2) The operators Ti : H → H , i = 1, . . . ,m, are cutters with
m⋂

i=1

Fix Ti , ∅.
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Thanks to the closedness and the convexity of the common fixed-point sets
m⋂

i=1

Fix Ti and the strong

convexity of f , we can ensure that the solution set to the problem (1.1) is a singleton set. In this
situation, we denote the solution point to the problem (1.1) by x∗ throughout this work.

1.1. Related works

The minimization problem and its generalization (such as variational inequality problem) over the
common fixed-point constraints have been investigated by many authors, in which we briefly note some
related works as follows. Bauschke [1] considered the problem (1.1) in the case when the objective
function is given by f (x) := 1

2∥x − a∥2, where the point a ∈ H is a given point and the operators
Ti, i = 1, 2, . . . ,m are nonexpansive operators. He proposed the following method: Given x1 ∈ H and
a nonnegative sequence {βk}

∞
k=1, for all k ∈ N, compute

xk+1 = T[k+1](xk) − βk+1(T[k+1](xk) − a), (1.2)

where the function [·] is the modulo m function taking values in {1, . . . ,m}. Bauschke proved that the
sequence {xk}∞k=1 generated by the proposed method (1.2) converges strongly to the unique solution of
the considered problem, provided that the constrained set satisfies

m⋂
i=1

Fix Ti = Fix(Tm · · · T1)

= Fix(T1Tm · · · T3T2)
= · · · = Fix(Tm−1Tm−2 · · · T1Tm), (1.3)

and the sequence {βk}
∞
k=1 ⊂ [0, 1) satisfies limk→∞ βk = 0,

∑∞
k=1 βk = ∞, and

∑∞
k=1 |βk+m − βk| < ∞.

After that, Yamada [2] considered the solving of a more general setting of the problem (1.1) in the
sense of variational inequality problem governed by the strongly monotone and Lipschitz continuous
operator F : H → H . Thanks to the optimality condition, it is well known that such a considered
problem can be reduced to the problem (1.1) by setting F := ∇ f . He proposed the so-called hybrid
steepest descent method, which is in the following form: Given x1 ∈ H and a nonnegative sequence
{βk}

∞
k=1, for all k ∈ N, compute

xk+1 = T[k+1](xk) − βk+1F(T[k+1](xk)). (1.4)

With the similar assumption on the constrained set (1.3) and the control sequence {βk}
∞
k=1, the strong

convergence of the proposed method (1.4) to the unique solution of the considered problem was
obtained.

Xu and Kim [3] also investigated the problem in the same setting as in Yamada [2] and considered
the convergence result of the method (1.4) by proposing a variant condition of the control sequence
{βk}

∞
k=1 ⊂ (0, 1], which satisties limn→∞

βn
βn+1
= 1 in place of the condition

∑∞
k=1 |βk+m − βk| < ∞ given in

Yamada [2]. Another condition of the control sequence {βk}
∞
k=1 and the assumption on the constrained

set (1.3) are also the same as above. After the works of Yamada [2] and Xu and Kim [3] were presented,
many authors considered the variances and generalizations; see, for instance, [4–9].
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Prangprakhon et al. [10] also considered the solving of the variational inequality problem over the
intersection of fixed point sets of firmly nonexpansive operators. They presented an iterative algorithm,
which can be viewed as a generalization of the hybrid steepest descent method in the allowance of
adding appropriated information when computing operators values. The main feature of their proposed
method is the presence of added information that can be viewed as the allowance of possible numerical
errors on the computations of operators’ values. They subsequently proved the strong convergence of
the proposed method without the assumption on the constrained set (1.3).

Prangprakhon and Nimana [11] subsequently proposed the so-called extrapolated sequential
constraint method with conjugate gradient direction (ESCoM-CGD) for solving the variational
inequality problem over the intersection of the fixed-point sets of cutters. ESCoM-CGD is motivated
by the ideas of the hybrid conjugate gradient method [12], which is an accelerated version of the
hybrid steepest descent method together with the extrapolated cyclic cutter methods [13, 14]. This
method consists of two interesting features, namely, it consists of the extrapolation stepsize function
σ(yk) (see Step 2 of Algorithm 1) and the search direction dk+1, which is the combination of the current
direction −∇ f (xk+1) together with a previous search direction dk. By assumming the boundedness of
the generated sequence {xk}∞k=1 together with the assumptions on control sequences, they also proved
the strong convergence of the proposed method.

Very recently, Petrot et al. [15] proposed the so-called dynamic distributed three-term conjugate
gradient method for solving the strongly monotone variational inequality problem over the intersection
of fixed-point sets of firmly nonexpansive operators. Unlike [11], this method has a simultaneous
structure so that it allows the independent computation of each operator along with the dynamic weight,
which is updated at every iteration. Moreover, the strong convergence of the method was obtained
without assuming that the sequence {xk}∞k=1 is bounded.

1.2. Our contribution

In this work, we will present a modification version of ESCoM-CGD by using the search direction
considered in [15]. We will prove the convergence of the proposed method without assuming that
the generated sequence is bounded. It is important to underline that we will simplify the proving lines
compared to the proof of ESCoM-CGD given in [11, Theorem 3] in a shortened way. We also show that
the proposed algorithm and convergence result are applicable in the binary classification via support
vector machine learning.

The remainder of this work is organized as follows. In the rest of this section, we collect some
mathematical preliminaries consisting of some useful definitions and facts needed in the proving
lines. In Section 2, we present the modified version of ESCoM-CGD for finding the solution to the
problem (1.1). The main convergence theorem and some important remarks are also given in this
section. In Section 3, we provide some usefulness of the proposed method and its convergence result
in solving the minimum-norm problem to the system of homogeneous linear inequalities, as well as
the binary classification via support vector machine learning. In Section 4, we provide some technical
convergence properties of the generated sequences and, subsequently, prove the main convergence
theorem. Lastly, we give a concluding remark.
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1.3. Mathematical preliminaries

In this subsection, we will recall some definitions, properties, and key tools in proving our
convergence results. The readers can consult the books [16, 17] for more details.

We denote by Id the identity operator on a Hilbert spaceH . For a sequence {xk}∞k=1, the strong and
weak convergences of a sequence {xk}∞k=1 to a point x ∈ H are defined by the expression xk → x and
xk ⇀ x, respectively.

We will recall the convexity and smoothness of a function. Now, let f : H → R be a real-valued
function. Let α > 0 be given. We say that the function f is convex if, for all x, y ∈ H and for all
λ ∈ [0, 1], it holds that

f ((1 − λ)x + λy) ≤ (1 − λ) f (x) + λ f (y).

In particular, we say that the function f is α-strongly convex if, for all x, y ∈ H and for all λ ∈ [0, 1],
it holds that

f ((1 − λ)x + λy) ≤ (1 − λ) f (x) + λ f (y) −
1
2
αλ(1 − λ)∥x − y∥2.

The constant α is called the strongly convex parameter.
Let x ∈ H be given. We say that the function f is Fréchet differentiable or, in short, differentiable

at x if there exists a vector g ∈ H such that

lim
h→0

f (x + h) − f (x) − ⟨g,h⟩
∥h∥

= 0.

Moreover, we call this unique vector g by the gradient of f at x and denote it by ∇ f (x).
It is well known that the convexity of f can be characterized in terms of differentiability property

as the followings.

Fact 1.1. [16, Theorem 5.24] Let f : H → R be a real-valued differentiable function, then f is
α-strongly convex if, and only if, for all x, y ∈ H , we have

⟨∇ f (x) − ∇ f (y), x − y⟩ ≥ α∥x − y∥2.

The following fact is the cornerstone of our proving lines. It is the necessary and sufficient condition
for the optimality of a convex function over a nonempty closed and convex set.

Fact 1.2. [16, Corollary 3.68] Let f : H → R be a continuously differentiable convex function and
C ⊂ H be a closed and convex set, then f attains its minimum at a point x∗ ∈ C if, and only if, for all
y ∈ C, it holds that

⟨∇ f (x∗), y − x∗⟩ ≥ 0.

Let L ≥ 0 be given. We say that the function f is L- smooth if it is differentiable and, for all
x, y ∈ H , it satisfies that

∥∇ f (x) − ∇ f (y)∥ ≤ L∥x − y∥.

The constant L is called the smoothness parameter. It is clear that an L-smooth function is a
continuously differentiable function.

The following fact is a very useful tool in obtaining the convergence result. The proof can be found
in [2, Lemma 3.1(b)].
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Fact 1.3. Let f : H → R be an η-strongly convex and L-smooth. For any µ ∈ (0, 2η/L2) and β ∈ (0, 1],
if we define the operator Fβ : H → H by Fβ(x) := x − µβ∇ f (x) for all x ∈ H , then

∥Fβ(x) − Fβ(y)∥ ≤ (1 − βτ)∥x − y∥,

for all x, y ∈ H , where τ := 1 −
√

1 + µ2L2 − 2µη ∈ (0, 1].

Next, we recall the definition of cutters and some useful properties.
Let T : H → H be an operator with Fix T := {x ∈ H : T (x) = x} , ∅. We say the operator T is a

cutter if, for all x ∈ H and z ∈ Fix T , we have

⟨x − T (x), z − T (x)⟩ ≤ 0.

The followings are the important properties of cutters.

Fact 1.4. [17, Remark 2.1.31 and Lemma 2.1.36.] Let T : H → H be a cutter, then the following
statements hold:

(i) Fix T is closed and convex.
(ii) For all x ∈ H and for all z ∈ Fix T, we have ⟨Tx − x, z − x⟩ ≥ ∥T (x) − x∥2.

Next, we recall the definitions of relaxations of an operator. Let T : H → H be an operator and
λ ∈ [0, 2] be given. The relaxation of the operator T is defined by Tλ(x) := (1 − λ)x + λT (x), for all
x ∈ H . In this case, we call the parameter λ by a relaxation parameter. Moreover, let σ : H → (0,∞)
be a function. The generalized relaxation of the operator T is defined by

Tσ,λ(x) := x + λσ(x)(T (x) − x),

for all x ∈ H . In this case, we call the function σ by a stepsize function. If the function σ(x) ≥ 1 for
all x ∈ H , then we call the operator Tσ,λ by an extrapolation of Tλ. We denote Tσ := Tσ,1. It is worth
noting that, for all x ∈ H , the followings hold

Tσ,λ(x) − x = λσ(x)(T (x) − x) = λ(Tσ(x) − x),

and for all λ , 0, we also have
Fix Tσ,λ = Fix Tσ = Fix T.

For the simplicity, we denote the compositions of operators as

T := TmTm−1 · · · T1,

S 0 := Id

and
S i := TiTi−1 · · · T1, i = 1, 2, . . . ,m.

We recall the important properties that will be useful for the convergence properties.
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Fact 1.5. [17, Section 4.10] Let Ti : H → H , i = 1, 2, . . . ,m, be cutters with
m⋂

i=1

Fix Ti , ∅. Let

σ : H → (0,∞) be defined by

σ(x) :=


∑m

i=1⟨T (x) − S i−1(x), S i(x) − S i−1(x)⟩
∥T (x) − x∥2

, if x <
m⋂

i=1
Fix Ti,

1, otherwise,
(1.5)

then the following properties hold:

(i) For all x <
⋂m

i=1 Fix Ti, we have

σ(x) ≥
1
2

∑m
i=1 ∥S i(x) − S i−1(x)∥2

∥T (x) − x∥2
≥

1
2m
.

(ii) The operator Tσ is a cutter.

Next, we will recall the notion of demi-closedness principle as follows.
Let T : H → H be an operator having a fixed point. The operator T is said to satisfy the demi-

closedness principle if, for every sequence {xk} ⊂ H such that xk ⇀ x ∈ H and ∥T (xk) − xk∥ → 0, we
have x ∈ Fix T .

We close this section by recalling the well-known metric projection, which is defined in the
following: Let C be a nonempty subset of H and x ∈ H . If there is a point y ∈ C such that
∥x − y∥ ≤ ∥x − z∥, for any z ∈ C, then y is said to be a metric projection of x onto C and is denoted by
PC(x). If PC(x) exists and is uniquely determined for all x ∈ H , then the operator PC : H → H is said
to be the metric projection onto C. Actually, we need some additional properties of the set C to ensure
the existence and the uniqueness of a metric projection PC(x) for a point x ∈ H as the following fact.

Fact 1.6. [17, Theorem 1.2.3.] Let C be a nonempty closed convex subset of H , then for any x ∈ H ,
there exists a metric projection PC(x) and it is uniquely determined.

Moreover, we finally note that the metric projection onto a nonempty closed convex set C is a cutter
with Fix PC = C; see [17, Theorem 2.2.21.] for further details.

2. Algorithm and its convergence

We will proceed in this section by presenting a modified version of the extrapolated sequential
constraint method with conjugate gradient direction (ESCoM-CGD) for solving the problem (1.1).
Now, we are in a position to state a modified version of ESCoM-CGD as the following algorithm. We
call the proposed method by the modified extrapolated sequential constraint method with conjugate
gradient direction (in short, MESCoM-CGD).
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Algorithm 1: MESCoM-CGD

Initialization: Put nonnegative sequences {βk}
∞
k=1, {φk}

∞
k=1 and {λk}

∞
k=1, and a parameter

µ ∈
(
0, 2η

L2

)
. Choose an initial point x1 ∈ H arbitrarily and set d1 = −∇ f (x1).

Iterative Step (k ∈ N): For a current iterate xk ∈ H and direction dk ∈ H , repeat the following
steps:

Step 1. Compute the iterate yk ∈ H as

yk := xk + µβk
dk

max{1, ∥dk∥}
.

Step 2. Compute the stepsize σ(yk) as

σ(yk) :=



m∑
i=1

⟨T (yk) − S i−1(yk), S i(yk) − S i−1(yk)⟩

∥T (yk) − yk∥
2 , if yk <

m⋂
i=1

Fix Ti,

1, otherwise.

Step 3. Compute the recurrence xk+1 ∈ H and the search direction dk+1 ∈ H as

xk+1 := Tσ,λk(y
k)

and

dk+1 := −∇ f (xk+1) + φk+1
dk

max{1, ∥dk∥}
.

Step 4. Update k := k + 1 and return to Step 1.

Some comments and particular situations of MESCoM-CGD are the following:

Remark 2.1. (i) As we have mentioned that the convergence of ESCoM-CGD (see, [11, Theorem 3])
relies on the assumption that the generated sequence {xk}∞k=1 is bounded, however, it is also pointed
in [11, Remark 3] that the boundednesses of the search direction {dk}∞k=1 ∈ H and the sequence {φk}

∞
k=1

together with the definition of the search direction yield the boundedness of the sequence {xk}∞k=1.
In this situation, if we construct the bounded search direction

{
dk

max{1,∥dk∥}

}∞
k=1
∈ H in place of the

previous version, then the boundedness of the generated sequence {xk}∞k=1 will be provable as well
(see, Lemma 3.3 below). One can notice that the key idea of this bounded strategy is nothing else but
restricting the search direction in a unit ball centered at the origin.

(ii) If the search direction {dk}∞k=1 is guaranteed to stay within the unit ball centered at the origin,
then it holds that max{1, ∥dk∥} = 1 so that MESCoM-CGD is reduced to the ESCoM-CGD in the case
when the operator Tm = Id.

(iii) If the number of m = 1, the relaxation parameter λk = 1, the stepsize σ(yk) = 1, and
max{1, ∥dk∥} = 1 for all n ∈ N, then MESCoM-CGD is nothing else but the hybrid conjugate gradient
method proposed in [12].

Now, let us begin this section by investigating the assumptions needed for the convergence result.
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Assumption 2.2. Assume that

(H1) The sequence of stepsizes {βk}
∞
k=1 ⊂ (0, 1] satisfies

∞∑
k=1

βk = ∞ and
∞∑

k=1

β2
k < ∞.

(H2) The sequence of parameters {φk}
∞
k=1 ⊂ [0,∞) satisfies lim

k→∞
φk = 0.

(H3) There is a constant ε ∈ (0, 1) such that the relaxation parameters {λk}
∞
k=1 ⊂ [ε, 2 − ε].

(H4) The operators Ti, i = 1, . . . ,m, satisfy the demi-closedness principle.

Let us briefly discuss some particular situations in which hypotheses (H1)–(H4) hold as follows:

Remark 2.3. (i) An example of the stepsizes {βk}
∞
k=1 satisfying (H1) is, for instance, βk =

β0
(k+1)b with

β0 ∈ (0, 1] and b ∈ (0, 1] for all k ∈ N.
(ii) An example of the parameters {φk}

∞
k=1 satisfying (H2) is, for instance, φk =

φ0
(k+1)c with φ0 ≥ 0

and c > 0 for all k ∈ N.
(iii) The role of the constant ε ∈ (0, 1) is to ensure that the term λk(2 − λk) stays away from zero

for all k ∈ N. This will yield that the cancellation of this term can be processed. One can take, for
instance, λk = λ0 for some λ0 ∈ (0, 2) as a trivial example of relaxation parameters {λk}

∞
k=1, satisfying

hypothesis (H3).
(iv) The demi-closedness principle of the operators Ti, i = 1 =, . . . ,m, in (H4) is a key property

and it is typically assumed when dealing with the convergence result of the common fixed-point type
problems. Actually, the demi-closedness principle is satisfied by a nonexpansive operator, i.e., ∥Ti(x)−
Ti(y)∥ ≤ ∥x − y∥ for all x, y ∈ H ; see [17, Lemma 3.2.5.] for the proving lines with some historical
notes. This yields that the metric projection onto a nonempty closed and convex also satisfies the
demi-closedness principle, see [17, Theorem 2.2.21]. Moreover, it is worth mentioning that the demi-
closedness principle is also satisfied by a subgradient projection operator P f for a convex continuous
function f : H → R, which is Lipschitz continuous relative to every bounded subset of H ; see [17,
Theorem 4.2.7] for more details.

The main result of this work is the following theorem:

Theorem 2.4. Let the sequence {xk}∞k=1 be generated by MESCoM-CGD and assume that assumptions
(A1) and (A2) and hypotheses (H1)–(H4) hold, then the sequence {xk}∞k=1 converges strongly to the
unique solution x∗ of the problem (1.1).

3. Proof of Theorem 2.4

In this section, we will provide some technical convergence properties and close this section by
proving the convergence of the proposed method to the unique solution of the problem (1.1).

For simplicity of notations, we denote

τ := 1 −
√

1 + µ2L2 − 2µη ∈ (0, 1]

and, for every n ∈ N and x ∈
m⋂

i=1

Fix Ti, we denote

εk := µ2β2
k +

2µβk

max{1, ∥dk∥}
⟨xk − x,dk⟩
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and
αk :=

βkτ

max{1, ∥dk∥}
.

Moreover, for every k ≥ 2, we denote

δk :=
2µ
τ

(
φk

max{1, ∥dk−1∥}
⟨dk−1, yk − x⟩ − ⟨∇ f (x), yk − x⟩

)
.

In order to prove the convergence result in Theorem 2.4, we collect several facts that will be useful
in what follows. We first state the lemma relating to the norms of iterate xk to a common fixed-point.
The analysis is similar to those given in [11, Lemma 4], however, we state here again for the sake of
completeness.

Lemma 3.1. For all k ∈ N and x ∈
m⋂

i=1

Fix Ti, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 −
λk(2 − λk)

4m

m∑
i=1

∥S i(yk) − S i−1(yk)∥
2
+ εk.

Proof. Let k ∈ N and x ∈
m⋂

i=1

Fix Ti be given. By using the properties of extrapolation and Facts 1.4

(ii) and 1.5(ii), we note that

∥xk+1 − x∥2 = ∥Tσ,λk(y
k) − x∥2

= ∥yk + λkσ(yk)(T (yk) − yk) − x∥2

= ∥yk − x∥2 + λ2
k∥σ(yk)(T (yk) − yk)∥

2
+ 2λk⟨yk − x, σ(yk)(T (yk) − yk)⟩

= ∥yk − x∥2 + λ2
k∥Tσ(yk) − yk∥

2
+ 2λk⟨yk − x,Tσ(yk) − yk⟩

≤ ∥yk − x∥2 + λ2
k∥Tσ(yk) − yk∥

2
− 2λk∥Tσ(yk) − yk∥

2

= ∥yk − x∥2 − λk(2 − λk)∥Tσ(yk) − yk∥
2

= ∥yk − x∥2 − λk(2 − λk)σ2(yk)∥T (yk) − yk∥
2

≤ ∥yk − x∥2 − λk(2 − λk)

1
4

 m∑
i=1

∥S i(yk) − S i−1(yk)∥
2
2

∥T (yk) − (yk)∥4
∥Tyk − yk∥

2

= ∥yk − x∥2 − λk(2 − λk)

1
4

 m∑
i=1

∥S i(yk) − S i−1(yk)∥
2
2

∥T (yk) − yk∥
2

≤ ∥yk − x∥2 −
λk(2 − λk)

4m

m∑
i=1

∥S i(yk) − S i−1(yk)∥
2
. (3.1)

We note from the definition of {yk}∞k=1 that
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∥yk − x∥2 ≤
∥∥∥∥xk + µβk

dk

max{1, ∥dk∥}
− x

∥∥∥∥2

= ∥xk − x∥2 +
µ2βk

2

max{1, ∥dk∥}
2 ∥d

k∥
2
+

2µβk

max{1, ∥dk∥}
⟨xk − x,dk⟩

≤ ∥xk − x∥2 + µ2βk
2 +

2µβk

max{1, ∥dk∥}
⟨xk − x,dk⟩

= ∥xk − x∥2 + εk.

By invoking this relation in (3.1), we obtain

∥xk+1 − x∥2 ≤ ∥xk − x∥2 −
λk(2 − λk)

4m

m∑
i=1

∥S i(yk) − S i−1(yk)∥
2
+ εk

as required. □

In order to prove the boundedness of the generated sequence {xk}∞k=1, we need the following
proposition [18, Lemma 3.1].

Proposition 3.2. Let {ak}
∞
k=1 be a sequence of nonnegative real numbers such that there exists a

subsequence {ak j}
∞
j=1 of {ak}

∞
k=1 with ak j < ak j+1 for all j ∈ N. If, for all k ≥ k0, we define

v(k) = max{k ∈ N : k0 ≤ k ≤ k, ak < ak+1},

then the sequence {v(k)}k≥k0 is nondecreasing, av(k) ≤ av(k)+1, and ak ≤ av(k)+1 for every k ≥ k0.

Now, we are in a position to prove the boundedness property of the generated sequence {xk}∞k=1 as
the following lemma. The idea proof is based on [15, Lemma 5].

Lemma 3.3. The sequence {xk}∞k=1 is a bounded sequence.

Proof. Let k ∈ N and x ∈
m⋂

i=1

Fix Ti be given. Since λk ∈ [ε, 2 − ε], we have ε2 ≤ λk(2 − λk), and so

λk(2 − λk)
4m

m∑
i=1

∥S i(yk) − S i−1(yk)∥
2
≥ 0.

Thus, by using this property together with the inequality obtained in Lemma 3.1, we get

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + µ2βk
2 +

2µβk

max{1, ∥dk∥}
⟨xk − x,dk⟩. (3.2)

For the sake of simplicity, we set

Γk := ∥xk − x∥2 − µ2
k−1∑
j=1

β j
2
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for all k ∈ N. In this case, the inequality (3.2) can be rewritten as

Γk+1 − Γk +
2µβk

max{1, ∥dk∥}
⟨xk − x,dk⟩ ≤ 0. (3.3)

Next, we divide the proof into two cases based on the behaviors of the sequence {Γk}
∞
k=1:

Case I: Suppose that there exists k0 ∈ N such that Γk+1 ≤ Γk for all k ≥ k0. In this case, we have
Γk ≤ Γk0 for all k ≥ k0, which is

∥xk − x∥2 ≤ Γk0 + µ
2

k−1∑
j=1

β2
j

for all k ≥ k0. Since the series
∑∞

k=1 β
2
k converges, we obtain that the sequence {∥xk − x∥2}∞k=1 is bounded

and, subsequently, the sequence {xk}∞k=1 is also bounded.
Case II: Suppose that there exists a subsequence {Γk j}

∞
j=1 of {Γk}

∞
k=1 such that Γk j < Γk j+1 for all k ∈ N,

and let {v(k)}∞k=1 be defined as in Proposition 3.2. This yields, for all k ≥ k0, that

Γv(k) < Γv(k)+1 (3.4)

and
Γk < Γv(k)+1. (3.5)

By using the relation (3.4) in the inequality (3.3) and the fact that the term 2µβk
max{1,∥dk∥}

is positive, we
have

⟨xv(k) − x,−dv(k)⟩ ≤ 0.

Now, let us note that

0 ≥ ⟨xv(k) − x,−dv(k)⟩ = ⟨xv(k) − x,−∇ f (xv(k))⟩ −
φv(k)

max{1, ∥dv(k)−1∥}
⟨xv(k) − x,−dv(k)−1⟩

and, since 0 ≤ φk ≤ 1, we have

⟨xv(k) − x,−∇ f (xv(k))⟩ ≤
φv(k)

max{1, ∥dv(k)−1∥}
⟨xv(k) − x,−dv(k)−1⟩

≤ φv(k)∥xv(k) − x∗∥ ≤ ∥xv(k) − x∥. (3.6)

Since f is η-strongly convex, we have from Fact 1.1 that

η∥xv(k) − x∥2 ≤ ⟨∇ f (xv(k)) − ∇ f (x), xv(k) − x⟩
≤ ⟨∇ f (xv(k)), xv(k) − x⟩ + ⟨−∇ f (x), xv(k) − x⟩
≤ ∥xv(k) − x∥ + ∥∇ f (x)∥∥xv(k) − x∥,

where the last inequality holds by the inequality (3.6). Thus, we obtain that

∥xv(k) − x∥ ≤ η−1(1 + ∥∇ f (x)∥),

which implies that the sequence {∥xv(k) − x∗∥}∞k=1 is bounded. Now, let us observe that

Γv(k)+1 = ∥xv(k)+1 − x∥2 − µ2
v(k)∑
j=1

β2
j ≤ ∥x

v(k)+1 − x∥2,

which means that the sequence {Γv(k)+1}
∞
k=1 is bounded above. Finally, by using the inequality (3.5), we

obtain that {Γk}
∞
k=1 is bounded and, subsequently, {xk}∞k=1 is also bounded. □
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A simple consequence of Lemma 3.3 is the boundedness of related sequences.

Lemma 3.4. The sequences {∇ f (xk)}∞k=1, {dk}∞k=1, and {yk}∞k=1 are bounded.

Proof. Let k ∈ N and x ∈
m⋂

i=1

Fix Ti be given. We first note from the L-smoothness of f that

∥∇ f (xk)∥ ≤ ∥∇ f (xk) − ∇ f (x)∥ + ∥∇ f (x)∥
≤ L∥xk − x∥ + ∥∇ f (x)∥ ≤ L(M1 + ∥x∥) + ∥∇ f (x)∥ =: M,

where M1 := supk∈N ∥xk∥. This means that the boundedness of the sequence {∇ f (xk)}∞k=1 is now
obtained.

Next, by the construction of dk, we note for all k ≥ 1 that

∥dk+1∥ =

∥∥∥∥∥∥−∇ f (xk+1) + φk+1
dk

max{1, ∥dk∥}

∥∥∥∥∥∥ ≤ ∥∇ f (xk+1)∥ + φk+1 ≤ M + 1.

Thus, we have ∥dk∥ ≤ max{M + 1, ∥d1∥} for all k ∈ N and the boundedness of {dk}∞k=1 is obtained.
Finally, these two obtained results immediately yield the boundedness of the sequence {yk}∞k=1. □

Lemma 3.5. For all k ≥ 2 and x ∈
m⋂

i=1

Fix Ti, it holds that

∥xk+1 − x∥2 ≤ (1 − αk)∥xk − x∥2 + αkδk.

Proof. Let k ≥ 2 and x ∈
m⋂

i=1

Fix Ti be given. We note from the inequality (3.1) that

∥xk+1 − x∥2 ≤ ∥yk − x∥2

=

∥∥∥∥∥∥xk + µβk
dk

max{1, ∥dk∥}
− x

∥∥∥∥∥∥2

=

∥∥∥∥∥∥xk +
µβk

max{1, ∥dk∥}

(
−∇ f (xk) + φk

dk−1

max{1, ∥dk−1∥}

)
− x

∥∥∥∥∥∥2

=
∥∥∥∥ (

xk −
µβk

max{1, ∥dk∥}
∇ f (xk)

)
−

(
x −

µβk

max{1, ∥dk∥}
∇ f (x)

)
+

µβk

max{1, ∥dk∥}

(
φkdk−1

max{1, ∥dk−1∥}
− ∇ f (x)

) ∥∥∥∥2

≤

∥∥∥∥ (
xk −

µβk

max{1, ∥dk∥}
∇ f (xk)

)
−

(
x −

µβk

max{1, ∥dk∥}
∇ f (x)

) ∥∥∥∥2

+2
〈

µβk

max{1, ∥dk∥}

(
φkdk−1

max{1, ∥dk−1∥}
− ∇ f (x)

)
, yk − x

〉
≤

(
1 −

βkτ

max{1, ∥dk∥}

)
∥xk − x∥2
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+2
µβk

max{1, ∥dk∥}

〈 φkdk−1

max{1, ∥dk−1∥}
− ∇ f (x), yk − x

〉
=

(
1 −

βkτ

max{1, ∥dk∥}

)
∥xk − x∥2

+
βkτ

max{1, ∥dk∥}

(
2µ
τ

(
φk

max{1, ∥dk−1∥}
⟨dk−1, yk − x⟩ − ⟨∇ f (x), yk − x⟩

))
= (1 − αk)∥xk − x∥2 + αkδk,

where the second inequality holds by the fact that ∥x + y∥2 ≤ ∥x∥2 + 2⟨y, x + y⟩ for all x, y ∈ H , and
the third inequality holds by Fact 1.3. □

The following proposition will be a key tool for obtaining the convergence result in Theorem 2.4.
The idea and its proof can be consulted in [19, Lemma 2.6] and [20, Lemma 2.4].

Proposition 3.6. Let {ak}
∞
k=1 be a nonnegative real sequence, {δk}

∞
k=1 be a real sequence, and {αk}

∞
k=1 be

a real sequence in [0, 1] such that
∞∑

k=1

αk = ∞. Suppose that

ak+1 ≤ (1 − αk)ak + αkδk for all k ∈ N.

If lim sup
j→∞

δk j ≤ 0 for every subsequence {ak j}
∞
j=1 of {ak}

∞
k=1 satisfying

lim inf
j→∞

(ak j+1 − ak j) ≥ 0,

then lim
k→∞

ak = 0.

Now, we are in a position to prove Theorem 2.4.

Proof. Let x∗ be the unique solution to the problem 1.1. For simplicity, we denote ak := ∥xk − x∗∥2 for
all k ∈ N. Now, by using the facts obtained in Lemmata 3.3 and 3.4 and the fact that lim

k→∞
βk = 0, we

obtain

0 ≤ lim
k→∞
|εk| = lim

k→∞

∣∣∣∣∣µ2β2
k +

2µβk

max{1, ∥dk∥}
⟨xk − x∗,dk⟩

∣∣∣∣∣ ≤ 0,

which implies that lim
k→∞
εk = 0.

Next, we let a subsequence {ak j}
∞
j=1 of the seuqence {ak}

∞
k=1 satisfying

lim inf
j→∞

(ak j+1 − ak j) ≥ 0

or, equivalently,
lim sup

j→∞
(ak j − ak j+1) ≤ 0.

By utilizing the inequality obtained in Lemma 3.1 and the fact lim
k→∞
εk = 0, we obtain

AIMS Mathematics Volume 9, Issue 2, 4259–4280.



4272

0 ≤ lim sup
j→∞

λk j(2 − λk j)
4m

m∑
i=1

∥S i(yk j) − S i−1(yk j)∥
2
≤ lim sup

j→∞
(ak j − ak j+1 + εk j)

= lim sup
j→∞

(ak j − ak j+1) + lim
j→∞
εk j ≤ 0.

This implies that

lim
j→∞

λk j(2 − λk j)
4m

m∑
i=1

∥S i(yk j) − S i−1(yk j)∥
2
= 0.

Since ε2 ≤ λk(2 − λk), we obtain that

lim
j→∞
∥S i(yk j) − S i−1(yk j)∥ = 0, for all i = 1, 2, . . . ,m. (3.7)

On the other hand, since {yk}∞k=1 is a bounded sequence, so is the sequence {⟨yk j − x∗,∇ f (x∗)⟩}∞j=1.
Now, let {yk jℓ }∞ℓ=1 be a sequence of {yk j}∞j=1 such that

lim inf
j→∞
⟨yk j − x∗,∇ f (x∗)⟩ = lim

ℓ→∞
⟨yk jℓ − x∗,∇ f (x∗)⟩.

Due to the boundedness of the sequence {yk j}∞j=1, there exists a weakly cluster point z ∈ H and a
subsequence {yk jℓ }∞ℓ=1 of {yk j}∞j=1 such that yk jℓ ⇀ z ∈ H . According to the obtained fact in (3.7), we
note that

lim
ℓ→∞
∥T1(yk jℓ ) − yk jℓ ∥ = lim

ℓ→∞
∥S 1(yk jℓ ) − S 0(yk jℓ )∥ = 0.

Since T1 satisfies the demi-closedness principle, we obtain that z ∈ Fix T1. Furthermore, we note that
the facts yk jℓ ⇀ z and

lim
ℓ→∞
∥(T1(yk jℓ ) − T1(z)) − (yk jℓ − z)∥ = 0

yield that T1(yk jℓ )⇀ T1(z) = z. Furthermore, we observe that

lim
ℓ→∞
∥(T2(T1(yk jℓ )) − T1(yk jℓ )∥ = lim

ℓ→∞
∥S 2(yk jℓ ) − S 1(yk jℓ )∥ = 0.

By invoking the assumption that T2 satisfies the demi-closedness principle, we also obtain that z ∈
Fix T2. By continuing the same argument used in the above proving lines, we obtain that z ∈ Fix Ti for

all i = 1, 2, . . . ,m, then z ∈
m⋂

i=1

Fix Ti. Since x∗ is the unique solution to the problem (1.1), we note

from the optimality condition in Fact 1.2 that

lim inf
j→∞
⟨yk j − x∗,∇ f (x∗)⟩ = lim

ℓ→∞
⟨yk jℓ − x∗,∇ f (x∗)⟩ = ⟨z − x∗,∇ f (x∗)⟩ ≥ 0. (3.8)

Now, the assumption that lim
k→∞
φk = 0, the boundedness of the sequences {yk}∞k=1 and {dk}∞k=1, and the

relation (3.8) yield that

lim sup
j→∞

δk j = lim sup
j→∞

2µ
τ

( φk j

max{1, ∥dk j∥}
⟨dk j−1, yk j − x∗⟩ − ⟨∇ f (x∗), yk j − x∗⟩

)
≤ 0.

Hence, by applying Propostion 3.6, we conclude that lim
k→∞

ak = 0. The proof is completed. □
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4. Some illustrated consequences

In this section, we will provide some simple consequences of the main theorem. We start with the
minimization problem over the system of linear inequalities. This constraint is nothing else but the
intersection of linear half-spaces. We subsequently show that the proposed algorithm and convergence
result are also applicable in the well-known support vector machine learning.

4.1. Minimization problem over system of linear inequalities

In this subsection, we assume that the function f : H → R is η-strongly convex and L-smooth as
given in the assumption (A1). Now, let ai ∈ H with ai , 0 and bi ∈ R, i = 1, . . . ,m. We consider
the minimization of a strongly convex smooth function over the intersection of nonempty closed and
convex sets, which is in the following form:

minimize f (x)
subject to ⟨ai, x⟩ ≤ bi, i = 1, . . . ,m.

(4.1)

We may assume the consistency of the system of linear inequalities and we also denote the solution
point to the problem (4.1) by x∗. Now, for each i = 1, . . . ,m, we let Hi := {x ∈ H : ⟨ai, x⟩ ≤ bi} be the
half-space corresponding to ai and bi. Furthermore, we set Ti := PHi , the metric projection onto the
half-space Hi, for all i = 1, . . . ,m. It is worth noting that the metric projection onto a half-space has a
closed-form expression, that is,

Ti := PHi(x) = x −
max {⟨ai, x⟩ − bi, 0}

∥ai∥
2 ai,

see [17, Subsection 4.1.3] for further details. Note that Hi is a closed and convex set and the fixed-point
set. Fix Ti = Hi for all i = 1, . . . ,m. To derive an iterative method for solving the problem (4.1), we
recall the notations T := TmTm−1 · · · T1, S 0 := Id, and S i := TiTi−1 · · · T1, for all i = 1, 2, . . . ,m. Now,
for every x ∈ H , by setting ui := S i(x), we have u0 = x and ui = Ti(ui−1), for all i = 1, 2, . . . ,m. In this
case, the stepsize function σ : H → (0,∞) can be written as the following:

σ(x) :=



m∑
i=1

(⟨ai, x⟩ − bi)

max
{〈

ai,ui
〉
− bi, 0

}
∥ai∥

2


∥um − x∥2

, if x <
m⋂

i=1

Hi,

1, otherwise,

see [13, Section 4.2] for further details.

In order to solve the problem (4.1), we consider a particular situation of MESCoM-CGD as the
following algorithm.
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Algorithm 2: MESCoM-CGD for minimizing over the system of linear inequalities

Initialization: Put nonnegative sequences {βk}
∞
k=1, {φk}

∞
k=1 and {λk}

∞
k=1, and a parameter

µ ∈
(
0, 2η

L2

)
. Choose an initial point x1 ∈ H arbitrarily and set d1 = −∇ f (x1).

Iterative Step (k ∈ N): For a current iterate xk ∈ H and direction dk ∈ H , repeat the following
steps:

Step 1. Compute the iterate yk ∈ H as

yk := xk + µβk
dk

max{1, ∥dk∥}
.

Step 2. Put uk,0 := yk. For each i = 1, 2, . . . ,m, compute

uk,i := uk,i−1 −
max

{〈
ai,uk,i−1

〉
− bi, 0

}
∥ai∥

2 ai.

Compute the stepsize σ(yk) as

σ(yk) :=



m∑
i=1

(〈
ai, yk

〉
− bi

) max
{〈

ai,uk,i
〉
− bi, 0

}
∥ai∥

2


∥uk,m − yk∥

2 , if yk <
m⋂

i=1

Hi,

1, otherwise.

Step 3. Compute the recurrence xk+1 ∈ H and the search direction dk+1 ∈ H as

xk+1 := yk + λkσ(yk)(uk,m − yk)

and

dk+1 := −∇ f (xk+1) + φk+1
dk

max{1, ∥dk∥}
.

Step 4. Update k := k + 1 and return to Step 1.

We obtain an immediate consequence of Theorem 2.4 in the following corollary.

Corollary 4.1. Let the sequence {xk}∞k=1 be generated by Algorithm 2 and assume that assumption (A1)
and hypotheses (H1)–(H3) hold, then the sequence {xk}∞k=1 converges strongly to the unique solution x∗
of the problem (4.1).

To examine the behavior of Algorithm 2 and the convergence given in Corollary 4.1, we consider
the solving of the minimum-norm problem to the system of homogeneous linear inequalities. We
assume that the whole spaceH is finite dimensional so thatH = Rn. Given a matrix A = [a1| · · · |am]T

of predictors ai = (a1i, . . . , ani) ∈ Rn, for all i = 1, . . . ,m, b = (b1, . . . , bm) ∈ Rm is a vector. The
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minimum-norm problem is to find the vector x ∈ Rn that solves the problem

minimize
1
2
∥x∥2

subject to Ax ≤ b
(4.2)

or, equivalently, in the explicit form

minimize
1
2
∥x∥2

subject to ⟨ai, x⟩ ≤ bi, i = 1, . . . ,m.

Now, by putting the constrained sets Hi := {x ∈ Rn : ⟨ai, x⟩ ≤ bi}, i = 1, . . . ,m as half spaces
and Ti := PHi , i = 1, . . . ,m, the metric projections onto Hi with Fix Ti = Hi satisfy the demi-
closed principle. Furthermore, the function f (x) := 1

2∥x∥
2 is 1-strongly convex with 1-smooth. In

this situation, the problem (4.2) is nothing else but a special case of the problem (4.1), which yields
that Algorithm 2 and the convergence given in Corollary 4.1 are applicable.

To perform a numerical illustration in solving the problem (4.1), we generate the matrix A ∈ Rm×n,
where m = 200 and n = 100 by uniformly distributed random generating between (−5, 5), and set the
vector b = 0. According to Remark 2.3 (i)-(iii), we examine the influence of parameters β0 ∈ [0.8, 1],
φ0 ∈ [0.1, 1], and λ0 ∈ [0.1, 1.9]. We fix the corresponding parameter µ = 1.9. We terminated
the experiment with the error of norm, that is, ∥xk+1 − xk∥ < ϵ. We manually choose the choice of
parameters β0 = 1, φ0 = 1, and λ0 = 1 with the smallest number of iterations when the error of
tolerance ϵ = 10−4 is met.

Next, we show behavior of Algorithm 2 when solving the problem (4.2) for various error of
tolerance ϵ. We set number of variables to be n = 100 and consider several number of inequalities,
that is, m = 100, 200, 300, 400, and 500. According to the above experiments, we set the parameters
β0 = 1, φ0 = 1, and λ0 = 1. We plot the number of iterations and computational time in seconds in
Figure 1.

Figure 1. Behavior of Algorithm 2 for various errors of tolerance.

It can be noticed from Figure 1 that a smaller number m needed a larger number of iterations for all
errors of tolerance. Moreover, for the numbers m = 100, 200, and 300, it can be seen that a smaller
number m needed a larger computational time.
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4.2. Support vector machine learning problem

In this subsection, we consider the constructing of a classifier in binary classification problem
starting by a given training datasets of two classes. More precisely, the ith training data ai ∈ R

n

and the ith label bi ∈ {−1,+1} of the ith training data, for all i = 1, . . . ,m. The support vector machine
learning is to train a weight u ∈ Rn so that a (linear) classifier c(a) := ⟨a,u⟩ can give a corrected class
of every new tested data a ∈ Rn. In this situation, a will be identified to be in the class −1 if c(a) < 0,
and to the class +1, otherwise. Mathematically, the support vector machine learning can be form as the
following minimization problem:

minimize 1
2∥u∥

2 + 1
2

∑m
i=1 ξ

2
i

subject to bi ⟨ai,u⟩ ≥ 1 − ξi,∀i = 1, . . . ,m,
ξi ≥ 0,∀i = 1, . . . ,m,

(4.3)

where ξi ≥ 0 is nonnegative slack variable corresponding to the ith training data for all i = 1, . . . ,m. By
introducing a new variable x := (u, ξ1, . . . , ξm) ∈ Rn+m and using the idea given in, for instance [15,21],
the problem (4.3) can be written as

minimize
1
2
∥x∥2

subject to Ax ≤ b,
(4.4)

where the matrix A ∈ R2m×(n+m) is given by

A =



−b1a⊤1 −1 0 · · · 0
−b2a⊤2 0 −1 · · · 0
...

...
...
. . .

...

−bma⊤m 0 0 · · · −1
0⊤Rn −1 0 · · · 0
0⊤Rn 0 −1 · · · 0
...

...
...

...
...

0⊤Rn 0 0 · · · −1


∈ R2m×(n+m)

and the vector b ∈ R2m is given by

b =
(
−1Rm

0Rm

)
.

This problem (4.4) is nothing else but a particular case of the problem (4.2) and, subsequently,
Algorithm 2 and the convergence given in Corollary 4.1 are also applicable.

In the first experiment, we aim to classify the 28×28 images on gray scale pixels of the handwritten
digits from the MNIST dataset, which was provided as https://cs.nyu.edu/ roweis/data.html. We
used the dataset of 5000 images for the handwritten digit 9 and the dataset of 5000 images for the
handwritten digits 0 − 8. The images are labeled by the classes +1 and −1, respectively. We perform
the 10-fold cross-validation on the given datasets. Actually, in each class, we put a fold of 1000 images
to be the testing data and the remaining 9 folds consisting of 9000 images to be the training data. We
perform the cross-validation process repeatedly for 10 times so that each fold is set to be the testing
data.
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Recalling that the class of digit 9 and the class of digits 0 − 8 are labeled by +1 and −1, which are
positive and negative, respectively, we denote the numbers of a tested data. It is classified as positive
by true positive (TP); if classified as negative, then it is denoted by false negative (FN). If a tested
data is labeled as negative and is classified as negative, then it is denoted as true negative (TN); if
it is classified as positive, it is denoted as false positive (FP). These numbers are summarized as the
following details:

Actual Class
Classified Class

Positive (+1) Negative (−1)
Positive (+1) TP := True Positive FN := False Negative
Negative (−1) FP := False Positive TN := True Negative

To measure the performance of each obtained classifier performed by each cross-validation, we
consider classification performance metrics, namely, accuracy, precision, recall, specificity, and F-
measure. These performance metrics are computed by the following details:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

F-measure =
2 × Recall × Precision

Recall + Precision
.

In the experiment, we terminate the experiment when the number of iterations is k = 50 and,
subsequently, average each performance metric after the cross-validation process repeatedly for 10
times. The classification performance metrics of each parameter are presented in Table 1.
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Table 1. Classification performance metrics for varying parameters β0 and φ0.

β0 φ0 Accuracy Precision Recall Specificity F-measure Time
0.5 0.1 0.9325 0.9507 0.9173 0.9489 0.9337 340.23

0.3 0.9325 0.9507 0.9173 0.9489 0.9337 339.46
0.5 0.9325 0.9507 0.9173 0.9489 0.9337 347.93
0.7 0.9325 0.9507 0.9173 0.9489 0.9337 341.14
0.9 0.9325 0.9507 0.9173 0.9489 0.9337 352.12

0.6 0.1 0.9323 0.9507 0.9171 0.9489 0.9335 338.62
0.3 0.9323 0.9507 0.9171 0.9489 0.9335 339.44
0.5 0.9323 0.9507 0.9171 0.9489 0.9335 343.61
0.7 0.9323 0.9507 0.9171 0.9489 0.9335 341.39
0.9 0.9323 0.9507 0.9171 0.9489 0.9335 356.79

0.7 0.1 0.9321 0.9507 0.9167 0.9489 0.9333 339.02
0.3 0.9321 0.9507 0.9167 0.9489 0.9333 340.37
0.5 0.9321 0.9507 0.9167 0.9489 0.9333 343.67
0.7 0.9321 0.9507 0.9167 0.9489 0.9333 341.12
0.9 0.9321 0.9507 0.9167 0.9489 0.9333 357.62

0.8 0.1 0.9322 0.9509 0.9167 0.9491 0.9335 341.26
0.3 0.9322 0.9509 0.9167 0.9491 0.9335 341.02
0.5 0.9322 0.9509 0.9167 0.9491 0.9335 342.17
0.7 0.9322 0.9509 0.9167 0.9491 0.9335 347.23
0.9 0.9322 0.9509 0.9167 0.9491 0.9335 342.92

0.9 0.1 0.9322 0.9509 0.9167 0.9491 0.9335 339.05
0.3 0.9322 0.9509 0.9167 0.9491 0.9335 340.88
0.5 0.9322 0.9509 0.9167 0.9491 0.9335 340.90
0.7 0.9322 0.9509 0.9167 0.9491 0.9335 346.44
0.9 0.9322 0.9509 0.9167 0.9491 0.9335 342.06

1.0 0.1 0.9323 0.9511 0.9168 0.9493 0.9336 338.86
0.3 0.9323 0.9511 0.9168 0.9493 0.9336 340.88
0.5 0.9323 0.9511 0.9168 0.9493 0.9336 340.48
0.7 0.9323 0.9511 0.9168 0.9493 0.9336 346.35
0.9 0.9323 0.9511 0.9168 0.9493 0.9336 341.66

The results given in Table 1 shows that the parameters β0 and φ0 slightly effected the classification
performances. The highest accuracy and F-measure values were obtained for the case β0 = 0.5.
Actually, we can observe that these five metrics as well as the computation running times were not
much different. This may yield the stability of the proposed method in the sense that the corresponding
parameters do not hugely effect the convergence of the proposed method.

5. Conclusions

We presented the modified version of the extrapolated sequential constraint method proposed in [11]
for solving the minimization problem over the intersection of the fixed-point sets of cutter operators.
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We not only presented a simple version of the strong convergence of the proposed method, but also
omitted the boundedness assumption used in [11]. We examined the proposed method to solve the
binary classification by using support vector machines.
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