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Abstract: Digital transactions relying on credit cards are gradually improving in recent days due to 

their convenience. Due to the tremendous growth of e-services (e.g., mobile payments, e-commerce, 

and e-finance) and the promotion of credit cards, fraudulent transaction counts are rapidly increasing. 

Machine learning (ML) is crucial in investigating customer data for detecting and preventing fraud. 

Conversely, the advent of irrelevant and redundant features in most real-time credit card details reduces 

the execution of ML techniques. The feature selection (FS) approach’s purpose is to detect the most 

prominent attributes required for developing an effective ML approach, making sure that the 

classification and computational complexity are improved and decreased, respectively. Therefore, this 

study presents an evolutionary computing with fuzzy autoencoder based data analytics for credit card 

fraud detection (ECFAE-CCFD) technique. The purpose of the ECFAE-CCFD technique is to 

recognize the presence of credit card fraud (CCF) in real time. To achieve this, the ECFAE-CCFD 

technique performs data normalization in the earlier stage. For selecting features, the ECFAE-CCFD 

technique applies the dandelion optimization-based feature selection (DO-FS) technique. Moreover, 

the fuzzy autoencoder (FAE) approach can be exploited for the recognition and classification of CCF. 

FAE is a category of artificial neural network (ANN) designed for unsupervised learning that leverages 

fuzzy logic (FL) principles to enhance the representation and reconstruction of input data. An improved 

billiard optimization algorithm (IBOA) could be implemented for the optimum selection of the 

parameters based on the FAE algorithm to improve the classification performance. The simulation 

outcomes of the ECFAE-CCFD algorithm are examined on the benchmark open-access database. The 
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values display the excellent performance of the ECFAE-CCFD method with respect to various 

measures. 

Keywords: data analytics; evolutionary computation; credit card frauds; machine learning; feature 

selection 

Mathematics Subject Classification: 49-04, 92B20 

 

1. Introduction 

Information technology developments have highly influenced the financial industry, resulting in 

the extensive adoption of electronic commerce (e-commerce) platforms [1]. The main problem related 

to advanced e-commerce is the optimistic cases of credit card fraud (CCF). In recent years, there has 

been a growth in CCF that is a great burden on financial organizations. CCF happens in all businesses, 

ranging from the home appliance to the banking and automotive sectors [2]. Because of the expansive 

application of credit card fraud detection (CCFD) techniques, users can prevent fraud and be protected 

from alternative categories of cyber criminals. Automatic fraud detection increases online security and 

protects users from cybercriminals [3]. Thus, it is important to accurately design automatic fraud 

detection approaches used for credit card transactions [4]. Several techniques are designed for 

identifying fraudulent credit card transactions. An increased CCF rate is related to the increasing 

development of e-commerce and popularity of online transactions. Therefore, CCFD is essential for 

financial organizations to prevent losses [5]. 

The machine learning (ML) method has been extensively used for detecting CCF [6]. There are 

vast databases because of the arrival of the Internet of Things (IoTs) and big data. Due to the size of 

databases, many features in them may be unrelated or redundant to the response variable [7]. ML can 

improve the complexity of the model and result in over-fitting by these features. To address the great 

dimensionality problem, a dimensionality reduction technique like feature selection (FS) is required 

for obtaining useful insights and making accurate predictions [8]. FS methods aim to detect the most 

significant features required to design a high-performance ML technique, ensuring decreased 

computational complexity and enhanced classification performance by extracting redundant and 

inappropriate features. FS techniques are categorized into three method types: embedded, filter, and 

wrapper. The internal functioning and configuration of different FS approaches make them suitable 

for various applications. Filter techniques use feature ranking to determine the useful features. Features 

that achieve scores more than a given threshold are chosen, and those less than the threshold can be 

rejected [9]. Subsequently, the identification of key features involves supplying input to the learning 

method. Filter techniques differ from embedded and wrapper techniques because they are independent 

of classification bias and are not reliant on the classifier [10,11]. 

This study presents an evolutionary computing with fuzzy autoencoder based data analytics for 

credit card fraud detection (ECFAE-CCFD) technique. The ECFAE-CCFD technique performs data 

normalization in the earlier stage. For selecting features, the ECFAE-CCFD technique applies the 

dandelion optimization-based feature selection (DO-FS) technique. The global searching abilities of 

the dandelion optimization (DO) algorithm can efficiently discover the feature space and recognize the 

highly related features, resulting in significantly better model performance. Moreover, the fuzzy 

autoencoder (FAE) technique can be implemented for the recognition and classification of CCF. 
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Autoencoders, particularly FAE, are known for their proficiency in capturing non-linear relationships 

within data and extracting related features. In CCF, where patterns can be complex and non-linear, 

FAE can provide effective data representation and improves the classification performance. Last, an 

improved billiard optimization algorithm (IBOA) can be utilized for the optimum selection of 

parameters based on the FAE algorithm, increasing the classification accuracy. The IBOA’s strategy 

of escaping local optima can stop the model from getting stuck in suboptimal solutions, guaranteeing 

improved overall performance. The use of IBOA is motivated by its ability to competently search for 

optimal parameter values, which is important in improving the performance of the FAE model. The 

simulation outcomes of the ECFAE-CCFD model are examined on the benchmark open-access 

database. In short, the contribution of the study will be as follows. 

• Introduces the ECFAE-CCFD method, providing an innovative and comprehensive technique 

for the detection of CCF. 

• The DO-FS leverages evolutionary computing to select the most relevant feature for fraud 

detection, potentially reducing computation complexity and enhancing model performance. 

• Employed method represents a significant contribution, which showcases an advanced 

technique for the detection and classification of CCF. FAE adds a layer of sophistication to 

the fraud detection model. 

• Uses an IBOA for optimum selection of parameters within the FAE algorithm, further 

increasing the accuracy and generalizability of the model. 

• The combination of the DO-FS approach and IBOA for parameter tuning within the FAE 

framework for the CCFD is an innovative method that has not been discovered in the literature 

review. 

2. Related works 

Raghavan and El Gayar [12] target to benchmark multiple ML techniques like support vector 

machine (SVM), KNN, and RF, while the DL techniques like restricted Boltzmann machine (RBM), 

autoencoders, CNN, and deep belief network (DBN). These datasets like the German dataset and the 

European (EU) Australian were used. In [13], current advancements in ML techniques and deep 

reinforcement learning (DRL) were exploited for CCF detection methods, which include non-fraud 

and fraud classes. The Adaptive Synthetic Sampling (ADASYN) and Synthetic Minority Over-

sampling Technique (SMOTE) were the two resampling approaches leveraged for resampling the 

imbalanced CCF data. To establish CCF detection, mechanisms like ML techniques were applied to 

this balanced database. Then, based on the imbalanced CCF database, DRL was used for creating a 

detection system. Through practical experiments, the author discovered the reliable degree of ML 

approaches depending on the above-mentioned resampling methods and DRL approaches for the 

detection of CCF. Alharbi et al. [14] presented the Kaggle dataset to design a DL-related method to 

sort out the text data problem. The images were given to a CNN structure with class weights through 

the inverse frequency approach to address the imbalance class problem. ML and DL methods have 

been implemented to verify the validity and robustness of the presented system. 

Sanober et al. [15] introduce a new structure that incorporates Spark with a DL method. This 

study applies various ML approaches, such as DT, RF, SVM, LR, and KNN, to detect fraud. also, a 

comparative analysis was done using different parameters. Nguyen et al. [16] offer user separation, 

where the author splits users into new and old persons, before implementing DNN and CatBoost in all 
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categories. Also, various methods to boost detection accuracy, like handling feature engineering, heavily 

imbalanced datasets, and feature transformation, were presented in detail. Almhaithawi et al. [17] 

addressed fraud detection issues as one common issue in the secure banking research domain because 

of their significance in decreasing the losses of e-transaction companies and banks. This work includes 

implementing common classification techniques like LR and RF, along with modern classifiers with 

existing results such as CatBoost (CB) and XGBoost (XG), testing the outcome of an unbalanced 

dataset by comparing their outcomes without and with balancing after concentrating on the savings 

measure for testing the result of cost-sensitive wrapping of Bayes minimum risk (BMR). 

Taha and Malebary [18] present an intelligent method to detect CCF transactions utilizing an 

improved light gradient boosting machine (OLightGBM). A Bayesian-based hyperparameter 

optimizer method can intelligently combine to adjust the parameters of LightGBM. In [19], the 

shuffled shepherd political optimizer-based deep residual network (SSPO-based DRN) technique was 

presented for CCFD. In [20], the authors leveraged the XGBoost method, an effectual method for 

forecasting appropriately predict fraud. While the important count of fraudulent transactions will be 

much less than legitimate transactions, the authors offered to set this bias by leveraging sampling 

approaches like oversampling, undersampling, and ITS combination. Karthik et al. [21] examined a 

new model for CCFD that integrates ensemble-learning approaches like bagging and boosting. This 

method combines the main features of both methods by creating a hybrid method of bagging and 

boosting ensemble methods. 

3. The proposed model 

In this article, we have proposed the ECFAE-CCFD methodology. The major purpose of the 

ECFAE-CCFD method is to detect the presence of CCF in real time. To achieve this, the ECFAE-

CCFD technique comprises data normalization, IBOA-based parameter tuning, FAE classification, 

and DO-FS-based feature subset selection. The overall working process of the ECFAE-CCFD 

technique is depicted in Figure 1. 

 

Figure 1. Overall working process of the ECFAE-CCFD technique. 
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3.1. Feature selection using DO-FS technique 

The DO-FS method was executed to select the optimum features. The DO algorithm is based on 

the performance of determining the optimum reproduction place while dandelion seeds mature [22]. 

Also, it is highlighted that the flight behaviors of dandelion seeds are crucial in biological evolution. 

The longer-distance fight comprises three stages: descending, rising, and landing. The mathematical 

method of DO is discussed as follows.  

The single objective DO technique with 𝐷 parameters is formulated below: 

min 𝑓(𝑋) ,𝑠. 𝑡. 𝐿𝐵 < 𝑋 < 𝑈𝐵,         (1) 

where 𝑓(𝑋)  signifies the objective function and 𝐿𝐵,  𝑈𝐵 ∈ 𝑅𝐷  indicates the lower and upper 

boundaries of the parameter 𝑋 ∈ 𝑅𝐷. Like other optimization techniques, DO comprises the following 

phases to resolve optimization problems. 

DO randomly produces a candidate solution using Eq (2), where  𝑝𝑜𝑝  and 𝐷𝑖𝑚  are 

correspondingly set to the population size and dimension parameter. 𝐿𝐵 = (𝑙𝑏1, 𝑙𝑏2, ⋯ 𝑙𝑏𝐷𝑖𝑚) and =

(𝑢𝑏1, 𝑢𝑏2, ⋯ 𝑢𝑏𝐷𝑖𝑚) are the upper and lower limitations of the seed location.  

𝑋𝑖𝑗 = 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) + 𝑙𝑏𝑗 , 𝑖 = 1,2, … , 𝑝𝑜𝑝, 𝑗 = 1,2, ⋯ , 𝐷𝑖𝑚,   (2) 

𝑓(𝑋𝑖) represents the fitness values of 𝑖𝑡ℎ seeds from the population and seed with smaller fitness is 

considered the best position for transmitting dandelion seeds, as 𝑋𝑒𝑙𝑖𝜏𝑒: 

𝑓𝑏𝑒𝑠𝑡 = min(𝑓(𝑋𝑖)), 𝑋𝑒𝑙𝑖𝑡𝑒 = 𝑋 (𝑓𝑖𝑛𝑑 (𝑓𝑏𝑒𝑠𝑡 = 𝑓(𝑋𝑗))),    (3) 

where 𝑓𝑖𝑛𝑑 () represents an index with two equivalent values. 

Dissimilar wind speeds and weather conditions define the increasing height of DO; hence, the 

weather was categorized into sunny and rainy. 

Case1. During sunny days, the wind speed will be 𝑙𝑜𝑔‐uniform distribution, meaning DO will have a 

higher probability to a distant area. Thus, dandelion seeds emphasize exploration on sunny days. This 

process can be mathematically modelled as follows: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼⋆𝑠𝑥
⋆𝑠𝑦

⋆ ln 𝑌⋆(𝑋𝑠
𝑡 − 𝑋𝑖

𝑡),       (4) 

𝑋𝑠
𝑡 = 𝑟𝑎𝑛𝑑(1, 𝐷𝑖𝑚)⋆(𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,      (5) 

𝛼 = 𝑟𝑎𝑛𝑑()⋆ (
1

𝑇2 𝑡2 −
2

𝑇
𝑡 + 1),        (6) 

𝑟 =
1

𝑒𝜃 , 𝑠𝑥 = 𝑟⋆cos𝜃, 𝑠𝑦 = 𝑟⋆𝑠𝑖𝑛𝜃,       (7) 

where 𝑋𝑖
𝑡 represents the seed location at 𝑡ℎ𝑒 𝑟 iteration, the random location of the dandelion seed 

at the 𝑟 iteration is represented as 𝑋𝑠
𝑡, 𝑇 denotes the maximal number of iterations,  ln 𝑌 indicates a 

𝑙𝑜𝑔 -normal distribution followed by 𝜇 = 0,  𝜎2 = 1,  𝛼  shows the adaptive parameter, 𝑠𝑥  and 𝑠𝑦 

indicate the dandelion seed lift module coefficient, and 𝐼 denotes the arbitrary integer within [−𝜋, 𝜋]. 
Case2. During rainy days, DO cannot rise well with the wind, so DO emphasizes local neighborhood 

exploitation: 
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𝑒 = 𝑇2 − 2𝑇 + 1,         (8) 

𝛽 = 1 − 𝑟𝑎𝑛𝑑()⋆ 1

𝑒
(𝑡2 − 2𝑡 − 1),       (9) 

𝑋𝑖
𝑡+1 = 𝑥𝑖

𝑡+1 ⋆𝛽,          (10) 

where 𝛽 denotes the local adaptive parameter and 𝑇 refers to the maximal number of iterations: 

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝛼⋆𝑠𝑥

⋆𝑠𝑦𝑙𝑛Y∗(𝑋𝑠
𝑡 − 𝑋𝑖

𝑡)𝑟𝑎𝑛𝑑𝑛 < 1.5

𝑋i
𝑡 ∗𝛽𝑒𝑙𝑠𝑒

,     (11) 

where 𝑟𝑎𝑛𝑑𝑛 shows the uniform distribution random integer. 

Dandelion seeds emphasize global discovery in the decline phase. It facilitates the dandelion 

population and reflects the stability of decline to travel toward the preferred position for reproduction: 

𝑋𝑚𝑒𝑎𝑛_𝑡 =
1

𝑝𝑜𝑝
∑ 𝑋𝑖

𝑝𝑜𝑝
𝑖=1 ,         (12) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 − 𝛼⋆𝛽𝑡
⋆(𝑋𝑚𝑒𝑎𝑛𝑡

− 𝛼⋆𝛽𝑡
⋆𝑋𝑖

𝑡),      (13) 

where 𝑋𝑚𝑒𝑎n_t  denotes the mean place of the DO population in 𝑖𝑡ℎ  iterations, and 𝛽𝑡  refers to the 

Brownian movement. 

Dandelion seeds focus on local neighborhood development in the landing stage. Based on the 

rising and descending phases, the DO arbitrarily chooses the landing site. The data around the existing 

elite seed can be utilized for local exploitation to approach the global optima: 

𝑋𝑖
𝑡+1 = 𝑋𝑒𝑙𝑖𝑡𝑒 + 𝑙𝑒𝑣𝑦(𝜆)∗𝑎∗𝑋𝑒𝑙𝑖𝑡𝑒 − 𝑋𝑖

𝑡+1∗𝛿)),      (14) 

𝛿 =
2𝑡

𝑇
,           (15) 

where 𝑋𝑒𝑙𝑖𝑡𝑒 stands for the better position of seeds at 𝑡 iteration, 𝑇 describes the maximal number of 

iterations, levy (𝐼〉〉) represents the function of Levy’s fight, 𝐼〉〉 = 1.5, 𝐼 linearly increases within [0,2].  

In the presented DO-FS method, the fitness function (FF) is deployed to get a balance between the 

count of FSs from classifier accuracy (maximal) and every performance (minimal) achieved by using 

FS as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
,        (16) 

where 𝛾𝑅(𝐷) denotes the classifier number of errors, 𝛼 and 𝛽 signify the two parameters equal to the 

effect of classifier quality and subset length, ∈ [1,0] and 𝛽 = 1 − 𝛼, |𝑅| indicates the cardinality of 

the chosen subset, and |𝐶| indicates the overall count of features from the database. 

3.2. Data classification using FAE model 

The FAE model is used for the classification of CCF. Autoencoder (AE) was initially coined in 

the 1980𝑠 for dimensionality reduction with encoded and decoded parts [23]. During the encoded part, 
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the input layer 𝑋 = {𝑋1, 𝑋2, ⋯ , 𝑋𝑁} ∈ ℝ𝑑×𝑁  is defined as a dimensionality decrease procedure as 

hidden state 𝐻 = {𝐻1, 𝐻2, ⋯ , 𝐻𝑁} ∈ ℝ𝑚×𝑁  with weight linked matrix 𝑊 ∈ ℝ𝑚×𝑑  and bias vector 

𝐵1 ∈ ℝ𝑚×1. During the decoder part, the HL reconstructs the input layer with 𝑊 ∈ ℝ𝑑×𝑚 and 𝐵2 ∈

ℝ𝑑×1 by minimalizing the loss function as follows: 

ℒ =
1

𝑑
||𝑌 − 𝑋||2.          (17) 

The values of every node in the output layer were evaluated as follows: 

𝑌 = 𝜎(𝑊𝑇𝐻 + 𝐵2),         (18) 

where 𝜎(𝑥) refers to a non-linear activation function, generally a logistic sigmoid function 𝜎(𝑥) =

1/(1 + 𝑒𝑥𝑝(−𝑥)). The HL values are attained using activation function 𝜎(𝑥) and bias ℬ1: 

𝐻 = 𝜎(𝑊𝑋 + 𝐵1).         (19) 

Parameters 𝛩 = {𝑊, 𝐵1, 𝐵2} are used for minimizing the loss function. Particularly, the HL is 

considered an effective outcome of dimensionality reduction once the output reconstructs the input 

data. However, the conventional AE only follows the minimal reconstructed error in an undirected 

manner that is weaker to supervise. Therefore, classical AE is considered an unsupervised model. 

Figure 2 displays the structure of AE. 

 

Figure 2. AE architecture. 

The study focuses on extracting discriminatory representation by integrating fuzzy membership 

𝑢𝑖𝑗 into the main function. Thus, the training method was guided by internally generated data, making 

the model self‐supervised. FAE exploits AE’s superior representation learning abilities and converts 

the information into another space with better discrimination by presenting a discriminative term with 

𝑢𝑖𝑗, 

ℒ(𝑋, 𝛩) = min
𝛩,𝐶

∑ [ 
𝑋𝑖∈𝑋

𝜂

2𝑑
||𝑋𝑖 − 𝑌𝑖||2 +

1−𝜂

2𝑚
∑ ∑ | 

𝐻𝑖𝜖𝐶𝑗

𝐾
𝑗=1 |𝐻𝑖 − 𝐶𝑗||2],  (20) 
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where 𝛩 = {𝑊, 𝐵1, 𝐵2}  is the parameter of the model and 𝜂  denotes a parameter adjusting for 

regulating the impact of the reconstructed loss and cluster-oriented loss. FAE should be trained in a 

self-supervised way and enhance the discriminatory learned features by presenting a clustering-

oriented loss as to the presented method using fuzzy optimizer: 

𝐶𝑗 =
∑ 𝑢𝑖𝑗𝐻𝑖𝜖𝐶𝑗

𝐻𝑖

∑ 𝑢𝑖𝑗𝐻𝑖𝜖𝐶𝑗

.         (21) 

In the training process, the HL feature of the block was forced to cluster towards the block center, 

leading to the features with the best separability. Where the block center of HLs and in every iteration 

is denoted as 𝐶𝑗 , and the discrimination of learned features can be improved by the similarity of 

instances from the block. 

3.3. Hyperparameter selection using IBOA 

The IBOA is exploited for the optimal selection of the hyperparameter values. Like other 

metaheuristics, the BOA technique has various disadvantages such as occasional instability and 

premature convergence [24]. Therefore, an improved version of BOA is introduced to resolve these 

drawbacks. To improve the efficacy in IBOA, a chaotic process can be employed by Lévy flight, which 

balances the exploration and exploitation: 

𝐿𝑒(𝑤) ≅ 𝑤−(𝜉+1),         (22) 

𝑤 = 𝐴 × |𝐵|
−

1

𝜉,          (23) 

𝜎2 = {
𝛤(1+𝜉)

𝜉𝛤((1+𝜉)/2)

 sin (𝜋𝜉/2)

2(1+𝜉)/2 }

2

𝜉
,        (24) 

where 𝑤 describes the step size,  𝛤 describes to the Gamma function, 𝜉 represents the Lévy index 

within zero and two, 𝐴, 𝐵 ∼ 𝑁(0, 𝜎2), and the value of 𝜉 is assumed to be 3/2. 

Therefore, the upgraded position of ordinary balls can be described as follows: 

𝐵𝑛,𝑠
𝑛𝑒𝑤 = 𝐿𝑒(𝛿) × (1 − 𝑃𝑅)(𝐵𝑛,𝑠

𝑜𝑙𝑑 − 𝑃𝑚,𝑠
𝑛 ) + 𝑃𝑚.𝑠

𝑛 , 𝑛 = 1,2,3, … 𝑁.   (25) 

Whereas 

𝐴 = 𝑎 × (2 × 𝑟 − 1),         (26) 

𝐵 = 𝐶 × 𝑓(𝑡) − 𝐵𝑛,𝑠
𝑜𝑙𝑑,        (27) 

where 𝑓(𝑡) denotes the random location vector, and 𝑎 ∈ [0,2] and 𝑟 ∈ [0,1] represent the arbitrary 

variable. The pseudocode of IBOA is shown in Algorithm 1. 
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Algorithm 1: Pseudocode of IBO 

Set N= number of balls’; 

M= number of variables; 

K= number of pockets; 

ET=escape threshold; iter = 0; 
Initialization 2N balls and K pockets; 

While (iter <iteration bound) 

Evaluate the place of pockets and balls by employing the cost function; 

Upgrade pocket memory and population; 

Generate sets of ordinary and cue balls; 

for every couple of balls 

Select the target pocket by applying the roulette‐wheel selection process; 

End 

Upgrade the position of the present normal balls; 

Calculate the ordinary ball speed after collision;  

Calculate the cue ball speed after collision; 

Update the position of present cue balls; 

If (rand < ET) 

Reconstruct the arbitrary size of balls; 

End 

Verify the boundary condition limitation and accurately define the ball range,  

Iter = iter + 1; 

Implement a chaotic Le’vy flight mechanism 

End 

Return to the optimal pocket for the outcome. 

The fitness optimum becomes a main feature of the IBOA method. An encoding performance 

should be utilized to estimate the optimal of candidate effectiveness. The accuracy value is the main 

case utilized to design an FF. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max (𝑃),         (28) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,          (29) 

where 𝑇𝑃 is true positive values and 𝐹𝑃 is false positive values. 

4. Results analysis 

The proposed method is simulated utilizing Python 3.6.5 on PC i5-8600k, GeForce 1050Ti 4GB, 

16GB RAM, 250GB SSD, and 1TB HDD. The parameter setting was specified as follows: batch size: 

5, learning rate: 0.01, epoch count: 50, dropout: 0.5, and activation: ReLU. 

In this section, the performance validation of ECFAE-CCFD method is tested under 2 databases 

a German credit database (http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data) and a 

credit fraud detection database (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud). The German 

credit dataset includes 1000 samples with a credit fraud detection dataset with 284807 samples as 

portrayed in Table 1. 

http://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
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Table 1. Description of two datasets. 

Descriptions German credit dataset Credit fraud detection dataset 

Source UCI Kaggle 

# of instances 1000 284807 

# of attributes 20 30 

# selected attributes 13 19 

# of class 2 2 

Classes: Good/Bad 700/300 450/450 

The classifier outcome of the ECFAE-CCFD method on the German credit database is exhibited in 

Figure 3. The confusion matrices obtained by the ECFAE-CCFD model on 70:30 of the TRPH /TSPH 

is illustrated in Figure 3(a) and (b). These findings specified that the ECFAE-CCFD algorithm can be 

appropriately detected and categorized with two classes. The PR outcome of the ECFAE-CCFD 

approach is depicted in Figure 3(c). The simulation value showed the ECFAE-CCFD algorithm has 

gained maximum PR solution on two classes. Moreover, the ROC examination of ECFAE-CCFD 

methodology is demonstrated in Figure 3(d). The outcomes showed that the ECFAE-CCFD method 

provides excellent performance with greater ROC outcomes on two classes. 

 

Figure 3. Performances on German credit dataset (a, b) confusion matrices, (c) PR_curve, 

and (d) ROC. 

In Table 2, the stimulation value of the ECFAE-CCFD model under 70:30 of the German credit 

dataset. The simulation outcome of the ECFAE-CCFD technique states the good and bad samples. 



4251 

AIMS Mathematics                                                               Volume 9, Issue 2, 4241–4258. 

According to 70% of TRPH, the ECFAE-CCFD approach achieves an average 𝑎𝑐𝑐𝑢𝑦  of 94.30%, 

𝑠𝑒𝑛𝑠𝑦 of 94.30%, 𝑠𝑝𝑒𝑐𝑦 of 94.30%, 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 94.30%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 94.62%. Simultaneously, 

with 30% of TSPH, the ECFAE-CCFD method realizes an average 𝑎𝑐𝑐𝑢𝑦  of 94.49%, 𝑠𝑒𝑛𝑠𝑦  of 

94.49%, 𝑠𝑝𝑒𝑐𝑦 of 94.49%, 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 94.49%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 95.72%. 

Table 2. Classifier analysis of ECFAE-CCFD algorithm on German credit dataset. 

Class  𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

TRPH (70%) 

Good 97.37 97.37 91.22 94.30 96.89 

Bad 91.22 91.22 97.37 94.30 92.35 

Average 94.30 94.30 94.30 94.30 94.62 

TSPH (30%) 

Good 99.51 99.51 89.47 94.49 97.40 

Bad 89.47 89.47 99.51 94.49 94.04 

Average 94.49 94.49 94.49 94.49 95.72 

The training accuracy 𝑇𝑅_𝑎𝑐𝑐𝑢𝑦  and 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦  of the ECFAE-CCFD algorithm under the 

German credit dataset is described in Figure 4. The 𝑇𝐿_𝑎𝑐𝑐𝑢𝑦 can be calculated by evaluating the 

ECFAE-CCFD algorithm on the TR database while the 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦 can be measured by calculating the 

effectiveness TS datasets. The experimental outcome exhibits that 𝑇𝑅_𝑎𝑐𝑐𝑢𝑦 and 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦 upsurge 

with increasing epoch count. So, the efficiently of the ECFAE-CCFD approach is increased under 

datasets of the TR and TS with higher epoch count. 

 

Figure 4. 𝐴𝑐𝑐𝑢𝑦 curve of ECFAE-CCFD algorithm on German credit database. 

The 𝑇𝑅_𝑙𝑜𝑠𝑠 and 𝑉𝑅_𝑙𝑜𝑠𝑠 outcome of the ECFAE-CCFD method with German credit dataset are 

shown in Figure 5. The 𝑇𝑅_𝑙𝑜𝑠𝑠 describes the error among the original values and predictive outcomes 

on TR datasets. The 𝑉𝑅_𝑙𝑜𝑠𝑠 represents the performance metric of the ECFAE-CCFD algorithm on 

validation data. This experimental outcome indicates that the 𝑇𝑅_𝑙𝑜𝑠𝑠 and 𝑉𝑅_𝑙𝑜𝑠𝑠 decreased with the 

maximum epoch count. It showed the enriched outcomes of ECFAE-CCFD methodology and 

capability to create an exact classification. The minimized values of 𝑇𝑅_𝑙𝑜𝑠𝑠  and 𝑉𝑅_𝑙𝑜𝑠𝑠 

demonstrate the enhanced outcomes of the ECFAE-CCFD model in capturing patterns and correlations. 
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Figure 5. Loss curve of ECFAE-CCFD algorithm on German credit dataset. 

The classifier outcome of the ECFAE-CCFD method on the credit fraud detection dataset is 

shown in Figure 6. The confusion matrices achieved by the ECFAE-CCFD system with 70:30 of the 

TRPH/TSPH is depicted in Figure 6(a) and (b). The accomplished findings outcomes showed that the 

ECFAE-CCFD technique can be precisely recognized and categorized the two classes. Next, the PR 

examination of the ECFAE-CCFD algorithm is shown in Figure 6(c). The simulation value showed 

that the ECFAE-CCFD algorithm had higher PR outcomes on two classes. Finally, the ROC curve of 

the ECFAE-CCFD methodology is represented in Figure 6(d). The ECFAE-CCFD model resulted in 

promising performance with enhanced ROC results on two classes. 

 

Figure 6. Performances on credit fraud detection dataset (a, b) confusion matrices, (c) 

PR_curve, and (d) ROC. 
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In Table 3, the experimental validation of the ECFAE-CCFD model under 70:30 of the credit 

fraud detection database. The simulation value outcomes of the ECFAE-CCFD approach state the good 

and bad samples. Based on 70% of TRPH, the ECFAE-CCFD system gets an average 𝑎𝑐𝑐𝑢𝑦  of 

96.83%, 𝑠𝑒𝑛𝑠𝑦  of 96.83%, 𝑠𝑝𝑒𝑐𝑦  of 96.83%, 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 96.83%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 96.82%. 

Afterward, on 30% of TSPH, the ECFAE-CCFD technique accomplishes an average 𝑎𝑐𝑐𝑢𝑦 of 96.58%, 

𝑠𝑒𝑛𝑠𝑦 of 96.58%, 𝑠𝑝𝑒𝑐𝑦 of 96.58%, 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 96.58%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 96.65%. 

Table 3. Classifier outcome of ECFAE-CCFD algorithm on credit fraud detection dataset. 

Class 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

TRPH (70%) 

Good 97.06 97.06 96.60 96.83 96.74 

Bad 96.60 96.60 97.06 96.83 96.90 

Average 96.83 96.83 96.83 96.83 96.82 

TSPH (30%) 

Good 97.92 97.92 95.24 96.58 96.91 

Bad 95.24 95.24 97.92 96.58 96.39 

Average 96.58 96.58 96.58 96.58 96.65 

The training accuracy 𝑇𝑅_𝑎𝑐𝑐𝑢𝑦 and 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦  of the ECFAE-CCFD technique on the credit 

fraud detection dataset is depicted in Figure 7. The 𝑇𝐿_𝑎𝑐𝑐𝑢𝑦 can be described by the calculation of 

the ECFAE-CCFD system with TR dataset while the 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦 can be measured by calculating the 

outcomes on testing datasets. The experimental outcome shows that 𝑇𝑅_𝑎𝑐𝑐𝑢𝑦  and 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦  are 

increased with increasing epoch count. Therefore, the effectiveness of the ECFAE-CCFD method can 

be increased on the datasets of TR and TS with maximum epoch count. 

 

Figure 7. 𝐴𝑐𝑐𝑢𝑦 curve of ECFAE-CCFD algorithm on credit fraud detection dataset. 

The 𝑇𝑅_𝑙𝑜𝑠𝑠 and 𝑉𝑅_𝑙𝑜𝑠𝑠 analysis of the ECFAE-CCFD algorithm on the credit fraud detection 

database can be seen in Figure 8. The 𝑇𝑅_𝑙𝑜𝑠𝑠 describes the error between the predictable outcome 

and original values on the dataset of TR. The 𝑉𝑅_𝑙𝑜𝑠𝑠 represents the effectiveness metric of the 

ECFAE-CCFD system with validation data. These experimental outcomes show that the 𝑇𝑅_𝑙𝑜𝑠𝑠 and 

𝑉𝑅_𝑙𝑜𝑠𝑠 decreased with maximum epoch count. It demonstrated the enriched results of the ECFAE-
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CCFD model and capabilities for producing correct classification. The minimum value of 𝑇𝑅_𝑙𝑜𝑠𝑠 and 

𝑉𝑅_𝑙𝑜𝑠𝑠  shows the higher outcomes of the ECFAE-CCFD model in relationships and capturing 

patterns. 

 

Figure 8. Loss curve of ECFAE-CCFD algorithm on credit fraud detection dataset. 

In Table 4, a wide-ranging comparison analysis of the ECFAE-CCFD model is made with recent 

models [25]. Figure 9 investigates a brief outcomes analysis of the ECFAE-CCFD technique with 

respect to 𝑎𝑐𝑐𝑢𝑦 , 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 , and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 . Based on 𝑎𝑐𝑐𝑢𝑦 , the ECFAE-CCFD technique offers 

increasing 𝑎𝑐𝑐𝑢𝑦 of 96.83% whereas the AdaBoost, LR, RF, SVM, ELM, IG-ELM, GAW, and ML-

HFSICCFD techniques obtain decreasing 𝑎𝑐𝑐𝑢𝑦 values of 80.23%, 80.24%, 83.23%, 90.70%, 80.71%, 

79.29%, 89.80%, and 95.97% respectively. Also, with respect to 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒, the ECFAE-CCFD method 

offers an increasing 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 87%, whereas the AdaBoost, LR, RF, SVM, ELM, IG-ELM, GAW, 

and ML-HFSICCFD approaches achieve decreasing 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 64%, 84%, 65%, 73%, 89%, 

90%, 94%, and 96.83% respectively. Finally, in terms of 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , the ECFAE-CCFD approach 

achieves an increasing 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 88%, whereas the AdaBoost, LR, RF, SVM, ELM, IG-ELM, GAW, 

and ML-HFSICCFD systems gain lesser 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 values of 72.30%, 87%, 71.60%, 79.30%, 89.20%, 

90.90%, 95.20%, and 96.82 % respectively. 

Table 4. Comparison analysis of ECFAE-CCFD model with other algorithms [25]. 

Classifier 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

AdaBoost 80.23 87.00 89.00 87.00 88.00 

LR Model 80.24 62.50 83.70 64.00 72.30 

RF Model 83.23 82.90 91.40 84.00 87.00 

SVM Model 90.70 62.60 81.90 65.00 71.60 

ELM Algorithm 80.71 71.00 88.50 73.00 79.30 

IG-ELM 79.29 87.40 91.10 89.00 89.20 

GAW Model 89.80 89.90 92.00 90.00 90.90 

ML-HFSICCFD 95.97 94.50 96.10 94.00 95.20 

ECFAE-CCFD 96.83 96.83 96.83 96.83 96.82 
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Figure 9. 𝐴𝑐𝑐𝑢𝑦, 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 analysis of ECFAE-CCFD algorithm with other methods. 

Figure 10 examines a brief results investigation of the ECFAE-CCFD method in terms of 𝑠𝑒𝑛𝑠𝑦 

and 𝑠𝑝𝑒𝑐𝑦. Based on 𝑠𝑒𝑛𝑠𝑦, the ECFAE-CCFD system attains enhanced 𝑠𝑒𝑛𝑠𝑦 of 87%, whereas the 

AdaBoost, LR, RF, SVM, ELM, IG-ELM, GAW, and ML-HFSICCFD algorithms attain reduce 𝑠𝑒𝑛𝑠𝑦 

values of 62.50%, 82.90%, 62.60%, 71%, 87.40%, 89.90%, 94.50%, and 96.83% respectively. In 

addition, with respect to 𝑠𝑝𝑒𝑐𝑦, the ECFAE-CCFD system obtains higher 𝑠𝑝𝑒𝑐𝑦 of 89%, whereas the 

AdaBoost, LR, RF, SVM, ELM, IG-ELM, GAW, and ML-HFSICCFD algorithms gain minimal 𝑠𝑝𝑒𝑐𝑦 

values of 83.70%, 91.40%, 81.90%, 88.50%, 91.10%, 92%, 96.10%, and 96.83% respectively.  

 

Figure 10. 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 analysis of ECFAE-CCFD algorithm with other methods. 

These outcomes highlighted the maximum efficacy of the ECFAE-CCFD method with other 

systems. 

5. Conclusions 

In this manuscript, we have presented the ECFAE-CCFD method. The major purpose of the 

ECFAE-CCFD model is to detect the presence of CCF in real time. To accomplish this, the ECFAE-
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CCFD technique comprises data normalization, IBOA-based parameter tuning, FAE classification, 

and DO-FS-based feature subset selection. The ECFAE-CCFD method exploits the DO-FS technique 

for effectual selection of the features. Meanwhile, the FAE approach can be exploited for the 

recognition and classification of CCF. At last, the IBOA is applied for the optimum selection of 

parameters based on the FAE algorithm, increasing the classification accuracy. The simulation 

outcomes of the ECFAE-CCFD method could be examined on a benchmark open-access database. The 

obtained values display the promising performance of the ECFAE-CCFD system in terms of various 

measures. 

The study could leverage a more comprehensive review of the practical applicability of the 

ECFAE-CCFD technique in practical scenarios. Specifically, insights into the adaptability of the 

method to diverse financial ecosystems, different scales of credit card transaction datasets, and the 

computational resources needed for real-time implementation could improve its relevance to real-time 

deployment. Furthermore, considering challenges such as data privacy regulations and incorporation 

with existing financial systems would provide a more detailed understanding of the feasibility and 

potential hurdles of the method in an actual operational context. 

While the proposed method illustrates considerable developments in the field of automated fraud 

detection, it is crucial to consider its wider impact, especially in terms of ethical considerations. 

Automated fraud detection systems, such as ECFAE-CCFD, increase concern regarding bias, privacy, 

and transparency. The ethical implication might emerge from the wide usage of personal financial 

information and the potential for false positives impacting individuals. Transparency in the algorithm’s 

decision-making process is vital to building trust, and this study could be beneficial for discussing how 

ECFAE-CCFD contributes or addresses to this ethical consideration. Furthermore, attention should be 

given to potential bias in the training data that might inadvertently perpetuate discriminatory outcomes. 

Since an automated fraud detection system plays a major role in a financial transaction, an ethical 

discussion surrounding the deployment of ECFAE-CCFD must emphasize the need for fair and 

responsible practices, ensuring that the benefits of improved fraud detection are balanced with ethical 

considerations to protect user trust and privacy. 
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