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1. Introduction

Ridge regression [1] is a classical and powerful statistical method to inhibit the multicollinearity
among covariates in the following linear regression model:

y = Xβ + ε, (1.1)

where y ∈ Rn is the observations of response, X ∈ Rn×p is the design matrix of covariates, β ∈ Rp is the
unknown parameter vector, and ε ∼ N(0, σ2In) with In being the identity matrix of order n. The ridge
estimator of model (1.1) is given by

β̂r =
(
XT X + λIn

)−1
XT y, (1.2)
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where λ > 0 is the ridge parameter. Finding the ridge estimator (1.2) is also equivalent to solving the
following optimization problem:

β̂r = argmin
β∈Rp

‖y − Xβ‖22 + λ‖β‖22, (1.3)

where ‖ · ‖2 is the Euclidian vector norm. Equation (1.3) is also known as the famous Tikhonov
regularization technique dealing with discrete ill-posed problems [2]. Incorporating weights to the
observations and generalizing the ridge penalty leads to the following generalized ridge regression
(GRR) model:

β̂gr = argmin
β∈Rp

(y − Xβ)T Σ(y − Xβ) + (β − β0)T Θ(β − β0), (1.4)

where Σ ∈ Rn×n is a diagonal matrix with nonnegative elements on its diagonal, Θ ∈ Rp×p is a
symmetric positive definite matrix and determines the speed and direction of shrinkage, and β0 is a
user-specified, non-random target vector [3]. By the Karush-Kuhn-Tucker (KKT) optimality condition,
taking the derivative of the objective function in (1.4) with respect to β shows that the generalized ridge
estimator (GRE) denoted by β̂gr satisfies the following normal equation:

(XT ΣX + Θ)β = XT Σy + Θβ0 (1.5)

and β̂gr is given by
β̂gr = (XT ΣX + Θ)−1(XT Σy + Θβ0). (1.6)

Though the diagonal matrix Σ can give different weights to the observations, the correlation structure
between observations cannot be captured. For this reason, we relax the assumption and allow Σ to be a
symmetric positive definite matrix, which makes (1.4) the exact combination of weighted least squares
loss and the generalized ridge penalty. By varying the weighting matrices Σ and Θ, the generalized
Tikhonov regularization [2] can also be derived from (1.4).

The multicollinearity in covariates often leads to a large condition number of XT X, which plays
a central role in the sensitivity analysis of the least squares estimate of model (1.1) [4, Ch. 5].
Condition number is a powerful tool in measuring the sensitivity of a problem and gives the maximum
amplification of the resulting change in solution, with respect to a small perturbation in the input data,
and has been studied for too many numerical linear algebra problems to list here. The development of
the definition of condition number and their comparison should be referred to [5–9]. In this paper, we
employ the following very general definition of condition number given by [6], which covers most of
the popular condition numbers in the current literature as its special cases.

Definition 1. (projected condition number) [6] Let F : Rp → Rq be a continuous map defined on an
open set Dom(F ), the domain of definition of F , and L ∈ Rq×k, then the projected condition number of
F at x ∈ Dom(F ) with respect to L ∈ Rq×k is defined by

κLF (x) = lim
δ→0

sup
‖ ∆x

α ‖µ≤δ

∥∥∥∥ LT (F (x+∆x)−F (x))
ξL

∥∥∥∥
ν∥∥∥∆x

α

∥∥∥
µ

, (1.7)

where ·/· is the componentwise division satisfying that a nonzero numerator divided by a zero
denominator remains unchanged, ξL ∈ R

k and α ∈ Rp are parameters with a requirement that if
some element of α is zero, then the corresponding element of ∆x must also be zero, and ‖ · ‖µ and ‖ · ‖ν
are two vector norms defined on Rp and Rk, respectively.
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In Definition 1, the matrix L can be treated as an operator to transform the image vector of F ,
for example, when we set L = ei, the i-th element of the canonical base of Rq, Definition 1 gives the
condition number of the i-th element of the image vector. The two vector norms ‖·‖µ and ‖·‖ν also enable
us to give different measures of the perturbations in the input and output spaces, respectively. When
the map F is Fréchet differentiable, we can get the following Theorem 1, which largely reduces the
difficulty of finding the supremum of (1.7) to establishing the Fréchet derivative ofF . The rationality of
Definition 1 and its relationship with other popular condition numbers has been extensively discussed,
and the interested readers are referred to [6–8] and the references therein.

Theorem 1. [6] When the map F in Definition 1 is Fréchet differentiable at x, the explicit expression
of the projected condition number κLF (x) is given by

κLF (x) =
∥∥∥Diag(ξ‡L)LT DF (x)Diag(α)

∥∥∥
µν
,

where DF (x) is the Fréchet derivative of F at x, ξ‡L is a vector with ξ‡Li =

{
1/ξLi, ξLi , 0,
1, ξLi = 0,

Diag(ξ‡L)

and Diag(α) are diagonal matrices with the elements of the vector on the diagonal, and ‖ · ‖µν is the
matrix norm induced by the vector norms ‖ · ‖µ and ‖ · ‖ν.

The condition number theory of some special cases of model (1.4) have been well studied in
the literature, like (weighted) linear least squares problem [6, 7, 10, 11] and (generalized) Tikhonov
regularization [12–14]. In this paper, we will extend the current results and consider the condition
number theory of the GRR model (1.4). To compute the exact value of the condition number is
usually expensive, we also propose some efficient statistical condition estimation methods to reduce the
computation burden but still give reasonable estimates. The rest of the paper is organized as follows. In
Section 2, we present the explicit expressions of condition numbers for the GRR model (1.4). Section 3
contains the statistical condition estimation method for estimating the condition numbers of the GRR
model (1.4). Numerical experiments and a conclusion of the whole paper are given as Sections 4 and 5,
respectively.

2. The condition number of the GRR problem

In order to present the condition number of the GRR model (1.4), we first explicitly define the map
F in (1.7) as follows:

F : Rn × Rn×p × Rn×n × Rp×p × Rp → Rp,

F (y, X,Σ,Θ, β0) → β̂gr = (XT ΣX + Θ)−1(XT Σy + Θβ0). (2.1)

Let ỹ = y + ∆y, X̃ = X + ∆X, Σ̃ = Σ + ∆Σ, Θ̃ = Θ + ∆Θ and β̃0 = β0 + ∆β0, then the perturbed GRR
model is given by

β̂g̃r = argmin
β∈Rp

(ỹ − X̃β)T Σ̃(ỹ − X̃β) + (β − β̃0)T Θ̃(β − β̃0), (2.2)

where β̂g̃r is the GRE of the perturbed GRR model (2.2) and satisfies the following normal equation:

(X̃T Σ̃X̃ + Θ̃)β̂g̃r = X̃T Σ̃ỹ + Θ̃β̃0. (2.3)
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For simplicity of presentation and with a little abuse of notation, we set

vec(y, X,Σ,Θ, β0) := [yT , vec(X)T , vec(Σ)T , vec(Θ)T , βT
0 ]T

then the projected condition number of the GRR model (1.4) can be defined as follows.

Definition 2. Considering the perturbed GRR model (2.2), the projected condition number of the GRR
model (1.4), with respect to L ∈ Rq×k, is defined by

κLF = lim
δ→0

sup∥∥∥∥∥vec
(

∆y
γ ,

∆X
Ψ
, ∆Σ

Φ
, ∆Θ

Υ
,
∆β0
$

)∥∥∥∥∥
µ
≤δ

∥∥∥∥∥ LT (F (ỹ,X̃,Σ̃,Θ̃,β̃0)−F (y,X,Σ,Θ,β0))
ξL

∥∥∥∥∥
ν∥∥∥∥vec

(
∆y
γ
, ∆X

Ψ
, ∆Σ

Φ
, ∆Θ

Υ
, ∆β0
$

)∥∥∥∥
µ

,

where ξL ∈ R
k, γ ∈ Rn, Ψ ∈ Rn×p, Φ ∈ Rn×n, Υ ∈ Rp×p, $ ∈ Rp are parameters with a requirement that

if some element is zero, then the corresponding element in the numerator must also be zero, and ‖ · ‖µ
and ‖ · ‖ν are two vector norms defined on Rn+np+n2+p2+p and Rk, respectively.

If we set β̂g̃r = β̂gr + ∆β and further assume that

max {‖∆y‖, ‖∆Σ‖, ‖∆X‖, ‖∆Θ‖, ‖∆β0‖} ≤ ε

with ‖ · ‖ denoting appropriate norm and ε being a sufficiently small positive real number, then with
some algebra and omitting the higher order terms, we can get the following equality by subtracting (1.5)
from (2.3)

W∆β = XT Σ
(
∆y − ∆Xβ̂gr

)
+ XT ∆Σr + ∆XT Σr

+Θ∆β0 + ∆Θ(β0 − β̂gr) + O(ε2), (2.4)

whereW = XT ΣX + Θ and r = y − Xβ̂gr. Backing to Definition 2, we have

F
(
ỹ, X̃, Σ̃, Θ̃, β̃0

)
− F (y, X,Σ,Θ, β0) = ∆β

and

∆β = W−1XT Σ
(
∆y − ∆Xβ̂gr

)
+W−1XT ∆Σr +W−1∆XT Σr

+W−1Θ∆β0 +W−1∆Θ(β0 − β̂gr) + O(ε2). (2.5)

With (2.5), the first order expansion of ∆β, we can establish the explicit expression of the projected
condition number for the GRR model (1.4).

Theorem 2. For the GRR model (1.4), when Σ and Θ are symmetric positive definite matrices, the
explicit expression of its projected condition number can be established and given as

κLF =
∥∥∥∥Diag(ξ‡L)LT

[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]
Diag(vec (γ,Ψ,Φ,Υ, $))

∥∥∥∥
µν
,

whereW = XT ΣX +Θ, r = y−Xβ̂gr,M =W−1⊗ (Σr)T − β̂gr⊗ (W−1XT Σ) andN = (β0− β̂gr)T ⊗W−1.
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Proof. Since vec(ABC) =
(
CT ⊗ A

)
vec(B), we apply vec(·) operator to ∆β and get

∆β = W−1XT Σ∆y +
(
W−1 ⊗ (Σr)T − β̂T

gr ⊗ (W−1XT Σ)
)

vec(∆X)

+
(
rT ⊗ (W−1XT )

)
vec(∆Σ) +

(
(β0 − β̂gr)T ⊗W−1

)
vec(∆Θ)

+W−1Θ∆β0 + O(ε2). (2.6)

LetM =W−1 ⊗ (Σr)T − β̂T
gr ⊗ (W−1XT Σ) and N = (β0 − β̂gr)T ⊗W−1. We can rewrite (2.6) as

∆β =
[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]


∆y
vec(∆X)
vec(∆Σ)
vec(∆Θ)

∆β0


+ O(ε2). (2.7)

With (2.7), we can get the following Fréchet derivative of F

DF =
[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]
(2.8)

and complete the proof by Theorem 1. �

Theorem 2 presents the generic form of the condition number for the GRR problem (1.4). For
practical applications, we need to specify the norms and the parameters with respect to concrete
backgrounds. We also note that the explicit expression of the condition number contains specific
structures due to the Kronecker product, which enlarges the size of the matrix and increases its
computational burden. In the following, we will discuss some specific forms of the condition number
and its computational issues.

2.1. The normwise condition number

When µ = ν = 2, the parameter vectors and matrices γ, Ψ, Φ, Υ, and $ reduce to real numbers
and equal to ‖vec([y, X,Σ,Θ, β0])‖2 and ξL = ‖LT β̂gr‖2 , 0, κLF gives an overall treatment of the
perturbations, then we can obtain the projected relative normwise condition number of the GRR
model (1.4) from Theorem 2, which is given as follows.

Theorem 3. When µ = ν = 2, γ = Ψ = Φ = Υ = $ = ‖vec(y, X,Σ,Θ, β0)‖2, and ξL = ‖LT β̂gr‖2 , 0,
the projected relative normwise condition number of the GRR model (1.4) is given by

κ2
LF =

∥∥∥∥LT
[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]∥∥∥∥
2
‖vec (y, X,Σ,Θ, β0)‖2

‖LT β̂gr‖2
,

where ‖ · ‖2 denotes the spectral norm of a matrix or the Euclidian norm of a vector,W = XT ΣX + Θ,
r = y − Xβ̂gr,M =W−1 ⊗ (Σr)T − β̂T

gr ⊗ (W−1XT Σ) and N = (β0 − β̂gr)T ⊗W−1.

Note that the main difficulty for explicitly computing the value of κ2
LF lies in the following term

κ2a
LF :=

∥∥∥∥LT
[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]∥∥∥∥
2
, (2.9)
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which contains the Kronecker product and is also called the projected absolute normwise condition
number. To remove the Kronecker product in κ2a

LF , the matrix cross-product and Cholesky factorization
techniques may be used to establish the compact but equivalent forms of the normwise condition
number [6, 7]. However for large problems, there is no need to form the condition number explicitly
and a suitable estimate will be enough [15, Ch. 15]. Here, we present a compact form of κ2a

LF that not
only removes the Kronecker product, but also provides important support for its estimation procedure
described in Section 3.

Theorem 4. When µ = ν = 2, γ = Ψ = Φ = Υ = $ = ‖vec(y, X,Σ,Θ, β0)‖2, and ξL = ‖LT β̂gr‖2 , 0,
the projected absolute normwise condition number κ2a

LF of the GRR model (1.4) can also be written as

κ2a
LF 1 =

∥∥∥∥LTW−1KW−1L − LTW−1
(
β̂grrT Σ2X + XT Σ2rβ̂T

gr

)
W−1L

∥∥∥∥ 1
2

2
. (2.10)

In particular, when L = ei, we can get the projected absolute normwise condition number of the i-th
element in the solution

κ2a
eiF 1 =

∥∥∥∥eT
i W

−1KW−1ei − eT
i W

−1
(
β̂grrT Σ2X + XT Σ2rβ̂T

gr

)
W−1ei

∥∥∥∥ 1
2

2
, (2.11)

whereW = XT ΣX+Θ, r = y−Xβ̂gr andK =
(
1 + ‖β̂gr‖

2
2

)
XT Σ2X+‖r‖22XT X+

(
‖β0 − β̂gr‖

2
2 + rT Σ2r

)
Ip +

Θ2.

Proof. For the spectral norm, we have ‖A‖2 = ‖AAT ‖
1
2
2 with A ∈ Rm×n. We apply this equality to κ2a

LF
and get its equivalent form

κ2a
LF 1 :=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
LT

[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]


ΣXW−1

MT

r ⊗ (XW−1)
NT

ΘW−1


L

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1
2

2

.

Since

MMT =
(
W−1 ⊗ (Σr)T − β̂T

gr ⊗ (W−1XT Σ)
) (
W−1 ⊗ (Σr) − β̂gr ⊗ (ΣXW−1)

)
= rT Σ2rW−2 −W−1β̂grrT Σ2XW−1 −W−1XT Σ2rβ̂T

grW
−1 + ‖β̂gr‖

2
2W

−1XT Σ2XW−1

and

NNT =
(
(β0 − β̂gr)T ⊗W−1

) (
(β0 − β̂gr) ⊗W−1

)
= ‖β0 − β̂gr‖

2
2W

−2,

we can easily get

κ2a
LF 1 =

∥∥∥∥LTW−1KW−1L − LTW−1
(
β̂grrT Σ2X + XT Σ2rβ̂T

gr

)
W−1L

∥∥∥∥ 1
2

2

with K =
(
1 + ‖β̂gr‖

2
2

)
XT Σ2X + ‖r‖22XT X +

(
‖β0 − β̂gr‖

2
2 + rT Σ2r

)
Ip + Θ2. �
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Remark 1. Theorem 4 presents a compact but equivalent form κ2a
LF 1 of the absolute condition number

κ2a
LF that does not contain the Kronecker product. Comparing the size of the matrix, we can find that
κ2a

LF 1 requires much less storage memory compared with κ2a
LF . When the exact value of the normwise

condition number is computed, κ2a
LF 1 also needs much less Central Processing Unit (CPU) time on a

computer, and this will be illustrated through numerical experiment in Section 4. Here, we also need
to point out that the Cholesky factorization technique was not employed to derive the compact form
of κ2a

LF . The main reason is that the Cholesky factorization based compact form only gives a moderate
size of matrix, which is still larger than κ2a

LF 1, though much smaller than κ2a
LF . Thus, considering the

economics of storage space, we only derived κ2a
LF 1.

2.2. The mixed and componentwise condition numbers

Since the normwise condition number gives an overall treatment of all the parameters and ignores
the data structure and scaling of the input data, the mixed and componentwise condition numbers are
proposed [8,9]. By varying the norms and parameters in Theorem 2, we can also obtain the mixed and
componentwise condition numbers of the GRR model (1.4).

Theorem 5. When µ = ν = ∞, γ = y, Ψ = X, Φ = Σ, Υ = Θ, $ = β0, ξL = ‖LT β̂gr‖∞, and LT β̂gr in
sequel, the projected mixed and componentwise condition numbers of the GRR model (1.4) are given
by

κ∞mLF =

∥∥∥∥∣∣∣∣LT
[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]∣∣∣∣ |vec ([y, X,Σ,Θ, β0])|
∥∥∥∥
∞

‖LT β̂gr‖∞

and

κ∞cLF =

∥∥∥∥∥∥∥∥∥
∣∣∣∣LT

[
W−1XT Σ, M, rT ⊗ (W−1XT ), N , W−1Θ

]∣∣∣∣ |vec ([y, X,Σ,Θ, β0])|∣∣∣LT β̂gr

∣∣∣
∥∥∥∥∥∥∥∥∥
∞

,

respectively, where ‖ · ‖∞ is the infinite norm giving the largest magnitude among each element of a
vector.

Proof. The proof is quite easy due to the following fact that for matrix A and vector d, the following
equalities hold ∥∥∥ADiag(d)

∥∥∥
∞

=
∥∥∥|A| ∣∣∣Diag(d)

∣∣∣∥∥∥
∞

= ‖|A||d|‖∞ .

Applying the above equalities to Theorem 2 gives the desired results. �

For the mixed and componentwise condition numbers, the aforementioned matrix-cross product
techniques cannot be used to remove its Kronecker product. Here, we present some upper bounds that
require little storage space and can be efficiently computed.

Theorem 6. The mixed and componentwise condition numbers of the GRR model (1.4) can be
correspondingly bounded as follows:

κ∞ubd
mLF =

∥∥∥Gubd
∥∥∥
∞

‖LT β̂gr‖∞
and κ∞ubd

cLF =

∥∥∥∥∥∥ Gubd

LT β̂gr

∥∥∥∥∥∥
∞

,
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4185

where

Gubd =
∣∣∣LTW−1XT Σ

∣∣∣ (|y| + |X||β̂gr|
)

+
∣∣∣LTW−1XT

∣∣∣ |Σ||r| + ∣∣∣LTW−1
∣∣∣ ∣∣∣XT |Σr

∣∣∣
+

∣∣∣LTW−1Θ
∣∣∣ |β0| + |LTW−1||Θ|(|β0 − β̂gr|).

Proof. The explicit expression of Gubd is derived with the Lemma 5 in [10], which is straightforward
and omitted here. �

The condition number not only gives a measure of the sensitivity of the problem, but also can be
used to give the first order estimate of the forward error. Thus, in many practical applications, the exact
value of the condition number is usually not needed and within a 10 factor estimate will be enough.
Many techniques have been proposed to estimate the normwise, mixed, and componentwise condition
numbers, like the power method [15], probabilistic, and statistical based methods [16]. Considering the
computational efficiency and its powerful adaptability, we would like to employ the statistical condition
estimation method to estimate the condition numbers of the GRR model.

3. The small-sample statistical condition estimation

The small-sample statistical condition estimation (SSCE) theory has been widely applied to
estimate the normwise, mixed, and componentwise condition numbers of many numerical linear
algebra problems, and examples include the linear system [17], least squares problem [18, 19], matrix
factorization [20, 21], eigenvalue problem [22], matrix function [16], Sylvester equation [23], and so
on.

To introduce the framework of SSCE, we consider the following differentiable function f : Rp → R,
and its Taylor expansion is given by

f (x + δz) = f (x) + δ∇ f (x)T z + O(δ2),

where δ is a small positive real number, ∇ f (x) is the gradient vector of f at x, and z is a unit 2-
norm vector. It is well known that ‖∇ f (x)‖2 is the absolute condition number and gives an appropriate
measure of the local sensitivity of f at x. According to [16], if we choose z uniformly and randomly
from a unit sphere Sp−1, then the expected value of |∇ f (x)T z| is

E(|∇ f (x)T z|) = ‖∇ f (x)‖2Ep,

where E1 = 1, E2 = π
2 , and for p > 2,

Ep =

 1·3·5···(p−2)
2·4·6···(p−1) , for p odd,
2
π

2·4·6···(p−2)
3·5·7···(p−1) , for p even.

Ep is the Wallis factor and can be approximated by Ep ≈
√

2
π(p− 1

2 )
with high accuracy [18], then we can

define

η ≡
|∇ f (x)T z|

Ep

AIMS Mathematics Volume 9, Issue 2, 4178–4193.
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as the condition estimator, which can give a very reliable estimate of ‖∇ f (x)‖2; specifically, the
following probability inequality holds

P
(
‖∇ f (x)‖2

τ
≤ η ≤ τ‖∇ f (x)‖2

)
≥ 1 −

2
πτ

+ O

(
1
τ2

)
.

The accuracy of condition estimator can be further improved by adding k samples

η(k) ≡
Ek

Ep

√
|∇ f (x)T z1|

2 + |∇ f (x)T z2|
2 + · · · + |∇ f (x)T zk|

2,

where [z1, z2, · · · , zk] is the orthonormalization of z1, z2, · · · , zk being selected uniformly and randomly
from Sp−1. The k-sample condition estimator η(k) can achieve a very high accuracy with a small size
of samples, for example, when k = 3 and τ = 10, we have

P
(
‖∇ f (x)‖2

10
≤ η(3) ≤ 10‖∇ f (x)‖2

)
≈ 0.9988389,

which means the reliability of a condition estimate within a factor 10 can be improved from 0.936338
(k = 1) to 0.9988389 by just adding 2 extra samples.

3.1. Normwise condition estimation

Note that the SSCE method is very suitable for estimating the condition number of certain elements
in the solution. However, for the normwise condition number derived in Section 2.1, what we need to
estimate is the spectral norm of a large matrix. This means we need to make some modification on the
SSCE method to estimate the normwise condition number of the GRR model (1.4). Here, we employ
the strategy proposed by [19] for estimating the normwise condition number of the linear least squares
problem.

According to [19], to estimate the normwise condition number of the GRR model (1.4), we first
need to estimate the condition number of zT

i x with

κi =
∥∥∥∥zT

i W
−1KW−1zi − zT

i W
−1

(
β̂grrT Σ2X + XT Σ2rβ̂T

gr

)
W−1zi

∥∥∥∥ 1
2

2
,

and then the normwise condition number can be estimated by

κN =
Ek

Ep

 k∑
i=1

κ2
i

 , (3.1)

where [z1, · · · , zk] can be obtained via QR factorization [4, Ch. 5] of a random matrix Z ∈ Rp×k. Note
that when W and K are available, the main computational cost for computing κi is O( 1

3 p3) when
Cholesky factorization is used to computeW−1zi. If we further take the QR factorization into account,
then we can find that the total computational cost for estimating the normwise condition number is
O( k

3 p3 + pk2). We summarize the above procedure as the following Algorithm 1.
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Algorithm 1 Absolute normwise condition number estimator.

(1) Generate k vectors z1, · · · , zk ∈ R
p with entries from uniform distributionU(0, 1).

(2) Orthonormalize the vectors z1, · · · , zk with QR factorization.
(3) Repeat k times for computing

κi =
∥∥∥∥zT

i W
−1KW−1zi − zT

i W
−1

(
β̂grrT Σ2X + XT Σ2rβ̂T

gr

)
W−1zi

∥∥∥∥ 1
2

2
,

with i = 1, · · · , k, and get κ1, · · · , κk.
(4) Compute the absolute normwise condition number estimator by

κN =
Ek

Ep

 k∑
i=1

κ2
i

 , with Ep =

√
2

π(p − 1
2 )
.

3.2. Mixed and componentwise condition estimation

From Theorem 5, we note that computing the mixed and componentwise condition numbers is
equivalent to finding the largest elements in a vector. The SSCE method can be easily applied to
estimate the mixed and componentwise condition numbers by extending the aforementioned SSCE
procedure from scalar valued function to vector valued function. We present it in the following
Algorithm 2. Note that when the orthonormal vectors are obtained, the computational complexity
of SSCE for mixed and componentwise condition numbers also lies in solving the positive definite
linear system, which makes it similar to that of Algorithm 1.

4. Numerical experiment

To illustrate our theoretical results, we will use a randomly generated GRR model with a known
solution. The desired GRR model is constructed as follows. The coefficient matrices are given by

Σ = U1Λ1UT
1 , Θ = V1Λ2VT

1 , and X = U2

[
Λ3

0

]
VT

2 , (4.1)

where Ui and Vi (i = 1, 2) are random orthogonal matrices and Λi (i = 1, 2, 3) are diagonal matrices
with λi j arranged in a descending order on its diagonal. Actually, (4.1) exactly gives the eigenvalue
decomposition of Σ and Θ and the singular value decomposition of X [4]. Λ1 and Λ2 contain the
eigenvalues of Σ and Θ, and Λ3 the singular values of X. β is a random vector generated from the
standard normal distribution. r is a random vector with specified magnitude, that is, ‖r‖2 is given.
Then, based on the normal Eq (1.5), we set

y = r − Xβ and β0 = β − Θ−1XT Σr,

and get the random GRR model with specified solution. To compute β̂gr, the preconditioned conjugate
gradients (PCG) method will be employed to solve the normal Eq (1.5). With the above setting, we
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can control the condition number of the coefficient matrices and easily get

κ(Σ) = ‖Σ‖2‖Σ
−1‖2 =

λ11

λ1n
, κ(Θ) =

λ21

λ2p
, and κ(X) =

λ31

λ3n
. (4.2)

All the experiments are performed in Matlab R2018a on a PC with Intel i7-10700 CPU @ 2.90 GHz
and 16.00 GB random access memory.

Algorithm 2 Mixed and componentwise condition numbers estimator.

(1) Generate k groups of matrices and vectors

(∆y1,∆X1,∆Σ1,∆Θ1,∆β01) , · · · , (∆yk,∆Xk,∆Σk,∆Θk,∆β0k)

with elements from the standard normal distribution N(0, 1).
(2) Obtain the orthonormal vectors [q1, · · · , qk] by orthonormalizing the following matrix

∆y1 · · · ∆yk

vec(∆X1) · · · vec(∆Xk)
vec(∆Σ1) · · · vec(∆Σk)
vec(∆Θ1) · · · vec(∆Θk)

∆β01 · · · ∆β0k


,

and reconstruct (∆y1,∆X1,∆Σ1,∆Θ1,∆β01) , · · · , (∆yk,∆Xk,∆Σk,∆Θk,∆β0k) with the
corresponding orthonormal vectors [q1, · · · , qk], respectively.

(3) For i = 1, · · · , k, compute

xi =W−1XT Σ
(
∆yi − ∆Xiβ̂gr

)
+W−1XT ∆Σir +W−1∆XT

i Σr +W−1Θ∆β0i +W−1∆Θi(β0 − β̂gr)

(4) Estimate the absolute condition vector with k samples by

CGRR
abs (k) =

Ek

Ep

√√
k∑

i=1

|xi|
2,

where the power and absolute operation are performed on the elements of the vectors.
(5) The mixed and componentwise condition number estimators are given by

κM =

∥∥∥CGRR
abs (k)

∥∥∥
∞

‖β̂gr‖∞
and κC =

∥∥∥∥∥∥CGRR
abs (k)

β̂gr

∥∥∥∥∥∥
∞

,

respectively.

Example 1. In this example, we will test the tightness and computational efficiency of the upper bounds
of the mixed and componentwise condition numbers derived in Theorem 6. For this, we define the
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following ratios:

Rmix =
κ∞ubd

mLF

κ∞mLF

,Rcomp =
κ∞ubd

cLF

κ∞cLF

,RTmix =
κ∞ubd

mLF CPU

κ∞mLFCPU
, and RTcomp =

κ∞ubd
cLF CPU

κ∞cLFCPU
.

Rmix and Rcomp demonstrate that the closer of the ratios are to 1, the tighter the upper bounds are. RTmix

and RTcomp measure the computational efficiency of the upper bounds with respect to CPU time and the
larger value shows better computational efficiency. For a clear presentation, we present the numerical
results in Figure 1, using a red asterisk and blue plus sign to denote Rmix and Rcomp, correspondingly.
Note that there is very little difference in computational complexity between mixed and componentwise
condition numbers and its upper bounds. We only present the results of CPU time comparison of the
mixed condition number and its upper bound denoted by a green square.
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Figure 1. Tightness and computational efficiency of the upper bounds for the mixed and
componentwise condition numbers.

In our computation, we set L = In, n = 100, p = 60, ‖r‖2 = 10−2, λi js in the denominator of (4.2) are
equal to 1, λi1 in the numerator are set to accommodate the given condition number, and the rest λi js are
equally spaced. The normal Eq (1.5) is solved with the Matlab command pcg with relative residual
smaller than 10−10 and maximum iterations smaller than 100. By varying the condition numbers of
coefficient matrices (4.2), we repeat 1000 times for each setting and present the numerical results in
Figure 1. From the first row of Figure 1, we observe that the majority of the ratios are close to 1.
This indicates that the derived upper bounds for the mixed and componentwise condition numbers of
the GRR model (1.4) are quite tight. On the other hand, from the second row of Figure 1, we notice
that most of the ratios exceed 20. This implies that these upper bounds can be computed efficiently,
resulting in a significant improvement in CPU time by a factor of 20. Thus, in practical applications,
we can use the upper bounds to measure the illness of the GRR model rather than the exact mixed and
componentwise condition numbers.
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Example 2. In this example, we will check the efficiency of the SSCE of condition numbers of the GRR
model (1.4) with respect to accuracy and CPU time. Similar to the former example, we also define
some ratios

RN1 =
κN

κ2a
LF

, RM =
κM

κ∞mLF

, RC =
κC

κ∞cLF

,

RTN1 =
κNCPU
κ2a

LFCPU
, RTN2 =

κNCPU
κ2a

LF 1CPU
, RTC =

κCCPU
κ∞cLFCPU

.

The first row of the above ratios measures the accuracy of the SSCE method and the second row
measures the efficiency. Specifically, although κ2a

LF in (2.9) and κ2a
LF 1 in (2.10) give the same values,

they have very different storage requirement and computational efficiency. Thus, we only give RN1

to measure the accuracy of the normwise SSCE condition estimator, whereas RTN1 and RTN2 are
employed to compare the computational efficiency. Moreover, note that the computational complexities
of computing or estimating the mixed and componentwise condition numbers have very little difference,
so we only present the CPU time comparison via RTC. For a clarity, we also use figures to present our
results.

In our experiment, we set L = In, n = 200, p = 100, ‖r‖2 = 10−1, κ(Σ) = 10, κ(Θ) = 10,
κ(X) = 10, and the other settings are the same as that in Example 1. The numerical results are
reported in Figure 2. From the first row in Figure 2, we can find that the SSCE method can give
reliable estimates of the mixed and componentwise condition numbers for its ratios within a factor
of 10. For the normwise condition number, the SSCE method may give slight overestimates, which
coincides with the phenomenon in [19]. From the second row in Figure 2, we note that the ratios are
much smaller than 1, which means, in general, the SSCE condition number estimates require much less
CPU time compared with the explicit computation of the condition numbers. Comparing the first and
second panels in the second row, we can also find that the compact form of the normwise condition
number gives much gain of computational efficiency compared with its original form.
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Figure 2. Efficiency and accuracy of the SSCE of condition numbers.
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5. Conclusions

In this paper, we extended the GRR model given in [3] by allowing the serial dependence of the
observations and investigated the condition number theory of the new model. We first established
the generic expression of the condition number of the GRR model (1.4). By varying the norms and
parameters in the generic expression, the popular normwise, mixed, and componentwise condition
numbers can be obtained as its special cases. Considering the computational difficulty in calculating the
exact value of the condition number, we provided the compact form of the normwise condition number
and the upper bounds of the mixed and componentwise condition numbers. We also proposed the
SSCE condition number estimators for the normwise, mixed, and componentwise condition numbers.
Numerical experiments were given to show the tightness and efficiency of the upper bounds and the
proposed condition estimators.
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