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Abstract: To address the insufficient consideration of public satisfaction’s impact on the assessment 

of the implementation effectiveness of differentiated toll collection on expressways, a study was 

conducted using a satisfaction survey questionnaire from differentiated toll road sections in Yunnan 

Province in 2022. A random forest model (RF) was constructed under a two-category experiment to 

analyze the factors influencing satisfaction with expressway-differentiated toll policies. Multiple 

models underwent five-classification and two-classification experiments using the same training and 

test datasets. Results revealed that the RF model in the binary classification experiment exhibited a 

good fit. Notably, the satisfaction level with timely and accurate preferential policies emerged as the 

most critical factor, contributing 20.35% to the overall satisfaction with expressway differentiated 

toll policies. Independent effect analysis highlighted that the overall satisfaction with the 

differentiated charging method for empty trucks ranked highest, while satisfaction with the 

differentiated charging method for road sections was the lowest. 
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1. Introduction 

As China’s primary service, leading, and strategic transportation infrastructure, the expressway 

plays a pivotal role in the country’s economic development. In recent years, the construction of 

highways in China has gradually reached its conclusion, and the highway network is taking its final 

form. The completion of this network is poised to strengthen communication and connectivity 

between regions in China, concurrently fostering the rapid growth of the nation’s cargo 

transportation industry and related sectors. Historically, China’s highway toll rates have remained 

relatively fixed, lacking a flexible rate adjustment mechanism. Some of the newly constructed 

highways adhere to high technical standards and incur elevated costs, contributing to relatively high 

toll rates [1]. Confronted with elevated highway tolls, drivers in certain regions opt for toll-free 

parallel roads, leading to diminished transportation efficiency and heightened logistics costs. In 

response to these challenges, the Ministry of Transport, the Ministry of Finance, and the National 

Development and Reform Commission collaborated to release a document. With a focus on traffic 

demand management, the plan involves introducing a diversified toll policy for expressways. The 

successful implementation of this policy is anticipated to play a pivotal role in cost reduction and 

efficiency enhancement within the logistics and transportation industry in specific areas [2]. 

Following the issuance of the “Implementation Plan for Comprehensively Promoting 

Differentiated Toll Collection of Expressways”, numerous provinces and cities across China have 

sequentially introduced various measures for differentiated toll collection. These measures include 

differentiation based on road section, time period, vehicle type, and direction, tailored to their 

specific characteristics. This approach has, to some extent, mitigated traffic congestion, enhanced 

transportation efficiency, and lowered logistics costs. However, in evaluating the implementation 

effectiveness of these expressway differentiated charging measures, Ren [3] and others have 

provided detailed implementation plans but have not conducted a corresponding assessment of the 

differentiation’s actual impact. Wang et al. [4] applied a differentiated toll approach to Hanyi 

Expressway and assessed its performance based on toll revenue and travel cost. The evaluation 

yielded the conclusion that the differentiated toll method surpassed the previously employed 

traditional toll method. In a similar vein, Liu et al. [5] gauged the implementation impact of 

differentiated toll collection on expressways by establishing technical indicators related to traffic 

capacity, service level, and accident rates. Their findings indicated that differentiated toll collection 

outperforms traditional toll methods in terms of traffic capacity, service level, and accident rates. 

Sang et al. [6] conducted an evaluation of highway differentiation, examining traffic volume change, 

toll income, average speed change, and total weight change. In summary, there is a limited scholarly 

assessment of the implementation impact of expressway differentiated charging using public 

satisfaction-oriented evaluation indicators. 

Moreover, within the realm of transportation research focusing on satisfaction, Xiang et al. [7] 

delved into the factors influencing expressway operation service satisfaction from a public 

perspective. Grounded in customer satisfaction theory and tailored to the distinctive attributes of 

China’s expressways, they formulated a public satisfaction evaluation index system and model. An 

empirical study on the Chengdu-Suiyu Expressway served as a case study, where the structural 

equation model was applied to validate the theoretical model and assess the degree of factor 

influence. 

Wang [8] and colleagues constructed a satisfaction evaluation model for bus transfer 

preferential policies using Structural Equation Modeling (SEM). They employed the Partial Least 
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Squares (PLS) method for parameter estimation. Using Suzhou bus transfer preferential policies as 

an illustration, the satisfaction evaluation verified the soundness of the proposed evaluation model 

and index system. Their conclusion highlighted that perceived value exerts the most significant 

impact on passenger satisfaction, followed by perceived quality. 

Li et al. [9] developed a satisfaction evaluation index system centered on passenger perception. 

The CRITIC (Criteria Importance through Inter-Criteria Correlation) method facilitated the objective 

weighting of the index, while the cloud model-based basic algorithm generated the evaluation cloud 

and result cloud. Illustrated through digital cloud characteristics and cloud image comparisons, the 

evaluation results were visually displayed. Applying this methodology to the passenger satisfaction 

assessment of Shanghai Rail Transit Line 2 validated the effectiveness and rationality of the 

evaluation method. 

Chen et al. [10] utilized the ordered Probit model to establish the functional relationship 

between bus satisfaction and passenger individual characteristics, travel activity characteristics, and 

bus service quality attributes. Through marginal effect analysis, the quantitative evaluation of the 

significant influencing factors on bus satisfaction was achieved. Results indicated that gender, daily 

bus time, waiting time, transfer convenience, travel information service, waiting environment, fare 

price, and bus station setting significantly impacted bus service satisfaction. Nevertheless, models 

such as the cloud model, structural equation model, Probit, and others necessitate assumptions and 

preset models. Additionally, the outcomes of such models can only confer statistical significance on 

each influencing factor and overall satisfaction, lacking the ability to quantify the contribution of 

each factor to overall satisfaction [11–13]. 

Addressing the aforementioned issues, this paper takes a public perspective by conducting a 

satisfaction questionnaire survey on the implementation of differentiated toll roads in Yunnan 

Province. Subsequently, a machine learning model is established based on the collected survey data, 

effectively overcoming the limitations of previous satisfaction research models like the cloud model, 

structural equation model, and Probit, which were unable to quantify the contribution of each 

influencing factor to overall satisfaction. The established machine learning model is then employed 

to output the contribution of each influencing factor to overall satisfaction. This approach aids in 

identifying the primary factors influencing the differentiated charging policy, enabling the proposal 

of a set of practical suggestions aligned with these key factors. The results provide theoretical 

support for the comprehensive advancement of China's differentiated charging policy. Furthermore, 

the analysis of primary influencing factors in the differentiated charging policy is crucial for 

promoting the healthy development of China's expressway system and enhancing expressway 

transportation efficiency. 

2. Research data 

2.1. Research scope 

In this study, we focus on the differentiated toll road sections in Yunnan Province in the year 

2022. The selection criteria for these sections are derived from the pertinent documents, specifically 

the “Notice of the People’s Government of Yunnan Province on Printing and Issuing Several Policies 

and Measures for Steady Growth in 2022” (Yun Zhengfa No.7). Taking into account the distinctive 

features of Yunnan Province, the sections subject to differentiated charges are determined based on 

the guidelines outlined in Table 1, detailing the specific implementation rules. 
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Table 1. Specific implementation details of differential charges. 

Name of measures Section name Specific implementation details 

Differentiated charging 

methods by road section 

A, B, C, D, E, F, G In this context, road sections A, B, C, and D offer a 10% toll 

concession to buses utilizing ETC payment. Additionally, for 

road sections E, F, and G, there is a 15% toll concession 

provided for buses utilizing ETC payment. 

Differentiated charging 

methods by time period 

H Buses and trucks on section H are eligible for a 20% toll 

discount during the period from 22:00 to 6:00 the following 

morning. 

Differentiated charging 

methods by vehicle type 

I In section I, a 5% toll discount is applicable to buses using ETC 

payment. Furthermore, three or four types of buses on section I 

are entitled to a 10% toll discount. 

Differentiated charging 

methods by direction 

J A 20% toll discount is provided for a specific category of buses 

traveling from the starting point to the end point of section J. 

Differentiated charging 

methods for empty trucks 

K, M, N Empty trucks on sections K, M, and N are eligible for toll 

concessions of 40%, 30%, and 20%, respectively. 

2.2. Survey content 

This survey comprises two main sections: 

1) Basic information of surveyed drivers: 

• Vehicle registration place 

• Vehicle type 

• License plate color 

• Education background 

• Monthly income 

• Payment method of tolls 

2) Satisfaction evaluation index of surveyed drivers on differentiated charging policy: 

• Degree of understanding of the comprehensive promotion of expressway differentiated 

charging in Yunnan Province 

• Degree of understanding of the differentiated charging of this expressway 

• Specific measures of the differentiated charging of this expressway 

• Amount of relief 

• Publicity 

• Degree of satisfaction with timely and accurate concessions 

• Congestion after the differentiated charging of this expressway 

• Degree of satisfaction with the service level 

• Overall satisfaction with the differentiated charging policy of this expressway. 

2.3. Descriptive statistics of survey data 

All experimental protocols for this study received approval from the Development Research 

Center of Yunnan Academy of Transportation Sciences, China. The methods adhered to relevant 

guidelines and regulations, and informed consent was obtained from all participants before 
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administering the questionnaire. The datasets utilized and analyzed in the current study are available 

from the corresponding author upon reasonable request. 

Between October and December 2022, a questionnaire survey was conducted on road sections 

with differentiated charging policies in Yunnan Province. A total of 3,900 questionnaires were 

distributed across the 13 designated road sections, resulting in 3,866 questionnaires being recovered. 

Among them, 3,666 were deemed valid, yielding an effective questionnaire rate of 94.83%. The 

statistical description of the valid questionnaires is presented in Tables 2 and 3. 

Table 2. Descriptive statistics of basic information of surveyed respondents. 

Variable Category 
Frequency of 

occurrence 
Proportion Variable Category 

Frequency of 

occurrence 

Proportio

n 

Vehicle 

ownership 

Provincial 2,220 60.56% 

Vehicle 

type 

2-axle 

truck 
1,512 41.24% 

Outside the province 1,446 39.44% 
3-axle 

truck 
234 6.37% 

Vehicle 

license 

plate color 

Blue card 2,087 56.93% 
4-axle 

truck 
219 5.97% 

Yellow card 1,533 41.80% 
5-axle 

truck 
43 1.19% 

Green-brand 47 1.27% 
6-axle 

truck 
783 21.35% 

Monthly 

profit 

Under 3000 yuan 610 16.63% 

Class 1 

passenger 

cars 

630 17.18% 

3000–5000 yuan 1,348 36.78% 
Type 2 

bus 
47 1.27% 

5000–7000 yuan 1,147 31.30% 
3 types of 

buses 
164 4.46% 

7000–9000 yuan 338 9.23% 

4 types of 

buses 

 

35 0.96% 

More than 9000 

yuan 
228 6.21% payment 

methods 

 

Students’ 

expenditu

re 

2957 80.65% 

Record of 

formal 

schooling 

Junior high school 

and below 
885 24.12% Unit pays 709 19.35% 

High school and 

technical secondary 

school 

1,564 42.67%     

Junior college and 

undergraduate 
1,182 32.25%     

Master’s degree and 

above 
35 0.95%     
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Table 3. Satisfaction evaluation index of surveyed respondents on differentiated charging policy. 

Variable Category 

Frequency 

of 

occurrence 

Proportion Variable Category 
Frequency of 

occurrence 
Proportion 

The degree of 

understanding 

of the 

province’s 

highway 

differentiated 

charges (X1) 

Very 

understanding 
785 21.40% The degree of 

understanding 

of the 

differentiation 

policy of this 

expressway 

(X2) 

Very 

understanding 
633 17.28% 

Comparative 

understanding 
548 14.96% 

Comparative 

understanding 
1028 28.03% 

General 1687 46.02% General 1448 39.49% 

Not very 

understanding 
521 14.20% 

Not very 

understanding 
482 13.14% 

Ignorance 125 3.41% Ignorance 77 2.1% 

Satisfaction 

with specific 

measures 

(X3) 

Very 

understanding 
1366 37.26% 

The 

satisfaction of 

the amount of 

relief (X4) 

Very 

satisfactory 
1322 36.07% 

Comparative 

understanding 
1636 44.63% Satisfactory 1629 44.43% 

General 580 15.82% General 631 17.20% 

Not very 

understanding 
76 2.07% Dissatisfied 70 1.90% 

Ignorance 8 0.02% 
Very 

Dissatisfied 
15 0.40% 

Satisfaction 

of service 

level (X5) 

Very 

satisfactory 
1383 37.72% 

Congestion 

satisfaction 

(X6) 

very 

satisfactory 
594 43.15% 

Satisfactory 1535 41.88% Satisfactory 643 46.34% 

General 645 17.60% General 162 9.16% 

Dissatisfied 93 2.55% Dissatisfied 12 0.96% 

Very 

Dissatisfied 
35 0.96% 

Very 

Dissatisfied 
5 0.40% 

Propaganda 

satisfaction 

(X7) 

Very 

satisfactory 
1351 36.86% 

Timely and 

accurate 

preferential 

satisfaction 

(X8) 

Very 

satisfactory 
1623 44.27% 

Satisfactory 1643 44.82% Satisfactory 1477 40.29% 

General 619 16.88% General 514 14.01% 

Dissatisfied 35 0.96% Dissatisfied 43 1.19% 

Very 

dissatisfied 
18 0.48% 

Very 

Dissatisfied 
9 0.24% 

Overall 

satisfaction 

(Y) 

Very 

satisfactory 
1322 36.07% 

 

   

Satisfactory 1591 43.39%    

General 716 19.51%    

Dissatisfied 32 0.88%    

Very 

dissatisfied 
6 0.16%    

3. Random forest model 

3.1. Model choice 

Due to the complex and nonlinear relationship between overall satisfaction and the variables 

associated with differentiated charging policies, the use of a general linear model for analysis can 

significantly impact the results. Moreover, commonly used models such as the structural equation 

model and cloud model are prone to subjective human factors. The random forest model (RF) is 

effective in capturing the nonlinear relationship between overall satisfaction and the relevant 

variables in differentiated charging policies. Importantly, the RF model does not require any 

pre-assumptions during calculations and can provide the relative importance of each variable to the 
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dependent variable, facilitating result interpretation [14,15]. 

3.2. Model theory 

Random Forest is an ensemble algorithm consisting of multiple decision trees{h(X,YK), K=1, 

2,...}, where YK is a random variable determining the random extraction of the training set and the 

random selection of candidate splitting attributes. The detailed process of the Random Forest 

algorithm is illustrated in Figure 1 as well as the following steps: 

1) The original data set is split into training data and test data in an 8:2 ratio. 

2) A self-help training set L [14] is created by randomly selecting N samples from the training 

data set. 

3) Using L as the training data, a decision tree T is constructed. For each analysis node, m 

feature attributes are randomly chosen from M feature attributes as candidate split attributes. 

Based on the Gini index, one of the m features or attribute variables is selected for splitting. 

This process is repeated until the tree successfully divides all the test data [14]. 

Extract the Kth boostrap training 
sample

Extract candidate split attribute 
features with equal probability

Select the optimal splitting attribute for 
splitting

End of training

Generate the Kth decision tree

true

fals
e

 

Figure 1. Random Forest construction process. 

3.3. RF model interpretability 

The explanatory power of the RF model manifests primarily in two dimensions. First, it 

delineates the contribution of independent variables to dependent variables by highlighting feature 

importance. Second, it generates partial correlation diagrams through Partial Functional 

Dependence (PDP), offering insights into the relationship between explanatory variables and 

explained variables [16]. 

(1) Feature Importance. The calculation concept behind the feature importance of the RF 

model is straightforward. It involves assessing the contribution each feature makes to each tree 

within the random forest, averaging these contributions, and then comparing the relative importance 
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of different features. The specific calculation formula is presented in (1): 

i

N J 1

x j

n 1 j 1

1
P d

N

−

= =

=  .         (1) 

In the formula, 
ixP  represents the importance score of the feature Xi, J is the number of nodes in 

each decision tree, and jd represents the reduction of squared error loss after the J-th splitting of Xi. 

(2) Partial Functional Dependency. Partial functional dependencies illuminate the marginal 

effect of one or two explanatory variables on the explained variables, visually representing these 

low-cost interactions. This can be computed using the Monte Carlo method, and the specific 

calculation formula is outlined in (2): 

( )
M

i

s s s c

i 1

1
f (x ) f x ,x

M =

=  .        (2) 

In the formula, ( )s s
f x  is the partial function dependent on the fitting function for s

x . s
x  is the 

explanatory variable under investigation, and i

c
x  is the remaining explanatory variable. M is the 

number of samples. 

4. Authentic proof analysis 

Utilizing the questionnaire survey data from the differentiated toll road sections in Yunnan 

Province in 2022, this study employs Random Forest (RF) for the classification and prediction of 

expressway differentiated toll policy satisfaction evaluation data. To enhance fitting accuracy, we 

conduct both five-classification and two-classification experiments. The binary classification 

experiment consolidates five discrete values into two broader categories, wherein ‘very satisfied’ and 

‘satisfied’ are mapped to the “satisfactory” class, while ‘general’, ‘unsatisfactory’ and ‘very 

unsatisfactory’ are mapped to the ‘unsatisfactory’ class [16]. 

4.1. Determination of model hyperparameters 

In machine learning models, certain parameters, known as hyperparameters, must be set before 

training the model. Incorrectly set hyperparameters can lead to overfitting or underfitting issues, 

impacting the effectiveness of model training and prediction. Therefore, hyperparameter 

determination is a crucial aspect of model optimization [17]. 

The model is implemented using the Scikit-learn library in Python. Following established 

research practices, this paper employs the grid search method to cross-validate and evaluate all 

possible combinations of hyperparameters, utilizing the error value as the criterion [17]. The two 

hyperparameters optimized for the RF model are the number of trees and the maximum eigenvalue. 

The parameter adjustment process is depicted in Figures 2 and 3. In the binary classification 

experiment, the model achieves the best fitting effect when the number of trees is set to 181 and the 

maximum eigenvalue is 2. In the five-classification experiment, the optimal configuration is 

achieved with 311 trees and a maximum eigenvalue of 2.
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Figure 2. Random forest model with two classification experiment parameter adjustment 

diagram. 

0 200 400 600
0.2

0.3

0.4

0.5

e
r
r
o
r
_
r
a
t
e

n_estimators

 RandomForestClassifier, max_features=2
 RandomForestClassifier, max_features='4'
 RandomForestClassifier, max_features='6'
 RandomForestClassifier, max_features='8'

 

Figure 3. Random forest model with five-category experimental parameter adjustment diagram. 

4.2. Overall effect analysis 

The overall importance and influence of each variable are presented in Table 4 and Figure 4. 

Examining Table 4 and Figure 4 reveals that satisfaction with timely and accurate preferential 
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policies is the most crucial factor impacting the overall satisfaction of expressway differentiated 

charging policies, contributing 20.35%. Following closely are satisfaction with specific measures, 

satisfaction with the amount of relief, and understanding of the comprehensive promotion of 

differentiated tolls on this expressway, contributing 14.40%, 14.35%, and 14.24%, respectively. This 

emphasizes that a significant proportion of drivers prioritize the accuracy of the differentiated toll 

policy, followed by the timeliness of its implementation and the extent of concessions. Consequently, 

for the future implementation of differentiated toll collection, to enhance overall satisfaction and 

ensure the policy is more beneficial, expressway operators should continually enhance the accuracy 

and timeliness of the differentiated toll collection process. Furthermore, clarifying the range of 

concessions in differentiated toll collection is essential to enhance understanding among users. 

Table 4. Overall results of the model. 

Influencing 

variable categories 
Index 

Relative 

importance 
Ranking 

The satisfaction 

evaluation of the 

surveyed drivers 

on the 

differentiated 

charging policy 

The understanding of the comprehensive promotion of 

differentiated charges in Yunnan Province (X1) 
6.90% 8 

The degree of understanding of the comprehensive promotion of 

differentiated tolls on this expressway (X2) 
14.24% 4 

Satisfaction with specific measures (X3) 14.40% 2 

The satisfaction of the amount of relief (X4) 14.35% 3 

Satisfaction of service level (X5) 8.09% 7 

Congestion satisfaction (X6) 8.56% 6 

Propaganda satisfaction (X7) 13.12% 5 

Timely and accurate preferential satisfaction (X8) 20.35% 1 

X1

X2

X3

X4

X5

X6

X7

X8

0.00 0.05 0.10 0.15 0.20

relative importance

i
n
d
e
x

 relative importance

 

Figure 4. Relative importance output. 
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4.3. Independent effect analysis 

The analysis of overall satisfaction under different differentiated charging methods is conducted 

using the partial functional dependence of the RF model. Figure 5 illustrates that the K section has 

the highest overall satisfaction, followed by the M section, while the B, C, and D sections exhibit 

relatively lower overall satisfaction. This pattern can be attributed to the recent shift in China’s 

freight vehicle charging method from weight-based to vehicle-based, effectively addressing overload 

and toll station congestion issues to some extent. However, this policy change has drawbacks, where 

truck drivers opt for highways when their freight vehicles are full, and choose parallel free roads 

when empty. Implementing differentiated charging for empty trucks can address the limitations of 

sub-model charging, leading to higher overall satisfaction. 
The differentiated charging method for sub-sections, based on a 95% discount for original ETC 

users, involves fewer users and offers a relatively small preferential amount. Additionally, it may be 

easily confused with the 95% discount policy for original ETC users, resulting in relatively lower 

overall satisfaction for this differentiated charging measure.
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Figure 5. The overall satisfaction map of the differentiated toll implementation section.

4.4. Model analysis 

To further validate the superior predictive performance of the random forest model chosen in this 

study, several commonly employed iterative algorithms, including AdaBoost, gradient boosting 

iterative decision tree (GBDT), extreme gradient boosting (XGB), and Logit (NL) models, were 

selected for comparison based on existing research results. These models for comparison were also 

subjected to five-category and two-category experiments using the same training dataset and test 

dataset [18]. 
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4.4.1. Evaluation index of binary classification experiment 

To conduct a more scientific comparison of model performance, we utilize precision and AUC 

values as metrics. These performance metrics are calculated based on the confusion matrix [19]. 

• Confusion matrix. 

The confusion matrix serves as the foundation for calculating the performance evaluation of 

various machine learning models. The columns represent predictions classified as positive and 

negative cases, respectively, while the rows denote positive and negative cases, respectively. When 

the prediction is positive and the actual value is also positive, it is considered a true positive, and the 

corresponding sample count is entered into the appropriate position in the confusion matrix (i.e., the 

upper-left corner of the matrix). Similarly, the confusion matrix includes counts for false positives, 

false negatives, and true negatives. The specific confusion matrix is presented in Table 5 [15]. 

Table 5. Confusion matrix of two-category experiment. 

The real situation Forecasting results 

Positive example Counterexample 

Positive example True positives (TP) False counterexample (FN) 

Counterexample False positives (FP) True counterexample (TN) 

• Precision index. 

In accordance with the confusion matrix, the precision index can be easily calculated. The 

precision index ranges between 0 and 1, with a result closer to 1 indicating a better prediction effect, 

while a result closer to 0 suggests a poorer prediction effect. The calculation formula is as follow: 

=
+

TP
P
TP FP

.          (3) 

• AUC index. 

The AUC evaluation index is commonly employed in binary classification machine learning and 

stands for Area Under the Curve. The ‘Curve’ refers to the ROC (Receiver Operating Characteristic) 

curve. A higher AUC value, closer to 1, indicates better classification performance of the model. An 

AUC value of 0.5 suggests that the model’s classification ability is equivalent to random guessing, 

and when the AUC is less than 0.5, it implies that the model’s classification performance is worse 

than guessing. 

To calculate the AUC index, it is essential to first define the ROC curve. The ROC curve is built 

on the ‘True Positive Rate’ (TPR) as the vertical axis and the ‘False Positive Rate’ (FPR) as the 

horizontal axis. These are defined as (4) and (5) and are plotted on the coordinate system to obtain 

the ROC curve. The AUC value refers to the area enclosed by the abscissa below the ROC curve [19]: 

FP
FPR

FP TN
=

+
.         (4) 

FP
TPR

TP FN
=

+
.         (5) 
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4.4.2. Evaluation index of five-category experiment 

The evaluation of the five-category model is based on the confusion matrix, although the matrix is 

no longer presented in Table 5; instead, it is shown in Table 6. 

Table 6. Confusion matrix of five-category experiment. 

 The prediction 

classification is 

1 

The prediction 

classification is 

2 

The prediction 

classification is 

3 

The prediction 

classification is 

4 

The predicted 

classification is 

5 

The real classification is 1 TP FP FP FP FP 

The real classification is 2 FP TP FP FP FP 

The real classification is 3 FP FP TP FP FP 

The real classification is 4 FP FP FP TP FP 

The real classification is 5 FP FP FP FP TP 

It is evident from Table 6 that in the confusion matrix of the five-category experiment, the 

correctly classified samples (where the predicted value aligns with the true value) are located along 

the diagonal. Similar to the precision index calculation in binary classification, the precision index 

for each category is calculated separately in the five-category evaluation. Specifically, for a given 

category A and category B, the accuracy calculation is as shown in formulas (6) and (7) [19]: 

A
A

A A

TP
P
TP FP

=
+ .         (6) 

B
B

B B

TP
P
TP FP

=
+

.         (7) 

To comprehensively evaluate the prediction effect of the five classifications, it is crucial to 

consider the prediction performance across all categories. Taking the precision index as an example, 

we select the following two evaluation indices to comprehensively assess the prediction effect of the 

five classifications [19]. 

1) Macro Average Precision (Macro-P): 

The macro average precision treats each category equally, calculating the total precision index 

as the arithmetic mean of all classification precision indices. The macro average precision rate ranges 

between 0 and 1, with a result closer to 1 indicating better prediction performance, while a result 

closer to 0 suggests poorer performance. The calculation formula is shown in (9) [17]: 

2) Micro-Average Precision (Weighted-P): 

The micro-average precision rate calculates the sum of true positives and false positives for all 

categories and then computes the overall precision rate. It considers the weight of each category and 

is more sensitive to larger categories. The value of the micro-average precision rate is between 0 and 1, 

with a result closer to 1 indicating better prediction performance, while a result closer to 0 suggests 

poorer performance. The calculation formula is shown in (10) [17]. 

From Tables 7 and 8, and Figures 6 and 7, it can be observed that in this experiment, after 

multiple model parameter tuning on the original dataset, the RF model demonstrates the best 

performance in two-class prediction, with precision and AUC values of 0.85 and 0.76, respectively. 
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The AdaBoost model exhibits the least ideal performance in two-class classification. For the 

five-classification prediction, the RF model also performs the best, with Macro-Average and 

Weighted-Average values of 0.68 and 0.73, respectively. The five-classification effects of the 

AdaBoost model and the NL model are not ideal [15]. Therefore, we select the RF model under the 

two-classification condition to evaluate the satisfaction of the expressway differentiated charging 

policy, ensuring high accuracy. 
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Figure 6. Performance comparison of binary classification experimental model. 
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Figure 7. Comparison of performance of five classification experimental models.
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Table 7. The performance index results of each model in the binary classification experiment. 

 RF AdaBoost GBDT XGB logit 

Precision 0.85 0.79 0.76 0.76 0.82 

AUC 0.76 0.71 0.72 0.73 0.72 

Table 8. Five classification experiment results of each model performance index. 

 RF AdaBoost GBDT XGB logit 

macro-p 0.56 0.51 0.68 0.66 0.55 

Weighted-p 0.76 0.68 0.73 0.73 0.73 

5. Conclusions 

In this study, based on the 2022 survey data from differentiated toll sections in Yunnan Province, 

we successfully classified and predicted expressway differentiated toll policy satisfaction. The results 

highlighted the superiority of the two-category experiment over the five-category experiment, with 

the Random Forest (RF) model exhibiting the best performance, achieving precision values and AUC 

values of 0.85 and 0.76, respectively. 
The comprehensive analysis underscored the pivotal role of satisfaction with timely and 

accurate preferential policies, contributing 20.35% to the overall satisfaction of expressway 

differentiated charging policies. Subsequently, satisfaction with specific measures, relief amount, and 

understanding of the comprehensive promotion of differentiated tolls on the expressway followed 

closely, contributing 14.40%, 14.35%, and 14.24%, respectively. For stakeholders, such as 

high-speed operation and management enterprises and the government, future implementation of 

differentiated charging policies must prioritize improving the accuracy and timeliness of the process 

to enhance overall satisfaction and gain public support. 

Furthermore, the independent effect analysis revealed that overall satisfaction with the 

differentiated charging method for empty trucks was the highest. Combining this method with the 

existing sub-model charging approach effectively mitigated the drawbacks of sub-model charging, 

fostering a fairer charging system in China. Conversely, overall satisfaction with the differentiated 

toll collection method was the lowest. Hence, future implementations of differentiated toll collection 

should adopt a more diversified approach beyond the existing 95% discount for original ETC users. 

In terms of research limitations and future prospects, we acknowledge the lack of specificity in 

analyzing various differentiated charging methods in Yunnan Province. Future research should 

consider a more targeted approach, focusing on one or two differentiated charging methods for a 

comprehensive understanding of user satisfaction. This approach would offer more instructive 

insights for the implementation of diverse differentiated charging methods for highways. 
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