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Abstract: In this article, we study a class of fractional Kirchhoff with a superlinear nonlinearity:

M(fRN [(=A)ZulPdx)(—2)%u + AV(xX)u = f(x,u) in RV,
u € HYRM), N>1, (1.1)

where A > 0 is a parameter, a and b are positive numbers satisfying M(¢) = am(t) + b, m : R* — R* is
continuous. V : R¥ x R — R is continuous. f satisfies |llirn f(x,0)/1tf~! = Q(x) uniformly in x € RY
t|—00

foreach2 < k < 2;,(2) = %). We investigated the effects of functions m and Q on the solution.
By applying the variational method, we obtain the existence of multiple solutions. Furthermore, it is
worth mentioning that the ground state solution has also been obtained.
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1. Introduction and main results

In this article, we investigate the existence of nontrivial solutions for the following fractional
Kirchhoft equations with steep potential well:

{M(&N I(=2)2ulPdx)(—2)*u + AV(x)u = f(x,u) in RV, (L.D)

u € H*RM), N2>1,

where 0 < @ < 1, (—A)® stands for the fractional Laplacian, and f : R¥ x R — R is continuous.

a, A are positive parameters, b is a nonnegative parameter, 2, := % is the critical Sobolev exponent.
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Equation (1.1) is related to the stationary analogue of the equation

{put, ( +i b qulzdx)uxx =0, (1.2)

where Py, h,E,L are constants, and (1.2) was proposed by Kirchhoff [1] as an extension of

D’ Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into account

the changes in length of the string produced by transverse vibrations. In [2], Fiscella and Valdinoci first

proposed a stationary fractional Kirchhoff variational model with homogeneous Dirichlet boundary

conditions and critical nonlinearity:

{M( fon l=2)2uPdx)(—a)u = Af(x, u)'+ ul*~2u in RV, 13
u=0, in RM\Q.

where M is a continuous Kirchhoff function whose model case is given by M(¢) = a + bt. They proved
the existence of a solution for the truncated problem. They also obtained the sign of the weak solutions
of problem (1.3). There are some interesting results about fractional Kirchhoft equations (see [3—17]
and their references). On the other hand, some studies have focused on the existence and multiplicity
of solutions for fractional Kirchhoff equations see [18-26]. In particular, in [22], they studied the
following fractional Kirchhoff equation

_ 2
(p fq(l— ) ff |ue(x) u(y)l dy) (a)'u = g, inRY,
N |X _ |N+25

Under the Berestycki-Lions type assumptions. Applying minimax arguments, they established a
multiplicity result for the above equation, provided that ¢ is sufficiently small.

In another study [23], the authors studied the existence of multiple solutions for the following
fractional p-Kirchhoff equation

W ey "

M ( o MO dxdy) (- a)su = Ault~u+ 24 in Q,
u=0 in RV/Q.
Applying fibering maps and Nehari manifold, they obtained that the existence of multiple solutions to
the above equation for both Hardy-Sobolev subcritical and critical cases.
Peng and Xia (see [24]) considered the existence, multiplicity and concentration of non-trivial
solutions of the following concave-convex elliptic equations involving fractional Laplacian:

(=) % + Vy()u = a(x)|u|?>u + b(x)|ul”u in RV,
u>0 in RV,

They obtained multiplicity of solutions by applying Nehari manifold decomposition research.

Inspired by some of the previous results, and unlike other literature, we mainly discuss the influence
of the number of solutions for functions m and f. We find that the number of differently solutions are
obtained when the assumptions about m and f are different. Moreover, we also discuss the existence
of ground state solution.
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In the next step, we assume the potential function V(x) as follows:
(V) VeCRY,R)and V > 0 on RY;
(V,) There exists ¢ > 0 such that the set

(V<c):={xeRVV(x) <}

is nonempty and has finite measure;

(V3) Let Q = intV~'(0) be a nonempty and smooth boundary with Q = V='(0).

(V1) = (V3) are introduced by Bartsch and Wang, please refer to reference [27].
Finally, We can state the following our main results.

Theorem 1.1. Assume that (V,) — (V3) are satisfied, N > 1. Especially, under the following hypotheses
(F1)—(F3)onmand f forany 2 <k < 2;
(F7) there exists a constant ms, > 0 such that lim = m(t) = Mo and f; m(t)dt >
[—00 ¢ 2
0<o<m B
(F») there exist Q € L RY) and 0 < u < N — *¥=22 sarisfying Q # 0 on Q and liminf [x}*Q(x) > 0
2 I

such that hm f & = Ox) uniformly for x € RY;

2('7 2029 1) for every

(F3) For any ﬁxed real constant x € (0,00), t — f;ﬁf’f ) s nondecreasing function. Then there exists

¥ > 0 such that equation (1.1) admits at least one positive solution for all 1 >y and a > 0.

We now assume that the function m satisfies the following assumptions instead of condition (F):
(F4) The function m(t) is nondecreasing for t € (0, +00);

(F'5) There are constants greater than zero mgy, o and og such that m(t) > myt” for every t > 0.
Then we have the following result.

Theorem 1.2. Assume that (V) — (V3), (F4) and (Fs) with o > Nng are satisfied, N > 3. In addition,
for any real number 2 < k < 2, let us suppose that the function f satisfies condition (F,), (F,). Then
there exist positive numbers a.,?y. > 0 such that for every 0 < a < a, and A > y., Equation (1.1) admits
at least two positive solutions w, , and u, , satisfying Jaa(u,,) < 0 < j’a,ﬁ(ui, V- In particular, u, , is
also a ground state solution of Eq (1.1).

(Fg) there exist the function Q(x) satisfying Q(x) # 0 on Q and Olx) <c |x| N for some ¢* > 0

and for all x € RN such that hm f B = O(x) uniformly in x € RV.

Theorem 1.3. Assume that (V1) = (V3) are satisfied, N > 3. Furthermore, for any real number
2 <k < 2* and let us suppose that conditions (F),(Fs) and (F3) are satisfied. Then for each

a’

0<a<- ,7k there exists y > 0 such that Equation (1.1) admits at least one positive solution for all
0

A>7y.

Theorem 1.4. Assume that (Vy) — (V3), (F3) are satisfied, N > 3. Furthermore, for every 2 <k < 2;,
and let us suppose that conditions (F4) with o > E2a 2“ , (Fe) and (F) hold. Then there exists constants
a.,y, > 0 such that for every 0 < a < a, and A > Y., Equation (1.1) admits at least two nontrivial
solutions w, , > 0 and u, , > 0 satisfying Jaa(u, ;) < 0 < Joa(u. ). Especially, u, , is also a ground
state solution of Eq (1.1).

Remark 1.5. For each k € 1,2} — 1), given the definition
¢ S MO g xady) s

A5 =
0 ueEo f O(x)|ul*'dx

0, (1.4)
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where I' = R¥V|(Q¢ x Q°), Q° = RY|Q, O(x) is bounded on Q with O* # 0,
lo(x) — ()

e Py < 00,000 =0, if xe Q)

Eo = {p € LX)
r
Which is achieved by ¢, € E, with fQ Q@)|ul*'dx = 1 and ¢; > 0 a.e. in Q, by Fatou’s Lemma and
the compactness embedding theorem from E, into L¥*!(Q) [28]. Under conditions (Fg) and (1.4), it is
easing seen that for any 1 < k < 2, the minimum problem

a k
- (Jol(=a)suPdx): 3V
Ak = inf e o > -1 >0. (1.5)
ueEofglxl(f—N)lulkdx C

Notation. We will use the following notation: C represents various positive constants; — (—) means
various strong (weak) convergence; o(1) means o(1) — 0 as n — oo; and B,(0) represents a ball
centered at the origin with radius p > 0.

The remaining content of this article as follows: Section 2 introduces some preliminary results and
some results will be used. Section 3 proving the main results.

2. Variational setting and preliminaries

We now collect some preliminary results for the fractional Laplacian. A complete introduction of
fractional Sobolev space H*(RY) can be found in [29].
For any a € (0, 1), the fractional Sobolev space H*(R") is defined by
HY(RY) := {u € ’(RY) : —'T(x) —UON ¢ gy RN)}
x—yl =z

e . B -1
It is widely known that ﬁw %dXdy = ¢;' [y I(=2)2uPdx where ¢, = %(&N Lc&—fffdf) we

endow the space H*(R") with the norm

E = {u € H*RM) : f V(x)uldx < +oo} E,= {u e H*RY) : f AV(x)utdx < +oo}
RN RN
It is Hilbert space equipped by the following norm

<mu>=Hm@mm):b[JK—AﬁuV+‘me%d&lteHWRW)
R

and
() g = Nl oy, = fR (=8) uf + AVEut)dx, ue HRY).

H*(RY) is also the completion of Ci’(R"Y) with || - ||~y and it is continuously embedded into L4(R")
for g € [1,2!]. The homogeneous space D**(RY) is

LWMMS:{MGﬁ%R%:M@—u@N

e L>(RY x RM)
lx —yl ™2
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and it is also the completion of C{*(R") with respect to the norm

)
il = ( f |(—A)2u|2dx) |
RN

The energy functional is defined [J% , on E, as follows.

Tra(w) :gm( fR ) |(—A)%’u|2dx) + % (b fR ) (=) 2 udx + fR ) /lV(x)uzdx)

_ f F(x, w)dx 2.1)
RN

for all u € H*(RV).

Furthermore, it is easy to prove that we can obtain J,, € C'(H*(R"),R), and if ¢ is a solution of
Eq (1.1), we can get,

(T W), ¢) =

am( f I(=2)2ul’dx) + b
RN

f (—A)2u(=A)? pdx
RN

+ f AV(x)updx — f f(x, u)pdx (2.2)
RN RN
for all ¢ € H*(RM).

The following inequalities will be applied to some related theorems.
For any 4 > 0. By condition (V) and fractional Gagliardo-Nirenberg inequality (see [30]), we obtain

f w’dx =f uzdx+f w*dx
RN {V>c} {V<c}
1 3
< - f V(x)uldx + (|{v <)l f u4dx)
C Jve) RN

1 2 2 Lot o
< - V(udx + BRV < c}2lull ), llull, 2
R

1 NB* . N
s—f Vould + 22 |{V<c}|Nf |(—A)2u|2dx+(l——)f W’dx
C RN 4 RN 4- RN

which conclude that

f Wldx < — f V()uldx + BYILV < clF f (=) ufPdx
RN R RN
< (1+BAIV < Il

For 1> (1 +BV|{V < c)|¥)".

. |(=2)2 ul*dx
where S, := inf fw—
ueD*? y#0 (‘&N |u|2a dx)2a 2

, which is introduced in [31](see Theorem 1.1).

2-r r=2

252 . %2
f |u|’dxs( f |u|2dx) ( f |u|2adx)
RN RN RN
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i O, L m\EE
f juPdx + f uPdx) " (S5 f (~2) 2 uldx)
{V>c} {V<c} RN

i
1

22 N 22
(— f AV(uddx + [{V < e} & §72 |(—A)2u|2dx)
AC RN

IA

RN
r=2
20 1252

2

: 5;23( |(—A)%u|2+w(x)u2dx)
RN

22 -r
22 7¥3 Zd

1 Za = a @ 3
< [max{%,S(fl{V <c}| = }f ((—=2)2ul® + /lV(x)u2)dx] S,
RN

25(r=2)

2% -2
: ( I(=2)2ul? + /lV(x)uzdx)
RN

(3

*
241

<KV <l S ull 2.4)

r
HY(RN),A

2 2-2;

when A > %I{V < c}| % . Since the imbedding H*(RY) — LY(R") (2 < g < o) is continuous for

N =1,2. Similar to (2.4) we have [, lul'dx < S77(1+B¥[(V < cl)2llully, o, , we set
——— ifN=12,
YN = gzc(1+ﬁN|{V<c}|fg> ' (2.5)
LV <o)l ¥, N> 3;

and

(2.6)

S +BV{V <)) ifN=1,2,
TyN = 241
HV <l = S, if N > 3;

3. Proofs of Theorem 1.1-1.4

To complete the proof of Theorem 1.1-1.3, we need the following result.

Lemma 3.1. If assumptions (Vi) — (V3) and (F), (F») are satisfied. Then for each A > yy there eixists
l|uel|gre @iy 2 = 70 > 0 and a constant oy > 0 such that

infj,m(u) ‘ue E/l with ”u”[-]ﬂf(RN),,] =Tro > 00
Proof. It follows from assumption (F) — (F,) that we have
fx, ) < Q) forallt>0 (3.1)

and 1
F(x,1) < %Q(x)t" forallt>0. (3.2)

Thus, using (2.6) and (3.2), we have, foru € E and 4 > yy

|Q|<>oTk,N k
f F(X’ I/l)d.x S k ”u”H”(RN),/I'
RN
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We can infer that

J'M(u)zilﬁi(f |(—A)gu|2dx)+(éf |(—A)gu|2dx+lf /lV(x)uzdx)—f F(x,u)dx
2 RN 2 Jgw 2 Jgw RN

(1 b ) 10leoTin
= min {5, E} ”u”H"(RN),/I - T”u”H"(RN),A'

Hence, there exists [|ul|ge®y) 1 = 7o > 0 small enough, we can get that there exists a constant oy > 0
such that
infj/l,a(u) ‘uc E,1 with ”l/l”Ha(RN)J =71y > 00

for all 4 > yy, where 2 < k < 2. which is what we wanted to prove. O

By the following Lemma 3.2 and Lemma 3.3, we are able to proof that the functional /"’ ia satisfies the
mountain pass geometry.

Lemma 3.2. If assumptions (V) —(V3), (Fe) and (F'3) are satisfied. Then there exist ||[ul|gogyy 1 = 10 > 0
and a constant oy > 0 such that

inf {Ta(u) 2 u € Ey with llullgsvya = 10} > 00

foreacha > 0and A > yy.

Proof. By assumption () and (F3), we have

KN

o0 < T VE forallt > 0 (3.3)

and
k(N-2a)
2

F(x,0) < %le( N forall t > 0. (3.4)

Then, using (1.4) and (3.4), for each u € E and A > vy, we obtain

*

f Fx,u)dx < & f T M < < f (=a)E ufPdx)t
RN k Jry ki(lk) RN

*

c
< —— [l oy (3.5)
—(k) HY@RY),A
kv,
So we can infer that

1 o c
Tralw) > 3 (b fR o) fuldx+ fR ) Avu)uzdx) - ;(lk)uulliw),ﬂ

*

> min{

NS

1 c

MUl ey — —= el e v, -
’ Y(RY),A —(k) Y(RN),A
2 /’cv1

Hence, there exists ||ul|gegv) 2 = ro > 0 small enough, we can get that there exists a constant oy > 0
such that
inf {Ta(u) 2 u € Ey with |lullge vy = 10} > 00

for all A > yy, with 2 < k < 2. which is what we wanted to prove. o
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Lemma 3.3. If assumptions (Vy) — (V3), (F) and (F,) — (F3) are satisfied. As in Lemma 3.1 ry > O.
Then there exists vo € E with ||[vollge®yy 1 > 1o such that J,,(vo) < 0, where A and a are positive
numbers.

Proof. We set u € E\{0} with u > 0 and define u,(x) = n‘%u(f). It is easy to compute that

a 2N @
[(=2)3u,PPdx = n"72*"% | |(—2)7ul’dx
RN RN
and

f O(x)ufdx =n" f 0 (Eydx = f Q(nx)u*(x)dx.
RV RN n RN

Hence, Using () and Fatou’s lemma, we have

=)t Py WS [ mfuPdet fRN (1) FuPdx)

Jow QCubdx Jow Q)i dx S 0ok
Qf [ l(=0)3 uldx
< ) —0asn— o
CnN-""7* <0, uk(x)dx

It is following that
( fRN (=2)3uPdx):
£ [, 0)luldx
Therefore, for every a > 0, there exists ¢, € E\{O} with ¢, > 0 such that

ame f (~2)f @) — f Q()¢fdx <.
RN RN

Applying the above inequality, and by (F),(F2) — (F3) and Lebesgue’s dominated convergence
theorem, we obtain

fim Lmzm( f (=0)Egidx + f AV(xwidx)

2 _ 2d
e [am(t o 1€ A) ilPdx) f eyt - f FOt6) }
o |21 [ I(—a)2uPdx)k Jrs gy

1((amoo f I(=2) S gylPdx)k — f Q(x)¢§dx)<o
Tk RN RN

Which means that 7, ,(t¢r) — —oco as t — +oo. Hence, there exists vy € E with ||[vy||ge@wy) 1 > 1o such
that J,.1(vo) < 0. Thus, we complete the proof. O

Now, we can obtain the following lemma and then finally yield the convergence result.

Lemma 3.4. If assumptions (V,) — (V3) and (F,) — (F3) are satisfied. As in Lemma 3.1 ro > 0. Then
there exist a, > 0 and vy € E with ||vol|gewyy 2 > 7o such that J,,(vo) < 0 for all 0 < a <a, and 1 > 0.
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Proof. By Lemma 3.3, using (F3,), for ¢, € E\{0} let ¢, > O satisfy f Q(x)¢kdx > 0. Then from
(F,) — (F) and Lebesgue’s dominated convergence theorem, we have

. Jaotdr) . 1 ¢ 9 2
zlioo tk tljl.o k=2 (b fRN I(=2) ufdx + RN AV(DPidx

F
— lim f Fx 1) t¢k)dx
1—00 Jpn [k¢i

1
<—— | Qx)¢idx <0
k RN

where J,0(u) = J.(uw) with a = 0. Hence J,o(t¢;) — —o0 as t — oo, then there exists vy € E with
IVoll ey a > 1o such that J0(vo) < 0. Since T, — Jao(vo) as a — 0, we get that there exists
a, > 0 such that 7, ,(vo) < O for all constants 0 < a <@, and A > 0. O

Lemma 3.5. Ifassumptions (V1) = (V3), (Fy). (F¢) and (F5) are satisfied. Let ry > 0 be as Lemma 3.2.
Then for each 0 < a < - 7}“’ there exists vy € E with ||vollgewyy 2 > ro such that J, ,(vo) < 0 for every

A>0.
Proof. It follows from (1.5) that for each 0 < a < = _k , there exists ¢; € H*(RY) with ; > 0 such that

o (o 1= A)z¢k|2dx>k 1
oS Otgtdx amy

which implies that
[e3 1 [e3
e [ =ortaban - [ owddr <= [ 1arafan'- [ omgtdr<o
RN RN IuO RN RN

Using this, together with conditions (F), (Fs), (F3) and Lebesgue’s dominated convergence theorem,

yields
Tt 1 s o )
i 47 <tim s o [ (otaans || aviosdas
am(t* [, 1(—2)% g2 dx) Fx. t
[ Jo ([ Jeotabany - [ T
20 [ [(=2) 2 o Pdx)t rv kgl

ame( o 1(=0)3iPdx) 1
< e -~ | O0Wprdx
k k RN

1 .
:%(amm( f (=2)% i Pdx)f - f Q(x)90§) <0
RN RN

This implies that 9, ,(t¢x) — —oo as t — oco. Hence, for each 0 < a < —~ pk, there exists vo € E with
0

IVollgre .2 > ro such that J, 1(vo) < O for all A > 0. we complete the proof.

Lemma 3.6. If assumptions (V1) — (V3), (F¢) and (F3) are satisfied. ry > 0 is defined as in the proof of
Lemma 3.2. Then there exists constants a, > 0 and vy € E with ||[vo|lgewny) 1 > 1o such that Jy,(vo) <0
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foreach 0 < a < a,and A > 0.
Proof. We can get the result as in the proof of Lemma 3.4, so we omit it here. O

Proof of Theorem 1.1

By Lemma 3.1 and 3.3 and the mountain pass theorem [32], we get that for every 4 > yy and a > 0,
there exists a sequence {u,} C E, such that

ja,/l(un) — @y and 1 + ||Mn||H0(RN,/1)|L7;,/1||E;1 -0 (4.0)
asn — oo where 0 < @, < @,0 < D,. By the following some lemmas we able to get our main result.
Lemma 4.1. If assumptions (V) — (V3), (F) and (F5) are satisfied. Then for every constant a > 0 and

A = vy, we can admits an bounded sequence {u,} in E, as in the define of (4.0).
Proof. Using (F3), for any ¢t > 0 we obtain that

F(x,1) - % fOx 1 = f (f if_’ls) I t)) sds < 0, (4.1)
0

l»k—l

For n — oo, note that by (F;) and (4.0) — (4.1) we have

1
Q//l,a + 1 Zj/l,a(un) - %(jl/l,a(un)a un>

k - 2 @
= bf (=) 2 u,dx + ﬂV(x)uidx
2k RN

+5’ i f |(—A>%un|2dx>—%m( f (=) 2 u,*dx) f |(—A>‘2’un|2dx]
RN RN

f [F(x,u,) - —f(x Up)uy |dx
RN

>(k 2)min{b, 1}
- 2k RN

(=) 2w, + AV(x)udx

we also deduce that {u,} is bounded in E, for eacha > 0 and 1 > y,,. O

Then for all O <a<a,and

— |Q""’max{( 'Ql ,; ]; Lif o=y
A> A=

1Qleo(26—K)
c0(2-2) °

lfO->N2cy

we can admits an bounded sequence {u,} in E, as in the define of (4.0).

Proof. (i) o = sz = 2;. By using reduction to absurdity. Set ||u,||ge@y) 1 — o as
n — oo. This proof is divided into three cases:
Case I: &N |(=2)2ul’dx — oo and

fRN AV (x)u>dx B e |Q|00)
a = ACD o
(for I(=0) uPdxy+D Aco

4.2)
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Using (4.0), we obtain that
<j,a,/l(un)’ un>
= o(1),

(IRN |(—A)%u|2dx)2((r+1) -
Applying (Fs) and (3.1), we get that

am( [ (=) u,Pdx) [ [(=8)u,Pdx b [ [(=8)Tu,Pdx+ [, AV(x)uldx
+

o(l) = - "
(IRN [(=A) % u,|2dx)X@+D (&N [(=2) 2 u,2dx)2@+D
Jon £ w)u,dx
(fow 1(=2)3 4, Pdx)>+D
b N /lV(X)I/l%dX - |q|oo N |un|kd-x
>amgy + — + fR — fR 4.3)
(Jor (=) 2wy Pdx)2 (fon 1(=2) 2wy Py +D)
In addition, we have
_2;;£k-2) 2k 2% 3 262
f jualdx < S 7 (Acg) %7 ( f AV (updx)%2 ( f (=) uy[Pdx) %2
RN RN RN
28—k o
+ [V < coll % S| 1(=0)Fu,Pdx)*
RN
Thus, we obtain that
Jow AVOu2dx = 10l [ lual*dx
Jon 1(=2) 31, P x)2 D
fo VOl || ey i S IO DY
" =) Pdxyry m v AV(ou2dx
2%~k
SV E2
0l l{V < col @

) Sﬁ(ﬁw |(_A)%un|2dx)2(0'+l)_k

To proceed, note that by (4.2) — (4.4) we have

24—k
b <HV -
o(1) zamq + S uRdo2e Sk 2.t 9< Cg}l 2Ao+1)—k
fon I=8) S22 SEC[L 1(=2) S, Pdx)Xe -
o Vx| ey B S (O A
° - [es) C a” @~
([ 1(=8)Fu, P2+ ’ [y AV(oudx
Jox AVOon2dx i ST IR Pdx)% s
=amy + : 11 = |Qloo(Aeo) % (
(Jo 1(=2) 3 4y Pdx)>+D for AV (0u2dx
+o(1)
>amygy + o(1)
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But it’s a paradox.
Case II: [, |(=4)7u,[*dx — oo and

/lV(x)u%dx 10leo
Joo 1Y RS (Q—) 4.5)
(fon (o) b PdxperD
Using (2.4) and (2.6) leads to
Jov ltnldx N0 SV <l T
RNQ 2 2(0+1) < S;za(,l_w)knj + - g 20 2(6+1)—k
(fow I(=2) 3, Pdx) o (fow I(=2) 2, Pd)
=S, (|Q|°°)k2 + o(1) 4.6)
In view of (4.3) and (4.6) we have
0(1) — <ja,/lfun)a l/tn>
(fo I(=2) 314, Pd )2+ D
b [ AVOdx 101w [ lital*dx
> amg + — + ~ — —
(Jow 1=0) 2, Pdx)7 (fo (=) 20 P )@ D ([ [(=2) 2y Pdx)> D)
AV(x)uidx -
s amg + —22 - 10155 ('Q' VI 1 o(1)
(fow 1(=2)3 4, Pdx)>+D
2 amgy — |Q|oo a (lQ |°°) =2+ 0(1)

This a contradicts with

10 101 et

Co  ampS, 2

Case III: fRN AV(x)u>dx — oo and fRN |(=A)3u,|’dx < C, for some C, > 0 and for every n. Using

(2.4),(2.2) and (F’5) it conclude that

am(fo 180, Pdx) fo (o) ubdx b L l=o)iuldx+ [ AV

o(l) =

Jox AV U2 [ AVu2dx
_ fon £ wudx
fRN AV (x)uidx
Do (o) fuPdx 1Ok fou lual'dx

+
Jon AV (u2dx [y AV(Ru2dx

By (2.4) and the Young inequality we also get that

*

2 - k 1 [¢3
Juy [ dc <52 (Z (=2)u,dx + |V < Co}IIZVSff
RN

o =2 2

AIMS Mathematics
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—+

k - 2 )% a *
S22 f (=) 2. “3)
22 - 2 RN

By (4.8) and the fact of fRN |(=A)2u,|’dx < C, for all n, we obtain that

Jow Il dx _ 2%k @i-hlv< o}V S2C2 + (k- 2)8 7 Cr

Jov AV(uZdx ~ (2 = 2)Aco (25 = 2) [y AV(x)uldx
2t —k
=& i +o(1) (4.9)

In view of (4.7) and (4.9), we can get that

b N |(_A)%un|2dx |Q|oo N |un|pdx o0 2 —k
k L9k L 102 -k

o(1) > > + o(1)
fRN AV(x)uZdx fRN AV(x)uldx (2% —2)Aco
This contradicts with i
|0le(2;, — k)
A>—-—"2 -
(2% = 2)co

(i) o > Nz_f;a : Clearly, 2(o-+ 1) > 2. We argue indirectly. Set |[u,||fe@y) — o0 as n — oo. This proof

is divided into two cases:
Case IV: fRN [(—A)2u,|*dx — oo. It follows from (2.2) — (3.1) and condition (Fs) that

o(1) :am(fRN |(—2)2u,[dx) fRN I(=2)2u,|*dx .\ beN |(=2)2u,Pdx + fRN AV (xX)uldx
(o [(=2) 2w, Pl (foy (=) Fu, Py
Jon Fxs ) undlx
([ =8)5u, Py

>amy( f (= 2) 2, P dx)* O D2 4
RN

b
(for =) 2Py = 2
Jow AVoudx = 10l [, lual*dx
(Jow 1(=2) 2w, Pdx)%
By (4.8), we deduce that

(4.10)

Fo AV@udx = 1Qle [y lualtdx
(fon 1= u, [P x)%
10162, — k) Jon AV(uzdx
> Aco(2; = 2) (fRN I(=2)5 u,2dx)2
1018 225 — BV < collF k-2
(2 = 2D)(fou 1(=2)F Py 2 -2
QIS 2 2; =PIV < coll¥ 01Ls i k-2 )
T Q- DLl P 2 -2

— 0182 (

)

AIMS Mathematics Volume 9, Issue 2, 4135-4160.



4148

Using this, together with (4.10), leads to

a * b
amp( [(=2)2 u,?dx)* D2 4 — -
e (Lo I(=2)%u,Pdxyi =2

Jov AVu2dx =10l [ lual*dx
(Jow 1(=2) 31, Pd )%

S22 — UV < col|F o k=2
108 7 (25, — k){ coll 1018 4

>amy( f I(=A) 2 u, |2 dx) X+ D2 — . -
" (2 =2) [ 1(=5) %, P 2, -2

)

—>o00asn —> o0

Since 2(o- + 1) > 2. We get a contradiction.
Case V: fRN /lV(x)uﬁdx — oo and fRN |(=A)2u,|?dx < C* for some C* > 0 and for all n. It follows from
(2.2) — (3.1) and condition (F’5) that

0 am( [ (=) 2u,Pdx) [ [(=8)2u,Pdx b [ [(-8)2u,Pdx + [, AV(x)uldx
o(l) = +

Jow AV (u2dx [y AVou2dx
Fon £ ) undx
Jox AV()uZdx
b flCo il 10k f luldx i
B fRN AV(x)uldx fRN AV(x)uldx '

By (4.9) and (4.11) one has

b N |(_A)%Mn|2dx |Q|oo N |un|kdx o 2 —k
k Ly 19k s 0@ -k

o= - >1- +o(l),
fow AV(u2dx oy AV(xn2dx Aco(2 - 2)
This contradicts with
|0l (2}, — k)
A>T -
025 - 2)

We the conclude that the sequence {u,} is bounded in E, for all constants 0 < a < a, and A > ;. The
proof is complete. O

Lemma 4.3. If assumptions (Vi) — (V3), (F1) — (F3) are satisfied, N > 1. Then for every D > (O there
exists constant y = y(a,D) > yy > 0 such that J,, satisfies the (C),-condition in E, for numbers
A>vand a < D.

Proof. We may suppose that {u,} is a C,-sequence with @ < D. Note that Lemma 4.1, we can get that
{u,} is bounded in E,. Then there exist a subsequence {u,} and uy € E, such that u,, — uy weakly in E,
and u,, — u strongly in L; (R") for 2 < r < 2;. From this there follows u, — u strongly in E,. Let
v, = u, — up. Apply (V1), we have

1 .
f vidx < — f [(=2)2v,[* + AV(x)uldx + o(1). (4.12)
RN /lco RN
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Based on the above results and the Holder inequalities, for each 4 > yy, Let’s verify the following
conclusion: Case (i))N = 1,2 :
Case () N=1,2:

1 1

2 2

f [v,|"dx < (f vﬁdx) (f Vﬁ(r_”dx)
RV RN RN

1

1 8 I L )
< [/1—(1 + By IV < co}l¥) 1] S(]x,Z(r—l)”VnHHa(RNM +o(1)
Co ,

Case (ii))N > 3 :

Za”k =2
252 )
fRN v,|"dx < (fRN v,zldx) (fRN v,zl(’_l)dx)
2% —r

_240-2)

1 202 P
< (z) Soz ¢ ”Vn”rHa(RN)’/l + 0(1)
0

Hence, we claim that

1
2 2
1 2 _ .
[ aghv <y | sz, itv=12
Ar = ZZfr _ 2;(r—2)

(L) s, =7, if N > 3;

Acg

It is easy see that Y, — 0 as 4 — co. Hence we obtain

al"dx < Yo lIvally + 0(1). (4.13)

RN

As in the proof of [33], we can get

f F(x,v,)dx = f F(x,u,)dx - f F(x, up)dx + o(1) 4.14)
RN RN RN

and

sup f Lf(x, vi) = f(x, ) + f(x, u0)Ja(x)dx = o(1).
RN

lIAll=1
Then by (2.1), (4.14) and Brezis-Lieb Lemma [34], we infer that

JaJ(un)—J‘a,ﬁ(uo):g[%( f (=) 2w, |*dx) — 1i( f |<—A)‘z’uo|2dx>]
RN RN

b . 1
+ = f I(=2)3v,Pdx + 5 f AV (x)vidx — f F(x,v,)dx + o(1)
2 RN 2 RN RN

Furthermore, from the boundedness of the sequence {u,} in E, we get that there is a number y, > 0
satisfying A\%N |(—2)2u,[*dx — xo as n — oo, this implies that for each ¢ € C°(R"), we have

o(1) =(J" 4aun), $)
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B f AV (gl + (am(f (=) dx) + b)f (=) 21y (—A) 2 pdx
RN RN o

- f £, w)pdx
RN

- f AV (uopdx + (am(xo) + b) f (=) fup(~2)f pelx — f F(x, up)ddx
RN RN RN

as n — oo. which means that

f AV(x)ugdx + (am(xo) + b) f |(—a) % uddx — f f(x, up)updx = 0. (4.15)
RN RN RN

Observe that
o(l) = f AV(x)uPdx + (am( f |(=2)2u,[dx) +b) f |(=A) 2 u,[*dx — f Fx, u)u,dx.  (4.16)
RN RN RN RN
By (4.15) and (4.16) we obtain
o(l) = f aV(x)vﬁdH(am( f |(—A)‘z’un|2dx) f |(=2)2 u,[*dx — am(xo) f |(=A) 2 uol*dx
RN RN RN RN
+b | 1(=8)2v,Pdx— f FO,v)vedx
RN RN
f AV(x)vidx + (am( f I(—2)2u,[*dx) + b) f |(=2)2v,Pdx — f FOx,vvedx — (4.17)
RN RN RN RN
In particular, by (4.15) together with (F;) and (F3) we have
d— ¢ 2 1 ¢ 2 2
Tra(ug) ==m (f [(=A)2 ) dx) + = (b |(=2A)2up|dx +f ﬂV(x)ude)
2 RN 2 RN RN
1 a
—~ f F(x, uo)uodx—%( f AV(x)ugdx + (am(yo) + b) f I(=2) 2 ug)*dx
RN RN RN

f (x, uo)uodx)

2

m( = A)2M0|2dx)——m(/\(0)f I(—A)guo|2dX]

k I( A)Zuolde[m(f (=) upl*dx) - mw(})]

Thus there is a number « satisfying k = 0 when m( fRN I(=A)Zup|Pdx) > m(yo) or k < 0 when
m( [ (=2)2uol*dx) < m(xo), we obtain

ja,/l(MO) 2> K.

Based on the above results and (4.12), (4.17), (F;) and (F3) we have
D -k za — Jaa(uo) = Taa(tn) = T aa(uo) + o(1)
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k-2

=—Z(b) f [(=a)2v,|2dx + f AV(x)Vidx) - f (F(x,vn—lf(x,vn)v,,
k RN RN RN k

+§[n7( f [(=A)2u,Pdx) — m( f (=) 2upPdx)]
RN RN

—%m< f (=) 2u,*dx) f (=) 2v,[*dx + o(1)
k RN RN

S (k = 2)min{1, b}
B 2k

Vallge@y),a + o(1)

We can infer that there is a number D = f)(l) > () such that

2kD
||v””i]“(RN)/l S Z)
’ (k — 2)min{1, b}

+o(1). (4.18)
By (3.1),(4.13),(4.17) and (4.18) we have

o(l) = f AV(x)v2dx + am( f |(—A)2 u,[dx) f |(=a)2 v, dx
RN RN RN

+b f I(=a)2uPdx — | f(x,v)vadx
RN

RN

2k
>min{1, b} [(=2)2v, > + AV(x)v2dx — |Qle Y ik ( f I(=2)2 v, + /IV(x)v,Zldx)
R R %
>min{1,b} | 1(=28)2v,* + AV(x)v2dx — |Ql 1k
RN

[ 2kD +o(l),

(k = 2)min{1, b}

which means that there exists y := y(a, D) > yy such that for A > 7, v, — 0 strongly in E,. which is

what we wanted to prove. O
Lemma 4.4. If assumptions (Vy) — (V3), (F4), (F5) with o > Nz_‘éa and (F,) — (F3) are satisfied, N > 3.
Then for every D > 0 there exists numbers y; = y(a, D) > yy > 0 such that ., satisfies the (C),—
condition in E, for « < D, 1 > y. m|

Lemma 4.5. If assumptions (V}),(V3),(Fy), (Fs) and (F,),(Fs) are satisfied, N > 1. Then for any
a > 0and A > 7, there exists a critical point u, € E, of J1..(w) such that T, ,(uy) > 0.

Proof. Apply Lemma 4.3 and 0 < gy < @, < @0,(Q) for each 4 > yy, J,., satisfies the (C)gaq-
condition in E, for each @ > 0 and A > y. In other word, we can get a subsequence {u,} and u, € E,
such that u, — u, strongly in E,. This means that u, is a nontrivial critical point of J,, such that

Tai(uy) = ag) > 0. O

Lemma 4.6. If assumptions (V) — (V3), (Fy4), (Fs) with o > N%‘;g and (F,), (F5) are satisfied, N > 3.
Then there exists a number vy, > max{yy,y:} such that for any 0 < a < a, and A1 > y,, there exists a
critical point u5 , € Ey of Ja(u) such that J (3 ) > 0.

Proof. For this proof, we can easily prove our results by applying Lemma 4.4 and 4.7 of conclusions.

Here, we omit its proof. O

Lemma 4.7. If assumptions (Vi) — (V3), (Fs) with o > Nz_f;a and (F3), (F3) are satisfied, N > 3. Then
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T 1.a has a bounded below on E, for all a > 0 and

2|0l ¢ 2(0+ 1|0l . 2
153, = et R ya ), ifo = 2
3:
YN, ifo> = 20'

Moreover, suppose

~ 2|Q1w(2; — k)

/l v, = 5 )
> Y4 := max{ys k(2 —2) }

—_ 1 —_
then there exists C, > o; such that J,.(u) 2 0 for any u € Ey with ||u||ge@yy 1 = Ca.
1
Proof. Assume fRN [(=A)2uldx < 05 then using (2.4), (3.1) and the Young inequality we have

jﬁa(u)>mm{ f () bul + AVortdr — 2= [ ufkax
2 k RN
b1 .
_% (=) 5 ul + AV(xildx
RN
|Q|OO 2% - 2(2 k) a(k 2a>
- kS_kl{V < coll ||M||,1 ( |( A)ZulPdx) %

>2a(k 2)min{b, 1}

2p(2;, -2) RN
k=2 B ak 2% -2 2
- — (1915 SHHV < el ) o)
k(2: — 2)min{1, b} =2

Hence J,,(«) has a bounded below on E, for any a > 0 and A > yy.

|(—A)%u|2 + AV(x)utdx

o 1 .. .. . . .
As A\%N (=2)2ulPdx > 0;» then we can divide it into two parts for discussion: (i)o =

a 1 . . .. .. .
fRN |(=2)2u>dx > 0,: Then we W111 also dlscuss this situation in two different ways:

2a

N-2«a

and

Case one: [, AV(x)u’dx > AcS e (A y 3 [ [(=2)2uPdx)%. By (Fs), (2.4),(2.1) and (3.2), for any

kAcy
A > 0 using Young and Sobolev inequaohtles we have

Ja zgm( f |(—A)%u|2dx)+l(b f I(=2) 2 uldx + f /lV(x)uzdx)—% f |u|fdx
2( +1)( f (- A)zu|2dx)2(‘f+‘> (b f I(=2) 2 uldx + f AV(x)udx)

10l
k /1C0

(I(k 2a)
2t [ eartupan 5
RN

2* kSk
Which means that j 14(1) have a bounded below on E for any a > 0 and 4 > yy.

*
@

Case B: fRN AV()urdx < AcoS ;7 (%)2&2 ( fR v 1(=2)2ul>dx)* . From (2.4) we obtain that
f |ul*dx
RN

[ eartufar? a+12’ fR -m) - LoV < coll * fR st

== (— f AV(x)utdx + S ||V < co}lﬁi(b I(—A)2 uldx + f AV(X)Mde))i‘?—Z
RN RN
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2%k-2)

1 o 2k
< (= f AV(ldx + SV < collF f I(=2)2uldx)%2 (S f [(=a)uPdx) %2
Co RN
IQloo %t
<S5
<S8 Gae kaAc 0
Based on the inequality above and using (F’s) again, we obtain

T ra(tt) z%ﬁ( f |(—A>%u|2dx>+1<b f (=) 2 uldx + f

RN

= f (=) 2uldx)* + S F[{V < ¢ B f (=) 2ufdx)*
]RN

/lV(x)uzdx)—% f lul*dx

Mod 512 2(o+1) ¢ 2 2
2((5+ 1)( |(=2)2ul"dx) + 3 (bf (= A) ul dx‘i'f AV(x)u~dx)
|Q|oo[ N a(kljloo)zgy_zk(f |(_A)7M|2dx) @ +S; |{V < COH?( I(—A)fulzdx)k]
Co RN

yi ( = A)2ufdx)’

[oma 10 2000 5
B 2(0'+1) kS 2 pAco

|Q|oo ‘*’;k ) k
- —{V <coll = (| I(=2)>ul"dx)
kSa RN
which means that if

2|0l 2(6 + 1|l 22

A > max{yy, ( > ok},
kco myaks

thus J,..(u#) has a bounded below on E, for any a > 0 and there exists C, > 0 such that 7, ,(«) > 0 for
allu € E, with [, |(-A)2ul’dx > C,.

(i)o > 2% and fRN l(=A)2u?dx > QO% : Using (F5s), (2.4), (3.1) and the Young inequality we can get
—_— (03 l (3
[f/w(u)zgm( f |(—A)7ul2dx)+—(b f |(=A)2ulPdx + f AV(x)u*dx) — f F(x,u)dx
RN RN
( f (=22 ulPdx)* D + ’"’”{2" U

(] = A)2ufdx)* D

2( +1) (=) uf + AV(xX)uPdx — 19l L ) |ulfdx

mopa
e+ 1)
k 2 S ) *
- 0LV < el V[ bt
k(2: — 2)(min{1, b})%~2 -~
2a

we can infer that J,,(u) is bounded below on E for all a > 0 and A4 > yy, in view of o > =7-.
Furthermore, for any a > 0, there exists

RN

— —k 2 =)
€, > 1o o 20 DK = 20015, W <altHE )W

kmoa(2}, = 2)(min{1, b})ﬁ

such that J,,(u) > O for any u € E, with f l(=A)2ulPdx > C, = max{gg, C,}. Then we will verify

that there exists a number @ > C,. _
Jaa) >0 forall u € E, with ||ul|, > C,. Set

22, - 010k
= [R, +2B0(Ca)(1 - ACO)(W—% Ik, (4.19)
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where o b0
BoCo) = 2Ny ypps e ¢ E2 200

s
k(2 =2 “7k(2r - 2)

IA

fRN I(=2)2ul’dx < C,, thus we can verify that 9, ,(u«) > 0 when

For u € E, with |ul|;, > a,. If A\%N l(=a)iuPdx > C,, then the result is obtained. If Q(;

fR AV 2 2@ - S

In fact, applying (4.8) we can infer that
a__ e 9 1 o 2 |Q|oo k
Taaw) >=m( [(=2)2ul“dx) + =(b |(=2)2ul“dx + AV u“dx) — —— |u|"dx
2 RN 2 RN RN RN

k

1 (k= 2)[Qleo o -2: =25

>= | aveoutdx - K= g2
2 fRN dx = = ok a

_ 2= plOls 1 ) I
k(2% —2) (/7.6'0 f AV(xXusdx + {V < co}|¥S,°C,)
Ly - 225~ R0l ) o

25[1 - m] fRN AV(x)u“dx - By(C,)

>0

Therefore, we get tlElt there exists a number aa > 0 defined as (4.19) such that ,,(u) > 0 for any
u € E, with |lu||; > C,. which is what we wanted to prove. O

Lemma 4.8. If assumptions (V) — (V3), (F4), (Fs) with o > sza and (F»), (F) are satisfied, N > 3.
Then for any a > 0 and A > 7y, there holds

0 =2 inflTna() : u € Ey with |ullgegy, 1 < Ca} < 0.

Proof. This proof can be obtained from Lemma 3.4 and Lemma 4.5, we omit its proof. O

Lemma 4.9. If assumptions (V) — (V3), (F4), (Fs5) with o > N %o and (Fy), (F3) are satisfied, N > 3.
Then there exists a numberys > max{y,,ys} such that for each a > 0 and A > ys, and there exists a
critical point u}, , € Ey of . such that J4(u} ) = 9, <0,

Proof. Using Lemma 4.8 and the Ekeland variational principle, we may assume that {u,} C E,
is a bounded minimizing sequence with |[[u,||geey) 2 < C such that ,,(u4,) — 9, and (1 +
lullg T g — 0 as m — co. By Lemma 4.4, there exist a subsequence {u,} and uy, € E,
such that u,, — uia strongly in E,. This implies that u, is a nontrivial critical point of I, satisfying

j/l,a(u/lha) = 5& <0.

Proof of Theorem 1.1 and Theorem 1.2:

The proof of Theorem 1.1 directly follows from Theorem 4.5. Applying Theorems 4.6 Theore4.9,
there exists a positive constant y, > max{y,,ys} such that for any constant 0 < a < a, and 1 > 7,,
Equation 1.1 admits two nontrivial positive solutions u} , and u3 , satisfying J(u} ) < 0 < Jpa(u3 ).
Furthermore, uia is a ground state solution of Eq 1.1. So we complete the proof of Theorem 1.2. O
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Proofs of Theorem 1.3 and Theorem 1.4:

By Lemmas 3.2 and 3.5 and the mountain pass theorem [32] (see Theorem 1.15), we get that for
every A > yyand 0 < a < +(k) there exists a sequence {u,} C E, such that

oo/ll

Taaln) = @aa > 0and (1 + lualle NI gl — 0, as n— oo, (G.D

where 0 <1 < @, < @ 4(Q) < D,.

Lemma 5.1. If assumptions (Vi) — (V3), (Fs) with o > %, (Fg) and (F5) are satisfied, N > 3. Then
1

forany 0 <a < ol the sequence {u,} defined in (5.1) is bounded in E, for all 1 > yy.
Moofly

Proof. Adopting the method of proof to the contrary. Let ||u,||ge@y) 1 — o0 as n — co. We will divide
it into two cases for proof:
Case one: J}J&N |(=2)2u)Pdx — . By (2.2), (3.3), together with (F5) and the Nirenberg inequality we
obtain
0 am(fRN I(—2)2ul*dx) fRN l(=A)2uldx b fRN I(=2)2ulPdx + fRN AV (x)u>dx
0 = a + (3
(o I(=2) 3 uPdx)t (fo I(=2) 3 uPdx)t
fRN S (x, up)u,dx
(fon I(=2) 2 uPdx)*

* o L
> amy( |(—A)%u|2dx)2(5+1)_k B c (fRN [(=A)2ul*dx)
2 RN V(lk)(_gw |(—A)%M|2dx)k

*

a o ek €
=amo( | 1(—2)2uldx)* D7 - —rey
RV V|

— &0

as n — oo since 2(o + 1) > k. This is a contradiction.
Case two: fRN AV(x)u>dx — oo and fRN |(=a)3uPdx < C, for some C, > 0 and for all n. Using
(2.2),(3.3) and (F'5) we have
0 am( [l [(=2)uldx) [ 1(=2)3ulPdx L0 Jon l(=2)2uPdx + [, AV(x)uldx
o =
fRN AV(x)u2dx fRN AV(x)u2dx
_ fRN S, uy)u,dx
fRN AV(x)uidx
¢ (for I(=2)Fufdx)*
VW [ AV(udx
c*Cé

W [ AV(udx

=1+o0(1)

contrary to assumption. we conclude that the sequence {u,} is bounded in E, for any 0 < a < m%ﬁ“)
Sali]

and A > yy. This concludes the proof. O

AIMS Mathematics Volume 9, Issue 2, 4135-4160.



4156

Lemma 5.2. If assumptions (V) — (V3), (F1), (Fs) and (F3) are satisfied, N > 3. Then for every D > 0
there exists constants y = y(a, D) > yy > 0 such that J,, satisfies the (C),-condition in E, for any
a<Dand 1 >7. O
Lemma 5.3. If assumptions (V) — (V3), (Fy), (Fs) with o > k 2" , (F¢) and (F3) are satisfied, N > 3.
Then for every D > O there existsy, = y,(a, D) > yny > 0 such that Ja. satisfies the (C),-condition in
E,foralla < Dand A1 >%,. O
Lemma 5.4. If assumptions (Vy)—(V3), (F), (Fs), (F3) are satisfied, N > 3. Then for any 0 < a < - ﬁ“

there exists a critical point uy € E, of a4 such that J,,(uy) > 0 forall A > 7.

Proof. This proof is similar to Theorem 4.3, we can prove the result by applying (5.1), Lemma 4.1 and

Lemma 5.2. O

Lemma 5.5. If assumptions (V) — (V3), (F4), (Fs) with o > k;i", (Fe) and (F5) are satisfied, N > 3.

Then for each 0 < a < a, and A >, then for every 0 < a < # the energy functional J,, admits a
Moofky

nontrivial critical point uﬁ’a € E, such that 7, ﬁ,u(”%,a) > 0. O

Proof. This proof is similar to Theorem 4.3, we can prove the result by applying Lemma 5.1 and
Lemma 5.3.

Lemma 5.6. If assumptions (V) — (V3), (Fy), (Fs) with o > k 2“ , (F¢) and (F3) are satisfied, N > 3.
Then the energy functional T, is bounded below on E, for all a > 0and A > 0. Furthermore, there
exists C, > 0 such that T o) > 0 for all u € Ey with [[u]| gegyy 4 > C,.

Proof. For fRN (=) ulPdx < QI%, then using (2.1) and (3.5) we have

Taa(tt) >= (b f I(=2) 2 uldx + f AV(x)utdx)

2dx)

RN
b o c*
>2 NY
2 fRN (Cayuldx = m

This means that J,, is bounded on E, for any constants @ > 0 and A4 > 0.
1
For fRN |(=2)2ulPdx > o1, then by (Fs) with o > %, (2.1) and (3.5) we obtain

2dx)k

Taaltt) == m( f (=) ulPdx) + = (b f I(=2) 2 uldx + f AV(x)uldx)

’ulzdx)k

B k\‘z(")
moa

_ e a0 ey C g2 gk
5oL o e S [t

This means that 7, ,(«) is bounded below on E for any constants a > 0 and 4 > 0, since o > % - 1.

1
Furthermore, for every a > 0, there exists C, > t3 := (Z(i,:;,,ll)ﬁ )Z@+0% such that J, ,(u) > Oforallu € E,

with [, [(=8)uldx > C,.
Thus we will prove that there exists a constant C, > 0 such that J 1a(w) > 0 for all u € E, with
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ltllpe@mya = Ca fRN |(=A)2ul’dx > C,, So the results are verified. If &N |(—2)2ul’dx < C,, then we
can infer that ,, > 0 when fRN AV(xX)uldx > kzﬁ—clk)C’; . In fact, we obtain

T altt) zgiﬁ( f |(—A)gu|2dx)+%(b f (=a) uPdx + f AV(x)ldx)
RN RN ]RN

¢’ ¢ 0 Nk
- H(II{)(LN [(=2)2ul"dx)

C*

1 2 k
ZE LN AV(xX)u“dx — k\_/(lk) C,

Therefore, we get that there exists a number C, > 0 such that 7 1qaw) > 0 for all u € E, with
el gy 0 = C,. which is what we wanted to prove. O
Lemma 5.7. If assumptions (Vi) — (V3), (Fs) with o > %, (F¢) and (F5) are satisfied, N > 3. Then
forany a > 0 and A > 0 one has

T = inflT () : u € Ey with |lullge@nyy < Ca)) < 0. (5.2)

Proof. We can directly obtain this proof from Lemma 3.6 and 5.6. Hence, here we omit its proof. O
Lemma 5.8. If assumptions (V) — (V3), (Fy), (Fs) with o > k;i", (F¢) and (F5) are satisfied, N > 3.
Then for any a > 0 and A > ,, J1.4(u) has a nontrivial critical point u , € E, such that [, q(u} ) =

? < 0, where 9 is as in (5.2).

Proof. Applying Lemma 5.7 and the Ekeland variational principle, we can get that there exists a
minimizing bounded sequence {u,} C E, with ||ul|ge®n~) < C, such that T, ,(u,) — & and ia(un) —
0 as n — oo. Thus by Lemma 5.3 which means that there is a subsequence {u,} and uia € E;
with ||} |le@v2 < C, such that u, — u)}, strongly in E,. Which infer thatJ} (u},) = 0 and
Tnauy,) = ¥ < 0, which is what we wanted to prove. O

Proof of Theorem 1.3 and 1.4.

From Lemma 5.4, we can directly proof Theorem 1.3. By virtue of Lemma 5.5 and 5.8, for any
0 <a<a,and A > y,, Equation (1.1) admits two nontrivial positive solutions uia and uia satisfying
Tra),) <0< Joa(u3,). Specifically, u) , is a ground state solution of Eq (1.1). Therefore, We have
completed the proof of Theorem 1.4. O

4. Conclusions and discussion of the results

By the condition, f satisfies |llim fx, /1" = Q(x) uniformly in x € RY foreach 2 < k < 27, (2! =
f|—00

%). We investigated the effects of functions m and Q on the solution. By applying the variational
method, we obtain the existence of multiple solutions. Furthermore, it is worth mentioning that the
ground state solution has also been obtained. We find that the number of differently solutions are
obtained when the assumptions about m and f are different. The main contribution of this paper is
to establish a multiplicity theorem in which the main method is based on the variational method. It is
worth noting that we have not yet provided multiple solutions for the critical case, and we will continue
to study this case.
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