
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(2): 4118–4134.
DOI:10.3934/math.2024202
Received: 15 November 2023
Revised: 03 January 2024
Accepted: 09 January 2024
Published: 15 January 2024

Research article

Unified existence results for nonlinear fractional boundary value problems

Imran Talib1, Asmat Batool2, Muhammad Bilal Riaz3,4,∗ and Md. Nur Alam5

1 Department of Mathematics, Nonlinear Analysis Group (NAG), Virtual University of
Pakistan, 54-Lawrence Road, Lahore, Pakistan

2 Department of Mathematics, University of Management and Technology, 54770 Lahore, Pakistan
3 IT4Innovations, VSB - Technical University of Ostrava, Ostrava, Czech Republic
4 Department of Computer Science and Mathematics, Lebanese American University, Byblos,

Lebanon
5 Department of Mathematics, Pabna Unversity of science and Technology, Pabna-6600, Bangladesh

* Correspondence: Email: muhammad.bilal.riaz@vsb.cz.

Abstract: In this work, we focus on investigating the existence of solutions to nonlinear fractional
boundary value problems (FBVPs) with generalized nonlinear boundary conditions. By extending the
framework of the technique based on well-ordered coupled lower and upper solutions, we guarantee
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1. Introduction

Fractional calculus (FC) is a dynamic field dealing with non-integer orders of differentiation and
integration, offering an extended framework beyond traditional calculus. It finds applications in
diverse areas like viscoelastic materials, diffusion processes, and fractals (see [1, 2]). Fractional-order
derivatives (FOD) lack a universally accepted definition due to challenges in extending differentiation
to non-integer orders, leading to various definitions, including Riemann-Liouville, Grunwald-Letnikov,
Caputo, and Atangana-Baleneau, among others (see [3, 4]). Overall, this diversity in defining various
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FOD operators reflects the richness and adaptability of the theory of fractional calculus. It provides
researchers with a toolkit to select the most suitable approach for their specific applications, taking into
account the mathematical properties, physical interpretations, and practical considerations relevant to
the problems at hand.

Among the various types of FOD operators, the Hilfer operator stands out due to its unifying
interpolatory role. While the Caputo and Riemann-Liouville FOD operators have their own distinct
mathematical properties, the Hilfer FOD operator seamlessly connects them by adjusting a single
parameter (see [3, 5, 6]). It provides a more nuanced and useful modeling framework for a wide range
of scientific and engineering applications by integrating the key features of the Caputo and Riemann-
Liouville derivatives. For numerous applications of the Hilfer operator, we direct the reader to [7–11].
It has been used, for instance, in the study of fractional-time evolution equations and in regular variation
in thermodynamics and physics, as referenced in [12, pp. 87, 429].

The investigation of the existence and uniqueness of solutions to FBVPs, that comprise various
kinds of FOD operators and initial/boundary conditions (BCs), has been tackled by several
mathematicians (see [13–21]) and the references cited therein. Notable contributions from previous
studies regarding the existence of FBVPs in the Hilfer sense encompass various cases. For instance,
research by Suphawat et al. [14] proved the existence and uniqueness of the solutions to the following
boundary value problems (BVPs) with Hilfer fractional derivatives and a nonlocal condition.

HDp,qy(s) = Ψ(s, y(s)), s ∈ I = [a, b] , b > a > 0,

y(a) = 0, y(b) =

m∑
k=1

ckJ sk
a t(χk), χk ∈ I, ck ∈ R,

here, HDp,q is the Hilfer derivative of order between 0 and 1 and the parameter q is such that 0 ≤ q ≤ 1,
and Ψ : I × R → R is a continuous function and J sk

a t(.) is the Riemann-Liouville fractional integral
(RLFI) of order sk. Suphawat et al. [14] used the Banach contraction principle, as well as the approach
of Hölder, Wang and Boyd, Leray-Schauder and Krasnoselskii’s to prove the existence.

In [22], Krasnoselskii’s fixed-point (FP) theorem was used to prove the existence of solutions to an
Initial Value Problem(IVP) with nonlocal conditions given as

ρDν,qu(s) = f (s, u(s)), s ∈ I = (a,T ],

ρI1−γ
a+ u(a) =

n∑
k=1

bku(σk), σk ∈ I, ρ > 0, bk ∈ R,

involving Hilfer-Katugampola FOD ρDν,q having order between 0 and 1. Here, 0 ≤ q ≤ 1, and f :
I × R → R is a continuous function. The nonlocal condition contains the generalized fractional-order
integral ρI1−γ

a+ (.) of positive order that is 1 − γ > 0, and σk fulfills 0 < a < σ1 ≤ σ2 ≤ .... ≤ σn < T for
n = 1, 2, ..., k.

Through the use of Hilfer fractional derivatives, Vivek et al. [20] investigated the uniqueness and
existence for an implicit differential equation (DE) with condition involving non locality described as

Dα,βv(s) = g(s, v(s),Dα,βv(s)), s ∈ A = [0, c] , c > 0,

I1−γv(0) =

m∑
i=1

biv(ςi), ςi ∈ A, γ = α + β − αβ,

AIMS Mathematics Volume 9, Issue 2, 4118–4134.



4120

in this manuscript, Schuader and Banach FP theorems have been used by the authors to demonstrate
the desired results. Additionally, stability outcomes were examined. In [23], the authors conducted a
research containing pantograph fractional differential equations (FDE) involving the Hilfer derivative
subject to non-local integral boundary conditions. They studied both single and multi-valued cases of
these equations. Their work aimed to prove that solutions satisfying the given conditions exist and are
unique.

HDα,βx(s) = f (s, x(s), x(λ(s)), s ∈ T = [a, b], a ≥ 0, b > a,

x(a) = 0, Ax(b) + BJγx(η) = d, η ∈ (a, b),

here, HDα,β is the Hilfer derivative of order between 1 and 2 and β is the parameter such that 0 ≤ β ≤ 1,
and f : T × R → R is continuous function and Jγ(.) is the RLFI of order γ > 0, A, B, d ∈ R and
λ ∈ (0, 1).Banach FP theorem is used to ensure the uniqueness of solution and Leray-Schauder type and
Krasnoselskii’s FP theorems are used to acquire existence results for single-valued cases. Furthermore,
multi-valued convex and non-convex problems have been addressed by using the Bohnenblust-Karlin
FP theorem, Martelli’s FP theorem, and contractive multi-valued maps FP theorem. In [24], existence
and uniqueness for the most latest generlized variant that is (k, Ψ) of Hilfer derivative has been studied.
In this paper, existence and uniqueness has been investigated by determining the equivalent fractional
integral equation to the nonlinear (k, Ψ) Hilfer fractional differential equation of the form

k,HDη,ν;Ψy(t) = f (t, y(t)), t ∈ (a, b], 0 < η < k; 0 6 ν 6 1,
kJk−ξk;Ψ

a+ y(a) = ya ∈ R, ξk = η + ν(k − η),

where k,HDη,ν;Ψ(.) is the (k, Ψ) hilfer derivative of order η and type ν, kJk−ξk;Ψ
a+ (.) is the (k, Ψ) RLFI of

order k − ξk, and f : (a, b] × R→ R is a continuous function.
Additionally, another existence result for Hilfer FDE, which investigates the existence and

uniqueness of global solutions in the space of weighted continuous functions, is presented in [11].
The study of a nonlinear FDE with a nonlocal initial condition using a Hilfer generalized proportional
fractional derivative is discussed in [25]. In [17], researchers examine the existence, uniqueness, and
stability of ψ-Hilfer fractional derivative random differential equations, employing Schauder’s fixed-
point theorem and Banach’s contraction principle for the respective existence and uniqueness analyses.

The studies mentioned above have investigated existence and uniqueness of Hilfer FDE in the
presence of diverse initial and boundary conditions. Expanding upon the research in [11], our primary
contribution is centered on proving the existence of solutions for the nonlinear FDE that incorporates
the Hilfer fractional derivative alongside generalized boundary conditions. The significance of our
proposed results is the development of a unified framework in order to ensure the existence of nonlinear
FBVPs with various BCs including initial, anti periodic boundary conditions (APBCs), and periodic
boundary conditions (PBCs). Whereas the researchers handled these BCs separately, but our method
provides a general approach that cover them as particular cases. To achieve this unification, we extend
the lower and upper solutions approach (LUSA), whose foundation relies on well-ordered lower and
upper solutions in conjunction with specific FP theorems.

We begin by considering the following Hilfer derivative FDE

Dµ,νh(y) = g(y, h(y)), y ∈ [0, 1], (1.1)
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corresponding to the following generalized nonlinear boundary conditions (GNBC)

v(h(0), h(1)) = 0, (1.2)

here, the functions v : R2 → R and g : [0, 1] × R→ R are both continuous, and Dµ,ν is the generalized
derivative introduced by Hilfer of order 0 < µ < 1, and type ν (see [12]).

1
Γ(µ)

∫ y

0
(y − τ)µ−1h(τ)dτ =RL Iµh(y) (1.3)

is the RLFI operator of order µ (see [4]).
The nonlinear FBVPs, (1.1) and (1.2) covering special cases, such as, when v(y1, y2) = y1 − s with

s ∈ R, then (1.1) and (1.2) is the fractional initial value problem, with

h(0) = s. (1.4)

If v(y1, y2) = y1 − y2, then (1.1) and (1.2) is the periodic FBVPs, with

h(0) = h(1). (1.5)

If v(y1, y2) = y1 + y2, then (1.1) and (1.2) is the anti-periodic FBVPs, with

h(0) = −h(1). (1.6)

The structure of the proposed study is as follows: In Section 2, we review some previous results
and definitions that will be used in the proof of the main results. To investigate the existence of
solutions to ((1.1) and (1.4), (1.1) and (1.5), and (1.1) and (1.6)), a generalized result is proposed in
Section 3. In Section 4, we solve examples with nonlinear periodic, anti-periodic and some other types
of boundary conditions to show how the theoretical principles derived in Section 3 can be applied.
Section 5 provides a final overview of the proposed study.

2. Fundamental results

Several FC related definitions and results will be discussed in this section that will serve as building
blocks for proving the key results.

Let us designate the set of continuous functions on [0, 1] as C[0, 1], the set of absolutely continuous
functions as AC[0, 1], and the set of n times continuously differentiable functions as Cn[0, 1]. The set
of all Lebesgue integrable functions on the interval (0, 1) is denoted by Lp(0, 1), p ≥ 1.

Definition 1. We take into account the weighted space of continuous functions

Cδ[0, 1] = {g : (0, 1]→ R : xδg(x) ∈ C[0, 1]}, 0 ≤ δ < 1,

and

Cn
δ[0, 1] = {g ∈ Cn−1[0, 1] : g(n) ∈ Cδ[0, 1]}, n ∈ N,

C0
δ[0, 1] = Cδ[0, 1],
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with the norms defined as

||g||Cδ
= ||xδg(x)||C,

and

||g||Cn
δ

=

n−1∑
k=0

||g(k)||C + ||g(n)||Cδ
.

The following characteristics are met by these spaces:

C0[0, 1] = C[0, 1].
Cn
δ(0, 1) ⊂ ACn[0, 1].

Cδ1[0, 1] ⊂ Cδ2[0, 1], 0 6 δ1 < δ2 < 1.

Lemma 2.1. ( [11, Lemma 15]) If µ1 ≥ 0, and µ2 ≥ 0, and g ∈ L1(0, 1) then the semigroup property
stated as follows is valid for almost every point y ∈ [0, 1]:

(Iµ1 Iµ2g) (y) �
(
Iµ1+µ2g

)
(y).

Specifically, when g ∈ Cδ[0, 1] equality is satisfied for all y ∈ (0, 1], and when g ∈ C[0, 1], equality
holds for all y ∈ [0, 1].

Lemma 2.2. ( [11, Lemma 11]) Let µ > 0 and 0 ≤ δ < 1, then Iµ is bounded from Cδ[0, 1] into Cδ[0, 1].

Lemma 2.3. ( [11, Lemma 17]) Let 0 < µ < 1, 0 ≤ δ < 1 . If g ∈ Cδ[0, 1] and I1−µg ∈ C1
δ[0, 1], then

IµDµg(y) = g(y) −
I1−µg(0)

Γ(µ)
yµ−1

holds true for all y ∈ (0, 1].

Lemma 2.4. ( [11, Lemma 12]) Let µ > 0 and 0 ≤ δ < 1. If δ ≤ µ, then Iµ is bounded from Cδ[0, 1]
into C[0, 1].

Lemma 2.5. ( [11, Lemma 13]) Let 0 ≤ δ < 1 and g ∈ Cδ[0, 1]. Then

Iµg(0) := lim
y→0+

Iµg(y) = 0, 0 ≤ δ < µ.

Proof. By Lemma 2.4, we have Iµg ∈ C[0, 1]. Since g ∈ Cδ[0, 1] then yδg(y) ∈ C[0, 1] and

|yδg(y)| < M, y ∈ [0, 1]

for some positive constant M. Therefore

|Iµg(y)| < M[Iµt−δ](y)

and

|Iµg(y)| ≤ M
Γ(1 − δ)

Γ(µ + 1 − δ)
(y)µ−δ.

Since µ > δ, the R.H.S→ 0 as y→ 0. �
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Definition 2. We call a function φ ∈ C1[0, 1] as a lower solution of (1.1) if it fulfills the following
inequality

Dµ,νφ(y) ≤ g(y, φ(y)), y ∈ [0, 1]. (2.1)

In a similar manner, a function ψ ∈ C1[0, 1] serves as an upper solution of (1.1), provided that it meets

Dµ,νψ(y) ≥ g(y, ψ(y)), y ∈ [0, 1]. (2.2)

In light of the foregoing, let us assume

φ(y) ≤ ψ(y) , y ∈ [0, 1]. (2.3)

For h1, h2 ∈ C[0, 1] with h1(y) ≤ h2(y) for all y ∈ [0, 1], the set below is characterized by

[h1, h2] = {u ∈ C[0, 1] : h1(y) ≤ u(y) ≤ h2(y), for all y ∈ [0, 1]}.

Definition 3. Two functions φ and ψ ∈ C1[0, 1] satisfying the relation φ(y) ≤ ψ(y) are considered as
coupled lower and upper solutions (CLUSs) for problem (1.1) and (1.2), provided they adhere to the
inequalities (2.1) and (2.2) as well as the subsequent set of inequalities:max{v(φ(0), φ(1)), v(φ(0), ψ(1))} ≤ 0,

min{v(ψ(0), ψ(1)), v(ψ(0), φ(1))} ≥ 0.
(2.4)

Remark 1. The conventional existence requirements for boundary value problems consisting PBCs
and APBCs can be consolidated into a single framework by imposing monotonicity presumptions on
the arguments of the boundary function (1.2) and employing (2.3) and (2.4). The inequalities (2.3)
and (2.4) provide the standard existence criterion for the periodic BVPs, ((1.1) and (1.5)), if in the
second argument the boundary function v is non-increasing, we have

φ(0) ≤ φ(1), and ψ(0) ≥ ψ(1).

Inequalities (2.3) and (2.4) validate the following conventional conditions for existence of the anti-
periodic BVPs ((1.1) and (1.6)), if in the second argument the boundary function v is non-decreasing,
we have

φ(0) ≤ −ψ(1), and ψ(0) ≥ −φ(1).

Definition 4. The definition of the left-sided fractional derivative operator of order 0 < µ < 1 and
type 0 ≤ ν ≤ 1 is as follows:

Dµ,ν = Iν(1−µ)DI(1−µ)(1−ν). (2.5)

From this definition, we get the following observations.
(1) We can write the operator Dµ,ν as

Dµ,ν = Iν(1−µ)DI(1−δ) = Iν(1−µ)Dδ, δ = µ + ν − µν.
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(2) Between the Caputo derivative and Riemann-Liouville derivative, Dµ,ν works as an interpolator,
because

Dµ,ν =

Dµ, when ν = 0,
I1−νD, when ν = 1.

(3) The parameter δ satisfies

0 < δ ≤ 1, δ ≥ µ, δ > ν, 1 − δ < 1 − ν(1 − µ).

The following spaces will be introduced as

Cµ,ν
1−δ[0, 1] = {g ∈ C1−δ[0, 1],Dµ,νg ∈ C1−δ[0, 1]},

and

Cδ
1−δ[0, 1] = {g ∈ C1−δ[0, 1],Dδg ∈ C1−δ[0, 1]}.

Since Dµ,νg = Iν(1−µ)Dδg, It follows from Lemma 2.2, that

Cδ
1−δ[0, 1] ⊂ Cµ,ν

1−δ[0, 1].

The subsequent Lemma can be readily derived from the semigroup property outlined in Lemma 2.1

Lemma 2.6. ( [11, Lemma 20]) Let 0 < µ < 1, 0 ≤ ν ≤ 1, and δ = µ + ν − µν. If g ∈ Cδ
1−δ[0, 1], then

IδDδg = IµDµ,νg,

and

DδIµg = Dν(1−µ)g,

IδDµg = Iν(1−µ)g.

Proof. Since from (2.5), we have

Dµ,νg = Iν(1−µ)DI(1−µ)(1−ν)g

IµDµ,νg = IµIν(1−µ)DI(1−µ)(1−ν)g

= Iµ+ν−µνDI1−µ−ν+µνg

= IδDI1−δg

= IδDδg.

Similarly,

DδIµg = Dµ+ν−µνIµg

= Dµ+ν−µν−µg

= Dν(1−µ)g,
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and

IδDµg = Iµ+ν−µνDµg

= Iµ+ν−µν−µg

= Iν(1−µ)g.

�

Lemma 2.7. ( [11, Lemma 21]) Let g ∈ L1(0, 1). If Dν(1−µ)g exists and lies in L1(0, 1), then

Dµ,νIµg = Iν(1−µ)Dν(1−µ)g.

Proof.

Dµ,νIµ = Iν(1−µ)DI(1−ν)(1−µ)Iµg

= Iν(1−µ)DI(1−ν(1−µ))

= Iν(1−µ)Dν(1−µ).

�

Lemma 2.8. ( [11, Lemma 22]) Let 0 < µ < 1, 0 ≤ ν ≤ 1, and δ = µ + ν − µν. If g ∈ C1−δ[0, 1] and
I1−ν(1−µ)g ∈ C1

1−δ[0, 1], then Dµ,νIµg exists in (0, 1] and

Dµ,νIµg(x) = g(x), x ∈ (0, 1].

Proof. From Lemmas 2.3, 2.5 and 2.7, we have

Iν(1−µ)Dν(1−µ)g(x) = g(x) −
I1−ν(1−µ)g(0)
Γ(ν(1 − µ))

(x)ν(1−µ)−1 = g(x), x ∈ (0, 1].

�

Following this, we introduce a highly valuable lemma that holds a pivotal role in establishing the
main result. Define

C◦[0, 1] = {h ∈ C[0, 1] : h(0) = 0}.

Lemma 2.9. Let A : C[0, 1]→ C◦[0, 1]×R be a linear operator. Then the inverse A−1 : C◦[0, 1]×R→
C[0, 1] exists if and only if Ah(y) = 0⇒ h(y) = 0.

Proof. First we assume that Ah(y) = 0 ⇒ h(y) = 0, and show that A−1 exists. Let Ah(y1) = Ah(y2),
where y1, y2 ∈ [0, 1]. Since A is linear, we have

A(h(y1) − h(y2)) = 0⇒ h(y1) − h(y2) = 0, (by hypothesis)
⇒ h(y1) = h(y2).

Since for the linear operators, if Ah(y1) = Ah(y2) ⇒ h(y1) = h(y2), then there exists a mapping A−1 :
C◦[0, 1] × R → C[0, 1] which maps every h◦(y) ∈ C◦[0, 1] × R onto that h(y) ∈ C[0, 1] for which
Ah(y) = h◦(y).

Conversely, suppose that A−1 exists and show that Ah(y) = 0 ⇒ h(y) = 0. As A−1 exists, so
A(h(y1)) = A(h(y2)) ⇒ h(y1) = h(y2) with h(y2) = 0 ⇒ A(h(y1)) = A0 = 0, which finally implies
h(y1) = 0. �
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3. Main results

In this section, we present a comprehensive result for investigating the existence of solutions of
nonlinear FBVPs with GNBCs, as represented by Eq (1.2). The result we present here highlights its
ability to unify the criteria for the existence of particular FBVPs, including those mentioned in ((1.1)
and (1.5)) and ((1.1) and (1.6)), as specific instances.

Theorem 3.1. Assume that functions φ, ψ ∈ C1[0, 1] are characterized as CLUSs for the nonlinear
FBVPs (1.1) and (1.2) satisfying (2.3). Moreover the functions

χφ(y) := v(φ(0), y),
χψ(y) := v(ψ(0), y)

are monotone in [φ(1), ψ(1)]. Then FBVPs (1.1) and (1.2) yield a minimum of one solution that lies
within the sector defined by CULSs φ and ψ keeping their order preserved.

Proof. Associated to (1.1) and (1.2), consider the following modified FBVPsDµ,νh(y) + λh(y) = G∗(y, h(y)), y ∈ [0, 1], λ > 0,
h(0) = v∗(h(0), h(1)),

(3.1)

where

G∗(y, h(y)) =


g(y, ψ(y)) + λψ(y), if ψ(y) < h,

g(y, h(y)) + λh, if φ(y) ≤ h ≤ ψ(y),
g(y, φ(y)) + λφ(y), if h < φ(y),

(3.2)

and v∗(x1, x2) = p(0, x1) − v(p(0, x1), p(1, x2)),
p(t, x1) = max{φ(t),min{x1, ψ(t)}}.

(3.3)

For the sake of clarity, we will prove the result in steps.
Step 1. Finding the solution of (3.1) is similar to find the FP of the operator, A−1B : C[0, 1]→ C[0, 1]
that is defined by means of the composition formed from the subsequent mappings.A : C[0, 1]→ C◦[0, 1] × R,

B : C[0, 1]→ C◦[0, 1] × R,

which can be described as
[Ah](y) =

(
h(y) − h(0) +

(
λRLIλh

)
(s), h(0)

)
,

[Bh](y) =

(
(RLIµG∗(y, h(y)))) , v∗(y(0), y(1))

)
.

(3.4)

It follows that g : [0, 1] × R → R is uniformly continuous due to its continuity and boundedness on
the domain [0, 1] × R. As a result, G∗ is uniformly continuous and bounded. Furthermore, Riemann-
Liouville fractional integral and v∗ are continuous. Consequently, {By : y ∈ C[0, 1]} class becomes
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uniformly bounded. This class is equicontinuous as well because for every ε > 0, there exist a δ > 0 ,
such that

|Bh(y1) − Bh(y2)| < ε,∀ h ∈ B whenever |h(y1) − h(y2)| < δ ∀ y1, y2 ∈ [0, 1].

Suppose that y1 ≤ y2, then we have

|Bh(y1) − Bh(y2)| =
∣∣∣∣∣((RLIµ(G∗(y1, h(y1)), v∗(y(0), y(1)) − (RLIµ(G∗(y2, h(y2)), v∗(y(0), y(1))

)∣∣∣∣∣
=

∣∣∣∣∣(RLIµ(G∗(y1, h(y1)) − (RLIµ(G∗(y2, h(y2

)∣∣∣∣∣
=

∣∣∣∣∣ 1
Γ(µ)

(∫ y1

0
(y1 − τ)µ−1(G∗τ, h(τ))dτ −

∫ y2

0
(y2 − τ)µ−1(G∗τ, h(τ))dτ

) ∣∣∣∣∣
≤

1
Γ(µ)

(∣∣∣ ∫ y1

0
(y1 − τ)µ−1G∗(τ, h(τ))dτ

∣∣∣ − ∫ y2

0

∣∣∣(y2 − τ)µ−1G∗(τ, h(τ))dτ
∣∣∣)

=
1

Γ(µ)

(∣∣∣ ∫ y1

0
(y1 − τ)µ−1G∗(τ, h(τ))dτ

∣∣∣ − ( ∫ y1

0
+

∫ y2

y1

)∣∣∣(y2 − τ)µ−1G∗(τ, h(τ))dτ
∣∣∣)

=
1

Γ(µ)

(
(
∣∣∣ ∫ y1

0

(
(y1 − τ)µ−1 − (y2 − τ)µ−1)G∗(τ, h(τ))dτ

∣∣∣ − ∫ y2

y1

∣∣∣(y2 − τ)µ−1G∗(τ, h(τ))dτ
∣∣∣)

→ 0, as y1 → y2.

Since the class of functions {By : y ∈ C[0, 1]} preserves uniform boundedness and equicontinuity
on [0, 1], by virtue of the Arzelá-Ascoli theorem, we know that this class exhibits relative compactness.
Therefore, the mapping B described in (3.4) is a compact operator on C[0, 1]. Furthermore, the
continuity and existence of A−1 implies the continuity and compactness of A−1B. Now, by the
application of the Schauder FP theorem, the presence of at least one fixed point is guaranteed.
Therefore, the problem given by Eq (3.1) has a minimum of one solution h(y) ∈ C[0, 1], which serves
as a FP of the composite operator A−1B.
Step 2. We claim that if h(y) ∈ C[0, 1] is a solution of (3.1),then necessarily it will lie inside the
sector bounded by the functions φ and ψ which are well-ordered CLUSs, such that φ(y) ≤ h(y) ≤ ψ(y),
y ∈ [0, 1]. Suppose on contrary that h(y) ≮ ψ(y), then h − ψ takes on a positive maximum at some
c ∈ [0, 1]. We will now discuss three possible scenarios:
Case 1. If c ∈ (0, 1].

In this case there exists b ∈ (0, c), in such a way that 0 ≤ h(y)− ψ(y) ≤ h(c)− ψ(c), for all y ∈ [b, c].
However, in light of Lemmas 2.6–2.8 and Eq (2.2), there is a contradiction. Since

ψ(c) − ψ(b) ≤ h(c) − h(b)
= RLIν(1−µ)Dν(1−µ)h(s)
= RLIδDδh(s)
= RLIµDµ,νh(s) =RL Iµ ([g(y, ψ(y)) − λ(h(y) − ψ(y))])

< RLIµDµ,νψ(s) = ψ(c) − ψ(b).

Case 2. If c = 0, χψ is monotone nonincreasing, and h(0)−ψ(0) > 0. Then as a result of (2.4), we have

h(0) = v∗(h(0), h(1))
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= ψ(0) − v(ψ(0), p(1, h(1)))
≤ ψ(0) − v(ψ(0), ψ(1))
≤ ψ(0).

Therefore, we have a contradiction to h(0) − ψ(0) > 0.
Case 3. If c = 0, χψ is monotone nondecreasing, and h(0) − ψ(0) > 0, then with the help of (2.4) it
implies that

h(0) = v∗(h(0), h(1))
= ψ(0) − v(ψ(0), p(1, h(1)))
≤ ψ(0) − v(ψ(0), φ(1))
≤ ψ(0).

Hence, it again contradicts to h(0)−ψ(0) > 0. Consequently, we have h(y) ≤ ψ(y) for all y ∈ [0, 1]. On
the same fashion, we can show that, φ(y) ≤ h(y) for all y ∈ [0, 1].
Step 3. The boundary conditions (1.2) must also be satisfied by the solution h(y) ∈ C[0, 1]. So we
claim that, φ(0) ≤ h(0)−v (h(0), h(1)) ≤ ψ(0). On contrary now assume that, h(0)−v (h(0), h(1)) � ψ(0).
Then

h(0) = v∗(h(0), h(1))
= p(0, h(0)) − v (p(0, h(0)), p(1, h(1)))

= ψ(0).

If χψ(y) := v(ψ(0), y) is monotone nonincreasing, then we have

h(0) − v (h(0), h(1))

= ψ(0) − v (ψ(0), h(1))

≤ ψ(0) − v (ψ(0), ψ(1))

≤ ψ(0),

here we get a contradiction. A similar contradiction holds if we assume that χψ(y) := v(ψ(0), y) is
monotone nondecreasing. Thus, φ(0) ≤ h(0)−v (h(0), h(1)) ≤ ψ(0) holds. Therefore, the problem (1.1)
and (1.2) has a minimum of one solution, such that φ(y) ≤ h(y) ≤ ψ(y), for all y ∈ [0, 1]. �

4. Examples

Some examples are given in this section to justify the validity and credibility of the theoretical
conclusions drawn. In one case, nonlinear PBCs are studied, and in the other, nonlinear APBCs are
analysed.

Example 1. A nonlinear FBVPs is given as

D
1
2 ,

1
2 h(y) = −7h3(y) + λ cos(4y), λ > 0, y ∈ [0, 1], (4.1)
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having APBCs involving non linearity

v((h(0), h(1)) = h5(0) + h5(1). (4.2)

The function given by

φ(y) = −4λ (4.3)

serve as the lower solution of the problem (4.1), satisfying (2.1) as follows:

D
1
2 ,

1
2φ(y) = I

1
2 (1− 1

2 )DI(1− 1
2 )(1− 1

2 )φ(y),
D

1
2 ,

1
2 (−4λ) = I

1
2 (1− 1

2 )DI(1− 1
2 )(1− 1

2 )(−4λ),
I(1− 1

2 )(1− 1
2 )(−4λ) = I

1
4 (−4λ),

I
1
4 (−4λ) = 1

Γ(0.25)

∫ y

0
(y − t)−0.75(−4λ)dt = −4.41306λy0.25,

DI
1
4 (−4λ) = D(−4.41306λy0.25) = −1.103263λy−0.75,

I
1
2 (1− 1

2 )DI(1− 1
2 )(1− 1

2 )(−4λ) = I
1
4 (−1.103265λy−0.75),

I
1
4 (−1.103265λy−0.75) = −1.103263λ

Γ(0.25)

∫ y

0
(y − t)−0.75t−0.75dt = −0.3042971λ

∫ y

0
(y − t)−0.75t−0.75dt,∫ y

0
(y − t)−0.75t−0.75dt =

∫ y

0
y−0.75(1 − t

y )−0.75t−0.75dt = y−0.75
∫ y

0
(1 − t

y )−0.75t−0.75dt.

By using the substitution t
y = u and using the definition of Beta function, we have∫ y

0
(y − t)−0.75t−0.75dt =

Γ(0.25).Γ(0.25)
Γ(0.25+0.25) = 7.4162985y−0.5

I
1
4 (−1.103263λy−0.75) = −2.2567581λy−0.5

so

D
1
2 ,

1
2φ(y) = −2.2567581λy−0.5 < g(y,−4λ) = 448λ3 + λ cos(4y), y ∈ [0, 1],

and by working in a similar manner, we get to know that the function ψ(y) = 4λ is an upper solution of
the problem (4.1), because it satisfies (2.2) as

D
1
2 ,

1
2ψ(y) = 2.2567581λy−0.5 > g(y, 4λ) = −448λ3 + λ cos(4y), y ∈ [0, 1],

For problems (4.1) and (4.2), the functions given by −4λ and 4λ are CLUSs since they meet
condition given in (2.4). Also when v demonstrates monotone nondecreasing behaviour in the second
variable, then as a result the inequalities listed below are fulfilled.v (φ(0), ψ(1)) ≤ 0,

v (ψ(0), φ(1)) ≥ 0.

Likewise, when v demonstrates a monotone nonincreasing trend in its second variable, then the
succeeding inequalities are validated.v (φ(0), φ(1)) ≤ 0,

v (ψ(0), ψ(1)) ≥ 0.
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Moreover the following functions

χφ(y) := v(φ(0), y),

and

χψ(y) := v(ψ(0), y)

are monotone on [−4λ, 4λ].

Thus, we have confirmed that all the conditions of the Theorem 3.1 hold true. So it follows that the
problem (4.1) and (4.2) will have one solution at least, φ(y) ≤ h(y) ≤ ψ(y), for all y ∈ [0, 1].

Example 2. Given a nonlinear FBVPs

D
1
3 ,

1
4 h(y) = −5h5(y) + λ sin(5y), λ > 0, y ∈ [0, 1], (4.4)

having PBCs involving non linearity

v((h(0), h(1)) = h3(0) − h3(1). (4.5)

The functions given by

φ(y) = −7λ, and ψ(y) = 7λ (4.6)

serve as the lower and upper solutions of the problem (4.4), satisfying (2.1) and (2.2), as

D
1
3 ,

1
4φ(y) = I

1
4 (1− 1

3 )DI(1− 1
3 )(1− 1

4 )φ(y),
D

1
3 ,

1
4 (−4λ) = I

1
4 (1− 1

3 )DI(1− 1
3 )(1− 1

4 )(−7λ),
I(1− 1

3 )(1− 1
4 )(−7λ) = I

1
2 (−7λ),

I
1
2 (−7λ) = 1

Γ(0.5)

∫ y

0
(y − t)−0.5(−7λ)dt = −7.898654λy0.5,

DI
1
2 (−7λ) = D(−7.898654λy0.5) = −3.949327λy−0.5,

I
1
4 (1− 1

3 )DI(1− 1
3 )(1− 1

4 )(−7λ) = I
1
6 (−3.949327λy−0.5),

I
1
6 (−3.949327λy−0.5) = −3.949327λ

Γ( 1
6 )

∫ y

0
(y − t)−

5
6 t−

1
2 dt = −0.709505λ

∫ y

0
(y − t)−

5
6 t−

1
2 dt,∫ y

0
(y − t)−

5
6 t−

1
2 dt =

∫ y

0
y−

5
6 (1 − t

y )−
5
6 t−

1
2 dt = y−

5
6

∫ y

0
(1 − t

y )−
5
6 t−

1
2 dt.

By using the following substitution t
y = u and using the definition of Beta function, we have∫ y

0
(y − t)−

5
6 t−

1
2 dt =

Γ( 1
2 ).Γ( 1

6 )
Γ( 1

2 + 1
6 )

= 7.285953y−
1
3 ,

I
1
6 (−3.949327λy−0.5) = −5.169420λy−

1
3

so

D
1
3 ,

1
4φ(y) = −5.169420λy−

1
3 < g(y,−7λ) = 84035λ5 + λ sin(5y), y ∈ [0, 1],

and by working in a similar manner, we get

D
1
3 ,

1
4ψ(y) = 5.169420λy−

1
3 > g(y, 7λ) = −84035λ5 + λ sin(5y), y ∈ [0, 1],

by employing the same procedures as in Example 1, it can be confirmed that all the conditions outlined
in Theorem 3.1 are satisfied. As a result, it can be concluded that the problem defined by Eqs (4.4)
and (4.5) possesses at least one solution, such that φ(y) ≤ h(y) ≤ ψ(y), for all y ∈ [0, 1].
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Example 3. A nonlinear FBVPs is given as

D
1
2 ,

1
2 h(y) = −7h3(y) + λ cos(4y), λ > 0, y ∈ [0, 1], (4.7)

having non linear boundary conditions

v((h(0), h(1)) = h(0)h4(1) − h(0)h(1). (4.8)

The function given by

φ(y) = −4λ (4.9)

serve as the lower solution of the problem (4.8), satisfying (2.1) as follows:

D
1
2 ,

1
2φ(y) = I

1
2 (1− 1

2 )DI(1− 1
2 )(1− 1

2 )φ(y),
D

1
2 ,

1
2 (−4λ) = I

1
2 (1− 1

2 )DI(1− 1
2 )(1− 1

2 )(−4λ),
I(1− 1

2 )(1− 1
2 )(−4λ) = I

1
4 (−4λ),

I
1
4 (−4λ) = 1

Γ(0.25)

∫ y

0
(y − t)−0.75(−4λ)dt = −4.41306λy0.25,

DI
1
4 (−4λ) = D(−4.41306λy0.25) = −1.103263λy−0.75,

I
1
2 (1− 1

2 )DI(1− 1
2 )(1− 1

2 )(−4λ) = I
1
4 (−1.103265λy−0.75),

I
1
4 (−1.103265λy−0.75) = −1.103263λ

Γ(0.25)

∫ y

0
(y − t)−0.75t−0.75dt = −0.3042971λ

∫ y

0
(y − t)−0.75t−0.75dt,∫ y

0
(y − t)−0.75t−0.75dt =

∫ y

0
y−0.75(1 − t

y )−0.75t−0.75dt = y−0.75
∫ y

0
(1 − t

y )−0.75t−0.75dt.

By using the substitution t
y = u and using the definition of Beta function, we have∫ y

0
(y − t)−0.75t−0.75dt =

Γ(0.25).Γ(0.25)
Γ(0.25+0.25) = 7.4162985y−0.5,

I
1
4 (−1.103263λy−0.75) = −2.2567581λy−0.5

so

D
1
2 ,

1
2φ(y) = −2.2567581λy−0.5 < g(y,−4λ) = 448λ3 + λ cos(4y), y ∈ [0, 1],

and by working in a similar manner, we get to know that the function ψ(y) = 4λ is an upper solution of
the problem (4.8), because it satisfies (2.2) as

D
1
2 ,

1
2ψ(y) = 2.2567581λy−0.5 > g(y, 4λ) = −448λ3 + λ cos(4y), y ∈ [0, 1],

For problems (4.7) and (4.8), the functions given by −4λ and 4λ are CLUSs since they meet
condition given in (2.4). Also when v demonstrates monotone nondecreasing behaviour in the second
variable, then as a result the inequalities listed below are fulfilled.v (φ(0), ψ(1)) ≤ 0,

v (ψ(0), φ(1)) ≥ 0.
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Likewise, when v demonstrates a monotone nonincreasing trend in its second variable, then the
succeeding inequalities are validated.v (φ(0), φ(1)) ≤ 0,

v (ψ(0), ψ(1)) ≥ 0.

Moreover the following functions

χφ(y) := v(φ(0), y)

and

χψ(y) := v(ψ(0), y)

are monotone on [−4λ, 4λ].

Thus, we have confirmed that all the conditions of the Theorem 3.1 hold true. So it follows that the
problem (4.7) and (4.8) will have one solution at least, φ(y) ≤ h(y) ≤ ψ(y), for all y ∈ [0, 1].

5. Conclusions

In our research, we extend the LUSA to address nonlinear FBVPs with GNBC. The approach we
propose is generic, as it brings together the existence results of specific fractional-order problems that
were previously treated in literature as separate entities, covering periodic and antiperiodic FBVPs as
specific instances. We exhibit the practical applicability of our newly formed theoretical findings by
examining three illustrative examples.
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