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Abstract: The deployment of multi-agent systems (MASs) is widely used in the fields of unmanned
agricultural machineries, unmanned aerial vehicles, intelligent transportation, etc. To make up for
the defect that the existing PDE-based results are overly idealistic in terms of system models and
control strategies, we study the PDE-based deployment of clustered nonlinear first-order and second-
order MASs over a finite-time interval (FTI). By designing special communication protocols, the
collective dynamics of numerous agents are modeled by simple fist-order and second-order PDEs. Two
practical factors, external disturbance and Markov switching topology, are considered in this paper to
better match actual situations. Besides, T–S fuzzy technology is used to approximate the unknown
nonlinearity of MASs. Then, by using boundary control scheme with collocated measurements, two
theorems are obtained to ensure the finite-time H∞ deployment of first-order and second-order agents,
respectively. Finally, numerical examples are provided to illustrate the effectiveness of the proposed
approaches.

Keywords: nonlinear MASs; H∞ deployment; finite-time interval; fuzzy PDE-based control; Markov
switching topologies
Mathematics Subject Classification: 35R13, 93A16, 93D40

1. Introduction

Scholars have extensively studied the cooperative control of multi-agent systems (MASs) because
of their significant applications in unmanned agricultural machineries, intelligent transportation,
environmental monitoring, and so on [1–4]. As a special cooperative control, deployment of MASs,
whose purpose is to drive agents rearrange their positions into target spatial configurations, has
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recently attracted many researchers [5]. In most of existing works, the interconnected agents are
usually modeled by ordinary differential equations (ODEs), which is efficient when the number of
agents is small. However, with increasing complexities of practical requirements, the scale of MASs
is also rapidly expanding, which leads to difficulties in the control design and theoretical analysis of
ODE-based methods [6].

In order to make up for the shortcomings of ODE-based methods for large-scale MASs, some
scholars have recently tried to design new methods based on partial differential equations (PDEs) for
the deployment of large-scale MASs. In PDE-based approaches, a high-dimensional ODE system can
be reduced to a single PDE, and this procedure is independent with the number of agents if the number
is large enough [7–9]. A methodology was introduced in [10] for deployment of a large-scale MAS in
3-D space, where the agents’ collective dynamics were modeled by complex-valued reaction-diffusion
2-D PDEs in polar coordinates, and the issue of stabilizing PDEs through boundary control on a disk
had been successfully resolved. By supposing that agents could only obtain their positions related to
only one neighbor, [11] developed a hyperbolic PDE-based approach to multi-agent deployment and
proved that L2-stability implied the stability of the MASs for numerous enough agents. Considering
network imperfections that transmission delay, variable sampling and quantization, [12] investigated
the deployment of first-order agents (FOAs) and second-order agents (SOAs) over desired curves, for
which a static output-feedback controller was designed and a nonlinear heat equation and a damped
wave equation were constructed to represent the collective dynamics of FOAs and SOAs, respectively.
In [13], the exponential deployment of second-order multiple mobile agents was investigated in 2D or
3D space, where the agents dynamics were modeled as a strongly damped wave equation (a kind of
second-order PDEs) by assuming that an informed agent could measure its position related to desired
curve and velocity, and other agents could obtain the local information of desired curves as well as
positions and velocities related to closest neighbors.

In the context of multi-agent cooperative control, there are three crucial practical considerations
that need to be addressed: Transient performance of agents, external disturbances, and topological
uncertainties. First, as is known to us all, steady-state performance is what most MASs must pay
attention to, but transient performance cannot be ignored either, because during the process from
initial operation to stability of the system, if transient performance, such as overshoot, buffeting
degree and convergence rate, cannot meet the requirements of the actual system, then the required
steady-state performance cannot be achieved, and catastrophic consequences will be caused [14–16].
Second, external disturbance is a problem that actual systems have to face, because the diversification
and unpredictability of the actual environment will lead to the appearance of external disturbance, if it
is not dealt with, and the performance of the system will be more or less affected, whether for the
steady-state performance or transient performance [17–19]. Third, in MASs, because agents are
connected through the communication network that is often affected by external attacks, hardware
failures, magnetic field disturbance, etc., the topologies will be randomly switched and changed, and
determine the collective dynamics of MASs to a large extent [20]. The literature has extensively
demonstrated that the topological switching can be effectively regulated by Markov chains [21–23].

Although PDE-based multi-agent deployment has produced some interesting results, compared to
the ODE-based research, the one of PDE-based methods is in its infancy. The most obvious evidence of
this is that none of the three important issues mentioned above are reflected in the existing PDE-based
results, which is also an significant motivation of this paper.
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Based on the above discussion, in this paper, for the PDE-based deployment of nonlinear MASs,
our purpose is to introduce the Markov switching topology and external disturbance into MASs for
more practicability, and construct a novel PDE-based framework that consists of finite-time control,
H∞ control, and boundary control, such that the target of finite-time H∞ deployment of nonlinear MASs
can be achieved. In short, major contributions of this paper can be summarized as follows:

• By designing a suitable communication protocol, and introducing T-S fuzzy method and
continuum technique, the collective dynamic models of FOAs and SOAs in fuzzy PDE forms are
constructed. As a result, the dynamics of large-scale nonlinear MASs can be expressed by a
simple PDE, which could simplify analysis process and avoid high-dimensional problems
caused by ODE-based approaches.
• The existing researches of PDE-based multi-agent deployment are carried out in infinite time

domain, such as [11–13], they only pay attention to the steady-state performance of systems
and ignore the transient performance of systems. To compensate for this shortcoming, inspired
by [16,24], the deployment problem of FOAs and SOAs in FTI is studied based on a PDE method,
and the effective controller design criteria are obtained under boundary control scheme.
• In the process of model construction and control design, this paper considers two practical factors

that affect the performance of MASs: Topology switching and external disturbance. Inspired
by [16, 17, 19, 23], we introduce Markov switching rules to describe the switching phenomena
of topologies, and design H∞ control strategy to eliminate the influence of external disturbance.
Compared with existing results on PDE-based deployment, the model and control strategy in this
paper are more consistent with the requirements of actual systems.

Organizations: This paper mainly consists of the following five sections: The research background,
motivations, and contributions are introduced in Section 1. Section 2 describes the considered FOAs
and SOAs, and shows the PDE modeling process of their collective dynamics. Moreover, the design of
controllers, and necessary definitions and a lemma are also included in Section 2. Section 3 gives two
finite-time H∞ deployment criteria and their detailed proofs for FOAs and SOAs under the designed
communication and control schemes. Section 4 provides two numerical examples for Theorems 1 and
2 to verify the effectiveness of the developed approaches. Finally, our main work is summarized in
Section 5.

2. Problem formulation

Notations: In this paper, R is the real number set; Rn is n-dimensional real-number space; C1 and C2

represent first-order and second-order continuous function clusters, respectively; ∗ is the omission of
symmetric elements in a symmetric matrix; E(·) is the operator of mathematical expectation;H2(0, L)
is a real Hilbert space, where for a square integrable function g(x) : [0, L] → R, its inner product

induced norm is calculated by ‖g(x)‖H2 =

√∫ L

0
g2(x)dx; For a function of two variables e(t, x) ∈ C2,

we denote et(t, x) =
∂e(t,x)
∂t , ex(t, x) =

∂e(t,x)
∂x , exx(t, x) =

∂2e(t,x)
∂x2 .

In this paper, we consider a group of N agents that is governed by first-order or second-order
dynamics. These agents could move in space Rn, (n ∈ {2, 3}), and initially locate on a C1 curve
Γ0 : [0, L]→ Rn. Our objective is to deploy the agents onto the desired C1 or C2 curve Γ : [0, L]→ Rn.
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Assumption 1: The distributions of agents on spatial curves are uniform, that is, we choose N
points on the curves, denoted by Γ0(ϑ),Γ0(2ϑ), ...,Γ0(Nϑ) and Γ(ϑ),Γ(2ϑ), ...,Γ(Nϑ) with ϑ = L/N.
The curves Γ0 and Γ are without intersections.

Remark 1: The curves Γ0 and Γ are continues in R2 or R3, which means that the agent formation
we considered is general, because distribution of agents in space does not affect the existence of a
continuous curve Γ0 or Γ that can connect them consecutively.

Assumption 2: For the sake of simplicity, we suppose that the desired curve remains static over
time and there are no obstacles, either stationary or in motion, present within the operational
workspace. Furthermore, we assume that the agents have negligible volume and operate within an
extensive workspace.

Assumption 3: The agents could obtain the local information of desired curves, and they could
access to their positions relative to their nearest neighbors. For the second-order agents, their velocities
can be also obtained by themselves. Moreover, the designed informed agent is capable of measuring
its absolute position.

Define {%t} as a continuous-time Markov process, which has right continuous trajectories and takes
values in a finite setM = 1, 2, ...,M. The transition probability matrix Λ , {χδ$} is governed by

Pr{%t+∆ = $ |%t = δ } =

{
χδ$∆ + o(∆), δ , $,

1 + χδδ∆ + o(∆), δ = $,

where Pr{%t+∆ = $ |%t = δ } is the probability of occurrence of %t+∆ = $ under the condition of %t = δ;
∆ > 0, lim

∆→0
o(∆)/∆ = 0; χδ$ ≥ 0 for δ , $ is the transition rate and χδδ = −

∑
$∈M,δ,$

χδ$.

2.1. For first-order agents (FOAs)

In this case, the dynamics of each agent is described as

dm j
i (t)

dt
= v j

i (t) + f j(m j
i (t)) + ω

j
i (t), (2.1)

where the subscript i represents the serial number of agents, and i = 1, 2, ...,N; The superscript j
represents the serial number of spatial axis, and j = 1, 2, 3; m j

i is the absolute position of ith agent on
jth axis; v j

i is the communication protocol related to ith agent to be designed; f j(mi) is a nonlinear
function that is sufficiently smooth; ω j

i (t) represents the external disturbance to the ith agent and
satisfies

∫ T

0
(ω j

i (t))
2dt ≤ W with T > 0.

By using the local sector nonlinearity method, the T-S fuzzy model with η fuzzy rules accurately
representing the system (2.1) can be represented below.

Model Rule ε: IF ξ
j
i1(t) is F j

ε1 and ... and ξ j
ip(t) is F j

εp, THEN,

dm j
i (t)

dt
= v j

i (t) + γ j
εm

j
i (t) + ω

j
i (t), (2.2)

where premise variables ξi(t) = [ξi1(t), ξi2(t), ..., ξip(t)] are functions of m j
i (t) and ε = 1, 2, ..., η; F j

εp

is the subordinating degree function; γ j
ε is a known constant. Then, the combination of product fuzzy
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reasoning, weighted average defuzzification, and singleton fuzzier methods allows for a comprehensive
description of the overall fuzzy dynamics of system (2.3) as follows:

dm j
i (t)

dt
= v j

i (t) +

η∑
ε=1

h j
ε(ξi(t))γ j

εm
j
i (t) + ω

j
i (t), (2.3)

where

h j
ε(ξi(t)) = β j

ε(ξi(t))/
η∑
ε=1

β j
ε(ξi(t)), β j

ε(ξi(t)) =

p∏
w=1

F j
εw(ξiw(t)),

and β j
ε(ξi(t)) ≥ 0, ε = 1, 2, ..., η, are implicit fuzzy sets; and h j

ε(ξi(t)) ≥ 0,
η∑
ε=1

h j
ε(ξi(t)) = 1.

For brevity, the superscript j will be omitted in subsequent descriptions.
Remark 2: Most of papers on PDE-based deployment of nonlinear MASs suppose that the

nonlinear function f (·) satisfies Lipschitz condition or other inequality conditions, which undoubtedly
has limitations. Here, we explore the incorporation of T-S fuzzy rules to address nonlinearity, with the
sole requirement being its sufficient smoothness. This operation could relax the restriction on the
nonlinear function. Moreover, previous results on PDE-based deployment are obtained based on ideal
external conditions, and the external disturbance ωi(t) is considered for the first time in this paper.
Therefore, the MASs considered in this paper are more general and practical than those in previous
PDE-based studies, such as [7–13].

Based on Assumptions 1, 2, and 3, we first design the following Markovian communication protocol
of agents:

v1(t)=
aδ
ϑ2 [m2(t) − m1(t)] −

aδ
ϑ2 [Γ(2ϑ) − Γ(ϑ)] −

η∑
ε=1

hε(ξ1(t))γεΓ(ϑ),

vi(t) =
aδ
ϑ2 [mi+1(t) − 2mi(t) + mi−1(t)] −

aδ
ϑ2 [Γ(iϑ + ϑ) − 2Γ(iϑ) + Γ(iϑ − ϑ)]

−

η∑
ε=1

hε(ξi(t))γεΓ(iϑ), i = 2, 3, ...,N − 1,

vN(t) =
aδ
ϑ2 [mN−1(t) − mN(t)] −

aδ
ϑ2 [Γ((N − 1)ϑ) − Γ(Nϑ)] −

η∑
ε=1

hε(ξN(t))γεΓ(Nϑ),

(2.4)

where aδ is a designed switching topological weight, and δ represents the mode of Markov process at
time t.

Define position error as ei(t) = mi(t) − Γ(iϑ), then, integrating T–S fuzzy MASs (2.3) and
communication protocol (2.4) generates the following error system:

de1(t)
dt

=
aδ
ϑ2 [e2(t) − e1(t)] +

η∑
ε=1

hε(ξ1(t))γεe1(t) + ω1(t),

dei(t)
dt

=
aδ
ϑ2 [ei+1(t) − 2ei(t) + ei−1(t)] +

η∑
ε=1

hε(ξi(t))γεei(t) + ωi(t), i = 2, 3, ...,N − 1,

deN(t)
dt

=
aδ
ϑ2 [eN−1(t) − eN(t)] +

η∑
ε=1

hε(ξN(t))γεeN(t) + ωN(t).

(2.5)
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As suggested in [7] and [12], according to Euler dispersion rule, if the number of agents is sufficient,
error system (2.5) can be regarded as the discretization of the follwing first-order PDE system:

et(t, x) = aδexx(t, x) +

η∑
ε=1

hε(ξ(t, x))γεe(t, x) + ω(t, x), (2.6)

where x ∈ (0, L) represents the position of agents mapping to a coordinate axis, and e(t, x) ∈ H2(0, L).
In order to realize the deployment of MAS (2.3) over a FTI, an anchor and an informed agent are

set at both ends of the curve where agents is located, and their sequence numbers are 0 and N + 1,
respectively. Dynamics of the anchor and informed agent are designed as

m0(t) = Ξ(0), (2.7)
mN+1(t) = ϑu(t) + mN(t), (2.8)

where u(t) is a fuzzy control scheme to be designed, which is given below.
Control Rule β: IF ξ j

(N+1)1(t) is F j
β1 and ... and ξ j

(N+1)p(t) is F j
βp, THEN,

u(t) = kδβ [mN+1(t) − Γ((N + 1)ϑ)] , (2.9)

where β = 1, 2, ..., η, kδβ < 0 is the controller gain to be determined. Similar to (2.3), the overall control
law can be obtained as

u(t) =

η∑
β=1

hβ(ξN+1(t))kδβ [mN+1(t) − Γ((N + 1)ϑ)] . (2.10)

The proposal of (2.7–2.10) implies that boundary conditions of PDE system (2.6) are of the
Neumann type, specifically,

e(t, 0) = 0, (2.11)

∂e(t, x)
∂x

∣∣∣∣∣
x=L

=

η∑
β=1

hβ(ξ(t, L))kδβe(t, L). (2.12)

2.2. For second-order agents (SOAs)

In this case, the dynamics of each agent is governed by

d2mi(t)
dt2 = ṽi(t) + f (mi(t)) + ωi(t), (2.13)

where ṽi is the communication protocol to be designed. The other symbols have same meanings as
those defined in (2.1).

Similar to discussions for FOAs, the overall T-S fuzzy model with η fuzzy rules accurately
representing the system (2.13) can be obtained as follows:

d2mi(t)
dt2 = ṽi(t) +

η∑
ε=1

hε(ξi(t))γεmi(t) + ωi(t). (2.14)
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The Markov switching communication protocol ṽi(t) is designed as

ṽ1(t)=
aδ
ϑ2 [m2(t) − m1(t)] −

aδ
ϑ2 [Γ(2ϑ) − Γ(ϑ)] −

η∑
ε=1

hε(ξ1(t))γεΓ(ϑ) − α
dm1(t)

dt
,

ṽi(t) =
aδ
ϑ2 [mi+1(t) − 2mi(t) + mi−1(t)] −

aδ
ϑ2 [Γ(iϑ + ϑ) − 2Γ(iϑ) + Γ(iϑ − ϑ)]

−

η∑
ε=1

hε(ξi(t))γεΓ(iϑ) − α
dmi(t)

dt
, i = 2, 3, ...,N − 1,

ṽN(t) =
aδ
ϑ2 [mN−1(t) − mN(t)] −

aδ
ϑ2 [Γ((N − 1)ϑ) − Γ(Nϑ)]

−

η∑
ε=1

hε(ξN(t))γεΓ(Nϑ) − α
dmN(t)

dt
,

(2.15)

with which the error system ei(t) = mi(t) − Γ(iϑ) can be derived as

d2e1(t)
dt2 =

aδ
ϑ2 [e2(t) − e1(t)] +

η∑
ε=1

hε(ξ1(t))γεe1(t) − α
de1(t)

dt
+ ω1(t),

d2ei(t)
dt2 =

aδ
ϑ2 [ei+1(t) − 2ei(t) + ei−1(t)] +

η∑
ε=1

hε(ξi(t))γεei(t)

− α
dei(t)

dt
+ ωi(t), i = 2, 3, ...,N − 1,

d2eN(t)
dt2 =

aδ
ϑ2 [eN−1(t) − eN(t)] +

η∑
ε=1

hε(ξN(t))γεeN(t) − α
deN(t)

dt
+ ωN(t).

(2.16)

Then, as mentioned in [12] and [13], according to Euler dispersion rule, if the number of agents is
sufficient, error system (2.16) can be regarded as the discretization of the follwing second-order PDE
system:

ett(t, x) =aδexx(t, x) +

η∑
ε=1

hε(ξ(t, x))γεe(t, x) − αet(t, x) + ω(t, x), x ∈ (0, L). (2.17)

For the convenience of subsequent processing, define ψ(t, x) = et(t, x) + θe(t, x), then the following
first-order system equivalent to (2.17) can be derived:

et(t, x) = ψ(t, x) − θe(t, x)

ψt(t, x) = aδexx(t, x) +

η∑
ε=1

hε(ξ(t, x))γεe(t, x) − (α − θ)et(t, x) + ω(t, x).
(2.18)

Moreover, for SOAs, dynamics of the anchor and informed agent, numbered as 0 and N + 1, are
governed as

m0(t) = Ξ(0), (2.19)

mN+1(t) = ϑu1(t) + mN(t),
dmN+1(t)

dt
= u2(t), (2.20)
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where u1(t) and u2(t) are fuzzy control schemes that are designed as
Control Rule θ̂: IF ξ(N+1)1(t) is Fθ̂1 and ... and ξ(N+1)p(t) is Fθ̂p, THEN,

u1(t) = k1δθ̂ [mN+1(t) − Γ((N + 1)ϑ)] , (2.21)

Control Rule θ̃: IF ξ(N+1)1(t) is Fθ̃1 and ... and ξ(N+1)p(t) is Fθ̃p, THEN,

u2(t) = k2δθ̃ [mN+1(t) − Γ((N + 1)ϑ)] , (2.22)

where θ̂ = 1, 2, ..., η and θ̃ = 1, 2, ..., η; k1δθ̂ < 0 and k2δθ̃ < 0 are controller gains to be determined.
Similar to (2.3), the overall fuzzy control laws can be obtained as

u1(t) =

η∑
θ̂=1

hθ̂(ξN+1(t))k1δθ̂ [mN+1(t) − Γ((N + 1)ϑ)] , (2.23)

u2(t) =

η∑
θ̃=1

hθ̃(ξN+1(t))k2δθ̃ [mN+1(t) − Γ((N + 1)ϑ)] . (2.24)

The proposal of (2.19–2.24) implies that boundary conditions of second-order PDE system (2.17)
are of the Neumann type, specifically,

e(t, 0) = 0, (2.25)

∂e(t, x)
∂z

∣∣∣∣∣
z=L

=

η∑
θ̂=1

hθ̂(ξ(t, L))k1δθ̂e(t, L), (2.26)

∂e(t, L)
∂t

=

η∑
θ̃=1

hθ̃(ξ(t, L))k2δθ̃e(t, L). (2.27)

Remark 3: In some papers on PDE-based deployment of MASs, such as [7, 12, 13], the location
information of informed agents (or leaders) needs to be sent to all other agents, which poses a
challenge to the agents’ communication ability. In order to save communication resources and reduce
the difficulty of communication, the communication protocols (2.4) and (2.15) designed in this paper
only need to send the location information of the informed agent to the nearest agent, which improves
the realization of communication protocols.

Remark 4: The communication protocol ṽi(t) designed in (2.15) implies that compared with the
communication ability of FOAs, the SOAs not only need to obtain the relative positions of their
neighbors, but also need to obtain their own speed information, because the dynamics of SOAs are
determined by their accelerations, so the speed will also cause a non-negligible impact on
them [12, 13].

Remark 5: The principle of T–S fuzzy method in this paper and [25–27] is the same, but there are
two differences: On the one hand, the nonlinear functions in [25–27] are fixed, so the corresponding
premise variables and fuzzy sets are also fixed, while the nonlinear function considered in this paper
is general, so the corresponding premise variables and fuzzy sets are variable. However, it should be
pointed out that in our simulation, involving specific nonlinear functions, it is necessary to concretify
the premise variables and fuzzy sets. Therefore, the T–S fuzzy methods in [25–27] could be regarded
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as special cases in this paper. On the other hand, the systems targeted by [25–27] can be viewed as a
single concrete agent, and this paper considers the MASs, so this paper needs to design fuzzy rules for
each agent. In addition, due to the PDE method adopted in this paper, in the subsequent processing, the
premise variable are transformed into the spatiotemporal related, that is, ξ(t, x), which is quite different
from these two articles in terms of form and treatment.

Definition 1 [28]: Given three positive constants c1, c2 and T , for T–S fuzzy PDE systems (2.6) and
(2.18), if the following condition is satisfied:

E ‖e(0, x)‖2
H2 ≤ c1 =⇒ E ‖e(t, x)‖2

H2 ≤ c2, ∀t ∈ (0,T ],

where 0 < c1 < c2, the PDE systems (2.6) and (2.18) can be mean-square stochastically bounded over
a FTI with respect to (c1, c2, T ).

In this paper, we suppose the outputs oi(t) of considered FOAs and SOAs are their absolute
positions, that is oi(t) = mi(t), then the measurement output errors are eo

i (t) = ei(t), which maps to
PDEs is eo(t, x) = e(t, x).

Definition 2 [29]: Given a scalar λ > 0, the PDE systems (2.6) and (2.18) are said to be mean-square
stochastically H∞ bounded over a FTI, if (i) the PDE systems (2.6) and (2.18) can be mean-square
stochastically finite-time bounded in the sense of Definition 1, and (ii) the measurement output error
eo(t, x) satisfies following condition under zero initial state:

E

∫ ∞

0

∫ L

0
{[eo(t, x)]2 − λ2[ω(t, x)]2}dxdt < 0.

Lemma 1 [30]: For a scalar function w(x) ∈ H2(0, L) and a n × n positive matrix X, we have∫ L

0
wT (x)Xw(x)dx ≤

4L2

π2

∫ L

0

dwT (x)
dx

X
dw(x)

dx
dx

if w(0) = 0 or w(L) = 0.

3. Main results

3.1. H∞ deployment of FOAs over a FTI

Theorem 1: With a positive scalar wδ, (δ = 1, 2, ...M), and negative scalar ψδβ, (β = 1, 2, ..., η),
and appropriate system parameters aδ, γε, (ε = 1, 2, ..., η), τ and λ, under T–S fuzzy control scheme
(2.10), the first-order PDE system (2.6) can be mean-square stochastically H∞ bounded over a FTI with
respect to (c1, c2, T ) if the following linear matrix inequalities (LMIs) hold:

Φδεβ =


ϕ11 ϕ12 ϕ13

∗ ϕ22 ϕ23

∗ ∗ ϕ33

 < 0, (3.1)

and

c1 exp(τT ) max
δ∈M

(wδ) + λ2 exp(τT )LW

min
δ∈M

(wδ)
< c2, (3.2)
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where

ϕ11 =

M∑
$=1

χδ$w$ + 2wδγε −
wδaδπ2

2L2 − τwδ + 1, ϕ12 =
wδaδπ2

2L2 , ϕ13 = wδ,

ϕ22 =
2aδψδβ

L
−

wδaδπ2

2L2 , ϕ23 = 0, ϕ33 = −λ2, E ‖e(0, x)‖2
H2 ≤ c1,

and the controller gains can be calculated as kδβ = ψδβ/wδ.
Proof. For the first-order PDE system (2.6), we construct the following Lyapunov function:

V1(δ, t) =

∫ L

0
wδe2(t, x)dx. (3.3)

Then, based on [31–33] and (2.6), the weak differential of V1(δ, t) can be obtained as

LV1(δ, t) =

∫ L

0

M∑
$=1

χδ$w$e2(t, x)dx + 2
∫ L

0
e(t, x)wδet(t, x)dx

=

∫ L

0

M∑
$=1

χδ$w$e2(t, x)dx + 2
∫ L

0
e(t, x)wδ[aδexx(t, x)

+

η∑
ε=1

hε(ξ(t, x))γεe(t, x) + ω(t, x)]dx, (3.4)

where L is a weak differential operator.
For the item 2

∫ L

0
e(t, x)wδaδexx(t, x)dx, using integration by parts and boundary conditions (2.11)

and (2.12) yields

2
∫ L

0
e(t, x)wδaδexx(t, x)dx = 2wδaδ

∫ L

0
e(t, x)dex(t, x)

= 2wδaδe(t, x)ex(t, x)|L0 − 2wδaδ

∫ L

0
(ex(t, x))2dx

≤ 2wδaδ
η∑
β=1

hβ(ξ(t, L))kδβe2(t, L) − 2wδaδ

∫ L

0
e2

x(t, x)dx. (3.5)

Define ẽ(t, x) = e(t, x) − e(t, L), then we have ẽx(t, x) = ex(t, x) and ẽ(t, L) = 0, which creates
conditions for the use of Lemma 1, therefore, it can be obtained that

−2wδaδ

∫ L

0
e2

x(t, x)dx = 2wδaδ

∫ L

0
ẽ2

x(t, x)dx ≤ −
wδaδπ2

2L2

∫ L

0
ẽ2(t, x)dx. (3.6)

The above calculations show that the following inequality is correct:

LV1(δ, t) − τV1(δ, t) +

∫ L

0
[e2(t, x) − λ2ω2(t, x)]dx
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≤

∫ L

0

M∑
$=1

χδ$w$e2(t, x)dx + 2
∫ L

0
e(t, x)wδ[

η∑
ε=1

hε(ξ(t, x))γεe(t, x) + ω(t, x)]dx

+ 2wδaδ
η∑
β=1

hβ(ξ(t, L))kδβe2(t, L) − τ
∫ L

0
wδe2(t, x)dx

−
wδaδπ2

2L2

∫ L

0
[e(t, x) − e(t, L)]2dx +

∫ L

0
[e2(t, x) − λ2ω2(t, x)]dx

=

∫ L

0

η∑
ε=1

η∑
β=1

hε(ξ(t, x))hβ(ξ(t, L))ζT
1 Φδεβζ1dx, (3.7)

where ζ2 = [e(t, x), e(t, L), ω(t, x)]T , and Φδεθ has been defined in (3.1).
Therefore, if the condition (3.1) is satisfied, it is obvious that

LV1(δ, t) < τV1(δ, t) −
∫ L

0
[e2(t, x) − λ2ω2(t, x)]dx. (3.8)

Multiplying inequality (3.8) by exp(−τt), we have

d
dt

[
exp(−τt)V1(δ, t)

]
< − exp(−τt)

∫ L

0
e2(t, x)dx + λ2 exp(−τt)

∫ L

0
ω2(t, x)dx

≤ λ2 exp(−τt)
∫ L

0
ω2(t, x)dx. (3.9)

Since
∫ T

0
ω2

i (t)dt ≤ W, we get
∫ T

0

∫ L

0
ω2(t, x)dxdt ≤ LW, and by integrating (3.9) between 0 and

T , one can obtain readily that

EV1(δ, t) < exp(τT )EV1(%(0), 0) + λ2 exp(τT )
∫ T

0

∫ L

0
exp(−τt)ω2(t, x)dxdt

≤ exp(τT )EV1(%(0), 0) + λ2 exp(τT )LW. (3.10)

According to the designed Lyapunov function (3.3), one can derive

EV1(δ, t) = E

∫ L

0
wδe2(t, x)dx ≥ min

δ∈M
(wδ)E ‖e(t, x)‖2

H2 . (3.11)

If E ‖e(0, x)‖2
H2 < c1, it is true that

EV1(%(0), 0) = E

∫ L

0
w(%(0))e2(0, x)dx ≤ max

δ∈M
(wδ)E ‖e(0, x)‖2

H2 ≤ c1 max
δ∈M

(wδ), (3.12)

and

E ‖e(t, x)‖2
H2 ≤

c1 exp(τT ) max
δ∈M

(wδ) + λ2 exp(τT )LW

min
δ∈M

(wδ)
< c2. (3.13)
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As a result, according to Definition 1, the PDE system (2.6) can be mean-square stochastically
bounded over a FTI with respect to (c1, c2, T ).

On the other hand, under zero initial state, integrate (3.9) between 0 and T and taking the
expectation, we get

EV1(δ, t) < − exp(τT )E
∫ T

0

∫ L

0
exp(−τt)e2(t, x)dxdt + λ2 exp(τT )E

∫ T

0

∫ L

0
exp(−τt)ω2(t, x)dxdt

≤ −E

∫ T

0

∫ L

0
e2(t, x)dxdt + λ2 exp(τT )E

∫ T

0

∫ L

0
ω2(t, x)dxdt, (3.14)

which means that

E

∫ T

0

∫ L

0
e2(t, x)dxdt < λ2 exp(τT )E

∫ T

0

∫ L

0
ω2(t, x)dxdt

= λ̃2E

∫ T

0

∫ L

0
ω2(t, x)dxdt, (3.15)

where

λ̃ = λ
√

exp(τT ).

Therefore, the first-order PDE system (2.6) can be mean-square stochastically H∞ bounded over a
FTI under T–S fuzzy control scheme (2.10) according to Definition 2. This completes the proof of
Theorem 1.

3.2. H∞ deployment of SOAs over a FTI

Theorem 2: With a positive scalars wδ, qδ, ψ̃δθ̂ and ψ̂δθ̂θ̃, (δ = 1, 2, ...M; θ̂ = 1, 2, ..., η; θ̃ = 1, 2, ..., η),
arbitrary scalars ρν, (ν = 1, 2, 3, 4, 5, 6), and appropriate system parameters aδ, γε, (ε = 1, 2, ..., η), θ, τ
and λ, under T–S fuzzy control scheme (2.23) and (2.24), the second-order PDE system (2.18) can be
mean-square stochastically H∞ bounded over a FTI with respect to (c1, c2, T ), if the following LMIs
hold:

Ψδεθ̂θ̃ =



µ11 µ12 µ13 µ14 µ15 µ16

∗ µ22 µ23 µ24 µ25 µ26

∗ ∗ µ33 µ34 µ35 µ36

∗ ∗ ∗ µ44 µ45 µ46

∗ ∗ ∗ ∗ µ55 µ56

∗ ∗ ∗ ∗ ∗ µ66


< 0, (3.16)

and

c1 exp(τT ) max
δ∈M

(wδ, qδ) + λ2 exp(τT )LW

min
δ∈M

(wδ)
< c2 (3.17)

where
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µ11 =

M∑
$=1

χδ$w$ − 2wδθ +

M∑
$=1

χδ$q$ − ρ3θ, µ12 = wδ + qδγε + ρ1θ + ρ3, µ13 = ρ4θ, µ14 = ρ5θ,

µ15 = −ρ2θ − ρ3, µ16 = ρ6θ, µ22 = −2ρ1, µ23 = −ρ4, µ24 = −ρ5, µ25 = ρ1 + ρ2 − (α − θ),

µ26 = qδ − ρ6, µ33 =

M∑
$=1

χδ$a$ − 2aδqδθ, µ34 = 0, µ35 = ρ4, µ44 = 2aδψ̂δθ̂θ̃ + 2aδθψ̃δθ̂,

µ45 = ρ5, µ46 = 0, µ36 = 0, µ55 = −2ρ2, µ56 = ρ6, µ66 = −λ2,

c1 ≥ max(E ‖e(0, x)‖2
H2 ,E ‖ψ(0, x)‖2

H2),

and the controller gains can be calculated as k1δθ̂ = ψ̃δθ̂/qδ and k2δθ̃ = ψ̂δθ̂θ̃/(qδk1δθ̂).
Proof. For the second-order PDE system (2.18), we construct the following Lyapunov function:

V2(δ, t) =

∫ L

0
wδe2(t, x)dx +

∫ L

0
qδψ2(t, x)dx +

∫ L

0
aδe2

x(t, x)dx. (3.18)

Similarly, the weak differential of V2(δ, t) can be obtained as follows:

LV2(δ, t) =

∫ L

0

M∑
$=1

χδ$w$e2(t, x)dx + 2
∫ L

0
e(t, x)wδet(t, x)dx +

∫ L

0

M∑
$=1

χδ$q$e2(t, x)dx

+ 2
∫ L

0
ψ(t, x)qδψt(t, x)dx +

∫ L

0

M∑
$=1

χδ$a$e2
x(t, x)dx + 2aδ

∫ L

0
ex(t, x)ext(t, x)dx

=

∫ L

0

M∑
$=1

χδ$w$e2(t, x)dx +

∫ L

0

M∑
$=1

χδ$q$e2(t, x)dx + 2
∫ L

0
e(t, x)wδ[ψ(t, x) − θe(t, x)]dx

+ 2
∫ L

0
ψ(t, x)qδ[aδexx(t, x) +

η∑
ε=1

hε(ξ(t, x))γεe(t, x) − (α − θ)et + ω(t, x)]dx

+

∫ L

0

M∑
$=1

χδ$a$e2
x(t, x)dx + 2aδ

∫ L

0
ex(t, x)ext(t, x)dx. (3.19)

Variable translation ψ(t, x) = et(t, x) + θe(t, x) means that

2qδaδ

∫ L

0
ψ(t, x)exx(t, x)dx = 2aδqδ

∫ L

0
[et(t, x) + θe(t, x)]exx(t, x)dx, (3.20)

for which we employ integration by parts and boundary conditions (2.25, 2.26, 2.27), and derive the
following estimations:

2aδqδ

∫ L

0
et(t, x)exx(t, x)dx = 2aδqδ

∫ L

0
et(t, x)dex(t, x)

= 2aδqδet(t, x)ex(t, x)|L0 − 2aδqδ

∫ l

0
ex(t, x)etx(t, x)dx
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≤ 2aδqδ
η∑
θ̂=1

hθ̂(ξ(t, L))k1δθ̂

η∑
θ̃=1

hθ̃(ξ(t, L))k2δθ̃e
2(t, L) − 2aδqδ

∫ L

0
ex(t, x)etx(t, x)dx, (3.21)

and

2aδqδ

∫ L

0
θe(t, x)exx(t, x)dx = 2aδqδθe(t, x)ex(t, x)|L0 − 2aδqδθ

∫ L

0
e2

x(t, x)dx

= 2aδqδθ
η∑
θ̂=1

hθ̂(ξ(t, L))k1δθ̂e
2(t, L) − 2aδqδθ

∫ L

0
e2

x(t, x)dx. (3.22)

In addition, it is obviously true that

[ρ1ψ(t, x) − ρ2et(t, x) − ρ3e(t, x) + ρ4ex(t, x) + ρ5e(t, L) + ρ6ω(t, x)]
× [−ψ(t, x) + et(t, x) + θe(t, x)]dx = 0. (3.23)

By integrating the above calculations, we derive that

LV2(δ, t) − τV2(δ, t) +

∫ L

0
[e2(t, x) − λ2ω2(t, x)]dx

≤

∫ L

0

η∑
ε=1

η∑
θ̂=1

η∑
θ̃=1

hε(ξ(t, x))hθ̂(ξ(t, L))hθ̃(ξ(t, L))ζT
2 Ψδεθ̂θ̃ζ2dz,

where ζ2 = [e(t, x), ψ(t, x), ex(t, x), e(t, L), et(t, x), ω(t, x)]T , and Ψδεθ̂θ̃ has been defined in (3.16).
Therefore, if the condition (3.16) is satisfied, we have

LV2(δ, t) < τV2(δ, t) −
∫ L

0
[e2(t, x) − λ2ω2(t, x)]dx.

Similar to the process in the proof of Theorem 1, it is easy to obtain that

EV2(δ, t) =E{

∫ L

0
wδe2(t, x)dx +

∫ L

0
qδψ2(t, x)dx +

∫ L

0
aδe2

x(t, x)dx} ≥ min
δ∈M

(wδ)E ‖e(t, x)‖2
H2 ,

and if c1 ≥ max(E ‖e(0, x)‖2
H2 ,E ‖ψ(0, x)‖2

H2), we have

EV2(%(0), 0) = E{

∫ L

0
w(%(0))e2(0, x)dx +

∫ L

0
q(%(0))ψ2(0, x)dx}

≤ max
δ∈M

(wδ)E ‖e(0, x)‖2
H2 + max

δ∈M
(qδ)E ‖ψ(0, x)‖2

H2

≤ c1 max
δ∈M

(wδ, qδ).

As a result,

E ‖e(t, x)‖2
H2 ≤

c1 exp(τT ) max
δ∈M

(wδ, qδ) + λ2 exp(τT )LW

min
δ∈M

(wδ)
< c2.
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Then, the second-order PDE system (2.18) can be mean-square stochastically H∞ bounded over a
FTI under control scheme (2.23) and (2.24) according to Definition 2. This completes the proof of
Theorem 2.

Remark 6: Compared to control strategies over infinite-time intervals [6–13], and control strategies
guaranteeing finite-time convergence [14, 15, 25], the bounded control scheme in a FTI considered in
this paper has its own unique advantages. The above two control strategies focus on the steady-state
performance of systems, that is, they only care about whether the convergence is achieved and the
convergence time, but do not care about the state of systems during the convergence process. This
paper considers the boundedness of MASs in a FTI, that is, it is required to ensure that the system state
does not exceed a certain threshold in the FTI, which is also very important in the actual MASs. For
example, two agents will lose contact if their distance is too far. Therefore, it is necessary to ensure
the boundedness of the system state in a FTI, which cannot be guaranteed by the other two control
strategies. In this sense, the control strategy in this paper is more practical in many specific scenarios
than the other two.

4. Simulations

Two numerical examples are provided in this section to verify the effectiveness of the proposed
communication and control schemes for N = 39 FOAs and SOAs, respectively. The diagram of
communication for FOAs or SOAs are shown in Figure 1.

First, the Markov switching rule that topological weights follow is defined. We suppose there are
three modes in the considered Markov chain, that is,M = {1, 2, 3}. The transition probability matrix
is chosen as

Λ =


−0.5 0.2 0.3
0.4 −0.8 0.4
0.1 0.5 −0.6

 ,

with which the mode switching rules are described as Figure 2.

The nonlinear function in MASs (2.1) and (2.13) is defined as f (y) = 0.2y(1 − y). Then, inspired
by [24, 34, 35], the membership functions h1(ξ) and h2(ξ) can be derived as

h1(ξ) =
ξ − `min

`max − `min
, h2(ξ) =

`max − ξ

`max − `min
,

and γ1 = 0.2(1 − `max) and γ2 = 0.2(1 − `min), where `min and `max can be determined by system state.
Moreover, the external disturbance are supposed as wi(t) = 0.1tanh(iϑ) + 0.05sin(t).
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Figure 1. The communication diagram of agents.
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Figure 2. The diagram of mode switching.

Figure 3. Deployment of FOAs under T–S fuzzy control scheme (2.10).
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Figure 4. Position errors of several randomly selected FOAs in three spatial dimensions.

4.1. Simulation for FOAs

For N = 39 FOAs, we suppose their initial positions as Γ0(iϑ) = [10 sin(3.15iϑ), 10 cos(3.15iϑ), 0],
and their desired positions are Γ(iϑ) = [−10iϑ + 15, 4iϑ, 2] with ϑ = 0.05 and i = 1, 2, ...,N.

For the communication protocol (2.4), we select a1 = 0.1, a2 = 0.15, and a3 = 0.2, and define λ = 2
and τ = 2. By solving LMI (2.18) proposed in Theorem 1, the controller gains can be obtained as
k11 = −6.4521, k12 = −4.2492, k21 = −3.2063, k22 = −5.5137, k31 = −5.2142, and k32 = −4.9611, and
the other unknown parameters are solved as w1 = 1.8806, w2 = 1.7736, and w3 = 1.7836. Moreover,
set c1 = 14.36, T = 20, under condition (3.13), we can obtain c2 > 26.94, such that first-order PDE
system (2.6) is mean-square stochastically H∞ bounded over a FTI under T–S fuzzy control scheme
(2.10). The deployment of FOAs from Γ0 to Γ are shown in Figure 3, from which we know that the
finite-time H∞ deployment can be reached with proposed approaches. Furthermore, to more clearly
show the deployment of agents, position errors of several randomly selected FOAs in three spatial
dimensions are shown in Figure 4.

Remark 7: It should be pointed out that the switching topologies considered in this paper mainly
refer to the switching of topological weights, and there is no case of topology disappearance between
agents, because the PDE method adopted in this paper must ensure the topological connectivity
between neighbor agents; otherwise, the PDE method will no longer be applicable. aδ represents the
topological weight between adjacent agents, and δ represents the mode of the topology following the
Markov chain. In the simulation, we assume that the topological weights switch between three modes,
that is, δ = 1, 2, 3, and the corresponding topological weights are a1 = 0.1, a2 = 0.15, and a3 = 0.2,
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respectively. Therefore, simulations in this paper could show the topology switching phenomena.

Figure 5. Deployment of SOAs under T–S fuzzy control scheme (2.23) and (2.24).
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Figure 6. Position errors of several randomly selected SOAs in three spatial dimensions.
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4.2. Simulation for SOAs

For N = 39 SOAs, we suppose their initial positions as Γ0(iϑ) = [10 sin2(iϑ), 12 cos(iϑ), 0], and
their desired positions are Γ(iϑ) = [−10iϑ + 15, 4iϑ, 2] with ϑ = 0.05 and i = 1, 2, ...,N.

For the communication protocol (2.15), we select α = 5.3 and θ = 1.2, and the other parameters are
selected the same as those in the simulation for FOAs. By solving LMI (3.16) proposed in Theorem 2,
with which the controller gains can be obtained as k111 = −11.1612, k112 = −14.5069, k121 = −13.1211,
k122 = −9.4445, k131 = −12.4737, k132 = −12.7194, k211 = −20.4924, k212 = −13.0284, k221 =

−8.9102, k222 = −16.9199, k231 = −12.2412, and k232 = −17.0933, and the other unknown parameters
are solved as w1 = 10.1532, w2 = 10.0100, w3 = 10.6308, q1 = 1.7697, q2 = 1.2870, q3 = 0.7850,
ρ1 = 5.2108, ρ2 = 11.7772, ρ3 = −12.9393, and ρ4 = ρ5 = ρ6 = 0. Moreover, set c1 = 13.54, T = 20,
under condition (3.13), we can obtain c2 > 32.16, such that the second-order PDE system (2.18) can be
mean-square stochastically H∞ bounded over a FTI under T–S fuzzy control scheme (2.23) and (2.24).
The deployment of SOAs from Γ0 to Γ are shown in Figure 5, from which we know that the finite-time
H∞ deployment can be reached with proposed approaches. Furthermore, to more clearly show the
deployment of agents, position errors of several randomly selected SOAs in three spatial dimensions
are shown in Figure 6.

5. Conclusions

The H∞ deployment problem of large-scale nonlinear FOAs and SOAs over a FTI is studied in
this paper. First, by designing communication protocols with Markov switching topologies, collective
dynamics of MASs can be modeled as first-order and second-order Markovian PDEs. Second, by
introducing the T–S fuzzy technology, the T–S fuzzy controller is designed for informed agents, such
that finite-time H∞ deployment of FOAs and SOAs can be guaranteed. Third, we provide detailed
proofs of main results and corresponding simulations to verify the rationality and effectiveness of
proposed approaches. However, the Markov switching rule considered in this paper requires that the
sojourn time must be exponentially distributed, which will affect the application scope of this paper in
real systems to some extent. Therefore, inspired by [36–38], we will consider semi-Markov switching
topologies of MASs in the future work. As a result, the sojourn time can be subject to other probability
distributions.
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