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Abstract: In the framework of generalized linear models (GLM), this paper explores the design and 

applicability of partial residual (PRES), augmented partial residual (APRES), and conditional 

expectation and residuals (CERES) plots for visualizing an outlier’s diagnostics as a function of 

selected variables. Here, a geometric regression as a GLM is thoroughly described. Additionally, 

plots for PRES, APRES, and CERES have been built. Due to how the response variable and the 

associated link function interact with various covariates, the effectiveness of these plots for creating 

an appealing visual impression may vary. On the cervical cancer data, specific methodologies are 

used to identify trends for effective modelling. When compared to other approaches, the power of 

the tests for various plots demonstrates that PRES, CERES (L) and CERES (K) have the greatest 

endurance for the outlier's diagnostics. On the basis of the power of residual plots, the use is 

recommended for outlier diagnostics in presence of conventional tests. 
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1. Introduction 

It is important to emphasize the applications of statistical methods in both the natural sciences 

and other fields. A regression analysis is one of the most well-known strategies for measuring 

relationships between various elements in handling relatively complicated relationships that are 

frequently observed in the social sciences, health and life sciences, polling, bioscience, analytical and 

biochemistry, economics and finance, etc. Exponential family-based responses are used in generalized 

linear models (GLM), a particular type of regression model. Similar to different regression analysis 

theories, this work encircles specific assumptions that must be addressed before it can be used. These 

include an outlier’s homoscedasticity and multicollinearity [1–4]. 

A statistical examination of data is used to practically explain all phenomena in everyday life. 

The analysis and visual assessment of the relevant data is aided by statistical graphics. They are 

typically used to establish relationships between combined data sets for various variables, to improve 

comparisons, to refine models, to store and retrieve data summaries, to report results effectively, and 

to simplify complex graphics information more effectively. The strength of statistical graphics comes 

from their ability to swiftly and effectively suggest enormous amounts of information, thus allowing 

people to immediately understand concepts that would not be apparent from a list of values [5–7]. 

Different plots are used to identify specific issues with the fitted model; partial residual plots 

(PRES) are among the most helpful plots [8]. In addition to the typical residual plot, partial residual 

plots are employed for diagnostic purposes in multiple regression analyses [9]. A useful way to identify 

an outlier and significant observations, curvature, and many other issues brought on by non-random 

data patterns is through partial residual plots [10].  

According to Davison and Tsai's explanation in [11], PRES plots are employed when a proper 

modification is required while utilizing the nonlinear regression model. The partial residual graphs for 

weighted regression models were created by Hines and Carter [12]. In an effort to further the work of 

Larsen and McCleary [8], Wang [13] created a variable plot, added a PRES plot, and built a variable 

plot. Then, the multiple regression model was used to modify these plots for regression diagnostics; 

this study was expanded to include nonlinearity detection in the generalized linear model [14]. 

As shown by Almazah et al. [15], in a geometric regression, which is a generalization of the 

Poisson regression, the constraint that the mean is equal to the variance provided by the Poisson model 

is relaxed. A geometric regression is defined as a negative binomial regression with the dispersion 

parameter set to one. When looking at the traditional geometric, Poisson, and negative binomial 

regression models for count data, Makcutek [16] showed how the traditional models were extended by 

the obstacle and zero-inflated models.  

The GLM was created by Jahan et al. [17] for the geometric distribution. The natural link function 

was used for one of the generalized regression models, and the log link function was used for the other. 

They carried out parameter estimates along with testing procedures. Additionally, they compared the 

outcomes of these regression models and concluded that the log-link, function-fitted model had a 

smaller Akaike's information criterion and deviance than the natural-link, function-fitted regression 

model. They discovered that the log-link function used in GLM for the geometric distribution produced 

better results than the natural link function. 

The model for count data was created by utilizing the geometric and Poisson distribution, Pradhan 

and Kundu [18] created a model for count data. They employed frequentist and Bayesian criteria to 

choose these distributions. They studied whether the Bayesian technique is the best criterion to choose 
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a model and is pretty even for a modest sample size. Moreover, they employed a maximum likelihood 

estimate for the purpose of discrimination. 

The geometric distribution, which Al-Balushi and Islam [19] addressed, is a member of the family 

of discrete distributions and is concerned with the quantity of trails required in any case to either 

succeed or occur for the first time. However, the GLM's application to the geometric distribution 

received little consideration. In their study, an attempt was made to model the data from the count 

using a geometric regression. It was shown that the geometric generalized regression model was 

appropriate for analyzing discrete data on the first prenatal visit's timing that showed under-dispersion, 

and the outcomes contrasted those of the negative binomial and Poisson regression model. They 

concluded that count data sets with potential over- or under-dispersions could be accommodated by 

the geometric regression model, which is a flexible approach, as well as the possibility of using the 

model for modelling count data as an alternative to the prevalent Poisson and negative binomial 

regression models.    

PRES plots were frequently employed by Saulnier et al. [20] to assess the correlation between 

urine metabolites and structural lesions in diabetics; they concluded that low concentrations of a 

specific group of urine metabolites were related to kidney structural lesions in individuals with type 2 

diabetes. These were utilized by Wouters et al. [22] in the South Western Atlantic to study the spatial 

disparity of the functional trait diversity of polychaete assemblages throughout a broad latitudinal 

gradient. Xie et al. [21] employed PRES plots to determine several metrics for plant communities and 

the functional characteristics of dominant plant species for various ecosystem services in green roofs. 

PRES plots for generalized linear models under canonical relations were proposed by Landwehr 

et al. [23] to aid in the visualization of unknown functions and to determine the need for the 

transformation of regression predictors with a binary response. Cook and Croos-Dabrera [24] 

examined the link function and stochastic behavior of the predictors in the class of GLMs, as well as 

the use of PRES plots to display the perception of curvature in binary logistic regression as a function 

of predictors. In their inverse Gaussian regression model, Imran and Akbar [25] used PRES plots for 

regression diagnostics. Recently, a pattern for binomial regression was devised using data from 

chemical species plots treated with hindered internal rotation (HIR). This pattern included residual 

(RES), PRES, augmented partial residual (APRES), conditional expectation and residuals for kernel 

functions (CERES (K)), and conditional expectation and residuals for LOESS (CERES (L)), which 

were observed by Hussain and Akbar [26] by estimating the test’s power. 

The construction of PRES, APRES, CERES (L), and CERES (K) for geometric regression models 

are all addressed in the current study. Using these residuals, plots are created for regression diagnostics. 

For each graphical technique, the test's power is also estimated for a range of assumptions and levels 

of significance. The simulation research and the cervical cancer patient data set are utilized to apply 

the aforementioned techniques. 

The article is organized with the following structure. We outline the creation of residual plots in 

Section 2. Section 3 includes a real-world data example with graphs for specific residuals. Sections 4 

and 5 explore the empirical evaluation and diagnostic power using simulated data, and section 6 

discusses the findings. 
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2. Construction of residual plots in geometric regression 

The method used to create PRES in GLMs is presented by Landwehr et al. [23], Cook and Croos-

Dabrera [24], Imran and Akbar [25], and Hussain and Akbar [26]. As specified by the GLM, 

𝑔(𝜇𝑖) = 𝑥′
𝑖𝜷 = 𝜂𝑖,          (2.1) 

where 𝑥𝑖 is the ith row of 𝐱 and 𝜷 is a vector parameter. 

For the progression of regression issues involving a univariate response 𝑦 and a 𝑝 × 1 a set of 

uncorrelated predictors 𝐱 , the constant predictor is not included. For a sample of independent 

observations with an identical distribution (𝑦𝑖 , 𝐱′𝑖), 𝑖 = 1, 2, … , 𝑁 , on the random vector(𝑦 , 𝐱′ ) , we 

use the probability function of the conditional distribution of 𝑦|𝐱 to be as follows:  

𝑓𝑦|𝐱(𝑦|𝜃, 𝜑) = exp {
(𝑦𝜃−𝑏(𝜃))

𝑎(𝜑)
+ 𝑐(𝑦, 𝜑)},     (2.2) 

where 𝑎(. ), 𝑏(. ) and 𝑐(. ) are identified smooth functions, 𝜃 is the unidentified scalar parameter that 

depends on 𝐱 , and 𝜑  is an unknown variation parameter. In the regression function, 𝐸(𝑦|𝐱) =

𝜕𝜇|𝜕𝜃 = 𝜇(𝐱) and the variance function is {𝜕2𝜇|𝜕𝜃2}𝑣(𝜑).  

Following Cook and Croos-Dabrera [24], we partition 𝐱′ = (𝐱′
1, 𝐱′

2), where 𝐱𝑗 is, 𝑝𝑗 × 1, 𝑗 =

1, 2. The structure should be adequate to effectively convey the following regression function: 

𝜂(𝐱) = ℎ(𝜇(𝐱)) = 𝛼0 + 𝜶′1𝐱1 + 𝑔(𝐱2), 

If the term 𝑔(𝐱2) when evaluating the parametric form, then 

𝜂(𝐱) = ℎ(𝜇(𝐱)) = 𝛼0 + 𝜶′1𝐱𝟏 + 𝜶′2𝐱𝟐.      (2.3) 

Therefore, ℎ(. )  is the monotonic and differentiable user-identified link function and 

(𝛼0, 𝜶′1, 𝜶′2)′ is vector of unknown parameters consisting of (𝑝1 + 1) × 1 vector. The term 𝜇(𝐱) =

ℎ−1(𝜂(𝐱)) is either a function of 𝐱 or a function of 𝜂, depending on interest and concerns. 

The geometric distribution is given by the following [17]: 

𝑓(𝑥𝑖 , 𝑝) = 𝑝(1 − 𝑝)𝑥 −1, 𝑥 = 1, 2, 3, … 

The mean and variance are as follows: 

𝐸(𝑋) = 𝜇 =
1

𝑝
 and Var(X) =

q

p2 = μ(1 − μ) 

Therefore, the geometric probability mass function must be reparametrized in order for us to achieve 

our regression model for the mean of the geometric distribution 𝐸(𝑌) = 𝜇 =
1

𝑝
 and hence 𝑝 =

1

𝜇
. 

Thus, it is evident that  𝐸(𝑌) = 𝜇 and var(Y) = μ(1 − μ).  Then, the geometric PMF can be 

written in the new parameterization as follows: 

𝑓(𝑌𝑖 = 𝑦𝑖|𝜇𝑖) =
1

𝜇𝑖
(1 −

1

𝜇𝑖
)𝑦𝑖−1 , 𝑖 = 1,2, … , 𝑛; 𝜇𝑖 > 1    (2.4) 



4061 

AIMS Mathematics  Volume 9, Issue 2, 4057–4075. 

The exponential family (2.2) allows the PMF of geometric distribution (2.4) to be expressed as 

follows: 

= exp [(𝑦 − 1)𝑙𝑜𝑔
𝜇𝑖−1

𝜇𝑖
− 𝑙𝑜𝑔𝜇𝑖]      (2.5) 

where 

𝜃 = 𝑙𝑜𝑔
𝜇𝑖 − 1

𝜇𝑖
, 𝑏(𝜃) = 𝑙𝑜𝑔𝜇𝑖 𝑎𝑛𝑑 𝐶(𝑦) = 1. 

Using (2.1) and (2.5), the link function of the geometric distribution can be described as follows: 

𝜂 = 𝜃 = ℎ(𝜇) = 𝑙𝑛
𝜇−1

𝜇
,        (2.6) 

where 

𝜇(𝜂) =
1

1−exp (𝜂)
,          (2.7) 

The geometric regression's log likelihood function [27] is as follows: 

𝐿(𝜷) = ∑ [(𝑦𝑖 − 1) ln(𝑒𝐱′
𝑖𝜷 − 1) − 𝑦𝑖 ln(𝑒𝐱′

𝑖𝜷)]𝑛
𝑖 ,    (2.8) 

The maximum likelihood estimator (MLE) for 𝜷 can be found by resolving the undermentioned 

system of equations. Because the system's solution is non-linear, the approach for estimating the 

unknown parameters is the iterative weighted least squares. 

Next, we provide the fitted geometric regression model using the following: 

𝜂𝑓(𝐱|�̂�′) = ℎ(�̂�𝑓) = [1 − exp(�̂�0 + �̂�′1𝐱1 + �̂�′2𝐱2)]−1,   (2.9) 

where �̂�′ = (�̂�0, �̂�′1, �̂�′2)  and the subscript ‘f’’ mean on   𝜂𝑓 and �̂�𝑓 denote the fitted model. 

The coefficient estimates 𝐛𝑗 , 𝑗 = 0, 1, 2  are obtained by minimizing the following convex 

objective function: 

�̂�′ = (�̂�0, �̂�′1, �̂�′2) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑁(�̂�′),      (2.10)
 

where, 

𝐿𝑁(�̂�) =
1

𝑁
∑ 𝐿 (𝜂𝑓(𝐱𝑖|�̂�, 𝑦 )) ,

𝑁

𝑖=1

 

=
1

𝑁
∑ 𝐿 ([1 − exp(�̂�0 + �̂�′1𝐱1 + �̂�′2𝐱2)]

−1
, 𝑦𝑖)𝑛

𝑖 , 

where L (.,.) is an objective function chosen by the user that is presumptively convex with regard to its 

first argument. The usage of ordinary least squares and the maximum likelihood under (2.3) and (2.9) 

with a canonical link, where 𝜃 = 𝜂, and specific robust estimates are at the very least included in this 
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class, which is not overly restricted. For the geometric regression with the connection specified in (2.6), 

the objective function regarding the maximum likelihood is as follows: 

𝐿(𝜂𝑓(𝐱𝑖|�̂�, 𝑦 )) = {log (
1

1−exp(𝜂𝑓)
) − 𝑦𝜂𝑓}.     (2.11) 

The objective function class corresponding to (2.10) is generalized to form the class of convex 

objective functions, 𝐿(𝜂𝑓, 𝑦) = 𝐿(𝑦 − 𝜂𝑓), used by Cook [28] for additive error models (2.7). 

A partial residual Pr2 for 𝐱2  is obtained using (2.7) and (2.8) via (2.9), and is given by the 

following:  

PRES2 = (𝑦 − �̂�𝑓)ℎ′(�̂�𝑓) + �̂�′2𝐱2,       (2.12)
 

where, ℎ′(. ) is the first derivative of ℎ(. ) w.r.t ‘𝜇’ and �̂� can be obtained by (2.10). 

The term �̂�𝑓(𝐱) = ℎ−1(𝜂𝑓(𝐱|�̂�, 𝑦)) is the regression function of f evaluated at �̂�. 

The geometric link function's first derivative, which is given in (2.6), is as follows:  

ℎ′(�̂�𝑓) = −
𝜇

(𝜇 − 1)3 

As a result, the fitted model utilizing a link for the geometric regression is as follows:  

�̂�𝑓 = [1 − exp(�̂�0 + �̂�′1𝐱1 + �̂�′2𝐱2)]−1

 

where �̂�0, �̂�1, �̂�2  are the regression estimators, �̂�𝑓  denotes the fitted model, and 𝐱1 and 𝐱2  are the 

predictors. The PRES for 𝐱2 is as follows: 

PRES2 = −(𝑦 − �̂�𝑓)
𝜇

(𝜇−1)3 + �̂�′2𝐱2. 

Similar to this, the PRES for the model with p explanatory variables can be represented as follows: 

PRES𝑖 = −(𝑦 − �̂�𝑓)
𝜇

(𝜇−1)3 + �̂�′𝑖𝐱𝑖 , 𝑖 = 1, 2, … , 𝑝,    (2.13) 

where p is the explanatory variable and the fitted model is as follows: 

�̂�𝑓 = [1 − exp(�̂�0 + �̂�′1𝐱1 + �̂�′2𝐱2 + ⋯ + �̂�′𝑝𝐱𝑝)].−1

 

Due to the response residual, the PRES found in (2.13) can be denoted as RPRES. The PRES of 

the response is now given as follows: 

RPRES𝑖 = −(𝑦 − �̂�𝑓)
𝜇

(𝜇−1)3 + 𝑔(𝐱𝑖) , 𝑖 = 1, 2, … , 𝑝.    (2.14) 

where 𝑔(𝐱𝑖) = �̂�′𝑖𝐱𝑖 for the PRES. 

Equation (2.14) can be used to obtain the RAPRES, RCERES (L), and RCERES (K). 

Using (2.14), one may obtain the CERES and APRES. When we substitute a quadratic and/or 

interaction factor for 𝑔(𝐱𝑖) in (2.14), an APRES is obtained. Similarly, the conditional expectation 
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( 𝐱𝑖 | 𝐱𝑗 ) is used instead of 𝑔(𝐱𝑖)  in (2.14) to obtain a CERES. The 𝑔(𝐱𝑖)  is sometimes non-

parametrically estimated by using LOESS and the kernel function [24,26,28,29]. 

Example. Data set for cervical cancer patients. 

We took advantage of Irawan’s [30] data on cervical cancer cases in Indonesia from the Sepuluh 

Nopember Institute of Technology. The purpose of this study was to identify the patient's frequency 

service, which are dispersed geometry parameters that affect the cervical cancer patients' survival. The 

total number of cases reported from the data collected from the cervical cancer patient survey is 198.  

The variable Y (cervical cancer patient) represents a response, and the explanatory variables are 

𝐱1(age), 𝐱2(chemotherapy), 𝐱3(complications), 𝐱4(anemia), and 𝐱5(operation). 

The regression model with a geometric fitting is provided by the following:  

�̂�𝑓 = [1 − 𝑒𝑥𝑝(�̂�0 + �̂�′1𝐱1 + �̂�′2𝐱2 + �̂�′3𝐱3 + �̂�′4𝐱4 + �̂�′5𝐱5)]−1. 

By utilizing the iterative weighted least square method of the estimate, the necessary calculations 

are provided as follows in Table 1: 

Table 1. Goodness of fit test. 

Distribution Null Deviance d.f Residual Deviance d.f 

Geometric 92.256 197 20.238 192 

Negative Binomial 353.364 197 83.165 192 

Poisson 353.375 197 83.168 192 

By observing the null and residual deviances in Table 1, the geometric regression shows a strong 

result when compared to other popular distributions because the null and residual deviances have 

minimal values among the other distributions; therefore, the geometric regression is more suitable than 

the Poisson regression and the negative binomial regression for this example of data from cervical 

cancer patients [30]. 

Table 2 provides both descriptive statistics for the data and summary statistics for all the 

geometric regression model's metrics. The P-values for X2 and X4 are less than 0.05, which indicates 

a significance; however, the P-values for X1, X3, and X5 are higher than 0.05, which indicates non-

significance. 

Table 2. Geometric regression analysis of variance. 

Variable Coefficients SE(β) t-value Pr(>|t|) VIF 

Intercept −0.0172 0.1835 0.9250 0.9250  

X1 0.0018 0.0034 0.6061 0.6060 2.5067 

X2 0.3749 0.0163 22.948 0.0000 5.7547 

X3 0.1151 0.0795 1.4462 0.1500 4.5623 

X4 0.3241 0.0661 4.9070 0.0001 7.9876 

X5 −0.0102 0.0957 -0.1071 0.9150 1.3487 

AIC = 802.1; BIC = 821.8; R2 (%) = 98.80%; Adj-R2(%) = 98.77% 

Now, we provide the diagnostics of the aforementioned issues using certain official testing 

methodologies to support our conclusions (As shown in Table 3). 
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Table 3. Diagnostic tests for outliers in regression. 

Test Statistics Statistic P-Value 

Grubb’s Test 2.4599 0.0370 

Anderson-Darling Test 0.7471 0.0021 

F-test (Overall) 129.25 0.0000 

The data in the above table show that the Grubb's test is an outlier and the Anderson-Darling test, 

which has previously been used by Hussain and Akbar [26], is a non-normality. There are numerous 

formal tests available for diagnostics, and we are aware that each of these tests is only utilized for a 

single diagnostic because they are all predicated on certain regularity constraints and are more 

computationally costly. In light of the discussion above, we can draw the conclusion that a single 

residual plot can be utilized for various diagnostics and is more efficient than traditional tests.  

An outlier can be identified utilizing the response PRES plots (Figure 1a), which shows that there 

are red values that are much higher than all other values. Non-normality is anticipated because none 

of the points fall along the trend line and exhibit an erratic pattern on the residual plot. The issues 

shown in Figure 1a can also be detected in the remaining plots, as shown in Figure 1b–1e.  

 

Figure 1. PRES Plots using response residuals with geometric fits. 
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An outlier can be found using the response APRES plots (Figure 2a), which show that there are 

red values that are significantly bigger than all other values. Non-normality is expected since no point 

on the residual plot has an abnormal pattern or falls along the trend line. The issues shown in Figure 

2a are also evident in the subsequent plots, as Figures 2b–2e show.  

 

Figure 2. APRES Plots using response residuals with geometric fits. 

Finding an outlier can be done with the use of the response CERES (L) plots (Figure 3a), which 

show that there are red values that are much higher than every other value. Non-normality is anticipated 

since there isn't a single point on the residual plot that exhibits an unusual pattern or falls along the 

trend line. The issues shown in Figure 3a also exist in the other plots, as can be seen from Figures 3b–

3e.  
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Figure 3. CERES (L) Plots using response residuals with geometric fits. 

The response CERES(K) plots (Figure 4a), can be used to identify an outlier, which indicate that there 

are red values that are significantly greater than all other values. Non-normality is expected since none of 

the points on the residual plot show an irregular pattern or fall along the trend line. As Figure 4b–4e 

demonstrate, the problems depicted in Figure 4a are also present in the remaining plots. Consequently, 

we may view the outlier's diagnostics using residual plots in the geometric regression model.  
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Figure 4. CERES (K) Plots using response residuals with geometric fits. 

4. Analyzing statistics based on residuals using empirical methods 

Azzalini and Bowman [31] and Oh [29] used modified pseudo-likelihood tests based on RES, 

PRES, APERS, conditional expectation, and residual CERES to assess the non-linearity and estimated 

empirical powers of the presented statistics. In this article, outliers on the RES, PRES, APRES, CERES 

(L), and CERES (K) were detected using the Grubb’s test [26]. The computed and accessible powers 

of the aforementioned statistics are shown in Tables 4 and 5. The empirical power is determined for 

𝛼 = 0.01 and 0.05. Four sample sizes (𝑛=20, 30, 40, 50) and four values of ‘𝑎’ (2, 10, 20, 95) are 

chosen. 

Equation (2.9) contains the geometric regression model. 

This section evaluates how well the residuals (PRES, APRES, CERES, etc.) work for identifying 

outliers. The hypothesis takes the following shape: 

H0: There isn’t any outlier; 

H1: At least one outlier exists; 

where, 
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𝐺𝑐𝑟𝑖𝑡 >
𝑁−1

√𝑁
√

𝑡2 𝛼
2𝑁

,𝑁−2

𝑁−2+𝑡2 𝛼
2𝑁

,𝑁−2

, 

where, N is the quantity of the observation, with  𝑡𝛼/(2𝑁),𝑁−2  indicating the higher central value of the 

t- distribution with N-2 degrees of freedom and a significance level of 𝛼/(2𝑁). The Grubb's test 

statistics are as follows:  

𝐺 =
𝑚𝑎𝑥𝑖|𝑌 − �̅�|

𝑆
 , 𝑖 = 1,2,3, … , 𝑁. 

Therefore, we construct the formal test based on the Grubb’s test of outliers and statistically 

significant large value of G (i.e., 
critGG  ). 

5. Performance of partial residual plots for outlier assessment using simulation 

To compare the effectiveness of the outlier's test, a modest power study was conducted. By using 

the geometric regression model, where we create the response variable from a geometric regression, 

data of the response variable were generated, and  𝐱1 was produced using a homogeneous random 

variable on the range (0, 30) and 𝑔(𝐱1) =
𝑎

1+𝑒−𝐱1
, 𝐱2 = log(𝐱1) + 𝑁(0, 0.252), 𝐱3 = 𝑔𝐱1

−1 +

𝑁(0,1). 

We've set the regression parameters' fixed values as follows:  

𝜷1 = 0.05, 𝜷2 = 0.01, 𝜷3 = 0.003, 

where Y is a deterministic function of the three covariates because no errors were present. This 

preserves the qualitative integrity of the results while allowing the conclusion to be conveyed more 

succinctly than if an additional mistake was added. Sample sizes of 𝑛 = 20, 30, 40, 50 were considered. 

Two thousand samples were generated for each case, and the frequency with which the observed 

significances were below 0.05 or 0.01 was counted. For deriving the conditional expectation in CERES, 

the LOESS smoothing data count was fixed at n|2 and the bandwidth of the kernel function was 0.5. 

The bandwidth of the kernel function to obtain a test statistic was 0.25. We chose 𝑎 = 2, 10, 20, 95 in 

curve 𝑔(. ) using a roughness measure [26]. 

5.1. Simulation result and discussion 

We used the notations RES, PRES, APRES, CERES (L), and CERES (K). We demonstrate the 

empirical validity of the outliers’ test statistic in Tables 4 and 5. In these tables, the roughness metric 

had a significant impact on the test statistic ‘a’ Additionally, the empirical powers of RES and APRES 

decreased as the sample size increased; alternatively, the power of PRES, CERES (L), and CERES (K) 

increased as the sample size increased. The test statistic based on PRES, CERES (L), and CERES (K) 

was found to be more outlier-sensitive. Therefore, in order to check the outliers of chosen covariates 

in a geometric regression model for diagnostics, we propose and advise to employ an outliers’ test 

statistic based on PRES plots.  
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Table 4. Empirical power of various residuals using Grubb's test statistic for geometric 

regression for detecting outliers for 𝛼 = 0.05. 

𝛼 = 0.05 

𝑛 𝑎 RES PRES APRES CERES(L) CERES(K) 

10 2 0.160 0.865 0.980 0.980 0.965 

10 0.180 0.800 0.925 0.990 0.930 

20 0.165 0.870 0.945 0.975 0.960 

95 0.115 0.845 0.905 0.990 0.950 

20 2 0.360 0.860 0.930 0.980 0.950 

10 0.265 0.850 0.950 0.945 0.925 

20 0.360 0.835 0.930 0.950 0.950 

95 0.405 0.880 0.965 0.990 0.950 

30 2 0.475 0.825 0.925 0.965 0.920 

10 0.505 0.860 0.925 0.995 0.940 

20 0.540 0.885 0.970 0.970 0.920 

95 0.530 0.875 0.990 0.980 0.900 

40 2 0.605 0.895 0.980 0.920 0.935 

10 0.600 0.820 0.950 0.965 0.910 

20 0.590 0.835 0.995 0.935 0.910 

95 0.545 0.820 0.945 0.900 0.895 

Table 5. Empirical power of various residuals using Grubb’s test statistic for geometric 

regression for detecting outliers for 𝛼 = 0.01. 

𝛼 = 0.01 

𝑛 𝑎 RES PRES APRES CERES(L) CERES(K) 

10 2 0.030 0.775 0.950 0.985 0.980 

10 0.025 0.750 0.995 0.995 0.920 

20 0.045 0.780 0.905 0.910 0.990 

95 0.055 0.890 0.915 0.930 0.985 

20 2 0.200 0.870 0.970 0.975 0.935 

10 0.215 0.800 0.995 0.990 0.925 

20 0.125 0.840 0.960 0.960 0.930 

95 0.230 0.860 0.965 0.945 0.980 

30 2 0.290 0.855 0.980 0.990 0.980 

10 0.240 0.840 0.925 0.965 0.945 

20 0.370 0.805 0.920 0.980 0.990 

95 0.305 0.865 0.910 0.965 0.945 

40 2 0.385 0.815 0.915 0.985 0.885 

10 0.335 0.800 0.945 0.995 0.850 

20 0.380 0.830 0.940 0.930 0.855 

95 0.385 0.840 0.980 0.900 0.850 
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Tables 4 and 5 display the empirical power computations of five altered graphical methods on the 

basis of the Grubb’s test for two altered level of ‘𝛼’. It is evident from the above tables that APRES, 

CERES (L), and CERES (K) bear good standings among others since they have the highest power 

levels. Moreover, it is crucial to note that the values of ‘a’ significantly affect how well these 

techniques work. The effect of the sample size is since the power and some alpha influences are also 

seen to have an effect. In comparison to RES and PRES techniques, APRES, CERES (L, and CERES 

(K) exhibit more consistent behaviors for larger values of the sample size and have higher values of 

power. 

As shown in Table 6, by observing he null and residual deviances, the geometric regression shows 

a strong result as compared to other popular distributions because the null and residual deviances have 

minimal values among the other distributions; therefore, a geometric regression is more suitable in 

simulation data. 

Table 6. Goodness of fit test using simulation data. 

Distribution Null Deviance d.f Residual Deviance d.f 

Geometric 188.08 197 185.10 194 

Negative Binomial 194.02 197 193.17 194 

Poisson 367.36 197 357.57 194 

Tables 6 and 7 show collective results for simulation data and confirm the real data results. In 

Figure 5, similar results are observed in the PRES, APRES, CERES (K), and CERES (L) plots using 

the simulation data. Thus, residual plots in the geometric regression model allow us to see the 

diagnostics of the outlier. 

Table 7. Geometric regression analysis of variance using simulation data. 

Variable Coefficients SE(β) t-value Pr(>|t|) VIF 

Intercept 0.06095 0.43023 0.142 0.887  

X1 −0.03631 0.02676 −1.357 0.176 3.1028 

X2 0. 22528 0.29039 0.776 0.439 6.1230 

X3 0.06954 0.21218 0.328 0.743 4.1524 

AIC = 561.91; BIC = 566.4865; R2 (%) = 98.90%; Adj-R2(%) = 97.96% 
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Figure 5. Response residual plots using simulation data with geometric fits. 

6. Conclusions 

Cook and Croos-Dabrera [24] studied the modification of the explanatory variable in several 

regression settings using the PRES plots in GLM. They investigated the circumstances under which 

the PRES plots can be used to alter the predictor in the GLM class [25]. By determining the statistical 

significance power of the tests, Hussain and Akbar [26] created and observed the pattern of RES, PRES, 

APRES, CERES (L), and CERES (K) for hindered internal rotational (HIR) treatment data of the 

chemical species plots of a binomial regression.  

The development and assessment of this study’s is the construction and evaluation of PRES, 

APRES, CERES (L), and CERES (K) plots for geometric regression in a dataset for cervical cancer 

patients. It was observed that PRES, APRES, CERES (L), and CERES (K) plots were a fantastic 

technique for the outlier’s diagnostics. Therefore, residual plots are an effective graphical approach for 

diagnosing outliers in a geometric regression. Moreover, APRES, CERES (L), and CERES (K) 

perform better than PRES plots and in a diagnostic power simulation scheme. 

While dealing with the cervical cancer data and in simulation study, it was observed that outliers 

are present in the data. Both conventional and graphical methods confirm this diagnostic. It is very 
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important for the applied scientist to address these diagnostics prior to the modelling of the data. It is 

a well-known fact that the violation of the aforementioned assumptions may result in an insignificance 

of results, which arise in our case of cervical cancer. Therefore, according to the results, none of the 

factors are responsible for executions in cervical cancer. This is very misleading and erroneous. To 

deal with such situations, statistics suggest corrective actions and data handling. In order to identify 

issues that need to be taken into account prior to running the final model that can be utilized for policy 

purposes, the current study addresses these crucial scenarios and largely offers easy graphical methods.  

The specified GLM, the link function, and the stochastic behavior of the predictors may all have 

limitations on the usefulness of residual plots for generating a clear visual picture of the curvature. Due 

to their broad applicability in the outlier's diagnostics employing visual impression underlying 

predictor transformation, residual plots were shown to be more colorful than conventional methods. 

Due to the performance of PRES, CERES (K), and CERES (L), these are recommended for outlier 

diagnostics in the presence of conventional tests. 
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