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Abstract: Statistical inference for missing data is common in data analysis, and there are still 
widespread cases of missing data in big data. The literature has discussed the practicability of two-
stage feature screening with categorical covariates missing at random (IMCSIS). Therefore, we 
propose group feature screening for ultrahigh-dimensional data with categorical covariates missing at 
random (GIMCSIS), which can be used to effectively select important features. The proposed method 
expands the scope of IMCSIS and further improves the performance of classification learning when 
covariates are missing. Based on the adjusted Pearson chi-square statistics, a two-stage group feature 
screening method is modeled, and theoretical analysis proves that the proposed method conforms to 
the sure screening property. In a numerical simulation, GIMCSIS can achieve better finite sample 
performance under binary and multivariate response variables and multi-classification covariates. The 
empirical analysis through multiple classification results shows that GIMCSIS is superior to IMCSIS 
in imbalanced data classification. 

Keywords: group feature screening; sure screening property; chi-square statistic; missing data 
Mathematics Subject Classification: 62H30, 62R07 
 

 



4033 

AIMS Mathematics  Volume 9, Issue 2, 4032–4056. 

1. Introduction  

With the development of information technology and networks, big data with “high 
dimensionality” as its main feature are widely appearing in medicine, economics, engineering, and 
other fields. In general, when the dimension 𝑝 of the covariable increases exponentially with sample 
size 𝑛 , we call such data ultrahigh-dimensional data [1]. Intuitively, the covariate dimension of 
ultrahigh-dimensional data far exceeds the sample size, and the traditional penalty variable screening 
method suffers from high computational complexity, poor statistical accuracy, and weak algorithm 
stability; therefore, it is urgent to develop a variable screening method that is suitable for ultrahigh-
dimensional data. However, missing data is also another major problem in data analysis and it exists 
in ultrahigh-dimensional data. Even missing a smaller number of samples for a covariate can lead to 
an inability to calculate the significance of that variable, which will lead to the omission of important 
information and misjudgment in subsequent analysis. Therefore, determining how to directly find 
important variables in ultrahigh-dimensional data with randomly missing data points plays an 
important role in efficient data analysis. 

To solve the problem of statistically modeling ultrahigh-dimensional data, J. Fan and J. Lv [2] 
first proposed sure independence screening (SIS), which measures the importance of each covariate 
according to the Pearson correlation coefficient between the response variable and a single covariate. 
Thus, the dimension of the covariates is reduced to a suitable range. To improve the use of SIS under 
more general assumptions, P. Hall and H. Miller [3] extended the generalized correlation coefficients, 
and G. Li et al. [4] proposed the robust rank correlation coefficient screening method to address 
transformed regression models. X. Y. Wang and C. L. Leng [5] proposed a feature screening method 
based on high-dimensional least-squares projection to further improve screening performance, 
considering that SIS is highly dependent on significant covariates and response variables with large 
marginal correlations. For the model-free assumption, which is more suitable for the era of big data, 
L. P. Zhu et al. [6] proposed a feature screening method based on covariance, namely, sure independent 
ranking screening. As there is no model assumption, this method can be used for models such as linear 
models, generalized linear models, partial linear models, and single index models. R. Li et al. [7] 
proposed a feature screening method based on the distance correlation coefficient by employing 
distance covariance through the use of an index to describe whether two arbitrary variables are 
independent. On this basis, X. Shao and J. Zhang [8] proposed the use of the martingale difference 
correlation coefficient screening method to measure the deviation of the correlation between two 
random variables. On the topic of feature screening for ultrahigh-dimensional discrete data, Q. Mai 
and H. Zou [9] focused on binary response variables, introduced Kolmogorov-Smirnov statistics 
into the feature screening framework, and proposed a variable selection method based on the 
Kolmogorov filter. D. Huang et al. [10] proposed a feature screening method based on Pearson chi-
square statistics that can solve the problems of superhigh-dimensional discrete covariate data and 
continuous data under multiple response variables. L. Ni et al. [11] further considered adjusted Pearson 
chi-square SIS (APC-SIS) to analyze multiclass response data. P. Lai et al. [12] introduced Fisher 
linear projection and marginal score tests to construct a linear projection feature screening method for 
linear discriminant modeling. With the emergence of group variables, the above feature screening 
methods that apply to single variables are no longer applicable. W. C. Song and J. Xie [13] proposed 
a feature screening method for group data based on F statistics. Based on the assumptions of a linear 
model, D. Qiu and J. Ahn [14] proposed three methods: group SIS, group high-dimensional least 
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squares projection, and group adjusted R-square screening. H. J. He and G. M. Deng [15] focused on 
the feature screening of discrete group data and constructed the group information entropy feature 
screening method based on joint information entropy. Z. Z. Wang et al. [16,17] further extended the 
role of information theory in group feature screening by using the information gain ratio and Gini 
coefficient. Y. L. Sang and X. Dang [18] used the Gini distance coefficient to measure the 
independence between discrete response variables and continuous covariates and constructed a group 
feature screening method for the Gini distance. 

Missing data constitutes a widespread problem in data analysis, and ultrahigh-dimensional data 
are no exception. P. Lai et al. [19] applied the Kolmogorov filtering method to screen important 
covariates for the construction of propensity score functions, proposed a feature screening method for 
ultrahigh-dimensional data with response variables missing at random, and promoted inverse 
probability weighting technology to build marginal feature screening processes. Q. H. Wang and Y. J. 
Li [20] proposed missing indicator interpolation screening and feature screening methods based on a 
Venn diagram by using missing indicator information for response variables. X. X. Li et al. [21] 
identified key covariates by using the marginal Spearman rank correlation coefficient for conditional 
estimation. L. Y. Zou et al. [22] used the interpolation technique to process the distribution function of 
missing responses and adopted the distance correlation between the response distribution function and 
the covariate distribution function as the index for feature screening. L. Ni et al. [23] proposed two-
stage feature screening with covariates missing at random (IMCSIS) and proved the theoretical 
properties of this method based on adjusted Pearson chi-square statistical feature screening. 

The response variable and the covariates missing at random have been fully discussed in the feature 
screening of ultrahigh-dimensional data. Considering that group data are common, they also need to be 
taken into account in the feature screening framework. We attempted to extend the group feature screening 
method that is typically applied to complete data to the case of covariates missing at random to expand the 
application scope of the existing group feature screening method. In addition, the ultrahigh-dimensional 
data considered in this paper are discrete, and the application scenarios are mostly classification learning 
objectives. Therefore, we used the adjusted Pearson chi-square statistic and the two-stage screening 
procedure to improve the effectiveness of multi-classification problems in practical problems. 

In this paper, we construct an ultrahigh-dimensional group feature screening method for randomly 
missing data and extend the feature screening method that is generally suitable for classification 
models. First, we define the indicator variables for missing covariates, for which it is assumed that any 
missing variables exist as a group structure. Second, a two-stage group feature screening method with 
covariates missing at random (GIMCSIS) was proposed by introducing adjusted Pearson chi-square 
statistics as the basic screening method. In this paper, the GIMCSIS satisfies the sure screening 
performance requirement. Furthermore, the performance of GIMCSIS is demonstrated via numerical 
simulation and empirical analysis. Specifically, compared with IMCSIS, GIMCSIS can be applied to 
group data and improve the feature screening performance of ultrahigh-dimensional data with 
covariates missing at random. In the empirical analysis, we focus on the classification model, and 
GIMCSIS is better than IMCSIS in terms of various classification indices. 

This paper is organized as follows. Section 2 introduces two-stage group feature screening based 
on adjusted Pearson chi-square statistics. Then, we establish a group sure screening property. The 
simulation studies are given in Section 3. Section 4 provides a classification analysis, and the paper 
concludes with a discussion in Section 5. 
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2. Theory and method 

2.1. Symbol and definition 

First, we define the group structure data. When covariates are randomly missing, there are group 
covariates among both the full and partial observation covariates; therefore, we need to define new 
symbols and concepts. Suppose that 𝑌 is a multiclass response variable with 𝑅 elements and that the 
covariate matrix 𝑋 is a multivariate covariate matrix with 𝐺 group covariates, each of which consists 
of one or more covariates. Considering random missing covariates in covariate data, the set of fully 
observed variables is defined as 𝑈 = (𝑢 , … , 𝑢 ) , and the partial set of observed variables is defined 
as 𝑉 = (𝑣 , … , 𝑣 ) . The covariate matrix 𝑋 is represented by 

𝑋 = (𝑢 , … , 𝑢 , 𝑣 , … , 𝑣 ) , 𝑃 = ∑ 𝑝 + ∑ 𝑞 , 𝐺 = 𝐺1 + 𝐺2, 

where 1 ≤ 𝑘 ≤ 𝐺1 , 1 ≤ 𝑙 ≤ 𝐺2 , and 𝐺1  and 𝐺2  are the groups of fully and partially observed 
covariates, respectively. 𝑃 represents the total number of dimensions in the covariate, 𝑝  represents 
the number of dimensions of the 𝑘th covariate in the fully observed covariate, and 𝑞  represents the 
number of dimensions of the 𝑙th covariate in the group of partially observed observation covariates. 
For some of the observed covariates, 𝛿   is used to represent the missing indicator variables. The 
missing state of a single variable has only 1 or 0 states, while the missing state of a group of variables 
is more complicated. In this paper, the missing indicator variable 𝛿∗ is defined as a fully observed 
covariate group only when all covariables in the group are as follows: 

𝛿∗ =
1, 𝑠𝑢𝑚(𝛿 ) = 𝑞 ;

0, 𝑠𝑢𝑚(𝛿 ) ≠ 𝑞 .
 

Second, it is assumed that all covariate components of the covariate matrix 𝑋 are classified as 
𝐽, 𝐽  represents the last of the combinations between covariate classes in the 𝑔th group covariate 
matrix, and 𝑗  represents the indicator variables in the combinations between covariate classes in the 
𝑔th group covariate matrix. If 𝑗 = 1, it is the first covariate-class combination, and so on; 𝐽  is the 
𝑝  covariate class combination; and a certain covariate class combination has a classification vector 

representation, namely, 𝑗 , … , 𝑗 . 

Let the probability function of the response variable be 𝑝 = 𝑃(𝑌 = 𝑟). A probability function 

with a group structure covariate can be expressed as 𝑤 = 𝑤
,…,

= 𝑃 𝑢 = 𝑗 , … , 𝑢 =

𝑗 , … , 𝑢 = 𝑗   and 𝑤 = 𝑤
,…,

= 𝑃 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , … , 𝑣 = 𝑗   represents a joint 

probability function of variables within a group; 𝑤  is a joint probability function for complete data, 
and 𝑤  is a form in the partial case of covariates. Similarly, the probability functions of the response 

variable with group structure covariates are as follows: 𝑝 = 𝑝
,…,

= 𝑃 𝑌 = 𝑟, 𝑢 =

𝑗 , … , 𝑢 = 𝑗 , … , 𝑢 = 𝑗   and 𝑝 = 𝑝
,…,

= 𝑃 𝑌 = 𝑟, 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , … , 𝑣 =

𝑗 , 1 ≤ 𝑘 ≤ 𝐺1, 1 ≤ 𝑙 ≤ 𝐺2, 𝑟 = 1, … , 𝑅, and 𝑧 = 1, … , 𝑝  𝑜𝑟 1, … , 𝑝 , 𝑗 , … , 𝑗 = 1, … , 𝐽. 

2.2. Adjusted Pearson chi-square statistic 

Based on the two-stage feature screening process, we propose a two-stage feature screening 
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method for group structure data [23]. Specifically, we use APC-SIS to construct the group feature 
screening process. 

The APC-SIS method first uses the adjusted Pearson chi-square statistic as the feature screening 
index [11]. The adjusted Pearson chi-square statistic for univariate analysis is given as follows: 

∆ = ∑ ∑
( )

,
( )

( )
      (2.1) 

where 𝑝 = 𝑃(𝑌 = 𝑟) , 𝑤
( )

= 𝑃(𝑋 = 𝑗)  and 𝜋 ,
( )

= 𝑃(𝑌 = 𝑟, 𝑋 = 𝑗) , 𝑟 = 1,2, ⋯ , 𝑅,  𝑗 =

1,2, ⋯ , 𝐽 and 𝑘 = 1,2, ⋯ , 𝐾. When the response variable 𝑌 is independent of the covariate 𝑋 , the 

product of the marginal probabilities is equal to the joint probability; then, 𝑝 𝑤
( )

= 𝜋 ,
( ). When the 

response variable 𝑌  and the covariate 𝑋  are not independent, the product of the marginal 
probabilities is not equal to the joint probability; the larger the difference, the stronger the correlation 
between 𝑌 and 𝑋 . Therefore, it is easy to obtain two properties of ∆ ; then, ∆ ≥ 0, and ∆ = 0 if 
and only if 𝑌 is independent of 𝑋 . 

By applying the above definition, we can obtain the adjusted Pearson chi-square statistics of a 
group of covariables under the random missing mechanism. For complete covariate data, we can 
directly construct the adjusted Pearson chi-square statistic of the response variable 𝑌  and the 
complete covariate 𝑈 : 

𝐴𝑃𝐶 (𝑌, 𝑈 ) = ∑ ∑ .     (2.2) 

For partial covariate data, the adjusted Pearson chi-square statistic of the response variable 𝑌 and the 
complete covariate 𝑉  is calculated:  

𝐴𝑃𝐶 (𝑌, 𝑉 ) = ∑ ∑ .      (2.3) 

Because 𝑤 = 𝑃 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , … , 𝑣 = 𝑗 = ∑ 𝑃 𝑌 = 𝑟, 𝑣 = 𝑗 , … , 𝑣 =

𝑗 , … , 𝑣 = 𝑗 = 𝑝 , when estimating 𝐴𝑃𝐶 (𝑌, 𝑉 ), compared with Eq (2.2), we need to estimate 
only 𝑝 . Then, 

𝑝 = 𝑃 𝑌 = 𝑟, 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , … , 𝑣 = 𝑗  

= 𝑃 𝑌 = 𝑟, 𝑈 = 𝑢 ∙ 𝑃 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , … , 𝑣 = 𝑗 𝑌 = 𝑟, 𝑈 = 𝑢  

= 𝑃 𝑌 = 𝑟, 𝑈 = 𝑢 ∙ 𝑃 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , … , 𝑣 = 𝑗 𝑌 = 𝑟, 𝑈 = 𝑢, 𝛿∗ = 1  

=
𝑃 𝑌 = 𝑟, 𝑈 = 𝑢 ∙ 𝑃 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , 𝑌 = 𝑟, 𝑈 = 𝑢, 𝛿∗ = 1

𝑃 𝑌 = 𝑟, 𝑈 = 𝑢, 𝛿∗ = 1
 

(2.4) 
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where 𝑈  is used to link the fully observed covariate with the partially observed covariate, and the 
important fully observed covariate 𝑀   can be obtained by calculating 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) ; that is, the 

fully observed covariate associated with the missing information is used to replace the partially 
observed covariate. Therefore, �̂�  can be obtained from 𝑀  and Eq (2.4). 

2.3. Two-stage group feature screening method 

The two-stage group feature screening with covariates missing at random (GIMCSIS) uses the 
missing indicator variable as a bridge between the partially observed covariate and the response 
variable. Feature screening of the fully observed covariates and partially observed covariates is carried 
out, and the fully observed covariate information is used to replace the partially observed covariate 
information to realize group feature screening of the partially observed covariates. The screening 
process is divided into two steps: 
Step 1: To map the partially observed variable information to the fully observed covariates, the fully 
observed covariates associated with the missing indicator variable are considered, and the partially 
observed covariates are replaced by the information of the fully observed covariates. Specifically, for 
each of the observed covariates that are missing indicator variables, the adjusted Pearson chi-square 
statistic is calculated as follows: 

𝐴𝑃𝐶 (𝛿∗, 𝑈 ) = ∑ ∑
∑ ,

∗ , ,…, ∑ ,
∗

∑ ,
∗   (2.5) 

where 𝑤 = 𝑤
,…,

= 𝑃 𝑢 = 𝑗 , … , 𝑢 = 𝑗 , … , 𝑢 = 𝑗   and 𝑟 = 0,1 . The active 

covariates are estimated by applying the following thresholds: 

𝛭 = 𝑘: 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) > 𝑐 ∗𝑛
∗
, 1 ≤ 𝑘 ≤ 𝐺  

where 𝑐 ∗  and 𝜏 ∗  are predetermined constants that are defined in Condition (C4) in Section 2.4. 

Step 2: On the basis of obtaining 𝛭  , using 𝑈   to replace partially observed covariates, the 

adjusted Pearson chi-square statistics of the response variable and partially observed covariates are 
obtained via the following process: 

𝐴𝑃𝐶 (𝑌, 𝑉 ) = ∑ ∑       (2.6) 

where 

�̂� =
1

𝑛

∑ 𝐼 𝑦 = 𝑟, 𝑢 = 𝑢 ∑ 𝐼 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , 𝑦 = 𝑟, 𝑢 = 𝑢, 𝛿 ,
∗ = 1

∑ 𝐼 𝑦 = 𝑟, 𝑢 = 𝑢, 𝛿 ,
∗ = 1

 

𝑤 = ∑ �̂�   and �̂� = 𝑛 ∑ 𝐼(𝑦 = 𝑟) . The sum of all �̂�   values is equivalent to all 
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possible values of 𝑢 in the set 𝑈 . In practice, the summation term ∑ 𝐼 𝑦 = 𝑟, 𝑢 = 𝑢, 𝛿 ,
∗ =

1  in the case of a given u value is 0 when the number of covariates in 𝛭  is large enough. Thus, 

𝑙𝑜𝑔 𝐽  is used to adjust the Pearson chi-square statistics, yielding ∑ ∑ �̂� = 1. 

For the fully observed covariates, we obtain the active covariate directly by using the adjusted 
Pearson chi-square statistic. For the partially observed covariates, we obtain the active covariate 
according to Steps 1 and 2. Therefore, the active covariates in the dataset can be estimated as follows: 

(𝑈, 𝑉) = 𝑈 , 𝑉 : 𝐴𝑃𝐶 (𝑌, 𝑈 ) > 𝑐𝑛 , 𝐴𝑃𝐶 (𝑌, 𝑉 ) > 𝑐𝑛 , 1 ≤ 𝑘 ≤ 𝑝, 1 ≤ 𝑙 ≤ 𝑞  

where 𝑐 and 𝜏 are predetermined constants. 
In practice, we replace 𝛭  with 

𝛭∗ = 𝑘: 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) is the largest 𝑑  of all 𝑈  

and replace (𝑈, 𝑉)  with the following method: 

(𝑈, 𝑉)
∗

= {𝑈 , 𝑉 : 𝐴𝑃𝐶 (𝑌, 𝑈 ) or 𝐴𝑃𝐶 (𝑌, 𝑉 )  is the largest 𝑑 of all 𝑈  or 𝑉 } 

2.4. Sure screening property 

Next, we establish the theoretical property of the proposed GIMCSIS. For feature screening, sure 
screening properties are essential and they were proposed by J. Fan and J. Lv [2]. After applying a 
feature screening procedure with a probability tending to 1, all of the important variables still survive. 
It is important to identify the conditions under which the sure screening property holds, i.e., 

𝑃 ℳ∗ ⊆ ℳ → 1        𝑎𝑠 𝑛 → ∞ 

where ℳ  is the final model after feature screening and ℳ∗ is the true model. 
Therefore, to explore the sure screening property of GIMCSIS, the following regularity 

conditions are assumed. 

(1) There are two positive constants 𝑐   and 𝑐  , such that ≤ 𝑝 ≤ , 0 ≤ 𝑤 ≤  and 0 ≤

𝑤 ≤ ; for 𝑟 = 1, … , 𝑅, 𝑗 = 1, … , 𝐽 , 𝑙 = 1, … , 𝑞, 𝑘 = 1, … , 𝑝, and 𝐽 = 𝑚𝑎𝑥 , 𝐽 , 𝐽 . 

(2) There are two constants 0c  and 0 < 𝜏 < , such that 

𝑚𝑖𝑛
, ∈( , )

𝐴𝑃𝐶 (𝑌, 𝑈 ), 𝐴𝑃𝐶 (𝑌, 𝑉 ) > 2𝑐𝑛 . 

(3) There are two positive constants 𝑐  and 𝑐 , such that 0 < 𝑐 ≤ 𝑃(𝛿∗ = 𝑟) ≤ 𝑐 < 1; for 𝑟 =

0,1, 𝑙 = 1, … , 𝑞. 

(4) For each 1 ≤ 𝑙 ≤ 𝑞, there are two constants 𝑐 ∗ > 0 and 0 < 𝜏 ∗ < , such that 
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𝑚𝑖𝑛 ∈ 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) >
3

2
𝑐 𝑛

∗  

where 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) = (𝑙𝑜𝑔 𝐽 ) ∑ ∑ {𝑃(𝛿∗ = 𝑟, 𝑈 = 𝑗) − 𝑃(𝛿∗ = 𝑟)𝑃(𝑈 = 𝑗)} / 𝑃(𝛿∗ =

𝑟)/𝑃(𝑈 = 𝑗). 

(5) There are two positive constants 𝑐   and 𝑐  , such that ̄ ≤ 𝑃 𝑌 = 𝑟, 𝑈 = 𝑢, 𝛿∗ = 1 ≤

̄  , where 𝑀 = 𝑘: 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) > 𝑐 ∗𝑛
∗
, 1 ≤ 𝑘 ≤ 𝐺1  , �̄� = 𝑚𝑎𝑥 𝑈  , 𝑟 =

1, … , 𝑅, and 𝑙 = 1, … , 𝑞. 
(6) 𝑅 = 𝑂 𝑛  and 𝐽 = 𝑂(𝑛 ), where 𝜉 ≥ 0, 𝜅 ≥ 0, 1 − 2𝜏 − 6𝜉 − 18𝜅 > 0, 1 − 2𝜏 − 18𝜅 > 0, 
1 − 2𝜏 − 10𝜉 − (18�̄� + 18)𝜅 > 0, and 𝜏 = 𝑚𝑎𝑥 𝜏 ∗. 

Conditions (1)–(5) are commonly used in the study of feature screening [2,7,10,11,23]. Condition (1) 
ensures that the proportion of each class of response variables and covariates is not too small or too 
large, i.e., that the class of variables is balanced. Condition (2) requires that the smallest real signal 
converges to zero at the 𝑛  rate at which the sample size reaches infinity. Condition (3) requires that 
the missing proportion be bounded. Condition (4) ensures the sure screening performance of the APC-
SIS in the first step of screening. Condition (5) ensures that the denominator of Eq (2.4) is not 0, and the 
such a condition can be satisfied when the magnitude of 𝑀  is small. Condition (6) requires that the 
divergence rate be much less than the growth rate of 𝑛. 
Theorem 1. (Sure screening property) Under Conditions (1)–(6), if 𝑙𝑜𝑔 𝑝 = 𝑂(𝑛 ), 𝑙𝑜𝑔 𝑞 = 𝑂 𝑛 , 
𝛼 < 1 − 2𝜏 − 6𝜉 − 18𝜅 , 𝛽 < 1 − 2𝜏 − 10𝜉 − (18�̄� + 18)𝜅  and 𝛼 + 𝛽 < 1 − 2𝜏 − 18𝜅 , such 
that 

𝑃 (𝑈, 𝑉) ⊆ (𝑈, 𝑉) ≥ 1 − 𝑂 𝑝𝑒𝑥𝑝 −𝑏 𝑛 + (𝜉 + 𝜅)𝑙𝑜𝑔𝑛  

−𝑂 𝑝𝑞𝑒𝑥𝑝(−𝑏 𝑛 + (𝜉 + 2𝜅)𝑙𝑜𝑔𝑛)  

−𝑂 𝑞𝑒𝑥𝑝 −𝑏 𝑛 ( ) + (𝜉 + (𝑚 + 1)𝜅)𝑙𝑜𝑔𝑛  

where 𝑏 , 𝑏  and 𝑏  are constants. Therefore, GIMCSIS has the sure screening property. 
Remark 1. To explore the feature screening of missing covariates in ultra-high dimensional data with 
group structuring, it is easier to make better use of the information of covariates missing at random. 
Inspired by L. Ni et al. [23], we propose group feature screening for ultrahigh-dimensional data with 
categorical covariates missing at random (GIMCSIS). GIMCSIS expands the scope of IMCSIS, and it 
further improves the performance of classification learning. Regarding the screening performance 
theory, compared to IMCSIS, GIMCSIS has a higher probability of screening important variables (see 
Theorem 1). Theorem 1 is also confirmed in Section 3. 

3. Simulation studies 

To verify the feature screening performance of GIMCSIS, we generated a series of simulation 
data for relevant experiments. Simulations 1 and 2 are compared with IMCSIS [23] from two 
perspectives: The binary response variable and the multiclass response variable. The computer 
configuration is as follows: CPU, Intel i5-3230M (2.6 GHz); memory, 16 GB; and operating system, 
Windows 10. The feature screening was implemented by using R version 4.2.2 programming, and the 
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RStudio interactive programming interface was used. 
The metrics used to evaluate the performance of feature screening include the following steps:  

Index Description 

MMS 

(minimum model size to 

include all active covariates) 

The position of the last active covariate among all active covariates is 

usually represented by the 5%, 25%, 50%, 75%, and 95% quantiles of the 

MMS obtained from multiple experiments, which is used to illustrate that 

when MMS is similar to the number of active covariates, the model results 

are better. 

CP 

(coverage probability) 

The proportion of active covariates covered in a certain interval accounted 

for all active covariates, and the interval was used to calculate the coverage 

probability in many studies with three strong and weak intervals 

[𝑛 𝑙𝑜𝑔(𝑛)⁄ ],2 ∙ [𝑛 𝑙𝑜𝑔(𝑛)⁄ ], 3 ∙ [𝑛 𝑙𝑜𝑔(𝑛)⁄ ]; also, the coverage probability 

under the three intervals was defined as CP1, CP2 and CP3 to illustrate the 

convergence performance of the model. 

CPa 

(all-coverage probability) 

The probability of all active variables in the interval 3 ∙ [𝑛 𝑙𝑜𝑔(𝑛)⁄ ] in 

multiple experiments. 

3.1. Simulation 1: Binary responses 

On the basis of complete covariates, 40% of the covariates were defined as partially observed 
covariates. A simple model in which all covariables are multiclass and the response variables are binary is 
defined. The settings for the response variables 𝑦 , latent variables 𝑧  and covariables 𝑥  are as follows: 

 Response variable 𝑦  

Balanced data 𝑝 = 𝑃(𝑦 = 1) = 𝑃(𝑦 = 2) = 1/2 

Unbalanced data 
𝑝 = 2 1 +

( )

( )
3𝑅 with 𝑚𝑎𝑥 𝑝 = 2 𝑚𝑖𝑛 𝑝  

 Latent variable 𝑧 , 𝑧 , ∼ 𝑁(𝜇 , 1), 1 ≤ 𝑘 ≤ 𝑝. 

𝑘 > 𝑑  𝜇 = 0 

𝑘 ≤ 𝑑  and𝑟 = 1 𝜇 = −0.5 (active covariate) 

𝑘 ≤ 𝑑  and𝑟 = 2 𝜇 = 0.5 (active covariate) 

 Covariable 𝑥  

𝑘 is odd 𝑥 , = 𝐼 𝑧 , > 𝑧( / ) + 1 

𝑘 is even 𝑥 , = 𝐼 𝑧 , > 𝑧( / ) + 1 

where 𝑑  is the size of the active covariables and the first to tenth covariates are active covariates. In 
the IMCSIS method, the indicator of the active covariate is 𝑑 = 10. In the GIMCSIS method, the 
number of variables in each group is 3, and the indicator of the active covariate is 𝑑 = 4. When 
𝜇 = −0.5  or 𝜇 = 0.5 , the 𝑘th  covariable is active. 𝑧( )  is the 𝛼th  standard normal 
distribution quantile, and it is used to discretize the covariates 𝑥 . 

Therefore, for a 𝑝-dimensional covariate, half of the covariates are categorical variables and the other 
half are categorical variables. The ratio of complete covariates to partial covariates is defined as 6:4; the 
first 60% of the covariates make up complete data, and the others constitute missing data. The random 
missing proportions 𝑚𝑝  were set to 10%, 25% and 40%, and the missing indicator variable 𝛿 ,   was 
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generated from the Bernoulli distribution 𝛿 , ~𝐵(1,1 − 𝑚𝑝). The dimensions of the covariates were set 
to 1000, the full covariates to 600, the partial covariates to 400, and the sample sizes to 100, 120, and 150, 
(see Table 1). 

Table 1. Results for binary response variables and multi-classification covariates. 

𝑚𝑝  Method CP1 CP2 CP3 CPa mms.5. mms.25. mms.50. mms.75. mms.95. 

n=100, P=1000, p=600, q=400, balanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.00  

 IMCSIS 0.85  0.90  0.90  0.04  55.90  73.25  99.00  119.25  140.05  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  5.55 

 IMCSIS 0.79  0.92  0.95  0.56  21.90  30.00  41.50  61.75  105.40  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.00  

 IMCSIS 0.85  0.90  0.90  0.04  55.90  73.25  99.00  119.25  140.05  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  6.10  

 IMCSIS 0.72  0.87  0.92  0.36  25.45  41.25  63.00  87.50  156.40  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.00  

 IMCSIS 0.85  0.90  0.90  0.04  55.90  73.25  99.00  119.25  140.05  

Step 2  GIMCSIS 0.99  1.00  1.00  1.00  4.00  4.00  4.00  5.00  13.65  

 IMCSIS 0.62  0.78  0.85  0.10  44.80  61.00  102.50  136.00  187.75  

n=120, P=1000, p=600, q=400, balanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.94  1.00  1.00  1.00  13.45  17.00  19.50  22.00  27.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  5.00  6.00  7.00  

 IMCSIS 0.89  0.98  0.99  0.94  15.45  18.25  24.00  29.00  52.30  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.94  1.00  1.00  1.00  13.45  17.00  19.50  22.00  27.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.75  8.55  

 IMCSIS 0.80  0.94  0.98  0.80  18.90  27.25  35.00  49.75  81.65  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.94  1.00  1.00  1.00  13.45  17.00  19.50  22.00  27.00  

Step 2  GIMCSIS 0.97  0.99  0.99  0.96  4.00  4.00  6.00  11.75  29.05  

 IMCSIS 0.68  0.86  0.92  0.34  33.90  43.50  72.00  103.00  151.50  

n=150, P=1000, p=600, q=400, balanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 1.00  1.00  1.00  1.00  10.00  10.00  10.50  11.00  12.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.99  1.00  1.00  1.00  12.00  14.00  15.50  18.00  23.55  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 1.00  1.00  1.00  1.00  10.00  10.00  10.50  11.00  12.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.55  

 IMCSIS 0.93  0.99  1.00  1.00  13.45  17.00  23.00  30.00  46.20  

Continued on next page 
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𝑚𝑝  Method CP1 CP2 CP3 CPa mms.5. mms.25. mms.50. mms.75. mms.95. 

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 1.00  1.00  1.00  1.00  10.00  10.00  10.50  11.00  12.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  9.00  

 IMCSIS 0.84  0.95  0.98  0.78  18.45  25.00  34.50  57.25  124.90  

n=100, P=1000, p=600, q=400, unbalanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.77  0.85  0.88  0.00  63.00  84.50  120.00  159.75  181.55  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  5.00  6.00  8.00  

 IMCSIS 0.71  0.89  0.94  0.52  22.90  40.25  47.00  66.00  82.50  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.77  0.85  0.88  0.00  63.00  84.50  120.00  159.75  181.55  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.65  0.82  0.89  0.28  29.35  46.00  68.50  94.50  210.25  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.77  0.85  0.88  0.00  63.00  84.50  120.00  159.75  181.55  

Step 2  GIMCSIS 0.94  0.98  1.00  1.00  5.00  6.25  9.00  15.50  33.20  

 IMCSIS 0.53  0.75  0.83  0.10  40.90  65.75  96.00  157.75  245.85  

n=120, P=1000, p=600, q=400, unbalanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.99  1.00  1.00  1.00  11.00  13.00  14.00  15.75  19.55  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  5.00  6.00  8.00  

 IMCSIS 0.82  0.97  0.99  0.94  20.00  23.00  28.50  36.50  62.45  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.99  1.00  1.00  1.00  11.00  13.00  14.00  15.75  19.55  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  11.10  

 IMCSIS 0.74  0.92  0.97  0.74  21.45  29.00  38.50  54.50  77.50  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.99  1.00  1.00  1.00  11.00  13.00  14.00  15.75  19.55  

Step 2  GIMCSIS 0.96  0.98  0.99  0.96  4.00  5.25  8.00  17.00  38.65  

 IMCSIS 0.61  0.81  0.89  0.24  37.70  55.50  72.00  94.00  206.60  

n=150, P=1000, p=600, q=400, unbalanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.55  

 IMCSIS 1.00  1.00  1.00  1.00  10.00  10.00  10.00  11.00  12.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.92  0.99  1.00  0.98  17.00  20.00  24.50  33.25  50.55  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.55  

 IMCSIS 1.00  1.00  1.00  1.00  10.00  10.00  10.00  11.00  12.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.86  0.97  0.99  0.86  15.45  22.25  31.50  44.25  148.40  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.55  

 IMCSIS 1.00  1.00  1.00  1.00  10.00  10.00  10.00  11.00  12.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.00  

 IMCSIS 0.79  0.90  0.94  0.52  23.00  40.00  61.00  101.75  261.25  
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Table 1 reports the values of each index in 50 experiments simulated with a normal distribution. The 
active covariate size based on the GIMCSIS model is 4, and the active covariate size based on the IMCSIS 
model is 10. In the first stage, regardless of the missing proportions, GIMCSIS outperforms IMCSIS. In 
the second stage, the covariate is affected by random missing data, with the following results: 

(1) Comparison of different sample sizes: As the sample size increases, the minimum model size 
(MMS) of GIMCSIS approaches the active covariate size 𝑑 = 4, and that of IMCSIS approaches the 
active covariate size 𝑑 = 10 . However, GIMCSIS tends to converge faster than the set of active 
covariates, and the quantile of the MMS is almost equal to 4 when 𝑛 = 150, while the quantile of the 
MMS for IMCSIS is significantly larger than the size of the active covariates. In both models, the four 
indicators covering the probability tend to be equal to 1. However, the coverage probability of the IMCSIS 
model is much weaker than that of the GIMCSIS model. GIMCSIS can achieve a better coverage 
probability when 𝑛 = 100, while IMCSIS can achieve a better coverage probability when 𝑛 = 150. 

(2) Comparison of different response variables: The structure of the response variables considers both 
balanced and unbalanced data and is used to compare the anti-interference capacities of the methods. In 
general, the performance of finite samples under balanced data is better than that under unbalanced data. 
Among them, GIMCSIS with unbalanced data can achieve excellent MMS and coverage probability under 
the condition of 𝑛 = 50, while IMCSIS has better screening performance under the condition of 𝑛 = 150. 
Furthermore, GIMCSIS has stronger anti-interference capacities than IMCSIS. 

(3) Comparison of different missing proportions: As the missing data proportion increases, the 
MMS quantiles of both methods decrease. The MMS variation in IMCSIS is larger than that in GIMCSIS. 
Moreover, the coverage probability of IMCSIS decreases significantly, while the coverage probability of 
GIMCSIS remains as 1. The above results indicate that the performance of IMCSIS decreases rapidly, 
while that of GIMCSIS is relatively stable when the missing data proportion continues to increase. 

In summary, GIMCSIS has better ability to screen active covariates than IMCSIS in ultrahigh-
dimensional data with binary response variables and covariates missing at random. The screening 
performance of IMCSIS decreases significantly in the second stage of screening, and the smaller the 
sample size, the worse the screening performance. The performance of GIMCSIS in the second stage 
of screening is similar to that in the first stage of screening, and it maintains a high coverage probability. 
For unbalanced data, the performance of both GIMCSIS and IMCSIS methods decreases, but 
GIMCSIS is significantly robust. 

3.2. Simulation 2: Multiclass responses 

Consider a complex model with more classes of covariates and four classes of response variables. 
Two 𝑦  distributions are considered the same as those in Simulation 1. 

The first to the 11th covariates are active covariates. In the IMCSIS method, the indicator of 
the active covariate is 𝑑 = 11; in the GIMCSIS method, when the number of variables in each 
group is 3, the indicator of the active covariate is 𝑑 = 4, which is the same as the Simulation 1 
screening target, but the composition of group variables is different. In the case of 𝑦 , Simulation 2 
for the generation of latent variable data and active covariates is the same as Simulation 1. 

Therefore, the 𝑝-dimensional covariates are evenly divided into two and five classes, respectively. 
The ratio of complete covariates to partial covariates is defined as 6:4; the first 60% of the covariates 
make up complete data, and the others constitute partial data. The random missing proportions 𝑚𝑝 
are set to 10%, 25% and 40%, and the missing indicator variable 𝛿 ,  is generated from the Bernoulli 
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distribution 𝛿 , ~𝐵(1,1 − 𝑚𝑝). The number of dimensions of the covariate are considered to be 1000 
dimensions, where the full covariate dimension is 600 dimensions, the partial covariate dimension is 
400 dimensions, and the sample numbers are 50, 80 and 100, (see Table 2). 

Table 2. Results for multivariate response variables and multi-classification covariates. 

𝑚𝑝  Method CP1 CP2 CP3 CPa mms.5. mms.25. mms.50. mms.75. mms.95. 

n=50, P=1000, p=600, q=400, balanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.82  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.55  

 IMCSIS 0.65  0.87  0.94  0.60  13.00  17.25  26.00  35.00  64.55  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.82  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  7.55  

 IMCSIS 0.56  0.76  0.86  0.24  14.35  31.00  42.00  63.00  211.50  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.82  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 0.78  0.90  0.91  0.66  4.00  8.25  12.00  46.00  103.50  

 IMCSIS 0.46  0.63  0.72  0.04  32.45  54.25  86.50  151.00  259.10  

n=80, P=1000, p=600, q=400, balanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 1.00  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.98  1.00  1.00  1.00  11.00  11.00  12.00  13.00  16.55  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 1.00  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.93  0.99  1.00  1.00  11.00  11.25  13.00  19.00  27.00  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 1.00  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  5.00  

 IMCSIS 0.85  0.98  0.99  0.92  11.00  14.00  21.00  25.00  40.55  

n=100, P=1000, p=600, q=400, balanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 1.00  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 1.00  1.00  1.00  1.00  11.00  11.00  11.00  12.00  12.00  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 1.00  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.99  1.00  1.00  1.00  11.00  11.00  11.00  12.00  15.55  

Continued on next page 
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𝑚𝑝  Method CP1 CP2 CP3 CPa mms.5. mms.25. mms.50. mms.75. mms.95. 

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 1.00  1.00  1.00  1.00  11.00  11.00  11.00  11.00  11.00  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  4.00  4.00  

 IMCSIS 0.99  1.00  1.00  1.00  11.00  12.00  13.00  15.00  20.55  

n=50, P=1000, p=600, q=400, unbalanced 

10% 

Step 1  GIMCSIS 0.88  1.00  1.00  1.00  5.45  7.00  9.00  11.00  14.55  

 IMCSIS 0.35  0.53  0.60  0.00  218.90  277.25  360.00  411.50  455.75  

Step 2  GIMCSIS 0.87  0.99  1.00  1.00  5.00  7.00  9.50  12.75  17.55  

 IMCSIS 0.34  0.41  0.47  0.00  177.75  226.50  268.00  348.75  387.95  

25% 

Step1  GIMCSIS 0.88  1.00  1.00  1.00  5.45  7.00  9.00  11.00  14.55  

 IMCSIS 0.35  0.53  0.60  0.00  218.90  277.25  360.00  411.50  455.75  

Step2  GIMCSIS 0.63  0.87  0.93  0.78  7.45  12.00  17.00  25.00  82.65  

 IMCSIS 0.29  0.36  0.42  0.00  187.00  248.00  286.00  323.50  379.85  

40% 

Step 1  GIMCSIS 0.88  1.00  1.00  1.00  5.45  7.00  9.00  11.00  14.55  

 IMCSIS 0.35  0.53  0.60  0.00  218.90  277.25  360.00  411.50  455.75  

Step 2  GIMCSIS 0.13  0.28  0.49  0.02  34.00  50.00  75.00  141.00  246.80  

 IMCSIS 0.26  0.31  0.36  0.00  153.00  254.25  300.50  359.75  394.10  

n=80, P=1000, p=600, q=400, unbalanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  5.00  5.00  7.00  

 IMCSIS 0.64  0.81  0.89  0.08  37.90  63.25  86.00  111.75  183.30  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.00  

 IMCSIS 0.52  0.68  0.75  0.02  44.90  61.25  84.00  138.75  227.05  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  5.00  5.00  7.00  

 IMCSIS 0.64  0.81  0.89  0.08  37.90  63.25  86.00  111.75  183.30  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  5.00  7.00  11.55  

 IMCSIS 0.44  0.61  0.72  0.02  49.25  90.50  147.00  218.00  321.05  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  5.00  5.00  7.00  

 IMCSIS 0.64  0.81  0.89  0.08  37.90  63.25  86.00  111.75  183.30  

Step 2  GIMCSIS 0.84  0.94  0.98  0.92  7.00  9.00  11.00  26.00  44.10  

 IMCSIS 0.38  0.50  0.60  0.00  90.45  123.50  192.50  277.25  353.35  

n=100, P=1000, p=600, q=400, unbalanced 

10% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.75  0.82  0.88  0.02  59.15  79.00  100.50  126.75  186.75  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.68  0.85  0.93  0.36  27.45  42.00  53.50  65.00  111.10  

25% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.75  0.82  0.88  0.02  59.15  79.00  100.50  126.75  186.75  

Step 2  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  8.55  

 IMCSIS 0.59  0.77  0.86  0.14  38.80  59.25  83.50  126.00  215.95  

40% 

Step 1  GIMCSIS 1.00  1.00  1.00  1.00  4.00  4.00  4.00  5.00  6.55  

 IMCSIS 0.75  0.82  0.88  0.02  59.15  79.00  100.50  126.75  186.75  

Step 2  GIMCSIS 0.98  1.00  1.00  1.00  4.00  5.00  7.00  9.00  25.10  

 IMCSIS 0.49  0.66  0.77  0.02  59.95  85.75  137.50  198.75  328.85  
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Table 2 reports the values of each index in 50 experiments simulated with a normal distribution. The 
active covariate size based on the GIMCSIS model is 4, and the active covariate size based on the IMCSIS 
model is 11. In the first stage, GIMCSIS outperforms IMCSIS, regardless of the missing proportions. In 
the second stage, covariates are affected by random missing data, with the following results: 

(1) Comparison of different sample sizes: As the sample size increases, the MMS of GIMCSIS 
approaches the active covariate size 𝑑 = 4 , and the MMS of IMCSIS approaches the active 
covariate size 𝑑 = 11. However, GIMCSIS tends to converge faster than the set of active covariates, 
and the quantile of the MMS is almost equal to 4 when 𝑛 = 100, while the quantile of the MMS in 
IMCSIS is significantly larger than the size of the active covariates. In contrast to the simulation results 
for binary response variables, the coverage probability of IMCSIS is much lower than that of binary 
response variables when the four indices all converge to 1, and the active variables that were screened 
out have an obvious trailing phenomenon. Although GIMCSIS also exhibited a similar phenomenon, 
the four coverage probability indicators are almost 1 when 𝑛 = 80. 

(2) Comparison of different response variables: The structure of the response variables considers both 
balanced and unbalanced data and is used to compare the anti-interference capacities of the methods. In 
general, the performance of finite samples under balanced data is better than that under unbalanced data. 
Among them, GIMCSIS of unbalanced data can achieve a good MMS and coverage probability when 𝑛 
= 80, while the coverage probability of IMCSIS is far from the qualified requirement even when 𝑛 = 100. 
Furthermore, GIMCSIS has stronger anti-interference capacities than IMCSIS. 

(3) Comparison of different missing proportions: As the missing data proportion increases, the 
quantile of the MMS for both methods decreases. The amplitude of the MMS variation in the IMCSIS 
dataset is larger than that in the GIMCSIS dataset, and the 75% and 95% quantiles of the IMCSIS 
dataset are too far from the range of active covariates. Moreover, the coverage probability of IMCSIS 
decreases significantly, while the coverage probability of GIMCSIS remains as 1. The above results 
indicate that the performance of IMCSIS decreases rapidly, while that of GIMCSIS is relatively stable 
when the missing data proportion continues to increase. Therefore, GIMCSIS can obtain stable 
screening results more effectively. 

(4) Comparison with binary response variables: In Simulation 1, although the performance of 
IMCSIS is not as good as that of GIMCSIS, it can achieve better performance when there is a large 
sample size. However, in Simulation 2, the response variable is only increased from binary to four 
categories, and IMCSIS cannot achieve the screening goal. This shows that GIMCSIS has unique 
advantages in the case of more general multiple response variables. 

In summary, GIMCSIS also exhibits better screening performance than IMCSIS under the 
conditions of ultrahigh-dimensional data with a multivariate response and covariates missing at 
random. The screening performance of GIMCSIS remains robust. Compared with IMCSIS, GIMCSIS 
has advantages in terms of a small sample size, an unbalanced response and a high deletion rate. 

4. Empirical analysis 

Section 3 illustrates the performance of GIMCSIS on simulated data. In practical application, 
whether important variables obtained via GIMCSIS can play a role in data analysis is an important 
issue that needs further verification. In this section, we describe the application of GIMCSIS to the 
predata analysis process of imbalanced data classification to test whether the important variables 
obtained can improve the effectiveness of classification problems. 
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The empirical data were obtained from the Arizona State University feature selection database 
(http://featureselection.asu.edu/), which contains colon cancer data consisting of 62 instances and 2000 
covariates. Forty samples were negative for colon cancer, and the other 22 samples were positive for 
colon cancer, for an imbalance of 1.81:1. The 2000 covariates were based on the expression levels, 
and 2000 out of the 6500 genes were differentially expressed. Thus, the response is binary, and the 
covariates are continuous. There are group correlations between gene expression. 

To evaluate the effectiveness of the various feature screening methods for classification problems, 
the average accuracy rate of the evaluation indicators was calculated via fivefold cross-validation. First, 
62 samples were randomly divided into two groups according to the ratio of 1:4. Eighty percent of the 
samples were used as training data, and the rest were used as test data. The sample size of the training 
data was 50, the sample size of the test data was 12, and the covariate dimension of both datasets was 
2000. The feature screening methods used were GIMCSIS and IMCSIS, where the number of active 
covariables in the univariate feature screening was 𝑑 = 22 and the number of active covariables in 
the group variable feature screening was 𝑑 = 8 . Considering the effect of covariates on 
classification, we chose three classification models: Support vector machine (SVM) [24], decision tree 
(DT) [25] and k-nearest neighbor (KNN) [26]. 

The evaluation indices for the classification effect are derived from the confusion matrix, and the 
details are as follows. The confusion matrix is as below. 

  Actual 

  Positive Negative Total 

Prediction Positive TP FP TP+FP 

Negative FN TN FN+TN 

Total TP+FN FP+TN TP+FP+FN+TN 

where TP is the true positive, FN is the false negative, FP is the false positive and TN is the true 
negative. Table 3 shows all of the evaluation indices based on the confusion matrix. 

Table 3. Description of evaluation index. 

Index Description 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

𝐺 − 𝑚𝑒𝑎𝑛 𝐺 − 𝑚𝑒𝑎𝑛 = 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Table 4 reports the classification performance of the various feature screening methods on the 
training and test data. Overall, the classification effect of GIMCSIS was better than that of IMCSIS, 
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with outstanding performance in terms of the recall, G-mean and F-measure. The classification method 
with the best classification effect was KNN. The average accuracy on the training set based on 
GIMCSIS was greater than 98%, and the average accuracy on the test set was greater than 88%. 
According to the test data, the G-mean and F-measure based on GIMCSIS were superior to those based 
on IMCSIS. Regarding the SVM, the average evaluation index for the GIMCSIS dataset was 1.64% 
greater than that for the IMCSIS dataset on the training data, and the average evaluation index for the 
GIMCSIS dataset was 5.84% greater than that for the IMCSIS dataset on the test data, indicating that 
the classification performance of the GIMCSIS dataset was better than that of the IMCSIS dataset. For 
DT, the average evaluation index for the GIMCSIS dataset was only 0.22% greater than that for the 
IMCSIS dataset on the training data, but the average evaluation index for the GIMCSIS dataset was 
9.55% greater than that for the IMCSIS dataset on the test data, indicating that IMCSIS exacerbated 
the overfitting phenomenon. For KNN, the average evaluation index for GIMCSIS was 3.14% greater 
than that for IMCSIS on the training data, and the average evaluation index for GIMCSIS was 1.65% 
greater than that for IMCSIS on the test data, indicating that GIMCSIS affected the underfitting 
phenomenon of the KNN model on these data to a certain extent. 

Table 4. Lung data analysis results. 

 
Screening 

method 

Response 

Accuracy Precision Recall Specificity G-mean F-measure 

Classification 

method 
SVM      

 

Train data 
IMCSIS 0.8961  0.9339  0.9025  0.8843  0.8932  0.9178  

GIMCSIS 0.9158  0.9385  0.9305  0.8885  0.9091  0.9344  

Test data 
IMCSIS 0.8048  0.8883  0.7850  0.8667  0.8168  0.8217  

GIMCSIS 0.8690  0.9050  0.8600  0.8917  0.8682  0.8746  

Classification 

method 
DT      

 

Train data 
IMCSIS 0.8670 0.8981  0.9111  0.7817  0.8339  0.8977  

GIMCSIS 0.8629 0.8954  0.8929  0.8057  0.8466  0.8931  

Test data 
IMCSIS 0.7282 0.8033  0.7770  0.6600  0.6956  0.7759  

GIMCSIS 0.7910 0.8583  0.8270  0.7600  0.7821  0.8367  

Classification 

method 
KNN      

 

Train data 
IMCSIS 0.9515  0.9691  0.9558  0.9418  0.9484  0.9621  

GIMCSIS 0.9878  0.9818  1.0000  0.9654  0.9824  0.9908  

Test data 
IMCSIS 0.8885  0.8992  0.9214  0.8300  0.8735  0.9097  

GIMCSIS 0.8872  0.9278  0.9083  0.8800  0.8884  0.9099  

5. Conclusions 

The existing group feature screening methods mainly focus on continuous data, discrete response 
variables, discrete covariates, and other different cases, but feature screening with covariates missing 
at random has not been discussed. Considering the missing conditions of ultrahigh-dimensional data, 
this paper extends two-stage feature screening under a random missing mechanism to ultrahigh-
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dimensional data with a group structure and it presents a two-stage feature screening method with 
covariates missing at random. In the first stage, we use group feature screening based on adjusted 
Pearson chi-square statistics to find fully observed covariates that are dependent on missing indicator 
variables. In the second stage, the information of partially observed covariates is replaced by the fully 
observed covariates with dependence in the first stage so that the partially observed covariates with 
dependence on response variables can be found. Finally, the important features are selected by 
comparing the dependence between the fully observed covariates and the response variables. 
Compared with existing methods, GIMCSIS can efficiently extract important variables from ultrahigh-
dimensional group data with covariates missing at random. In practice, the variables selected by 
GIMCSIS can improve the classification performance for imbalanced data, which plays an important 
role in expanding the path of imbalanced data analysis. 

Specifically, GIMCSIS does not require model assumptions and satisfies certain screening 
performance requirements. According to our numerical simulation, the finite sample performance of 
GIMCSIS is better than that of IMCSIS, which is consistent with both the binary and multivariate 
response variables. The computational complexity of GIMCSIS is similar to that of IMCSIS, and the 
computer simulation times are similar for the same sample sizes. In the empirical analysis, we apply 
the GIMCSIS method to the classification model to improve the classification of ultrahigh-dimensional 
data with randomly missing data. The results show that GIMCSIS can identify more important 
covariates, and that GIMCSIS has better classification performance than IMCSIS. 

Under different missing data mechanisms, the group feature screening of ultrahigh-dimensional 
data needs to be discussed. In addition, screening group features in the absence of both response 
variables and covariates is one of the more challenging problems. In terms of empirical research, 
discretizing continuous data to meet the needs of discretization feature screening is the key to 
popularizing the group feature screening of ultrahigh-dimensional discrete data. 

Use of AI tools declaration  

We have not used Artificial Intelligence (AI) tools in the creation of this article. 

Acknowledgments 

The authors are grateful to the editor and anonymous referee for their constructive comments that 
led to significant improvements in the paper. 

The National Natural Science Foundation of China [grant number 71963008] funded this research. 

Conflict of interest 

The authors declare that there is no conflict of interest in the publication of this paper. 

References 

1. J. Q. Fan, R. Samwort, Y. C. Wu, Ultrahigh dimensional feature selection: Beyond the linear 
model, J. Mach. Learn. Res., 10 (2009), 2013–2038. https://doi.org/10.1145/1577069.1755853 



4050 

AIMS Mathematics  Volume 9, Issue 2, 4032–4056. 

2. J. Fan, J. Lv, Sure independence screening for ultrahigh dimensional feature space, J. Roy. Stat. 
Soc. B, 70 (2008), 849–911. https://doi.org/10.1111/j.1467-9868.2008.00674.x 

3. P. Hall, H. Miller, Using generalized correlation to effect variable selection in very high dimensional 
problems, J. Comput. Graph. Stat., 18 (2009), 533–550. https://doi.org/10.1198/jcgs.2009.08041 

4. G. Li, H. Peng, J. Zhang, L. Zhu, Robust rank correlation based screening, Ann. Statist., 40 (2012), 
1846–1877. https://doi.org/10.1214/12-AOS1024 

5. X. Y. Wang, C. L. Leng, High dimensional ordinary least squares projection for screening 
variables, J. Roy. Stat. Soc. B, 78 (2016), 589–611. https://doi.org/10.1111/rssb.12127 

6. L. P. Zhu, L. X. Li, R. Z. Li, L. X. Zhu, Model-free feature screening for ultrahigh-dimensional 
data, J. Am. Stat. Assoc., 106 (2011), 1464–1475. https://doi.org/10.1198/jasa.2011.tm10563 

7. R. Li, W. Zhong, L. Zhu, Feature screening via distance correlation learning, J. Am. Stat. Assoc., 
107 (2012), 1129–1139. https://doi.org/10.1080/01621459.2012.695654 

8. X. Shao, J. Zhang, Martingale difference correlation and its use in high-dimensional variable 
screening, J. Am. Stat. Assoc., 109 (2014), 1302–1318. 
https://doi.org/10.1080/01621459.2014.887012 

9. Q. Mai, H. Zou, The Kolmogorov filter for variable screening in high-dimensional binary 
classification, Biometrika, 100 (2013), 229–234. https://doi.org/10.1093/biomet/ass062 

10. D. Huang, R. Li, H. Wang, Feature screening for ultrahigh dimensional categorical data with 
applications, J. Bus. Econ. Stat., 32 (2014), 237–244. https://doi.org/10.1080/07350015.2013.863158 

11. L. Ni, F. Fang, F. Wan, Adjusted pearson chi-square feature screening for multi-classification with 
ultrahigh dimensional data, Metrika, 80 (2017), 805–828. https://doi.org/10.1007/s00184-017-
0629-9 

12. P. Lai, M. Y. Wang, F. L. Song, Y. Q. Zhou, Feature screening for ultrahigh-dimensional binary 
classification via linear projection, AIMS Math., 8 (2023), 14270–14287. 
https://doi.org/10.3934/math.2023730 

13. W. C. Song, J. Xie, Group feature screening via the F statistic, Commun. Stat. Simul. C., 51 (2022), 
1921–1931. https://doi.org/10.1080/03610918.2019.1691223 

14. D. Qiu, J. Ahn, Grouped variable screening for ultra-high dimensional data for linear model, 
Comput. Stat. Data Anal., 144 (2020), 106894. https://doi.org/10.1016/j.csda.2019.106894 

15. H. J. He, G. M. Deng, Grouped feature screening for ultra-high dimensional data for the classification 
model, J. Stat. Comput. Simul., 92 (2022), 974–997. https://doi.org/10.1080/00949655.2021.1981901 

16. Z. Z. Wang, G. M. Deng, J. Q. Yu, Group feature screening based on information gain ratio for 
ultrahigh-dimensional data, J. Math., 2022, 1600986. https://doi.org/10.1155/2022/1600986 

17. Z. Z. Wang, G. M. Deng, H. Y. Xu, Group feature screening based on Gini impurity for ultrahigh-
dimensional multi-classification, AIMS Math., 8 (2023), 4342–4362. 
https://doi.org/10.3934/math.2023216 

18. Y. L. Sang, X. Dang, Grouped feature screening for ultrahigh-dimensional classification via Gini 
distance correlation, 2023. https://doi.org/10.48550/arXiv.2304.08605 

19. P. Lai, Y. M. Liu, Z. Liu, Y. Wan, Model free feature screening for ultrahigh dimensional data with 
responses missing at random, Comput. Stat. Data Anal., 105 (2017), 201–216. 
https://doi.org/10.1016/j.csda.2016.08.008 

20. Q. H. Wang, Y. J. Li, How to make model‐free feature screening approaches for full data 
applicable to the case of missing response? Scand. J. Stat., 45 (2018), 324–346. 
https://doi.org/10.1111/sjos.12290 
 



4051 

AIMS Mathematics  Volume 9, Issue 2, 4032–4056. 

21. X. X. Li, N. S. Tang, J. H. Xie, X. D. Yan, A nonparametric feature screening method for ultrahigh-
dimensional missing response, Comput. Stat. Data Anal., 142 (2020), 106828. 
https://doi.org/10.1016/j.csda.2019.106828 

22. L. Y. Zou, Y. Liu, Z. H. Zhang, Adjusted feature screening for ultra-high dimensional missing 
response, J. Stat. Comput. Simul., 2023. https://doi.org/10.1080/00949655.2023.2256926  

23. L. Ni, F. Fang, J. Shao, Feature screening for ultrahigh dimensional categorical data with 
covariates missing at random, Comput. Data Anal., 142 (2020), 106824. 
https://doi.org/10.1016/j.csda.2019.106824 

24. J. Suykens, J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett., 
9 (1999), 293–300. https://doi.org/10.1023/A:1018628609742 

25. B. Lantz, Machine learning with R, 2 Eds., Packt Publishing, 2015. 
26. R. J. Samworth, Optimal weighted nearest neighbour classifiers, Ann. Stat., 40 (2012), 2733–2763. 

Available from: https://www.jstor.org/stable/41806553. 

Supplementary  

Lemma 1. Similar to the derivation of Lemma 1 in [23], for the categorical response 𝑌  and the 
categorical and fully observed covariate 𝑈 , under Condition (1), we have 

𝑃 𝐴𝑃𝐶 (𝑌, 𝑈 ) − 𝐴𝑃𝐶 (𝑌, 𝑈 ) > 𝜀 ≤ 𝑂(𝑅𝐽 ) 𝑒𝑥𝑝 −𝑒     (S1) 

where 𝑒  is a constant. 
Corollary 1. For the missing indicator variable 𝛿∗ and the fully observed discrete covariate 𝑈 , under 
Conditions (1) and (3), we have 

𝑃 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) − 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) > 𝜀 ≤ 𝑂(𝐽 ) 𝑒𝑥𝑝 −𝑒      (S2) 

where 𝑒  is a constant. 
Lemma 2. Under Conditions (1), (3), (4) and (5), we have the following two inequalities  

𝑃 𝑀 ⊆ 𝑀 ≥ 1 − 𝑂(𝐺1 ∙ 𝐽 ) 𝑒𝑥𝑝 −𝑒
∗

      (S3) 

𝑃 𝑀 ⊆ 𝑀 ≥ 1 − 𝑂(𝐺1 ∙ 𝐽 ) 𝑒𝑥𝑝 −𝑒
∗

      (S4) 

where 𝑒  is a positive constant. 

Proof. 𝑀  and 𝑀  have been defined in Section 2.1 and Condition (5) respectively: 

𝛭 = 𝑘: 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) > 𝑐 ∗𝑛
∗
, 1 ≤ 𝑘 ≤ 𝐺1  

𝑀 = 𝑘: 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) > 𝑐 ∗𝑛
∗
, 1 ≤ 𝑘 ≤ 𝐺1 . 
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Under Conditions (1), (3) and (4), it is easy to obtain the following: 

𝑃 𝑀 ⊆ 𝑀 ≥ 𝑃 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) − 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) ≤
1

2
𝑐 ∗𝑛

∗
, ∀𝑈 ∈ 𝑀  

≥ 𝑃 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) − 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) ≤
1

2
𝑐 ∗𝑛

∗
, 1 ≤ 𝑘 ≤ 𝐺1  

≥ 1 − 𝑃 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) − 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) >
1

2
𝑐 ∗𝑛

∗
 

≥ 1 − 𝑂(𝐺1 ∙ 𝐽 ) 𝑒𝑥𝑝 −𝑐
𝑛

∗

𝐽
 

𝑃 𝑀 ⊆ 𝑀 = 𝑃 𝑀 ⊇ 𝑀  

≥ 𝑃 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) − 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) ≤
1

2
𝑐 ∗𝑛

∗
, ∀𝑈 ∈ 𝑀  

≥ 𝑃 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) − 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) ≤
1

2
𝑐 ∗𝑛

∗
, 1 ≤ 𝑘 ≤ 𝐺1  

≥ 1 − 𝑃 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) − 𝐴𝑃𝐶 (𝛿∗, 𝑈 ) >
1

2
𝑐 ∗𝑛

∗
 

≥ 1 − 𝑂(𝐺1 ∙ 𝐽 ) 𝑒𝑥𝑝 −𝑐
𝑛

∗

𝐽
. 

Lemma 3. For the discrete response variable 𝑌  and the random missing covariate 𝑉  , under 
Conditions (1), (3), (4) and (5), we have 

𝑃 �̂� − 𝑝 > 𝑡 ≤ 𝑂(𝐺1 ∙ 𝐽 ) 𝑒𝑥𝑝 −𝑒
∗

+ 𝑂(𝐽 ̄ ) 𝑒𝑥𝑝 −𝑒 ̄   (S5) 

where 𝑒  and 𝑒  are positive constants. 
Proof. Section 2.2 gives the joint probability of group data with randomly missing data: 

�̂� =
1

𝑛

∑ 𝐼 𝑦 = 𝑟, 𝑢 = 𝑢 ∑ 𝐼 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , 𝑦 = 𝑟, 𝑢 = 𝑢, 𝛿 ,
∗ = 1

∑ 𝐼 𝑦 = 𝑟, 𝑢 = 𝑢, 𝛿 ,
∗ = 1

. 

Then it is easy to get 

𝑃 �̂� − 𝑝 > 𝑡 ≤ 𝑃 �̂� − 𝑝 > 𝑡 𝑀 ⊆ 𝑀 ⊆ 𝑀  

+𝑃 𝑀 ⊄ 𝑀 + 𝑃 𝑀 ⊄ 𝑀 . 

In Lemma 2, neither of the last two terms of the above formula is greater than 
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𝑂(𝐺1 ∙ 𝐽 ) 𝑒𝑥𝑝 −𝑒
∗

，so we just have to worry about the first inequality. Before we do that, 

for ease of representation, we give the following notation: 

Let 𝜙 , = 𝑃 𝑌 = 𝑟, 𝑈 = 𝑢 ，𝜑 , = 𝑃 𝑌 = 𝑟, 𝑈 = 𝑢, 𝛿∗ = 1 ，and 𝛾 , , =

𝑃 𝑉 = 𝑗 , … , 𝑉 = 𝑗 , 𝑌 = 𝑟, 𝑈 = 𝑢, 𝛿∗ = 1 . 

The corresponding estimators are as follows: 

𝜙 , = 𝑛 𝐼 𝑦 = 𝑟, 𝑢 = 𝑢  

𝜑 , = 𝑛 𝐼 𝑦 = 𝑟, 𝑢 = 𝑢, 𝛿∗ = 1  

𝛾 , , = 𝑛 ∑ 𝐼 𝑣 = 𝑗 , … , 𝑣 = 𝑗 , 𝑦 = 𝑟, 𝑢 = 𝑢, 𝛿 ,
∗ = 1 . 

Because 𝑀 ⊆ 𝑀 ⊆ 𝑀 ，we have 

�̂� − �̄� =
𝜙 , 𝛾 , ,

𝜑 ,
−

𝜙 , 𝛾 , ,

𝜑 ,
 

=
𝛾 , ,

𝜑 ,
𝜙 , − 𝜙 , + 𝜙 , 𝛾 , ,

1

𝜑 ,
−

1

𝜑 ,
+

𝜙 ,

𝜑 ,
𝛾 , , − 𝛾 , ,  

≤ 𝜙 , − 𝜙 , +
1

𝜑 ,
−

1

𝜑 ,
+

2𝑅𝐽 ̄

𝑒
𝛾 , , − 𝛾 , ,  

=: 𝐼 + 𝐼 + 𝐼 . 

For ease of writing, the following formula ignores the conditional probability, such that 𝑃 (⋅) is used 

instead of 𝑃 ⋅|𝑀 ⊆ 𝑀 ⊆ 𝑀 ; hence 

𝑃 �̂� − 𝑝 > 𝑡 ≤ 𝑃 (𝐼 > 𝑡) + 𝑃 (𝐼 > 𝑡) + 𝑃 (𝐼 > 𝑡). 

Considering 𝐼 ， 

𝑃 (𝐼 > 𝑡) ≤ 𝑃 𝜙 , − 𝜙 , > 𝑡  

≤ 𝑃 𝜙 , − 𝜙 , >
𝑡

3𝐽 ̄
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≤ 2𝐽 ̄ 𝑒𝑥𝑝

⎩
⎨

⎧

−
6𝑛

𝑡
3𝐽 ̄

3 + 4
𝑡

3𝐽 ̄
⎭
⎬

⎫

. 

Similarly， 

𝑃 (𝐼 > 𝑡) ≤ 2𝐽 ̄ 𝑒𝑥𝑝

⎩
⎨

⎧

−
6𝑛

𝑡
3𝐽 ̄

3 + 4
𝑡

3𝐽 ̄
⎭
⎬

⎫

 

𝑃 (𝐼 > 𝑡) ≤ 2𝐽 ̄ 𝑒𝑥𝑝 −
̄

̄

+ 2𝐽 ̄ 𝑒𝑥𝑝 −
̄

̄

. 

Hence， 

𝑃 �̂� − 𝑝 > 𝑡 ≤ 𝑂(𝐺1 ∙ 𝐽 ) 𝑒𝑥𝑝 −𝑒
𝑛

∗

𝐽
+ 𝑂(𝐽 ̄ ) 𝑒𝑥𝑝 −𝑒

𝑛𝑡

𝑅 𝐽 ̄
 

where 𝑒  and 𝑒  are constants. 
Corollary 2. For the discrete response variable 𝑌  and the random missing covariate 𝑉  , under 
Conditions (1), (3), (4) and (5), we have  

𝑃 𝑤 − 𝑤 > 𝑡 ≤ 𝑂(𝐺2 ∙ 𝑅𝐽 ) 𝑒𝑥𝑝 −𝑒
∗

+ 𝑂(𝑅𝐽 ̄ ) 𝑒𝑥𝑝 −𝑒 ̄    (S6) 

where 𝑒  and 𝑒  are constants. 

Proof. Section 2.2 gives 𝑤 = ∑ �̂� . Using the result in Lemma 3, we can see that 

𝑃 𝑤 − 𝑤 > 𝑡 = 𝑃 �̂� − 𝑝 > 𝑡  

≤ 𝑃 �̂� − 𝑝 > 𝑡  

≤ 𝑃 �̂� − 𝑝 >
𝑡

𝑅
 

≤ 𝑂(𝐺2 ∙ 𝑅𝐽 ) 𝑒𝑥𝑝 −𝑒
𝑛

∗

𝐽
+ 𝑂(𝑅𝐽 ̄ ) 𝑒𝑥𝑝 −𝑒

𝑛𝑡

𝑅 𝐽 ̄
. 
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Lemma 4. For the discrete response variable 𝑌  and the random missing covariate 𝑉  , under 
Conditions (1), (3), (4) and (5), we have 

𝑃 𝐴𝑃𝐶 (𝑌, 𝑉 ) − 𝐴𝑃𝐶 (𝑌, 𝑉 ) > 𝜀  

≤ 𝑂(𝐺2 ∙ 𝑅𝐽 ) 𝑒𝑥𝑝 −𝑒
∗

+ 𝑂 𝑅𝐽 ( ̄ ) 𝑒𝑥𝑝 −𝑒 ( ̄ )     (S7) 

where 𝑒  and 𝑒  are positive constants. 
Proof. The proof process is similar to Lemma 1, so it is omitted here. 
Theorem 1. Under Conditions (1)–(6), we have 

𝑃 (𝑈, 𝑉) ⊆ (𝑈, 𝑉) ≥ 1 − 𝑂 𝑝𝑒𝑥𝑝 −𝑏 𝑛 + (𝜉 + 𝜅)𝑙𝑜𝑔𝑛  

−𝑂 𝑝𝑞𝑒𝑥𝑝(−𝑏 𝑛 + (𝜉 + 2𝜅)𝑙𝑜𝑔𝑛)  

−𝑂 𝑞𝑒𝑥𝑝 −𝑏 𝑛 ( ) + (𝜉 + (𝑚 + 1)𝜅)𝑙𝑜𝑔𝑛       (S8) 

where 𝑏 ，𝑏  and 𝑏  are constants. If 𝑙𝑜𝑔 𝑝 = 𝑂(𝑛 ), 𝑙𝑜𝑔 𝑞 = 𝑂 𝑛 ，𝛼 < 1 − 2𝜏 − 6𝜉 − 18𝜅，

𝛽 < 1 − 2𝜏 − 10𝜉 − (18�̄� + 18)𝜅  and 𝛼 + 𝛽 < 1 − 2𝜏 − 18𝜅 ， then GIMCSIS has the sure 
screening property.  
Proof. Define four covariate sets as follows: 

𝑈 = (𝑈, 𝑉) ∪ 𝑣 , … , 𝑣 ; 𝑉 = (𝑈, 𝑉) ∪ 𝑣 , … , 𝑣  

𝑈 = (𝑈, 𝑉) ∪ 𝑣 , … , 𝑣 ; 𝑉 = (𝑈, 𝑉) ∪ 𝑣 , … , 𝑣 . 

It is obvious that (𝑈, 𝑉) = 𝑈 ∩ 𝑉  and (𝑈, 𝑉) = 𝑈 ∩ 𝑉 .  

According to Lemmas 1 and 4, we have 

𝑃 (𝑈, 𝑉) ⊆ (𝑈, 𝑉) = 𝑃 (𝑈 ∩ 𝑉 ) ⊆ 𝑈 ∩ 𝑉  

≥ 𝑃 𝑈 ⊆ 𝑈 ∩ 𝑉 ⊆ 𝑉  

≥ 𝑃
𝐴𝑃𝐶 (𝑌, 𝑈 ) − 𝐴𝑃𝐶 (𝑌, 𝑈 ) ≤ 𝑐𝑛 , ∀𝑈 ∈ 𝑈

∩ 𝐴𝑃𝐶 (𝑌, 𝑉 ) − 𝐴𝑃𝐶 (𝑌, 𝑉 ) ≤ 𝑐𝑛 , ∀𝑉 ∈ 𝑈
 

≥ 1 − 𝑃 𝐴𝑃𝐶 (𝑌, 𝑈 ) − 𝐴𝑃𝐶 (𝑌, 𝑈 ) > 𝑐𝑛  
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− 𝑃 𝐴𝑃𝐶 (𝑌, 𝑉 ) − 𝐴𝑃𝐶 (𝑌, 𝑉 ) > 𝑐𝑛  

≥ 1 − 𝑝 ∙ 𝑂(𝑅𝐽)𝑒𝑥𝑝 −𝑒
𝑐 𝑛

𝑅 𝐽
 

−𝑞 ∙ 𝑂(𝐺2 ∙ 𝑅𝐽 )𝑒𝑥𝑝 −𝑒
𝑛

∗

𝐽
 

−𝑞 ∙ 𝑂 𝑅𝐽 ( ̄ ) 𝑒𝑥𝑝 −𝑒
𝑐 𝑛

𝑅 𝐽 ( ̄ )
 

≥ 1 − 𝑂 𝑝𝑒𝑥𝑝 −𝑏 𝑛 + (𝜉 + 𝜅)𝑙𝑜𝑔𝑛  

−𝑂 𝑝𝑞𝑒𝑥𝑝(−𝑏 𝑛 + (𝜉 + 2𝜅)𝑙𝑜𝑔𝑛)  

−𝑂 𝑞𝑒𝑥𝑝 −𝑏 𝑛 ( ) + (𝜉 + (𝑚 + 1)𝜅)𝑙𝑜𝑔𝑛  

where 𝜏 = 𝑚𝑎𝑥 𝜏 ∗, 𝑏 , 𝑏  and 𝑏  are constants. 
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