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1. Introduction and main results

Let q be an odd integer and c be a fixed integer with q ≥ 3, (c, q) = 1. For any 1 ≤ a < q, (a, q) = 1,
there exists a unique integer b ∈ [1, q) that satisties (b, q) = 1 and ab ≡ c (mod q). If a and b have
different parity, then we call a a D. H. Lehmer number. Furthermore, let r(q) denote the number of D.
H. Lehmer numbers. The classical problem of D. H. Lehmer numbers is saying something nontrivial
about r(q) when c = 1.

Zhang’s pioneering works [23, 24] implied that

r(q) =
ϕ(q)

2
+ O

(
q

1
2 d2(q) log2 q

)
,

where ϕ, d are Euler’s function and divisor function, respectively. U = O(V) means |U | ≤ cV for some
constant c > 0.

From then on, many authors generalized the D. H. Lehmer problem from various directions (see [1,
3, 5–7, 9, 10, 14, 16, 19–22] and references therein).

In 2010, Lu and Yi [11] used circle method and proved that for every sufficiently large integer N, it
can be expressed as the sum of three D. H. Lehmer numbers a ∈ L′(q) with

L
′(q) = {a ∈ Z : a > 0, (a, q) = 1, n ∤ a + ac} ,
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where n ≥ 2 is a fixed integer, q, c are two integers with q > n ≥ 2 and (n, q) = (c, q) = 1, ac

satisfies 1 ≤ ac ≤ q and aac ≡ c(mod q). Denoting R′(N) the number of ways in which N can be
represented as the sum of three D. H. Lehmer numbers, for a sufficiently large integer q, N ≥ q2 log q
and 2 ∤ (q,N) they obtained

R′(N) =
N2

2

(
1 −

1
n

)3
ϕ3(q)

q3 A(q,N) + O
(
N2q−

1
2 d9(q) log3(q)

)
,

where

A(q,N) =
∑
r|q

µ(r)
ϕ3(r)

G
(
−N, χ0

r

)
=

∏
p|(q,N)

(
1 −

1
(p − 1)2

) ∏
p|q,p∤N

(
1 +

1
(p − 1)3

)
.

Also in 2010, Shparlinski and Winterhof [17] proved that a sufficiently large integer also can be
expressed as the sum of two such numbers under some natural restrictions and that

R′′(N) =
(
1 −

1
n

)2

N
∏

p|(N,q)

(
1 −

1
p

) ∏
p|q,p∤N

(
1 −

2
p

)

+ O
N(N, q)

1
2

q
1
2

+ (N, q)
1
3 q

2
3

 qo(1)


holds for an odd integer q or (N, q) is even. Here, R′′(N) denotes the number of ways in which N can
be represented as the sum of two D. H. Lehmer numbers.

It seems interesting to see whether the same results hold for a more general number set. In this
paper, we prove that for a sufficiently large integer N, it can also be represented as the sum of three
more general D. H. Lehmer numbers a ∈ L(q) under some mild restrictions. L(q) is defined as follows:
Let n ≥ 2 be a fixed integer, m ≥ 1 be a positive integer and q, c be two integers satisfying q > n and
(c, q) = (n, q) = 1. Denote that

L(q) = {a ∈ Z : a > 0, (a, q) = 1, n ∤ a + b} ,

where b is the unique integer 1 ≤ b ≤ q satisfying amb ≡ c(mod q).
The new ingredient of our method is deriving a sharp upper bound for the so-called “k-th

Kloosterman sum” defined as

S (a, b; q) =
q∑′

n=1

e
(
an + bnk

q

)
,

where q and k are two positive integers,
∑′ means the sum over integers co-prime to q and e(x) = e2πix.

Let R(N) denote the number of ways in which N can be represented as the sum of three D. H.
Lehmer numbers a ∈ L(q), then we give the main theorem.

Theorem 1. Let N be an integer that satisfies N ≥ q2 log q and 2 ∤ (q,N), ϵ be a small enough positive
real number, then for a sufficiently large integer q and m ≤ q

1
2 we have

R(N) =
N2

2

(
1 −

1
n

)3
ϕ3(q)

q3 A(q,N) + O
(
min

{
(m + 1)6ω(q), qϵ

}
N2q−

1
2 d6(q)log3q

)
,

where ω(q) denotes the number of different prime factors of q.
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Corollary 1. If we take m = 1 in Lehmer numbers set L(q), then L(q) and L′(q) will represent the same
set and Theorem 1 implies

R(N) =
N2

2

(
1 −

1
n

)3
ϕ3(q)

q3 A(q,N) + O
(
N2q−

1
2 d12(q)log3q

)
,

which is almost the original result of Lu and Yi’s in 2010.

Remark 1. It is worthy of pointing out that the circle method is not applicable for the problem where
N is the sum of two such generalized D. H. Lehmer numbers. Meanwhile for the method in [17], we
need a better upper bound for

q−1∑
x=0

(q,g(x))=1

e
(

f (x)
g(x)

)
, q ∈ Z, f (x), g(x) ∈ Z[x],

which still goes beyond the reach of our ability.

2. Some lemmas

The following lemmas are needed for proving theorems.

Lemma 1. Let k and q be two positive integers and ϵ be a small enough positive real number. Let
S (a, b; q) be defined as above, then

|S (a, b; q)| ≪ min
{
(k + 1)2ω(q), qϵ

}
(a, b, q)

1
2 q

1
2 .

Proof. We state Lemma 4 in [4] and follow roughly the same approach. First, suppose q = rs with
(r, s) = 1. By the “reciprocity” formula

ss̄ + rr̄ ≡ 1(mod q),

where s, r satisfies ss ≡ 1(mod r), rr ≡ 1(mod s), respectively. Applying additive multiplicity for the
exponential function

e
(
an + bnk

q

)
= e

(
asn + bsnk

r

)
e
(
arn + brnk

s

)
where n = sx + ry and 1 ≤ x ≤ r, 1 ≤ y ≤ s, (x, r) = 1, (y, s) = 1, it leads to

S (a, b; q) =
r∑′

x=1

s∑′

y=1

e
(
asx + bsxk

r

)
e
(
ary + bryk

s

)
=S (as, bs; r)S (ar, br; s). (1)

We need discuss the following cases:
(I) q = p: Prime moduli case. One can verify that Lemma 1 is correct by Moreno and Moreno [13].

It is also a special form of the Bombieri-Weil bound [2], which states

|S (a, b; q)| ≤ (k + 1)(a, b, p)
1
2 p1/2, (2)
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provided that axk+1+b
xk is not in the shape of hp(x) − h(x), where h(x) ∈ Fp[x] and Fp is the algebraic

closure of Fp. Suppose not and let

axk+1 + b
xk =

f p(x)
gp(x)

−
f (x)
g(x)
,

with f (x), g(x) ∈ Fp[x] and ( f (x), g(x)) = 1. Further, we get

gp(x) | xk

obtained from
gp(x)

(
axk+1 + b

)
= xk

(
f p(x) − gp−1(x) f (x)

)
.

This is impossible if p > k, by comparing the degrees of both sides from above. If p ≤ k, the validity
of (2) is trivial.

(II) q = pβ: Prime power moduli case with β > 1. Without losing generality, we assume that
(a, b, p) = 1. Lemmas 12.2 and 12.3 in [8] tell us that for S (a, b; q) we have

S
(
a, b; p2α

)
= pα

pα∑′

y=1
g′(y)≡0( mod pα)

e
(
g(y)
p2α

)
, (3)

S
(
a, b; p2α+1

)
= pα

pα∑′

y=1
g′(y)≡0( mod pα)

e
(

g(y)
p2α+1

)
Gp(y), (4)

where

g(y) =
ay7 + b

y4 ,

Gp(y) =
p∑

z=1

e
(
h(y)z2 + g′(y)p−αz

p

)
,

with h(y) = g′′(y)
2 .

Note that g′(y) = ay2k−bkyk−1

y2k , and h(y) = bk(k+1)y3k−2

2y4k . For last part we focus on the solutions for the
congruence equation g′(y) ≡ 0 (mod pα) with (y, p) = 1.
✠ For β = 2α where α ≥ 1. The congruence equation above reduces to

3ayk+1 − bk ≡ 0 (mod pα) . (5)

If (b, p) = p, it leads to (a, p) = 1. From the properties of indices, one can verify that (5) has no
solution. Next, we assume (b, p) = 1. If pβ∥k with 1 ≤ β ≤ α, then (5) has at most k+ 1 solutions when
pβ∥a. For (p, k) = 1, (a, p) = 1, the number of solutions for (5) is still k + 1. We derive that

|S
(
a, b; p2α

)
| ≤ (k + 1)pα if (a, b, p) = 1. (6)

✠ For β = 2α + 1 where α ≥ 1. First, from the case β = 2α, one can check that if (b, p) = p,
the sum in (4) vanishes. Supposing (b, p) = 1 and recalling the results of Chapter 3 in [8], we know
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if p ∤ 2h(y) holds, then |Gp(y)| ≤ p1/2. Therefore, if p , k, k + 1 (otherwise, p | bk(k + 1)yk+2 implies
p | k(k + 1)b, a contradiction), we have |Gp(y)| ≤ p1/2. Hence, |S

(
a, b; p2α+1

)
| ≤ (k + 1)pα+1/2, as

there are at most (k + 1) solutions to (5). If p | k or p | k + 1, we know that |Gp(y)| ≤ k + 1 and
|S

(
a, b; p2α+1

)
| ≤ (k + 1)2 pα.

In summary, we get

|S
(
a, b; p2α+1

)
| ≤ (k + 1)2 pα+1/2 if (a, b, p) = 1. (7)

Combining (1), (2), (6) and (7), we come to the conclusion that

|S (a, b; q)| ≤ (k + 1)2ω(q)(a, b, q)1/2q1/2.

From Lemma 1 in [18] and Lemma 2 in [15] we know that

S (a, b; q) ≪ (a, b, q)
1
2 q

1
2+ϵ ,

then Lemma 1 is proved. □

Lemma 2. Let q ≥ 2, m be integers and χ(n) be Dirichlet character of modulo q, then we have

G(m, χ) =
q∑

m=1

χ(l)e
(
ml
q

)
≪ q

1
2 (m, q).

Proof. See Lemma 2 in [12]. □

Lemma 3. Let q, c be integers satisfying (c, q) = 1 and m be a positive integer. For k1, k2 ∈ Z, we have∑
χ mod q
χ,χ0
χm,χ0

χ(c)G (k1, χ
m) G (k2, χ) ≪ min

{
(m + 1)2ω(q), qϵ

}
ϕ(q)q

1
2 (k2, q) ,

where χ denotes Dirichlet character of modulo q.

Proof. From the definition of Gauss sum and Lemma 1, we obtain

∑
χ mod q

χ(c)G (k1, χ
m) G (k2, χ) =

∑
χ mod q

χ(c)
q∑′

s=1

χm(s)e
(
k1s
q

) q∑′

t=1

χ(t)e
(
k2t
q

)

=

q∑′

s=1

q∑′

t=1

e
(
k1s + k2t

q

) ∑
χ mod q

χ(c)χ (smt)

=ϕ(q)
q∑′

s=1

q∑′

t=1
smt≡c( mod q)

e
(
k1s + k2t

q

)

=ϕ(q)
q∑′

s=1

e
(
k1s + k2csm

q

)
≪min

{
(m + 1)2ω(q), qϵ

}
ϕ(q)q

1
2 (k1, k2c, q)
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≪min
{
(m + 1)2ω(q), qϵ

}
ϕ(q)q

1
2 (k2, q) .

On the other hand, from the property of Ramanujan sum we know that

G
(
k1, χ

0
)
G

(
k2, χ

0
)
=µ

(
q

(k1, q)

)
µ

(
q

(k2, q)

)
ϕ2(q)ϕ−1

(
q

(k1, q)

)
ϕ−1

(
q

(k2, q)

)
≪ϕ2(q)

(k1, q) (k2, q)
q2 d

(
q

(k1, q)

)
d
(

q
(k2, q)

)
≪ (k1, q) (k2, q) d2(q),

and when χm = χ0,
χ(c)G (k1, χ0) G (k2, χ) ≪ ϕ(q)q

1
2 (k2, q)

holds, then Lemma 3 can be obtained from the above results. □

Lemma 4. Assuming q, N are as described in Theorem 1 and α = s/r + z, where

1 ≤ r ≤ τ = N/q, 0 ≤ s ≤ r − 1, (r, s) = 1, |z| <
1
rτ
,

we have ∑
a≤N

(a,q)=1

e(αa) =


µ(r)ϕ(q)

qϕ(r)

N−1∑
h=0

e(zh) + O ((|z|N + 1)rd(q)) , if r | q;

O ((|z|N + 1)rd(q)) , if r ∤ q.

Proof. Proof. See Lemma 5 in [11]. □

Lemma 5. Assuming q, m and N are as described in the Theorem 1 and α satisfies Lemma 4, then we
have

S (α) =



(
1 −

1
n

)
µ(r)ϕ(q)

qϕ(r)

N−1∑
h=0

e(zh)

+O
(
min

{
(m + 1)2ω(q), qϵ

}
Nq−

1
2 d2(q) log q

)
, if r | q;

O
(
min

{
(m + 1)2ω(q), qϵ

}
Nq−

1
2 d2(q) log q

)
, if r ∤ q,

where S (α) is defined below.

Proof. From the proof of Lemma 6 in [11], we can easily obtain

S (α) =
(
1 −

1
n

)∑′

a≤N

e(αa) − E(α) + O
(
Nq−1d(q)

)
,

where

E(α) =
1

nϕ(q)

∑
χ mod q
χ,χ0

χ(c)
n∑

l=1

∑
a≤N

χm (a) e
(
a
(

l
n
+ α

))
∑

b≤q

χ(b)e
(

l
n

b
) .
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If χ , χ0 and χm , χ0, we have

χm(a) =
1
q

q∑
k=1

G(k, χm)e
(
−ak

q

)
.

Therefore, by using the above formula, E(α) can be transformed to the form in Lemma 3.
Using the proof of Lemma 6 in [11], when χm , χ0, we can further obtain

E(α) ≪ min
{
(m + 1)2ω(q), qϵ

}
Nq−

1
2 d2(q) log q.

When χm = χ0, we have

E(α) =
1

nϕ(q)

∑
χm=χ0

χ(c)
∑′

a≤N

e(aα)
∑
b≤q

χ(b)
n∑

l=1

e
(
l(a + b)

q

)
=

1
ϕ(q)

∑
χm=χ0

χ(c)
∑′

a≤N

e(aα)
∑

b≤q
b≡−a( mod q)

χ(b)

=
1
ϕ(q)

∑
χm=χ0

χ(c)
∑′

a≤N

e(aα)χ(−a)

≪
mN
ϕ(q)
.

In summary, we obtain

S (α) =
(
1 −

1
n

)∑′

a≤N

e(αa) + O
(
min

{
(m + 1)2ω(q), qϵ

}
Nq−

1
2 d2(q) log q

)
.

Combining with Lemma 4, Lemma 5 follows immediately. □

3. Proof of theorem

First, from circle method we let

R(N) :=
∑

a1+a2+a3=N
ai∈L(q)

1 =
∫ 1

0
S 3(α)e(−αN)dα,

where
S (α) =

∑
a≤N,a∈L(q)

e(αa).

Taking τ = N/q, we further get

R(N) =
∫ 1− 1

τ

− 1
τ

S 3(α)e(−αN)dα.
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For using circle method, we write

M1 =
⋃
r|q

⋃
0≤s≤r−1
(s,r)=1

[
s
r
−

1
rτ
,

s
r
+

1
rτ

]
, M2 =

[
−

1
τ
, 1 −

1
τ

]
\M1,

where 0 ≤ s ≤ r − 1, (s, r) = 1 and 1 ≤ r ≤ τ. Clearly, when τ > q log q for a sufficiently large integer
q, we can see that the intervals inM1 are pairwise disjoint.

If α ∈ M2, there exists integers r and s such that

|α −
s
r
| <

1
rτ
,

where 0 ≤ s < r ≤ τ, (s, r) = 1 and r ∤ q.
Thus, we have

R(N) = R1(N) + R2(N),

and now we just need to estimate Ri(N) for i = 1, 2.
Note that (A + B)3 = A3 + O

(
|A2B| + |B3|

)
. Therefore, Lemma 5 implies that for α ∈ M1,

S 3(α) =
(
1 −

1
n

)3
µ(r)ϕ3(q)
q3ϕ3(r)

N−1∑
h=0

e(zh)

3

+ O
(

1
ϕ2(r)

min
(
N2,

1
|z|2

)
min

{
(m + 1)2ω(q), qϵ

}
Nq−

1
2 d2(q) log q

)
+ O

(
min

{
(m + 1)6ω(q), qϵ

}
N3q−

3
2 d6(q)log3q

)
.

From the proof of Theorem in [11] for the principal part of R1(N), this leads to

R1(N) =
∫
M1

S 3(α)e(−αN)dα =
∑
r|q

∑
0≤s≤r−1
(s,r)=1

∫ s
r+

1
rτ

s
r−

1
rτ

S 3(α)e(−αN)dα

=

(
1 −

1
n

)3
ϕ3(q)

q3

∑
r|q

µ(r)
ϕ3(r)

G
(
−N, χ0

r

) ∫ 1
rτ

− 1
rτ

N−1∑
h=0

e(zh)

3

e(−zN)dz

+ O
(
min

{
(m + 1)6ω(q), qϵ

}
N2q−

1
2 d6(q)log3q

)
=

N2

2

(
1 −

1
n

)3
ϕ3(q)

q3 A(q,N)

+ O
(
min

{
(m + 1)6ω(q), qϵ

}
N2q−

1
2 d6(q)log3q

)
,

where

A(q,N) =
∑
r|q

µ(r)
ϕ3(r)

G
(
−N, χ0

r

)
=

∏
p|q

(
1 −

1
(p − 1)3 G

(
−N, χ0

p

))
=

∏
p|(q,N)

(
1 −

1
(p − 1)2

) ∏
p|q,p∤N

(
1 +

1
(p − 1)3

)
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with G(N, χ) as Gauss sum and χ as Dirichlet character modulo q.
For α ∈ M2, which also means r ∤ q, from Lemma 5 we obtain

S (α) ≪ min
{
(m + 1)2ω(q), qϵ

}
Nq−

1
2 d2(q) log q.

Noting that ∫
E2

|S (α)|2dα ≪
∫ 1

0
|S (α)|2dα ≪

∑
a≤N,a∈L(q)

1 ≪ N,

we get
R2(N) ≪ min

{
(m + 1)2ω(q), qϵ

}
N2q−

1
2 d2(q) log q.

Consequently, we obtain

R(N) =
N2

2

(
1 −

1
n

)3
ϕ3(q)

q3 A(q,N) + O
(
min

{
(m + 1)6ω(q), qϵ

}
N2q−

1
2 d6(q)log3q

)
,

which completes the proof.

4. Conclusions

The main result of this paper was to prove that a sufficiently large integer can always be represented
as the sum of three generalized D. H. Lehmer numbers. We used the elementary methods, the properties
of the exponential sums and the circle method to give an asymptotic formula.
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