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Abstract: The current development of logic satisfiability in discrete Hopfield neural networks 

(DHNN)has been segregated into systematic logic and non-systematic logic. Most of the research tends 

to improve non-systematic logical rules to various extents, such as introducing the ratio of a negative 

literal and a flexible hybrid logical structure that combines systematic and non-systematic structures. 

However, the existing non-systematic logical rule exhibited a drawback concerning the impact of 

negative literal within the logical structure. Therefore, this paper presented a novel class of non-

systematic logic called conditional random k satisfiability for k=1,2 while intentionally disregarding 

both positive literals in second-order clauses. The proposed logic was embedded into the discrete 

Hopfield neural network with the ultimate goal of minimizing the cost function. Moreover, a novel 

non-monotonic Smish activation function has been introduced with the aim of enhancing the quality 

of the final neuronal state. The performance of the proposed logic with new activation function was 

compared with other state of the art logical rules in conjunction with five different types of activation 

functions. Based on the findings, the proposed logic has obtained a lower learning error, with the 

highest total neuron variation TV=857 and lowest average of Jaccard index, JSI=0.5802. On top of that, 

the Smish activation function highlights its capability in the DHNN based on the result ratio of 

improvement Zm and TV. The ratio of improvement for Smish is consistently the highest throughout 

all the types of activation function, showing that Smish outperforms other types of activation functions 

in terms of Zm and TV. This new development of logical rule with the non-monotonic Smish activation 
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function presents an alternative strategy to the logic mining technique. This finding will be of particular 

interest especially to the research areas of artificial neural network, logic satisfiability in DHNN and 

activation function. 

Keywords: discrete Hopfield neural network (DHNN); conditional random two satisfiability; non-

systematic logic; activation functions; Smish activation function; potential logic mining 
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1. Introduction 

The artificial neural network (ANN) is a computing framework that reflects the capability of the 

human brain to process information. The ANN’s complex structure is due to the extensive 

interconnectivity of its neurons. By incorporating external input, the artificial neural network is trained 

to successfully execute a given task by utilizing all available neurons. Hopfield and Tank introduced 

the discrete Hopfield neural network (DHNN) in 1985 as one of the original subsets of ANN utilized 

in the solving of optimization issues. The DHNN has features such as fault tolerance, content 

addressable memory (CAM) and dynamical energy. The minimal energy of DHNN shows that the 

retrieved final neuron state is a global solution. Therefore, the outcome of the final energy function in 

DHNN is significantly influenced by the synaptic weight value gained by the network. Therefore, 

incorporating a symbolic rule is necessary to guarantee that the network consistently converges toward 

optimal solution. To address this problem, [1] is the primary work that incorporates satisfiability (SAT) 

logical rules into ANN. He introduced a basic principle of conducting logic programming within a 

DHNN through comparing the cost function and the Lyapunov energy function. Consequently, the 

connection between the logic (synaptic weight) is successfully computed by using the Abdullah 

method. This approach surpassed traditional learning methods like Hebbian learning [2]. Due to this 

success, [3] introduced Horn satisfiability (HORNSAT), a novel SAT concept in DHNN, incorporating 

a relaxation process during the retrieval phase. The result shows that HORNSAT can converge toward 

the absolute minimum energy effectively, and it is found that as the network becomes complex, the 

dynamic relaxation rate outperforms the constant relaxation rate. However, the implications of various 

logical rules within DHNNs remain unclear due to the constraints imposed by the HORNSAT structure. 

Therefore, a unique logical framework is needed, which allows more freedom with each clause not 

being limited to just one positive literal. 

The authors of [4,5] extended the research to include other forms of structured logical rules, 

namely two satisfiability (2SAT) and three satisfiability (3SAT), respectively. The distinction between 

these two logical structures is that 2SAT contains two literals in each clause, whereas every clause 

within the 3SAT logic rule specifically includes three literals. The proposed 2SAT in DHNN 

demonstrates a high global minima ratio within a reasonable computational time. Even as the storage 

capacity of DHNN with 3SAT increases exponentially, the investigation into 3SAT has yielded an ideal 

value for the global minima ratio. Taking an alternative approach, [6] presented the integration of 

systematic 2SAT into the radial basis function neural network. This integration involves determining 

the center and width parameter values, which in turn enables the generation of output weights aligned 

with the 2SAT logic. Additionally, [7] proposed different evolutionary algorithms in the training phase 

of radial basis function neural network corresponding to 2SAT logic. Based on the result, the 

evolutionary programming algorithm is effective during the training phase and achieves an optimal 
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output weight. Although systematic logical structures have been successfully integrated into DHNN, 

they suffer from a lack of diversity in terms of the logical structure. This leads to an overfitting of 

synaptic weights due to the similarity between the clauses. As a solution, the scope of the SAT domain 

in DHNN has expanded to the non-systematic logical structures. Non-systematic logical structures are 

distinguished by having a specific number of literals in each clause. This unique representation enables 

the incorporation of first-order logic into the current systematic logical structure. The types of logical 

rule have been expanded to the non-systematic logical structures. Initially, [8] proposed random k 

satisfiability by combining first-order and second-order logic for k=1,2. Random 2SAT(RAN2SAT) 

offers the flexibility of having a dynamic number of literals within the clause. However, experimental 

results showed that first-order clauses introduced more logical inconsistencies than second-order 

clauses. As a result, the DHNN was unable to finish the learning phase effectively due to an increased 

number of first-order clauses. This ultimately led to a less effective retrieval phase. Therefore, there 

are various perspectives that have been explored in the development of non-systematic logical structure. 

In contrast, [9] has proposed Y-type random 2SAT (YRAN2SAT), a flexible hybrid logical structure 

that combines systematic and non-systematic structures. It offers random enumeration of first-order, 

second-order or both types of clauses. The study implemented five possible pathways of YRAN2SAT 

that show an improved solution capacity. Despite the successful flexibility of YRAN2SAT in DHNN, 

the non-systematic structure of YRAN2SAT has limited capacity to retrieve diversified solution. [10] 

introduced weighted random k satisfiability (r2SAT) for k=1,2 as a new class of non-systematic logic 

with weighted ratios of negative literals. They also integrated a logical phase for generating the non-

systematic structure with the designated quantity of negative literals. As a result, r2SAT performs well 

in producing diverse neuron states and global minima solutions. Additionally, [11] proposed an 

alternative approach where the logic phase of r2SAT is modified by integrating a binary artificial bee 

colony algorithm to control the distribution of negative literals. This approach has increased the global 

minima ratio. As a consequence of this discovery, using a dynamic allocation of negative literals will 

aid in generating a higher number of global minimum solutions with diverse final neuron states. 

However, the importance of having negative literal in the logical structure remains unclear and requires 

more analysis. 

Furthermore, the existing logical structure for the above logical rule is fully utilized c possible 

combination of clauses (c=2k), where k is the order of the clause. For example, the first order clause 

will have two possible combinations of clauses, while the second order clause will have four possible 

combinations of clauses and the third order clause will have eight possible combinations of clauses, 

which will be randomly generated. As stated earlier, r2SAT regulates the proportion of negative literals 

within a clause. However, there is still a chance that all possible combinations will be generated. Thus, 

instead of evaluating the significance of including negative literals in the logical framework, it is 

equally crucial to assess the efficiency achieved by eliminating clauses with only positive literals (for 

the second order clause). Another interesting study in logic satisfiability is concerned about the quality 

of the final neuron state that is retrieved by the DHNN. Activation function is a crucial parameter 

within a DHNN. Activation functions are used to transform the weighted sum of inputs into a neuron's 

output signal. Therefore, the activation function plays a crucial role in retrieving the final neuron state 

within DHNN. An optimal activation function can provide greater variations and enhanced diversity in 

the final neuron states. For many years, a lot of activation functions have been explored in the neural 

network. [12] has conducted a survey that presents the developments of activation functions in neural 

networks. This survey has examined the performance of 18 activation functions across different types 

of networks. This survey mentioned that the hyperbolic tangent activation function is suffering from 

the gradient vanish problem. In another review, [13] conducted a survey into trainable activation 
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functions within the neural network field. In this paper, a comprehensive survey of trainable activation 

functions has been presented. Based on the review, the neural networks utilizing trainable activation 

functions can reduce computational complexity as they involve fewer parameters to manage. The 

traditional activation function used in neural networks is hyperbolic tangent activation function. [14] 

has explored the two-dimensional parameter space of the system by analyzing hyperbolic tangent and 

piecewise-linear activation functions. While [15] uses the classical hyperbolic tangent activation 

function with a proposed simple Rectified Linear Unit (ReLU) activation function to develop circuit’s 

implementation of the Hopfield neural network, the traditional activation function used in logic 

satisfiability DHNN is hyperbolic tangent activation function (HTAF). [16] has proposed HTAF and 

the Elliot symmetric activation function in doing 3SAT in DHNN. In this work, various activation 

functions have been employed as dynamic post-optimization techniques to convert the activation level 

of a unit (neuron) into an output signal. In terms of global solutions, global hamming distance and 

central processing unit or computational time, the HTAF is noted to exhibit superior performance 

compared to the Elliot symmetric activation function and the McCulloch-Pitts function. Despite the 

acceptable performance of the HTAF, there remains questions about the interpretability of error 

analysis and the quality of final neuron states in the retrieval phase of DHNN, indicating a need for 

further analysis. Hence, through the application of an optimal activation function, the efficiency of the 

updating rule in DHNN can be enhanced. This results in a greater variety and a higher degree of 

diversity in the final neuron states. 

Therefore, the present study addresses these gaps by introducing a new type of non-systematic 

random k satisfiability, for k=1,2 that utilizes first and second order logic with a specific condition. 

The suggested logic will eliminate positive literals from the second-order clauses while not imposing 

any constraints on the first-order clauses. This highlights the significance of negative literals in the 

logical structure, and further examination can be conducted on synaptic weight management for this 

proposed logic. On the other hand, by implementing an optimal activation function, the update rule in 

the DHNN can be made more effective, providing a broader variation and increased diversity in the 

final states of the neurons. [10] represents the nearest effort in recognizing the potential impact of 

negative literals within a logic satisfiability DHNN, while [16] is the most relevant study that analyzes 

various activation functions in a logic satisfiability DHNN. Thus, the contribution of this paper as 

follows: 

1) To formulate a new non-systematic logical rule, namely, conditional random k satisfiability, 

where k=1,2 and uses first order and second order logic without including both positive literal 

in the second order clauses. The proposed conditional RAN2SAT will demonstrate the role of 

negative literal in the second order clause. 

2) To incorporate the proposed conditional RAN2SAT into DHNNs by reducing the logical 

inconsistency of the logical rule corresponding to the zero-cost function. The behavior of the 

DHNNs will be influenced by the cost function derived in line with the proposed logic. 

3) To introduce a novel non-monotonic Smish activation function intended to improve the efficacy 

of the updating rule within DHNNs, which is expected to contribute to greater variety and 

enhance diversity in the final neuron states. The performance of the Smish activation function 

will be evaluated with different types of activation functions during the retrieval phase of 

DHNNs. 

4) To investigate the performance of conditional RAN2SAT in DHNNs. In addition, the capability 

of non-monotonic Smish activation function with different logical rules will be analyzed. 

Various performance metrics, such as learning error, testing error, energy profile and similarity 
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metric, are presented to validate the performance of the proposed conditional random k 

satisfiability, which utilizes the Smish activation function. 

The article is structured as follows: Section two discusses the motivation behind the research. 

Followed by this, section three introduces the basic formulation of conditional random k satisfiability 

for k=1,2, which is also abbreviated as conditional random k satisfiability (CRAN2SAT). Section four 

elaborates the detailed presentation of the proposed model, CRAN2SAT, incorporating with DHNN. 

Furthermore, section five provides a concise discussion of the proposed activation function used during 

the retrieval phase of the DHNN model. Section six introduces the experimental configurations and 

the metrics used to evaluate performance in this study. Section seven explores the results and related 

discussions about the performance of the proposed DHNN-CRAN2SAT logic. This also illustrates the 

influence of activation functions on optimizing the final neuron state of the DHNN model, based on 

the selected metrics. The findings of this study are summarized in section eight. 

2. Motivation 

2.1. The exploration of satisfiability representation in DHNN 

The current development of satisfiability representation is significant in the field of computer 

science and mathematics where it offers an alternative method of representing the information of any 

datasets. Therefore, the purpose of satisfiability representation integrated with DHNN is to enable the 

user to interpret the output from the network. In simpler terms, satisfiability representation can be 

understood as a logical guideline that depicts the output generated by the network. Even though there 

are various types of satisfiability representations integrated with DHNN, there is still an empty room 

for exploration regarding the structure, behavior and their potential application. The logical rule that 

has been proposed by other researchers [8–10,17–19] shows that each of the logical structures has their 

own characteristic, whereby all the logical rule has been successfully embedded in DHNN. Thus, this 

motivates this study to explore the satisfiability representation in other perspectives, because different 

satisfiability representation will demonstrate a different performance analysis. Consequently, various 

types of logical rules can help practitioners or engineers to choose the best logic that suits their problem. 

Satisfiability representation finds application in various domains including quantum chemistry [20], 

classification methods [21], chaos computing [22] and in logic mining methodologies [23]. Therefore, 

by exploring other types of logical rule in DHNN, it is expected to be a guidance for the outsider 

researcher when choosing the best logic according to their problem or datasets. 

2.2. The effect of negative literal in second order clause 

The logical combination of SAT is highly influenced by the order of clauses in non-systematic 

SAT [8–10]. For example, k SAT generates c possible combinations of clauses (c=2k), where k 

represents the clause order. A new class of non-systematic logic called weighted random k satisfiability 

was introduced by Zamri et al. [10]. It incorporates weighted ratios of negative literals for different 

values of k=1,2. They also included a logic phase to generate the desired number of negative literals 

in the non-systematic structure. Based on the successful performance of r2SAT in generating diverse 

neuron states and global minima solutions, it is evident that a dynamic distribution of negative literals 

contributes to producing diversified final neuron states. However, the significance and rationale behind 

using these negative literals within the logical rule remains unclear. Therefore, this study aims to 

analyze the impact of restricting the possible combinations in solving logic satisfiability using DHNN. 
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We hypothesize that imposing this restriction will result in higher global solutions compared to the 

existing non-systematic logical rules. Thus, this study aims to investigate the impact of including at 

least one negative literal in each of the second-order clauses while no restrictions will be imposed on 

first-order clauses. By exploring this aspect, we can gain a better understanding of the importance of 

negative literals within the logical rule. Further exploration in this area could provide valuable insights 

for developing more efficient logical structures within logic satisfiability in DHNN. 

2.3. Inadequate metrics for evaluating the effectiveness of activation functions in DHNN 

The selection of the activation function plays a crucial role in neural networks as it has a 

significant impact on the network’s ability to learn complex patterns and make accurate predictions [24]. 

Over the years, numerous activation functions have been investigated in the field of neural networks. 

Dubey et al. [12] conducted a survey that presents advancements in activation functions within neural 

networks. In DHNN logic satisfiability, an activation function acts as a mathematical operation that 

determines a final neuron state based on its initial input. Obtaining an optimal retrieved final neuron 

state is significant since the quality of the final neuron state reflects the nature of the logical rule in 

DHNN. The study conducted by Mansor and Sathasivam [16] demonstrates the successful performance 

of the Hyperbolic tangent activation function in DHNN. However, there is limited information on how 

errors are interpreted and how the final neuron state influences the overall performance in DHNN. This 

highlights a potential research opportunity to enhance the updating rule in DHNN by implementing an 

optimal activation function. Such an enhancement could lead to increased diversity and variations in 

the final neuron states, ultimately improving both effectiveness and efficiency of this neural network 

model in retrieving diversified final neuron states. According to [17], expanding the diversity of the 

final neuron state improves the ability of DHNN to identify more global solutions in various solution 

spaces. This urges the study to propose an optimal activation function to enhance the updating rule in 

the DHNN, with the aim of guaranteeing that the DHNN retrieves a more varied and diversified range 

of final neuron states. Therefore, this study aims to emphasize the importance of utilizing an optimal 

activation function to improve the effectiveness of updating rule in DHNN. 

3. CRAN2SAT representation 

CRAN2SAT is a logical representation that consists of first order and second order logic with a 

specific condition. The proposed logic will exclude both positive literals in the second-order clauses 

and does not impose any restrictions on the first-order clauses. It’s worth noting that that the symbol c 

within CRAN2SAT is used as a versatile representation of “conditional”, while also serving the 

purpose of distinguishing it from the conventional RAN2SAT with the newly introduced logical rule. 

The basic components of proposed CRAN2SAT are as follows: 

(a) A set of m   second order clauses represent as 
( ) ( ) ( )2 2 2

1 2, , ..., ,mC C C
  

  where 

( ) ( )2
,m i iC B D

  =  .m +  

(b) A set of n  first order clauses represent as 
( ) ( ) ( )1 1 1

1 2, , ..., ,nC C C  where 
( ) ( )1

,n iC A=  .n +   

The 
( )2

mC

 and 

( )1

nC  represents the second and first order clauses, where a set of literals can be either 

positive or negative literal such that 

 ,i i iB B B    ,  ,i i iD D D     and  , .i i iA A A   
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Notably, i  denotes the number of independent literals within the clauses. It’s worth noting that 

the primary distinction between CRAN2SAT and RAN2SAT lies within the components (a). The 

logical structure of RAN2SAT [8], will be fully utilized c possible combination of clauses (c=2k), 

where k is the order of the clause. The first order clause, 
( )1

iC  will have two possible combinations of 

clauses as in Eq (1). While the second order clause, 
( )2

iC  will have four possible combinations of 

clauses as in Eq (2). However, the logical structure of CRAN2SAT will exclude both positive literals 

in the second-order clauses. In other words there are only three possible combinations of second order 

clauses. Due to this condition, the second order clause of CRAN2SAT is structured based on 
( )2

iC

 as 

in Eq (3) 

( )  
1

, ,i ii A AC =           (1) 

( ) ( ) ( ) ( ) ( ) 2
, , , ,i i i i i i i ii B D B D B D B DC               (2) 

( ) ( ) ( ) ( )  ( )2 2
, , , .i i i i i i i ii iB D B D B D B DC C

                     (3) 

All the clauses are connected by logical AND ( )  and literals within each clause are connected by 

logical OR ( ) . Therefore, by using the components in (a)–(d), the general formulation of 

CRAN2SAT or 2CRAN SATP  and the definition of the clause in 2CRAN SATP  is in Eq (5), where m  

represents the total count of clauses with two literals, while the variable n  represents the total count 

of clauses with one literal 

( ) ( )2 1

2 1 1 ,m n
i iCRAN SAT i iP C C



= ==    (4) 

( ) ( ) , 2,

, 1.

i i

i

k

i

B D k

A k
C

       =


   =

=  (5) 

From Table 1, there will be only 3 possible combinations for the second order clause (refer Eq (3)), 

which means the combination of the second order clauses can be appear repeatedly as the number of 

the second order clause m increases (maybe the clauses will appear consistently same). The main 

criteria that makes the proposed CRAN2SAT differ from r2SAT is that even though r2SAT controls 

the proportion of the negative literal in the clause, there is still a possibility of all the combinations in 

Eq (2) being generated. The bipolar value that holds value of one and negative one represents TRUE 

and FALSE, respectively. If all the clauses in 2CRAN SATP  are satisfied, the logical rule of 2 1.CRAN SATP =  

In other words, the clauses in 2CRAN SATP  are not satisfied and the logical rule of 2 1.CRAN SATP = −  In 

this paper, a random distribution of 
( )1

iC  and 
( )2

iC

 will be embedded in DHNN. According to Eqs (4) 

and (5), the possible structure of 2CRAN SATP  can be represented as in Table 1. 
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Table 1. Possible structure of 2 .CRAN SATP  

NN m=n Possible 2CRAN SAT
P  

3 1 

( )
2 1 1 1CRAN SAT

P B D A=      

( )
2 1 1 1CRAN SAT

P B D A=      

6 2 

( ) ( )
2 1 1 2 2 1 2CRAN SAT

P B D B D A A=           

( ) ( )
2 1 1 2 2 1 2CRAN SAT

P B D B D A A=         

( ) ( )
2 1 1 2 2 1 2CRAN SAT

P B D B D A A=            

9 3 

( ) ( ) ( )
2 1 1 2 2 3 3 1 2 3CRAN SAT

P B D B D B D A A A=                

( ) ( ) ( )
2 1 1 2 2 3 3 1 2 3CRAN SAT

P B D B D B D A A A=                

( ) ( ) ( )
2 1 1 2 2 3 3 1 2 3CRAN SAT

P B D B D B D A A A=                 

4. CRAN2SAT in DHNN 

The DHNN is a subset of ANN. It comprises N interconnected neurons with no hidden layers. 

One notable feature of DHNN is its CAM, which allows it to store patterns related to the problem. 

DHNN contains a limited number of neurons in bipolar form, denoted as Si={–1,1} for ,i  
 

which 

are interpreted as true and false respectively. The general formulation of updating the neuron state with 

predefined threshold value is as follows: 

1, if ,

1, otherwise.

N

ij j

ji

W S
S




− 
= 

         


       (6) 

Where iS   and jS   are states of the thi   and thj  neuron, respectively, 
ijW   is the synaptic 

weight between thi  and thj neuron, with q  as the predefine threshold value that is set to 0. =  

This is to ensure the energy of DHNN is monotonically decreases [3]. There are two characteristics for 

the synaptic weight in DHNN. Initially, in the DHNN there is an absence of self-connection among 

the neurons suggesting that the diagonal of synaptic weight is zero, where 0.ii jjW W= =  Second, the 

synaptic weight within DHNN consistently exhibits symmetry, denoted by .ij jiW W=  In this research 

paper, the logic of 2CRAN SATP  is incorporated into DHNN by associating each variable of 2CRAN SATP  

with the corresponding neuron state. 

The process of logic satisfiability in DHNN encompasses two parts, generally referred to as the 

learning phase and the retrieval phase. During the learning phase, the primary goal is to reduce the 

inconsistency of 2 ,CRAN SATP which corresponds to the minimized cost function, 
2CRAN SATPE defined as: 

2
1

1

,
CRAN SAT

NC m n

P ij
j

i

E Q
+

=
=

=           (7) 
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where NC and m n+   refer to the number of clauses and number of variables in 2CRAN SATP  , 

respectively. The inconsistency of 2CRAN SATP
 
is defined by taking the negation of 2CRAN SATP , denoted 

as 
ijQ , which is defined as 

( )

( )

1
1 , if ,

2

1
1 , if .

2

X

ij

X

S X

Q

S X


− 

= 
 +


        (8) 

SX denotes the neuron state in the clause with X   and X   as a positive and negative literal 

respectively. X consists of arbitrary literals of  , ,i i iA B C  . In the general equation of the logical 

structure 2CRAN SATP  represented by Eqs (4) and (5), the conjunction ( )  signifies multiplication while 

the disjunction ( )  represents addition in the cost function. The minimized cost function is identified 

by the utmost number of clauses that have been satisfied. The value of 
2CRAN SATPE  has a proportional 

relationship with the number of clauses in 2CRAN SATP   that are not satisfied. When the number of 

unsatisfied clauses increase, it will result in a corresponding increase in the value of 
2

.
CRAN SATPE  Based 

on Eq (7), if 
2

0,
CRAN SATPE =   this indicates that the logical inconsistency of 2CRAN SATP   has been 

minimized. In other words, 
2

0
CRAN SATPE =  shows that all the clauses in 2CRAN SATP  are satisfied. 

According to Abdullah’s method [1], the value of synaptic weight 
ijW   is determined by 

comparing the coefficient of the cost function, 
2CRAN SATPE  with the Lyapunov energy function denoted 

as 
2

.
CRAN SATPH  The Lyapunov energy function is defined as 

2

1
.

2CRAN SAT

N N N

P ij i j i i

i j i

H W S S W S= − −         (9) 

The Lyapunov energy function in DHNN is formulated to describe the energy value of the network. 

When this energy reaches its global minimum, the network achieves a stable state [25]. The DHNN 

model aims to ensure that solutions move towards the global minimum energy, which corresponds to 

the stable state of the neurons. However, it is worth mentioning that finding the global minimum energy 

depends on the efficiency of both learning and retrieval phases in DHNN. If these phases are inefficient, 

DHNN may end up trapped at a local minimum energy or suboptimal solution. Then, all the value of 

Wij will be stored in a matrix form as a CAM. During the retrieval phase, the final neuron state 

generated by the DHNN is assessed to determine whether the solution achieved is global or local. 

During this phase, the retrieved neuron state is asynchronously updated by applying the Wij values 

stored in the CAM. Consequently, through the utilization of the stored Wij in CAM, the DHNN’s local 

field is computed in the subsequent manner, where local field is denoted as hi, 

.
N

i ij j i

j i

h W S W


= +          (10) 

Once the value of ih  is obtained, the final neuron state is retrieved by squashing the value of hi
 

by using an activation function. The final neuron state Si(t) in DHNN will be updated by 
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( )
( )

( )

1, if 0,

1, if 0,

i

i

i

g h
S t

g h

 
= 

− 
         (11) 

where g(hi) is obtained according to the types of the activation function. Currently, the HTAF is used 

to transform the value of hi, to be either one or negative one. However, this paper proposes a new non-

monotonic Smish activation function to enhance the efficiency of the updating rule within DHNN. 

Additionally, the DHNN-CRAN2SAT with proposed Smish activation function will be compared with 

other types of activation functions, namely, McCulloch-Pitts, piecewise linear activation function, 

Elliot activation function, HTAF and Swish activation function. A detailed explanation regarding the 

proposed Smish activation functions is discussed in section five. 

Finally, the quality of the retrieved neuron state is assessed using the equation provided below: 

2 2

min ,
CRAN SAT CRAN SATP PH H Tol−         (12) 

where Tol=0.001 is a predetermined tolerance value [3]. The 
2CRAN SATPH  is the final energy associated 

with the final neuron state Si(t), and 
2

min

CRAN SATPH  are two absolute minimum energies computed by 

2

min 2
,

4CRAN SATP

m n
H

+ 
= − 

 
        (13) 

where m   and n   represent the number of second and first order clauses existing in 2 ,CRAN SATP

respectively. The final energy 
2CRAN SATPH  is computed by using Eq (9). According to [25], the Lyapunov 

energy function plays a crucial role in determining the level of convergence within the network. The 

energy value obtained can be categorized as either the global minimum or a local minimum. 

Hence, if Eq (12) is fulfilled, the resulting neuron state will be regarded as a global minimum 

energy. Otherwise, the retrieved neuron state will be confined to a local minimum energy. 

5. Proposed non-monotonic Smish activation function in DHNN 

This section will introduce the non-monotonic Smish activation function in solving logic 

satisfiability in DHNN. This, its characteristics, and properties will be discussed further. The activation 

function works as a transfer function to transform the output into the bipolar form. The final neuron 

state that is retrieved by DHNN will demonstrate the nature of the model. The purpose of introducing 

the non-monotonic Smish activation function in DHNN is to enhance the effectiveness of DHNN in 

retrieving a diversified final neuron state. Notably, this is the first attempt of applying the Smish 

activation function in solving logic satisfiability in DHNN. Smish activation function is a new type of 

nonlinear activation function and was proposed by [26]. Figure 1 illustrates the figure for the Smish 

activation function and its derivative. 
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Figure 1. Illustration of Smish activation function and its derivative. 

The Smish activation function is expressed as follows 

( ) ( )( )tanh In 1i i ig h h sigmoid h  =  +        (14) 

with 

( )
1

.
1 i

i h
sigmoid h

e



−

=
+

        (15) 

The Smish activation function is a nonlinear activation function that exhibits a graph that is not linear. 

The output of the Smish activation function ranges between  )0.25,−  . In terms of its output range, 

the Smish activation function has a lower bound but no upper bound. In Figure 1, it can be observed 

that the Smish activation function is continuous without any discontinuity in its output range. The 

Smish activation function is considered as a learning based adaptive activation function because it 

contains learnable parameters value   and  . If compared to the other types of activation functions, 

there is no doubt that the Smish activation function is more complex in terms of the function itself. 

According to [26], the ( )isigmoid h  in Eq (14) is used to reduce the range of values local field, hi. 

Furthermore, the logarithmic operation is incorporated to achieve a smoothly transitioned curve and a 

consistent trend. In the perspective of solving logic satisfiability in DHNN, Smish then multiplies its 

tanh operation by the value of the local field, hi simultaneously. Therefore, this demonstrates the ability 

to regularize negative output. Due to these properties, the Smish activation function can maintain 

partial sparsity and a regularization effect for negative inputs. As a result, the positive values will serve 

as a straightforward linear representation. Since the Smish activation function is reported as a smooth 

and non-monotonic function, it will help to improve the ability of the network convergences. This 

makes the Smish activation function compatible with the Lyapunov energy function in DHNN, as the 

Lyapunov energy function plays a pivotal role in monitoring the convergence of DHNN [27]. 

According to [28], an ideal activation function is anticipated to possess certain characteristics. 

The function should exhibit continuity and differentiability across all points, with the derivative 

remaining unsaturated to achieve optimal performance. The issue of vanishing gradients can occur 

when using a saturated activation function, which can impact inputs that are highly positive or highly 

negative. According to [12], the issue of a vanishing gradient occurs when the gradient of an objective 
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function with respect to a parameter approaches zero, which results in minimal parameter updates 

during network training. Thus, the vanishing gradient problem will cause the output value to have a 

tendency to move toward zero. As a result, extremely small derivatives have the potential to interrupt 

the learning process. Therefore, to suit with the expected features, the Smish activation function is a 

non-zero derivative at zero (refer to Figure 1). This eventually will help to overcome the problem of 

vanishing gradients because it is partially saturated toward, ( )ih → − . The properties of continuously 

differentiable are preferable in good activation functions. The undefined gradient at the midpoint of a 

non-continuously differentiable activation function can negatively impact training performance [29]. 

Maintaining a differentiable property helps avoid singularities [30] and impacts the convergence speed 

of the network [31]. 

6. Experimental setup 

This section outlines the experimentation process that has been developed to assess the efficacy 

of the proposed model. It includes an explanation of the simulation platform, what is the existing and 

benchmark of the activation function, how parameters and activation functions are assigned, the 

performance metrics that will be utilized and the baseline methods. 

6.1. Simulation platform 

The proposed model DHNN-CRAN2SAT with Smish activation function is implemented in DEV 

C++, version 5.11 with a specification of Intel Core i7 processor with 8 GB RAM in the Windows 10 

operating system. These simulations were running out by using the same device to avoid biases. The 

simulated datasets are generated by randomly assigning bipolar representations {–1,1} to the neuron 

state. In this study, a simulated dataset will be used to analyze the performance of different approaches. 

First, the proposed DHNN-CRAN2SAT is compared with the existing non-systematic logical rule 

(DHNN-CRAN2SAT, DHNN-r2SAT and DHNN-YRAN2SAT). Then, DHNN-CRAN2SAT with a 

proposed non-monotonic Smish activation function is compared with other types of activation 

functions, such as McCulloch-Pitts, Piecewise Linear activation function, Elliot symmetric activation 

function, HTAF and Swish activation function. Finally, the capabilities of Smish activation functions 

will be conducted within the existing non-systematic logic in DHNN. Figure 2 explains each 

configuration of DHNN-CRAN2SAT. 
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Figure 2. Flowchart of DHNN-CRAN2SAT with various activation functions. 
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6.2. Existing and benchmark activation functions 

The final neuron state Si(t) in DHNN will be updated by using Eq (11), where g(hi) is obtained 

according to the types of the activation function. In this study, there are five benchmark activation 

functions that will be compared with the proposed Smish activation function. Currently, the HTAF is 

used to transform the value of the local field hi to bipolar form of {–1,1} [19,32,33]. The choice of the 

benchmark activation function is chosen based on two criterions. The first criterion is based on the 

existing activation function that has been applied in solving logic satisfiability in DHNN, such as 

McCulloch-Pitts [1], Elliot symmetric and hyperbolic tangent [16]. The second criteria considers the 

activation function that has never been applied in solving logic satisfiability in DHNN, such as 

Piecewise linear and Swish activation function. The second criterion is specifically chosen based on 

the characteristic of the activation function. The Swish activation function has the same characteristics 

and non-monotonic activation function as Smish, while the piecewise linear function is composed of 

multiple linear segments, each defined over a specific interval. Activation functions play an important 

role in the neural network, where it is a mathematical function that determines the final neuron state 

for the given input neuron. The quality of a final neuron state that is retrieved by DHNN will 

demonstrate the nature of the model. The existing activation function that has been previously applied 

in DHNN has several issues. The details of the existing and benchmark activation are discussed in the 

rest of this section. 

6.2.1. McCulloch-Pitts 

The McCulloch-Pitts function is the conventional platform that has been used in logic 

satisfiability in DHNN. This function was popularized by [1] and it is reported that the solution will 

trap in the local minimum of the energy [34]. The output of the McCulloch-Pitts does not have 

limitations (unbounded) because the McCulloch-Pitts function is fully based on the value of local field, 

hi. Therefore, the updating neuron state will be directly transformed by using Eq (11) 

( ) .i ig h h=           (16) 

6.2.2. Elliot symmetric activation function 

The Elliot symmetric activation function is a computationally efficient approximation of the 

hyperbolic tangent, as it maps the output to a range between (–1,1) [35]. The Elliot symmetric 

activation function is expressed below: 

( ) .
1

i
i

i

h
g h

h
=

+
         (17) 

The Elliot symmetric activation function has been applied in doing logic programming in DHNN 

for 3SAT clauses [16]. However, the hyperbolic tangent activation function demonstrates superior 

performance when compared to the Elliot symmetric activation function. In addition, it is also used for 

extreme learning machines for industrial drying process regressions [34], and the result shows that 

Elliot obtained the best performances in most cases. 
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6.2.3. HTAF 

HTAF produces values in the range of (–1,1) and it is symmetric about the origin. The formulation 

of HTAF is given as follows 

( ) ( )tanh .
i i

i i

h h

i i h h

e e
g h h

e e

−

−

−
= =

+
        (18) 

The properties of HTAF are 

( ) ( ) ( )tanh 0 0, tanh 1,1 ,i ih h=  −    and ( ) ( )tanh tanh .i ih h− = −  

Furthermore, ( )tanh 1ih →  as ih →   and ( )tanh 1ih → −  as ih → −  and it is strictly increasing 

on as .  Due to ( ) ( )tanh 1,1ih  − , this indicates the output range of HTAF is between (–1,1). A general 

problem with the HTAF is that this function is saturated and suffers from the vanishing gradient 

problem because of its bounded limits [36]. Based on the above properties, if the value of the local 

field hi becomes larger, it will approximate the tangent function to be one while small values of the 

local field hi will approximate the tangent function to be negative one. Moreover, the functions are 

only sensitive to changes around the midpoint of their input, such as when the input is zero. Once 

saturated, it becomes challenging for the learning algorithm to continue to adapt the weights to improve 

the performance of the model [37]. During the retrieval phase, the final neuron state is updated by 

using Eq (11). Based on this equation, the final neuron state will be transformed to one if ( ) 0ig h  . 

Due to this reason, the tangent function will contribute to the low diversified final neuron states. This 

occurs since the tangent function is only responsive to changes around the midpoint of a zero input. 

Beyond this point, it typically approaches either one or negative one. 

6.2.4. Piecewise linear activation function 

A piecewise linear function is a type of function that comprises a limited number of linear 

segments, each characterized over an equally sized interval. This is an example of a piecewise linear 

activation function: 

( )

1, 1,

, 1 1,

1, 1.

i

i i i

i

if h

g h h if h

if h

−  −


= −  
 

       (19) 

The key feature of piecewise linear function is the lack of curvature within each interval defined by its 

breakpoint, which results in a constant first-order derivative. The piecewise linear function has a lack 

in terms of the transition points, which might introduce non-smoothness in the function. Therefore, it 

will affect the lack of differentiability at the transition points [28]. 

6.2.5. Swish activation function 

The Swish activation function proposed by [38] is obtained by multiplying the input and sigmoid 

function. The hybrid activation function is defined as follows 



3926 

AIMS Mathematics  Volume 9, Issue 2, 3911–3956. 

( ) ( ) .
1 i

i
i i i h

h
g h h sigmoid h

e



−

=  =
+

       (20) 

Swish is a smooth, non-monotonic activation function that lacks and doesn’t have any upper bound. It 

is bounded below and unbounded above. Swish is partially saturated toward, ( )ih → −  and, thus, 

Swish does not suffer vanishing gradient problems. The distinguishing characteristic of the Swish 

function from other activation functions is its non-monotonic properties. The Swish activation function 

with β=1 was introduced by [39]. Based on the parameter value of β, the shape of the Swish activation 

function is adjusted between the linear and ReLU functions. The smaller and higher values of β lead 

toward the linear and ReLU functions, respectively [12]. As mentioned in the previous section, a good 

activation function should exhibit continuity and differentiability across its entire range, with the 

additional condition that its derivative remains unsaturated. The vanishing gradient problem will cause 

the output value to have a tendency to move toward zero [12]. Out of the five-benchmark activation 

function, only Swish does not have a vanishing gradient problem. Figure 3 illustrates the graph of the 

benchmark activation function and its derivative. 

Table 2 summarizes properties of all activation functions and Table 3 lists all the functions for the 

benchmark of activation functions. 

Table 2. Summary of the properties of activation functions. 

Types of activation functions Monotonic Bounded Diminish gradient Output range 

McCulloch-Pitts Yes Yes Yes  ),− +  

Piecewise linear Yes Yes Yes (–1,1) 

Eliot symmetric Yes Yes Yes (–1,1) 

HTAF Yes Yes Yes (–1,1) 

Swish No No No  ),− +  

Smish No No No  )0.25,−   

Table 3. List of activation function in DHNN. 

Activation function Function 

McCulloch-Pitts ( )i i
g h h=  

Piecewise linear ( )

1, 1,

, 1 1,

1, 1.

i

i i i

i

if h

g h h if h

if h

−  −

= −  








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h
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 3. Illustration of activation functions and its derivative: (a) McCulloch-Pitts; (b) 

piecewise linear activation function; (c) Elliot symmetric activation function; (d) HTAF; 

(e) Swish activation function.

6.3. Parameter and activation function setup in DHNN 

The evaluation of the proposed DHNN-CRAN2SAT model will be conducted based on its 

performance during the learning and retrieval phases. The exhaustive search (ES) technique that is 

employed during the learning phase is to validate clause satisfaction. The characteristic of ES is based 

on a “trial and error” method. Therefore, the learning will be terminated upon achieving the target of 
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clause satisfaction or upon reaching the maximum count of learning iterations denoted as NH. 

Followed by the implementation of the proposed non-monotonic Smish activation function due to 

access of the quality of the retrieved neuron state during both the learning and retrieval phases, the 

initialization of neuron states is carried out through random generalization. This approach guarantees 

an equal and unbiased representation of the generated solutions. The parameter value involved in the 

Swish and Smish activation function is chosen based on the current research by [26,38], respectively. 

The parameters employed for the simulation were listed in Tables 4 and 5. 

Table 4. General settings of CRAN2SAT with DHNN in all presented models. 

Setting Parameter value 

Number of neurons (NN) 3 45NN   [10] 

Neuron combination (C) 100 

Number of trials (NT) 100 

Number of learning (NH) 100 

Synaptic weight method Abdullah method [1] 

Threshold Central Processing Unit time 24 hours 

Tolerance value, Tol 0.001 [3] 

Initialization of neuron states Random 

Learning algorithm Exhaustive search [3] 

Activation function McP, piecewise linear, Elliot, HTAF, Swish, Smish 

Table 5. List of parameters of activation function in DHNN. 

Activation function Parameter value 

Swish 1 =  [38] 

Smish 1 =  and 1 =  [26] 

6.4. Performance metrics 

This section will explain how the performance of the DHNN-CRAN2SAT model is evaluated 

with the other logical rule. The performance of the DHNN-CRAN2SAT model will be evaluated by 

using error analysis (learning phase and retrieval phase) and similarity analysis. Since we also 

proposed DHNN-CRAN2SAT with non-monotonic Smish activation function, the capability of the 

activation function is evaluated based on the testing error analysis and similarity analysis. Therefore, 

the purpose of the performance metrics is listed below: 

(a) Learning phase: To minimize the cost function in Eq (7), by searching for a satisfying 

interpretation of DHNN-CRAN2SAT. 

(b) Retrieval phase: To access the quality of the retrieved neuron states (determine the solutions 

are global minima solutions or local minima solutions); involves the computation of Eq (12). 

(c) Similarity analysis: To examine the variation in the final neuron states generated by the DHNN 

model as compared to benchmark neuron states. 
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6.4.1. Learning phase 

Throughout the learning process, the objective is to examine the efficiency of DHNN-

CRAN2SAT in minimizing the cost function, as indicated in Eq (7). In the learning phase, the root 

mean square error (RMSE) and mean absolute percentage error (MAPE) are utilized to measure the 

capability of DHNN-CRAN2SAT in getting satisfied interpretations. This metric has been commonly 

employed in numerous studies, such as in [40,41]. Therefore, to evaluate the efficacy of DHNN-

CRAN2SAT throughout the learning process, Eqs (21) and (22) are introduced as follows 

( )
2

1

,
NH

NC i

Learning

i

f f
RMSE

NH=

−
=         (21) 

1

100
,

NH
NC i

Learning

i i

f f
MAPE

NH f=

−
=         (22) 

where NCf  represents the maximum fitness and if  signifies the current fitness. The best fitness is 

related to the number of clauses that are satisfied. Note that NC represents the count of clauses within 

the logical rule. Moreover, the DHNN-CRAN2SAT is considered optimal when the errors in Eqs (21) 

and (22) approach a zero value. 

6.4.2. Retrieval phase 

In the retrieval phase, the assessment of the solution's quality generated by DHNN-CRAN2SAT 

relies on the synaptic weights generated throughout the learning phase. Inspired by [18], we utilize 

RMSE and MAPE to evaluate the accuracy of the retrieved neuron state. A zero value for testing errors 

signifies that the retrieval phases are optimal: 

( )
2

1

,
NT C

Solution Solution
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i

NT NG
RMSE

NT C



=

−
=


       (23) 

1

1
.

NT C

Testing Solution Solution

i

MAE NT NG
NT C



=

= −


      (24) 

Furthermore, the energy error analysis is employed to access the final neuron state that converges 

toward the minimum energy of DHNN-CRAN2SAT. Once the local field value hi is obtained according 

to Eq (10), the final neuron state is obtained by applying an activation function to squash the hi value, 

as depicted in Eq (11). 

In this study, a new non-monotonic Smish activation function has been introduced to enhance 

efficiency of the updating rule within DHNN. Therefore, once the retrieved final neuron state is 

converted to the bipolar form of {–1,1}, the final energy is computed by using Eq (9). The assessment 

of energy error is evaluated by using RMSE and MAPE as described in Eqs (25) and (26), such as in 

the work [40,42]. 

( )
2
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1

,
NT C
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Energy

i

H H
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NT C
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=


         (25) 
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min
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MAE H H
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

=

= −


        (26) 

Additionally, the global minima ratio Zm will demonstrate the capability of our model work with 

DHNN [3]. Throughout the evaluation stage, the final state of the neuron will be analyzed to determine 

whether it converges toward a global or local solution by using Eq (12). If the equation is satisfied, the 

solution is considered as a global solution. Otherwise, it will be considered as a local solution. The 

global minima ratio is obtained by using the following formula: 

1

1 NT C

m Solution

i

Z NG
NT C



=

=


 .       (27) 

Notably, the retrieval phase is evaluated differently based on the performance of DHNN-CRAN2SAT 

and DHNN-CRAN2SAT with Smish activation function. 

6.4.3. Similarity analysis 

The quality of the retrieved neuron states generated by DHNN-CRAN2SAT can be analyzed by 

using similarity analysis and total neuron variation. This similarity analysis was inspired by [27], in 

which the similarity of the neuron state was assessed by comparing the retrieved final neuron state 

with the benchmark neuron state of the DHNN-CRAN2SAT model. The comparison will be evaluated 

based on the individual neuron state. The benchmark neuron state, which is also known as an ideal 

neuron state, is defined as 

max
1, ,

1, .
i

for A
S

for A


= 

− 
        (28) 

Here,  A  and A   denote positive and negative literals, respectively, within every clause of the 

DHNN-CRAN2SAT model, 
  
S

i

max
 is the benchmark neuron state of 2CRAN SATP  and 

iS represents the 

obtained final neuron state through the DHNN process. Note that the similarity index only evaluates 

the final neuron state that fulfills Eq (12), signifying that the final neuron state must attain global 

minimum solution. The formulation of the Jaccard similarity index is as follows 

.
pp

JSI
pp pn np

=
+ +

         (29) 

Table 6 describes the parameter value involved in computing the value of the Jaccard similarity 

index and the list of symbols used in the retrieval phase summarized in Table 7. 

Table 6. List of parameters incorporated within the similarity index. 

Parameter Parameter remarks 

pp  Number of ( )max
,

i i
S S  where 

max
1

i
S =  and 1

i
S =  

pn  Number of ( )max
,

i i
S S  where 

max
1

i
S =  and 1

i
S = −  

np  Number of ( )max
,

i i
S S  where 

max
1

i
S = −  and 1

i
S =  

nn  Number of ( )max
,

i i
S S  where 

max
1

i
S = −  and 1

i
S = −  
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Table 7. List of symbols utilized in the experimental setup. 

Parameter Parameter’s name 

NH Number of learning 

NT Number of trials 

C Number of neuron combination 

NTSolution Number of total solutions 

NGSolution Number of global minimum solution 

Hmin
 

Minimum energy achieved in DHNN-CRAN2SAT 

Hf
 

Final energy achieved in DHNN-CRAN2SAT 
max

i
S  Benchmark neuron state 

Si Final neuron state 

TV Total neuron variation 

The range of Jaccard similarity index is between (0,1), which indicates the lowest value of Jaccard 

similarity index and shows high dissimilarity between the 
iS   and max .iS   Furthermore, the total 

neuron variation is formulated as in Eqs (30) and (31) 

0

,i

i

TV F


=

=            (30) 
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ì

í
ï

îï

.         (31) 

Therefore,   signifies the total string of the final neuron state generated by DHNN, which aligns 

with the global minimum solutions. Meanwhile, iF  acts as a scoring mechanism to calculate the count 

of distinct neuron states ( )max

i iS S  throughout the retrieval phase. 

6.5. Comparative analysis and baseline methods 

This research will carry out two assessments in relation to other foundational techniques, with a 

focus on experimenting in the areas of: 

(a) The investigation on the proposed logic CRAN2SAT in DHNN will be compared with the non-

systematic logic employing first order and second order logic. Therefore, in terms of evaluating 

the performance of the proposed logic, CRAN2SAT will be compared with all non-systematic 

logical rules that contain first order and second order logic. Notably, this study does not compare 

with S-type random k satisfiability by [17], because in their study, the value of synaptic weight 

is not computed by using the Abdullah method. The characteristics of the existing non-

systematic logic are outlined as follows: 

(i) RAN2SAT proposed by [8]. This is the first non-systematic logical rule that merges 

1SAT and 2SAT logic, enabling a flexible and dynamic number of literals per clause. 

However, experimental results showed that first-order clauses introduced more logical 

inconsistencies than second-order clauses. 
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(ii) r2SAT introduced by [10] is a non-systematic logic with weighted ratios of negative 

literals. In addition, they also encompass a logic phase that creates a logical structure 

in line with the preferred count of negative literals. As a result, r2SAT performs well 

in producing diverse neuron states and global minima solutions. In this study, the 

logical structure of r2SAT has been set to have at least 50%  of negative literal due 

to its efficacy within the logic phase of r2SAT. 

(iii) YRAN2SAT was introduced by [9] and possesses a flexible hybrid logical structure 

that is mixed together both systematic and non-systematic structures. It offers random 

enumeration of first-order, second-order or both types of clauses. The study has 

implemented five possible pathways of YRAN2SAT that show an improved solution 

capacity. 

The main difference between the proposed CRAN2SAT with the existing logic is that the existing 

logic fully utilizes all the possible combinations of 2SAT clauses as in Eq (2). However, the proposed 

logic CRAN2SAT will exclude both positive literals in the second-order clauses as in Eq (3). It's worth 

noting that the quantity of neurons falls within a certain range, 3 45NN  , applied for all baseline 

models. 

(b) The evaluation of DHHNN-CRAN2SAT with the proposed non-monotonic Smish activation 

function will be compared with another five-activation function, namely, McCulloch-Pitts, 

piecewise linear activation function, Elliot symmetric activation function, hyperbolic tangent 

activation function (HTAF) and Swish activation function. Note that the piecewise linear and 

Swish activation functions are the first attempts that apply in solving logic satisfiability in 

DHNN. 

(i) The McCulloch-Pitts function is the conventional platform that has been used in logic 

satisfiability in DHNN by [1], but the solution will trap in the local minimum of the 

energy [43]. The output of the McCulloch-Pitts does not have limitations because the 

McCulloch-Pitts function is fully based on the value of local field hi. 

(ii) The Elliot symmetric and hyperbolic tangent activation functions have been 

incorporated in the execution of logic satisfiability in DHNN for 3SAT clauses [16]. 

Subsequently, the hyperbolic tangent activation function demonstrated superior 

efficacy in comparison to the Elliot symmetric activation function. 

7. Results and discussion 

The result and discussion will be separated into three parts. Initially, we will examine the 

effectiveness of the DHNN-CRAN2SAT model during both the learning and retrieval phases. In the 

first part of discussion, the final neuron state that was retrieved by the DHNN-CRAN2SAT model was 

examined by using HTAF. In the second part, this paper aimed to evaluate the impact of various 

activation functions during the retrieval phase of DHNN. For this reason, the DHNN-CRAN2SAT will 

embed the proposed non-monotonic Smish activation function. Thus, the DHNN-CRAN2SAT with 

Smish activation function will be compared with various activation functions, namely, McCulloch-

Pitts, piecewise linear activation function, Elliot symmetric activation function, HTAF and Swish 

activation function. Finally, the full capability of different activation functions will be investigated 

throughout existing SAT logic in DHNN. 

In Section 7.1, the capability of DHNN-CRAN2SAT in minimizing the cost function and 

generating an optimal synaptic weight will be examined. The effectiveness of DHNN-CRAN2SAT in 
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minimizing logical inconsistency was assessed through the application of performance metrics, namely, 

the RMSE and MAPE. Then, the behavior of DHNN-CRAN2SAT according to the value of synaptic 

weight leading to a global minima solution or local minima solution will be investigated. Moreover, 

the importance of the presence of negative literals in second-order clauses will be discussed. 

Meanwhile in Section 7.2, the retrieval phase aimed to demonstrate the impact of different activation 

functions in optimizing the final neuron state of DHNN. In order to evaluate this, the quality of the 

retrieved neuron states was analyzed using metrics such as RMSE, MAPE, and the ratio of the global 

minimum solutions. 

Consequently, the quality of the global solutions retrieved by DHNN was measured through the 

similarity index and total neuron variation. Each of these sections concluded the most effective 

approaches, which were then used for comparative analysis with the current non-systematic logic in 

DHNN, Section 7.3. Concisely, as the number of neurons (NN) increase, the learning error in terms of 

RMSELearning and MAPELearning will increase. Figures 4 and 5 demonstrate the error of RMSELearning and 

MAPELearning for different state of the art SAT, respectively. 

 

Figure 4. 
LearningRMSE  for a different state of the art SAT. 

 

Figure 5. 
LearningMAPE  for a different state of the art SAT. 
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Notably, all logical structure in the analysis contains the first order clause and second order clause, 

1SAT and 2SAT, respectively. In this simulation, the logical structure of CRAN2SAT, RAN2SAT and 

r2SAT is emphasized based on the ratio of 1:1 for first order clause and second order clause. 

Additionally, the logical structure of r2SAT has been set to have at least 50% of negative literal [10]. 

Despite of having the same ratio for first order clause and second order clause, Figure 4 shows that the 

error of RMSELearning for r2SAT is lower compared to the RAN2SAT. The logical structure of 

RAN2SAT differs from r2SAT since r2SAT’s structure is regulated by a predetermined number of 

negative literals. Thus, by comparing RMSELearning of RAN2SAT and r2SAT, we can infer that by 

having a higher proportion of negative literals in the logical structure, it will enhances the probability 

of obtaining a satisfied interpretation. This finding is fruitful for this research to address the 

significance of having negative literals in the logical structure. 

As for the logical structure of YRAN2SAT, it has the capability to become both systematic and 

non-systematic logical rules. Therefore, the error of RMSELearning for YRAN2SAT fluctuates because 

of the flexibility of the model that can be expressed as both systematic and non-systematic logical rules. 

From Figure 4, at NN=33 and NN=42, the error of RMSELearning for YRAN2SAT will be at the lowest 

value because the structure of the YRAN2SAT is represented as systematic logic of 2SAT. However, 

at NN=24 and NN=39, the error of RMSELearning for YRAN2SAT is higher because the logical rules are 

represented as systematic logic of 1SAT. One possible explanation for this outcome is that the DHNN 

encounters difficulty in completing its learning phase as the number of first order clauses increases. 

This can be attributed to a higher likelihood of obtaining unsatisfied clauses during this phase. 

Additionally, this situation will contribute to the randomly generated synaptic weight that can lead to 

a suboptimal retrieval phase. Supported by [42], as the quantity of first-order clauses enlarges, the 

DHNN encounters difficulty in completing the learning phase, subsequently leading to a suboptimal 

retrieval phase. 

Based on result from the simulation, the proposed model CRAN2SAT has the smallest learning 

error of RMSELearning and MAPELearning, compared to the other non-systematic SAT. The proposed 

CRAN2SAT model restricts the logical structure by excluding both positive literals in second-order 

clauses without imposing any restrictions on the first-order clauses. By incorporating this characteristic, 

our model will have a second order clause with at least one negative literal in each clause. Thus, the 

proposed CRAN2SAT model will have more negative literal compared to the r2SAT model. This is 

because of the percentage of negative literal for r2SAT is only 50%  of the NN. In this simulation, the 

choice of 0.5r =  is made due to its effectiveness in the logic phase of the r2SAT [10]. Since the 

proposed model CRAN2SAT has the smallest learning error of RMSELearning and MAPELearning, results 

in Figures 4 and 5 have successfully highlighted that having more negative literal in the second order 

clause will have a higher probability of getting satisfied interpretations. Therefore, the proposed 

CRAN2SAT model shows that the variety representation of non-systematic logical rule should 

emphasized on more negative literals of the second order clauses. 

Even though CRAN2SAT demonstrates favorable performance, the incorporation of ES during 

the learning phase can impact the ability of DHNN-CRAN2SAT to achieve an ideal learning phase. 

Thus, it will lead to inconsistent learning interpretations. During this simulation, as 18,NN   the 

error of the logical structure will achieve maximum error, MAPELearning=100. In accordance with the 

discovery made by [41], it is possible to enhance the learning phase by integrating a learning algorithm 

into DHNN. This approach could aid in achieving an optimal satisfied interpretation for CRAN2SAT, 

consequently reducing the occurrence of logical inconsistencies. Regardless of comparing the 

proposed CRAN2SAT model with the existing non-systematic logical rule, we also make a comparison 

based on these different cases. This comparison is made to support our proposed CRAN2SAT model; 
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thus, our model incorporating the characteristic of excluding both positive literals in second-order 

clauses will result in an optimal learning phase. The CRAN2SAT model is compared with the logical 

structure that is comprise based on Cases 1–4 where: 

Case 1: The logical structure excluding both negative literals in second-order clauses, which is 

denoted as ( ).A B    

Case 2: The logical structure that comprises only positive literal in second-order clauses, which 

is denoted as ( ).A B  

Case 3: The logical structure that comprises only negative literal in second-order clauses, which 

is denoted as ( ).A B    

Case 4: The logical structure that comprises at most one positive literal per clause, which is also 

known as HORN2SAT. 

Results in Figure 6 illustrate the error of MAPE by comparing the logical structure based on 

CRAN2SAT, Cases 1–4. Based on this result, the logical structure of Case 3 and proposed method 

CRAN2SAT obtain the lowest MAPE. Thus, this result supports our proposed logical structure, which 

excludes both positive literals in second-order clauses. This is due to the result obtained by Figure 6, 

which has appropriately highlighted the significance of having more negative literal in second order 

clauses and how it can lead to a high probability of getting satisfied interpretation. It is also preserved 

that logical structure that comprises only positive literal in second order (Case 2) generates high 

learning error. Despite having at most one positive literal per clause, the logical structure of Case 4 is 

still unable to minimize the logical inconsistencies. Hence, it is significant to say that negative literals 

play a crucial role in achieving satisfied clauses. Therefore, throughout this analysis, the proportion of 

negative literal in the second order clause is significant because it can help in getting higher satisfied 

interpretation. 

 

Figure 6. Comparison of 
LearningMAPE  for between cases. 
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logical inconsistencies. This section is divided into three segments: Analysis of testing errors, 

assessment of the final neuron state quality (including total neuron variation and similarity analysis) 

and analysis of synaptic weights. 

7.1.1. Testing error analysis 

Upon the completion of clause satisfaction checking (cost function minimization) during the 

learning phase of DHNN-CRAN2SAT, the synaptic weights are then generated using the Abdullah 

method [1]. The cost function that attains to a value of zero will lead to the retrieval of optimal synaptic 

weights during the testing phase, yielding a solution at the global minimum. Based on the results 

obtained during the learning process, the proposed CRAN2SAT model is able to generate an optimal 

synaptic weight during 3 9,NN    leading a zero error for RMSETest and MAPETest. During this 

interval, DHNN-CRAN2SAT is in optimal retrieval phase and demonstrates a strong capability in 

producing global minimum solutions. However, as NN   increases, the testing error in terms of 

RMSETest and MAPETest will increase. 

Figures 7 and 8 show the result of RMSETest and MAPETest for a different state of the art SAT, 

respectively. The result in the retrieval phase is interrelated with the achievement of the minimization 

logical inconsistencies during the learning phase. Thus, by referring to Figures 7 and 8, DHNN-

CRAN2SAT obtained the lowest error in the retrieval phase due to the lowest error during the learning 

phase. Meanwhile, the testing error for DHNN-YRAN2SAT is not stable due to the different structure 

of the logic YRAN2SAT. During NN=24, YRAN2SAT has the highest error because the structure of 

1SAT is more than 2SAT, while the smallest error is at NN=33 because the structure of 2SAT is more 

than 1SAT. 

 

Figure 7. RMSETest for a different state of the art SAT. 
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Figure 8. MAPETest for a different state of the art SAT. 
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7.1.2. Energy analysis 

In this segment, we will explore the energy profile and examine the results (either the solution is 

global solutions or local solutions) generated by DHNN-CRAN2SAT. The energy profile is important 

to indicate the convergence of the proposed model. The energy differences remained constant at zero, 

because DHNN-CRAN2SAT is able to achieve minimum energy in the testing phase. As NN increases, 

the convergence by the network will be slowly reduced. The energy profile is lower during the smallest 

value of NN, due to the high probability of getting satisfied interpretation, which leads to the 

minimization of energy. The energy function in DHNN acts as an indicator of whether the solutions 

produced by DHNN-CRAN2SAT are optimal or not. Results in Figures 9 and 10 show the RMSE and 

MAPE energy for a different state of the art SAT, respectively. From Figures 9 and 10, the proposed 
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number of global solutions, because of the ability of the model to minimize the cost function. 
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Figure 9. RMSEEnergy for a different state of the art SAT. 

 

Figure 10. MAPEEnergy for a different state of the art SAT. 
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Figure 11. Zm  for a different state of the art SAT. 

According to [27], the Lyapunov energy function is an important factor to access the convergence 

of DHNN. Based on the results in Figures 9 and 10, it is observed that the lower probability of getting 

satisfied interpretation during the learning phase will contribute to the higher energy profile. Due to 

this fact, the proposed model DHNN-CRAN2SAT successfully shows the relationship between the 

learning phase and the testing phase of DHNN. The capability of obtaining a quality of final neuron 

state depends on the Lyapunov energy function. The quality of a final neuron state in the testing phase 

is crucial because the retrieved final neuron state will demonstrate the nature of the model. According 

to [10], having a wider variety of final neuron states can be beneficial when undertaking real-world 

classification or forecasting tasks. For this purpose, a new activation function will be implemented in 

the retrieval phase to enhance the effectiveness of the updating rule within DHNN, which can provide 

more variations and increased diversity in the final neuron states. The analysis based on different 

activation functions will be discussed in the next section. 

7.1.3. Similarity analysis 

Within this segment, the assessment of the retrieved final neuron state is performed through the 

application of the total neuron variation (TV) and the Jaccard similarity index (JSI). It’s important to 

highlight that the TV and JSI metrics are exclusively computed for the final neuron state that attains 

the global minimum energy. A higher TV suggests that the model has the ability to examine different 

solutions across varied areas in the search space. The JSI is utilized to assess the variety of final neuron 

states generated by DHNN-CRAN2SAT, by contrasting it with the benchmark neuron states. 

A smaller JSI value indicates that the obtained final neuron states display a high degree of deviation 

from the benchmark states. Figure 12 displays the TV for different state of the art SAT. In Figure 12, it 

can be observed that RAN2SAT, r2sat and YRAN2SAT achieve an optimal TV during highest NN=12. 

However, CRAN2SAT extended to obtain the highest TV at NN=15. It is also notable that when 

30,NN   the TV gradually decreases to a zero value. As for YRAN2SAT, during 33,NN = it still 

manages to obtain higher TV compared to the other logical rule due to the structure of 2SAT more than 

1SAT. 
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Figure 12. TV for a different state of the art SAT. 

Since our study incorporated ES during the learning phase, as NN  increases, the utilization of 

the “trial and error” approach will consequently impact the minimization of the cost function. If ES 

were unable to attain an optimal synaptic weight, this would influence the testing phase and 

consequently lead to a solution trapped in local minima. Thus, it will impact the evaluation of the 

retrieved final neuron state. This is because the TV and JSI will only measure the final neuron state 

that achieves global minimum energy. For this reason, as NN increases, the probability of the global 

minimum solution will decrease and, thus, the TV will also decrease. 

The performance of the logical rule in terms of JSI is represented in Figure 13. 

 

Figure 13. Jaccard similarity index for a different state of the art SAT. 
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relatively large. From the above discussion, we provided a clear concept of cost minimization, synaptic 

weight, energy profile, and neuron variation, which describes the overall behavior of DHNN-

CRAN2SAT. It can be concluded that the proposed logical rule, CRAN2SAT, successfully 

implemented in DHNN by lower learning error and diversified final neuron states. 

The authors’ desire to optimize the retrieved final neuron state during the testing phase was a 

stepping stone for the next research study. A new activation function will be implemented in the 

retrieval phase to improve the effectiveness of the updating rule in DHNN, which can provide more 

variations and increased diversity in the final neuron states. More variation in the final neuron states 

is very effective for logic mining, which can be imposed on numerous fields. Hence, this research 

introduces a novel non-monotonic Smish activation function designed to introduce greater variation 

and enrich the diversity in the final neuron states. The discussion on different activation functions will 

be covered in the next section. 

7.1.4. Synaptic weight analysis 

This section will discuss the management of synaptic weights in relation to the proposed 

CRAN2SAT model. The value of the synaptic weight such as WAB, WA and WB are obtained by using 

the Abdullah method [1]. The proposed CRAN2SAT model restricts the logical structure by excluding 

both positive literals in second-order clauses without imposing any restrictions on the first-order 

clauses. By incorporating this characteristic, our model will have a second order clause with at least 

one negative literal in each clause. Therefore, by considering this criterion, we acknowledge that there 

are three possible combinations of 2SAT clauses, and two possible combinations of 1SAT clauses, 

while the existing non-systematic logic for k=1,2, such as RAN2SAT, will have four possible 

combinations of 2SAT clauses and 2 possible combinations of 1SAT clauses. By exhibiting to the value 

of synaptic weight of CRAN2SAT, there will be no value of synaptic weight for both positive literals 

in second-order clauses, ( ).A B  This is because of the criterion of the CRAN2SAT model that 

excludes both positive literals in second-order clauses. [44] states that the Hopfield neural network is 

restricted to a symmetric connection network, which also impacts the limited storage capacity of the 

DHNN. Since we have reduced the ( )A B   clause from our proposed model, the storage 

complexity of CAM has been reduced. Furthermore, based on the individual contribution of the 

synaptic weight for both positive literals in second-order clauses ( ) ,A B  the DHNN will retrieve a 

repetitive final neuron state. As mentioned in the previous section, the final neuron state will be 

transformed to one if ( ) 0.ig h   The DHNN will retrieve a final neuron state based on the value 

obtained by the local field hi. Due to this reason, the individual contribution of the synaptic weight for 

both positive literals in second-order clauses ( )A B will contribute to a high probability of getting 

a repetitive final neuron state. Consequently, this will result to the low diversification between the final 

neuron state. This is supported by the performance of the proposed logic CRAN2SAT. The 

CRAN2SAT model, which constrains the logical structure by excluding positive literals in second-

order clauses, has effectively demonstrated the significance of incorporating negative literals in 

generating a diverse range of final neuron states and achieving the highest global solution (refer 

Figures 11–13). 
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7.2. Different activation functions for DHNN-CRAN2SAT 

This study has proposed a non-monotonic Smish activation function in DHNN-CRAN2SAT. In this 

section, the retrieval phase of DHNN-CRAN2SAT with the Smish activation function will be 

compared with other types of activation functions, namely, McCulloch-Pitts, piecewise linear 

activation function, Elliot symmetric activation function, HTAF and swish activation. As mentioned 

in the work [45], the analysis during the retrieval phase plays an important role as DHNN often tends 

to produce repetitive states instead of generating new final neuron states. According to [9], the initial 

neuron state that is generated during the initialization is always the same, which is only one type of 

neuron state. Thus, the result of the final neuron state only converges to only one type of solution. To 

overcome this issue, we proposed a non-monotonic Smish activation function to optimize the final 

neuron state retrieved by DHNN. Despite achieving a good performance in the hyperbolic tangent 

activation function by [16], the interpretability of error analysis and neuron variations during the 

retrieval phase in logic satisfiability DHNN remains unknown. Therefore, this paper will continue their 

work by analyzing six types of activation functions. Hence, the efficiency of different activation 

functions in retrieving a final neuron state will be compared. Additionally, the full capability of non-

monotonic Smish activation function will be investigated throughout existing SAT logic in DHNN, 

such as RAN2SAT, r2AT and YRAN2SAT. 

7.2.1. Analysis on DHNN-CRAN2SAT with proposed non-monotonic Smish activation 

In this section, the effectiveness of the proposed non-monotonic Smish activation function in 

DHNN-CRAN2SAT with Smish activation function will be compared with the other types of 

activation functions. Results in Figures 14 and 15 show the RMSE and MAPE error for a six types of 

activation functions, respectively. Figures 14 and 15 show that during the interval of 3 9,NN   the 

Smish activation function is able to generate an optimal synaptic weight that leading to a zero error for 

RMSETest and MAPETest. 

During this interval, DHNN-CRAN2SAT with Smish activation function is in optimal retrieval 

phase where it performs well in generating global minima solutions. Figures 14 and 15 show that is 

not only Smish activation able to retrieve an optimal synaptic weight during 3 9,NN   but also the 

other five activation functions in optimal retrieval phase. This result is due to the capability of DHNN 

in minimizing the logical inconsistency during the learning phase. However, as NN  increases, the 

testing error in terms of RMSETest and MAPETest will increase for all types of activation functions. Based 

on the results illustrated in Figures 14 and 15, the proposed non-monotonic Smish activation function 

in DHNN-CRAN2SAT obtained the lowest error compared to the other activation functions. Lower 

error values observed during the retrieval phase signify the effectiveness of the Smish activation 

function in identifying global minimum solutions over local minima solutions. The convergence 

property of the DHNN model can be validated by the existence of a high proportion of global minima 

solutions. Therefore, to assess the retrieved final neuron state, the behaviors of the Lyapunov energy 

function associated with the activation function utilized in the DHNN will be examined effectively. 

The convergence of the final neuron state can be observed by calculating the differences in Eq (12). 
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Figure 14. 
TestRMSE  for DHNN-CRAN2SAT with various types of activation function. 

 

Figure 15. 
EnergyRMSE  for DHNN-CRAN2SAT with various types of activation function. 
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the stability of negative training, this will influence the DHNN in the retrieved diversified final neuron 

state. Moreover, the non-monotonic nature of Smish within the range of ( ),− +  can enhance the 
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network’s ability for learning and gradient transformations [26]. If the activation function is not 

continuously differentiable, it will contribute to an undefined gradient at midpoint of the activation 

function, which will affect the training performance [29]. Thus, since the Smish activation function is 

a non-zero derivative at zero, this will help in the learning process, because a very small derivatives 

tends to stop the learning process. Notably, the parameter value in the Smish activation function where 

1 =   and 1 =   helps to maintain the gradient of the non-monotonic function, which makes the 

solution obtained not be fluctuate. Moreover, the characteristics of the Smish activation function enable 

neural networks to incorporate negative representations and achieve a diverse final neuron state. The 

Smish activation function is a smooth non-monotonic function with a lower bound but no upper bound. 

This can be validated by the results in Table 8, where the Smish activation function can provide more 

variations in the final neuron states. 

The other five activation functions also have their own behavior and properties. The behavior of 

HTAF saturates when the modulus of the input tends toward infinity and the gradients decrease rapidly. 

As a consequence, this only permits the training of less complex networks [46]. Despite the desirable 

properties, such as centering its outputs around zero, HTAF can suffer from saturation and vanishing 

gradient issues. Especially as the input values become very large or very small, it will cause the output 

to reach its limits of +1 or –1. During the retrieval phase of DHNN, a zero output will result in a 

contribution of one to the final neuron state. Due to this issue, HTAF will contribute to the low 

diversified final neuron states. The McCulloch-Pitts function is the conventional platform that has been 

used in logic programming in DHNN. This function was popularized by [1] and it is reported the 

solution will trap in the local minimum of the energy [43]. In addition, the most common and simplistic 

activation function is the piecewise linear activation function [14]. The function consists of linear 

segments in different intervals of the input range. The transition points might introduce non-

smoothness in the function which will affect the lack of differentiability at the transition points [26]. 

The Swish activation function involves multiplying the input function by its corresponding sigmoid 

function. The Swish activation function is also a non-monotonic with the output range of ( ),− + . 

Based on the parameter value of ,  the shape of the Swish activation function is adjusted between 

the linear and ReLU functions. The smaller and higher values of   lead toward the linear and ReLU 

functions, respectively [12]. The same goes to the Elliot symmetric activation function [47], which has 

similar characteristics to the Sigmoid function. The function is saturated for higher and lower inputs, 

which leads to vanishing gradient problem [12]. 

An appropriate activation function enables the network to reach a stable state of convergence and 

prevents it from oscillating between various states. The quality of the final neuron state in the retrieval 

phase is crucial because the retrieved final neuron state will demonstrate the nature of the model. Thus, 

this study claims that the most suitable activation function that is compatible with the Lyapunov energy 

function is the Smish activation function. The Smish non-monotonic activation functions allow for a 

wider range of possible solutions while the Lyapunov energy functions can accommodate this diversity 

by assessing the stability of the network. This is supported by [3], which states that the Lyapunov 

energy will reach its minimum point (equilibrium state) if DHNN remains stable without any 

oscillation.
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Table 8. Zm   for DHNN-CRAN2SAT for all types of activation function. The bracket denotes the enhancement ratio attributed to the 

proposed Smish activation function. The bracket (*) indicates the proposed Smish activation outperformed other activation function since 

there is no value of Zm  for the respected activation function. 

Types of activation function 

NN Smish Swish Hyperbolic tangent Elliot Piecewise linear McCulloch-Pitts 

3 1.00000 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 

6 1.00000 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 

9 1.00000 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 

12 0.95500 0.83000 (0.15060) 0.94000 (0.01596) 0.73000 (0.30822) 0.83000 (0.15060) 0.86000 (0.11047) 

15 0.66000 0.45000 (0.46667) 0.62000 (0.06452) 0.47000 (0.40426) 0.51000 (0.29412) 0.52000 (0.26923) 

18 0.34000 0.24000 (0.41667) 0.24000 (0.41667) 0.23000 (0.47826) 0.24000 (0.41667) 0.15000 (1.26667) 

21 0.13000 0.08000 (0.62500) 0.08000 (0.62500) 0.12120 (0.07261) 0.08210 (0.58343) 0.11000 (0.18182) 

24 0.07000 0.04000 (0.75000) 0.04000 (0.75000) 0.03490 (1.00573) 0.06000 (0.16667) 0.04000(0.75000) 

27 0.04000 0.02000 (1.00000) 0.02140 (0.86916) 0.00000 (*) 0.01000 (3.00000) 0.00000 (*) 

30 0.02000 0.01100 (0.81818) 0.01000 (1.00000) 0.00000 (*) 0.01000 (1.00000) 0.00000 (*) 

33 0.01850 0.00000 (*) 0.01000 (0.85000) 0.00000 (*) 0.00000 (*) 0.00000 (*) 

36 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

39 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

42 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

45 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

(+/=/–)  (8/3/0) (8/3/0) (8/3/0) (8/3/0) (8/3/0) 
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By analyzing the result of Zm, the Smish activation function consistently outperformed the other 

five activation functions in terms of obtaining higher Zm. During the interval of 3 9NN  , all the 

activation functions in DHNN were able to retrieve maximum of global solutions because during this 

interval, there is high probability of getting satisfied interpretation during the learning phase. Thus, it 

will lead to an optimal synaptic weight. Therefore, during this interval, the retrieved final neuron state 

is in a global solution. The enhancement ratio Zm for the Smish activation function in comparison to 

other activation functions was documented and analyzed, as shown in Table 8. The positive ratio of 

improvement for Smish activation function is consistently higher throughout all the types of activation 

functions indicating that Smish activation function outperforms other types of activation functions in 

terms of Zm. Based on the result in Table 8, the ratio of improvement Zm is measured for 3 33NN  . 

It is because after 36NN  , DHNN is unable to retrieve a global solution due to the difficulty of 

minimizing the logical inconsistency during the learning phase. 

Thus, in obtaining a higher value of Zm the Smish activation function wins eight between the 

range of 3 33.NN   As shown in Table 8, Smish activation function attained the highest value of 

Zm between the number of neurons 12 33NN   compared to other types of activation functions. It 

has been mentioned in the previous section that Zm is an important metric in evaluating the 

performance of DHNN. Based on this result, it is proved that the Smish activation function can improve 

the effectiveness of the updating rule in DHNN, and incorporating the Smish activation function into 

the proposed DHNN-CRAN2SAT model can notably boost its performance, particularly in generating 

Zm. 

The value of TV and the ratio of improvement between Smish activation function and other types 

of activation functions that have been implemented in DHNN-CRAN2SAT were recorded and 

compared, as in Table 9. Due to the low capability of retrieving a global solution after 36NN  , for 

a fair comparison, the ratio of improvement TV is measured for 3 33.NN   In this study, the Smish 

activation function achieved the maximum value of TV at NN=15 with the value of TV=920 has which 

outperformed other types of activation functions. Furthermore, Smish activation function also have the 

highest values of TV when compared one to one for each type of activation function. Although Smish 

activation function cannot compete with other activation functions in producing higher TV during 

3,NN   and by comparing with HTAF, Smish activation function shows no ratio of improvement 

between 3 6,NN   the Smish activation function shows the fruitful result by consistently winning 

nine out of eleven distribution number of neurons. Based on this result, it is shown that by 

implementing the Smish activation function in DHNN, the network can retrieve a diversified final 

neuron state even though the number of neurons have been increased. By referring to the figure of 

Smish activation function, it is shown that Smish activation function has a lower bound with no upper 

bound. This property has enabled the networks to benefit negative representation, which is compatible 

to solve problems in the retrieval phase of DHNN. In the DHNN model, it is crucial to introduce 

diversity in the final neuron state. This is because the DHNN tends to produce repetitive states instead 

of generating new ones. Moreover, having a greater range of distinct final neuron states would provide 

an advantage in practical classification or prediction tasks [10]. As demonstrated in Table 9, this 

research recognizes that the Smish activation function can contribute to a wider range of variations 

and boost diversity in the final states of the neurons. 
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Table 9. TV for DHNN-CRAN2SAT for all types of activation function. The positive bracket signifies the improvement ratio, while the 

negative ratio suggests that the other activation function surpassed the effectiveness of the proposed Smish activation function. The bracket 

(*) signifies the proposed Smish activation outperformed other activation function since there is no value of TV for the respected activation 

function. 

 Types of activation function 

NN Smish Swish Hyperbolic tangent Elliot Piecewise linear McCulloch-Pitts 

3 165 166 (-0.0060) 165 (0.0000) 166 (-0.0060) 166 (-0.0060) 166 (-0.0060) 

6 280 271 (0.0332) 280 (0.0000) 271 (0.0332) 271 (0.0332) 271 (0.0332) 

9 465 465 (0.0000) 428 (0.0864) 465 (0.0000) 465 (0.0000) 465 (0.0000) 

12 757 629 (0.2035) 737 (0.0271) 615 (0.2309) 635 (0.1921) 690 (0.0971) 

15 920 674 (0.3650) 857 (0.0735) 639 (0.4397) 698 (0.3181) 769 (0.1964) 

18 558 501 (0.1138) 468 (0.1923) 452 (0.2345) 453 (0.2318) 341 (0.6364) 

21 382 256 (0.4922) 250 (0.5280) 299 (0.2776) 290 (0.3172) 246 (0.5528) 

24 247 197 (0.2538) 136 (0.8162) 170 (0.4529) 196 (0.2602) 162 (0.5247) 

27 157 151 (0.0397) 120 (0.3083) 0 (*) 16 (8.8125) 0 (*) 

30 119 96 (0.2396) 53 (1.2453) 0 (*) 29 (3.1034) 0 (*) 

33 86 0 (*) 1 (85.0000) 0 (*) 0 (*) 0 (*) 

36 0 0 0 0 0 0 

39 0 0 0 0 0 0 

42 0 0 0 0 0 0 

45 0 0 0 0 0 0 

(+/=/–)  (9/1/1) (9/2/0) (9/1/1) (9/1/1) (9/1/1) 
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7.3. Comparison of six different types of activation function with existing SAT in DHNN 

To support the effectiveness of the non-monotonic Smish activation function, the proposed 

activation function is embedded in the different types of non-systematic logical structure such as 

RAN2SAT, r2sat and YRAN2SAT. The performance of these logical structures will be evaluated with 

different types of activation functions, and the result is based on the RMSETest, RMSEEnergy, Zm and TV 

as shown in Figures 16–18, respectively. Based on the results in Figures 16–18, it shows that the non-

monotonic Smish activation function is not only compatible in the DHNN-CRAN2SAT, but also 

compatible with other logical structures. Based on the results in Figures 16a–c and 17a–c, during the 

interval of 3 9,NN   the logical structure of RAN2SAT and r2sat are able to generate an optimal 

synaptic weight, which leads to a zero error for RMSETest and RMSEEnergy. However, as NN increases, 

there is a difficulty in minimizing the logical inconsistency during the learning phase, leading to 

suboptimal synaptic weight. Due to this reason, the value of Zm starts to decrease as 9.NN   In this 

context, the Smish activation function shows the ability of generating more Zm compared to the other 

types of activation functions. Although YRAN2SAT offers the flexibility of the logical structure, it 

does not limit the capability of Smish activation function in providing a good result in terms of 

RMSETest, RMSEEnergy and Zm. The variability in the outcome observed in Figure 18 is attributed to the 

adaptability of both the number of first-order clauses and second-order clauses. Therefore, Smish 

activation functions can prevent the network from getting trapped in local minima during the retrieval 

phase, which helps in producing the highest value of global solutions with lowest testing error. 

Based on the results in Figures 16d and 17d, there is a zero value of during due to the disability 

of DHNN to retrieve a global solution. It is because of the difficulty in minimizing the logical 

inconsistency during the learning process. Therefore, by analyzing the value of TV for each logical 

structure (refer Figures 16d and 17d), it is shown that the implementation of Smish activation function 

in DHNN has improved the capability of generating a diversified solution. The highest value of TV 

obtained by RAN2SAT, r2SAT and YRAN2SAT is TV=496,481,463, respectively. By referring to 

Figure 17d, during NN=24, the value of TV=0. It is because at NN=24, the structure of YRAN2SAT 

had a higher number of first order clauses compared to the second order clauses. Due to this reason, 

YRAN2SAT was unable to complete the learning phase due to the high percentage of obtaining 

unsatisfied clauses, which lead to a local solution. The highest result of Zm and TV highlights the 

effectiveness of the Smish activation function in DHNN. It shows the Smish activation function has 

capability to improve the effectiveness of the update of the final neuron state. 

The other activation function has a problem in terms of saturated for higher and lower inputs, 

which leads to a vanishing gradient problem [12]. Due to this effect, the DHNN tends to retrieve a 

repetitive final neuron state. Additionally, the problem of a diminishing gradient will affect the 

convergence speed of the network [13] and affects the training performance [29]. Therefore, based on 

the above analysis, it is validated that the proposed non-monotonic Smish activation function has the 

capability to improve the effectiveness of the updating rule in DHNN, which can provide more 

variations and increase diversity in the final neuron states. The effectiveness of obtaining more 

variations in the final neuron states is beneficial in the logic mining, which can be imposed on 

numerous fields. Thus, this is another fruitful finding because the implementation of non-monotonic 

Smish activation function in DHNN has successfully provided more global solution with the highest 

diversification in the final neuron states. 
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Figure 16. Performance of different activation functions in DHNN-RAN2SAT. 
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Figure 17. Performance of different activation functions in DHNN-r2SAT. 
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Figure 18. Performance of different activation functions in DHNN-YRAN2SAT. 
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8. Conclusions 

This paper presented a novel non-systematic logical structure that uses first order and second 

order logic without including both positive literal in the second order clauses, namely, CRAN2SAT. 

The proposed logic CRAN2SAT was implemented into the DHNN by minimizing the cost function. 

By comparing the cost function with the Lyapunov energy function, the optimal synaptic weight was 

obtained. The performance of CRAN2SAT was compared with different logical rules (RAN2SAT, 

r2SAT and YRAN2SAT). The proposed logic CRAN2SAT has demonstrated an excellent performance 

in the learning and retrieval phase, as compared to the other state of the art logical rules. This result 

indicates that by having relatively high proportion of negative literals in the second order clauses can 

exhibit superior performance in producing global solution with a diversified final neuron state. 

Furthermore, the experimental simulations with different types of activation functions (McCulloch-

Pitts, piecewise linear, Elliot symmetric, hyperbolic tangent and Swish) show that DHNN-CRAN2SAT 

with the proposed non-monotonic Smish activation function obtained the highest total neuron 

variations and provide more diversity in the final neuron states. The efficacy of the non-monotonic 

Smish activation function is further analyzed throughout different non-systematic logical structures. 

Based on the result, the Smish activation function manages to achieve a good performance for each of 

the logical structures. Thus, the Smish activation function highlights its capacity to retrieve a 

diversified final neuron state within the DHNN framework. Worth mentioning that, this is the first 

attempt to implement the Smish activation function in the DHNN. The proposed activation function 

can be integrated into various existing works, as demonstrated by previous studies [48–51]. In solving 

real-world classifications datasets, it is important to consider diverse solutions in order to improve a 

model's ability to adapt to various data structures. Having a wider range of final neuron states can be 

beneficial for solving real-world classification or forecasting tasks, as mentioned by [10]. Therefore, 

the proposed logical rule CRAN2SAT with Smish activation function in DHNNs successfully achieves 

the desired final neuron states in terms of high diversification between the neuron states. For future 

work, the learning phase can be optimized in various perspectives. For example, the whale 

optimization algorithm by [52] and black hole algorithm by [53] can be added to the learning phase to 

obtain an optimal synaptic weight. In addition, the proposed CRAN2SAT also can be implemented in 

the real-world dataset, as proposed by [33,54,55]. 
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