
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(2): 3895–3910.
DOI: 10.3934/math.2024192
Received: 16 November 2023
Revised: 18 December 2023
Accepted: 05 January 2024
Published: 11 January 2024

Research article

Markov-switching threshold stochastic volatility models with regime
changes

Ahmed Ghezal1,*, Mohamed balegh2 and Imane Zemmouri3

1 Department of Mathematics, Abdelhafid Boussouf University Center of Mila, Algeria
2 Department of Mathematics, College of Science and Arts, Muhayil, King Khalid University,

Abha 61413, Saudi Arabia
3 Department of Mathematics, University of Annaba, Elhadjar 23, Annaba, Algeria

* Correspondence: Email: a.ghezal@centre-univ-mila.dz.

Abstract: This paper introduces a comprehensive class of models known as Markov-Switching
Threshold Stochastic Volatility (MS-TSV) models, specifically designed to address asymmetry and
the leverage effect observed in the volatility of financial time series. Extending the classical threshold
stochastic volatility model, our approach expresses the parameters governing log-volatility as a
function of a homogeneous Markov chain with a finite state space. The primary goal of our proposed
model is to capture the dynamic behavior of volatility driven by a Markov chain, enabling the
accommodation of both gradual shifts due to economic forces and sudden changes caused by abnormal
events. Following the model’s definition, we derive several probabilistic properties of the MS-TSV
models, including strict (or second-order) stationarity, causality, ergodicity, and the computation of
higher-order moments. Additionally, we provide the expression for the covariance function of the
squared (or powered) process. Furthermore, we establish the limit theory for the Quasi-Maximum
Likelihood Estimator (QMLE) and demonstrate the strong consistency of this estimator. Finally, a
simulation study is presented to assess the performance of the proposed estimation method.
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1. Introduction

Over recent years, Markov-switching models (MSMs) have garnered considerable scholarly
attention, emerging as potent tools for modeling and characterizing asymmetric business cycles
within the realm of econometrics. The selection of these models is grounded in their notable
flexibility to capture stability and/or asymmetric effects in volatility shocks, as well as their efficacy in
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modeling time series data. Initially highlighted by Hamilton [1, 2], these models have been actively
employed in statistical applications, addressing various time series phenomena. Several authors have
extensively explored aspects such as stationarity, the existence of moments, geometric ergodicity,
statistical inference, and asymptotic theory for both linear and nonlinear Markov-switching models,
including MS-ARMA models [3–5], nonlinear MS-ARMA models [6], MS-GARCH models [7, 8],
MS-BL models [9–13], MS-BLGARCH models [14, 15], doubly MS-AR models [16], MSAR-SV
models [17], and MS-AlogGARCH models [18], while also encompassing a distinct case known as
the periodic model [19, 20]. In our study, we introduce an alternative perspective by presenting a
Markov-switching threshold stochastic volatility process. This process incorporates a standard
threshold stochastic volatility [21, 22] representation within each local regime. Notably, the
log-volatility process in this model follows an rth-order Markov-switching threshold autoregression
(TAR), with coefficients contingent on a Markov chain. This approach is recognized in the literature
as a compelling substitute for MS-ARCH-type models, which rely on exogenous innovations to drive
volatility. Our presented model can be viewed as a logical expansion of the MSAR-SV model initially
proposed by So et al. [23], thereby incorporating heavy-tailed innovations to describe the observed
process. For further nuanced insights, a more qualitative discussion on this approach can be found in
the works of Casarin [24]. The primary rationale behind opting for the MS-TSV model is its
remarkable enhancement of predictive capabilities compared to the standard TSV model. This model
effectively captures pivotal events that impact the oil market, demonstrating superior performance.
Additionally, it adeptly accommodates the typical fluctuating behavior of volatility attributable to
economic dynamics, while simultaneously addressing abrupt, discrete shifts in volatility resulting
from unexpected extraordinary events. The goals of this paper can be summarized as follows: (1)
delving into the probabilistic properties of the MS-TSV model. In doing so, we establish the
necessary and sufficient assumptions required to ensure the existence of a stationary solution. It’s
noteworthy that the MS-TSV coefficients linked to the Markov chain can diverge from the
conventional stationary assumptions associated with standard TSV models; (2) centering on analyzing
the strong consistency of the QMLE for MS-TSV models. Prior to delving into the analysis, we
introduce a set of symbols to facilitate the forthcoming discussion.

Throughout the paper, the following symbols are employed:

• The symbol I(.) represents a square matrix in which each main diagonal entry is 1, while all other
entries are set to 0. Additionally, O(n,m) signifies a n × m matrix in which all entries are zeros.
Meanwhile, F′ :=

(
I(1),O(1,r−1), I(1),O(1,r−1)

)
. The function I{.} refers to an indicator function.

• The notation ρ(Γ) denotes the spectral radius of a square matrix Γ.
• The symbol ∥.∥ represents any norm applicable to m × n matrices (or m × 1 vectors). Meanwhile,

the symbol ⊗ signifies the Kronecker product operation.
• The sequence (∆t, t ∈ Z) represents a stationary Markov chain that is both irreducible and

aperiodic.
• The matrix Q(n) =

(
q(n)

i j , (i, j) ∈ E × E
)

represents the n−step transition probability matrix, where

q(n)
i j = P (∆t = j|∆t−n = i) with one-step transition probability matrix Q :=

(
qi j, (i, j) ∈ E × E

)
where qi j := q(1)

i j = P (∆t = j|∆t−1 = i) for i, j ∈ E = {1, ..., e} .
• The vector Π′ = (π(1), ..., π(d)) represents the initial stationary distribution, where
π(i) = P (∆0 = i), i = 1, ..., e, such that Π′ = Π′Q.
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• When considering a collection of deterministic matrices denoted as Γ := {Γ(i), i ∈ E}, it is
important to observe that:

Q(n)(Γ) =


q(n)

11Γ(1) . . . q(n)
e1 Γ(1)

... . . .
...

q(n)
1e Γ(e) . . . q(n)

ee Γ(e)

 , Π(Γ) =


π(1)Γ(1)
...

π(e)Γ(e)


with Q(1)(Γ) = Q(Γ).

The remaining content of the paper is structured in the following manner. In Section 2, we
introduce the MS-TSV model, shedding light on its distinctive probabilistic characteristics. Emphasis
is placed on the existence of a strictly or second (or higher)-order stationary solution for the MS-TSV
model. Additionally, we establish autocovariance functions corresponding to the squared and
powered processes. Section 3 unveils our proposition: a meticulously tailored QMLE for the
MS-TSV model. This section not only elucidates the essence of QMLE but also establishes its strong
consistency within the MS-TSV framework. Dedicated to presenting the outcomes of our simulations,
Section 4 provides a comprehensive analysis of the performance of the proposed QMLE within the
MS-TSV model framework. Section 5 serves as the conclusion of this paper.

2. MS-TSV model

The univariate Markov-switching threshold stochastic volatility model, denoted as MS − TS V(r),
is defined by the following equation:

Xt = σ
1/2
t εt

logσt = α0 (∆t) +
r∑

i=1

(
αi (∆t) I{Xt−i>0} + βi (∆t) I{Xt−i<0}

)
logσt−i + β0 (∆t) et.

(2.1)

In Eq (2.1), the two processes {εt, t ∈ Z} and {et, t ∈ Z} represent two independent and identically
distributed (i.i.d.) sequences of random variables with zero mean and unit variance. The functions
αi (.) and βi (.) , i = 0, ..., r are related to the unobserved Markov chain (∆t, t ∈ Z). Additionally, we
assume that (εt, et) and {(Xu−1,∆t) , u ≤ t} are independent. The objective of this section is to
demonstrate some important probabilistic properties of the MS-TSV model. To facilitate the analysis,
it is often useful to express Eq (2.1) in an equivalent state-space representation. In this context, we
can rewrite Eq (2.1) in the form of a multivariate autoregressions model with Markov-switching
dynamics:

Λt = Ψ (∆t)Λt−1 + Υt (∆t) (2.2)

and

Xt = εt exp
(

1
2 F′Λt

)
where

Λ′t :=
(
I{et>0} logσt, . . . , I{et−r+1>0} logσt−r+1, I{et<0} logσt, . . . , I{et−r+1<0} logσt−r+1

)
,

Υt (∆t) := (α0 (∆t) + β0 (∆t) et)
(
I{et>0},O(1,r−1), I{et<0},O(1,r−1)

)′
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and

Ψ (∆t) : =


A′ (∆t) I{et>0} αr (∆t) I{et>0} B′ (∆t) I{et>0} βr (∆t) I{et>0}

I(r−1) O(r−1,1) O(r−1,r−1) O(r−1,1)

A′ (∆t) I{et<0} αr (∆t) I{et<0} B′ (∆t) I{et<0} βr (∆t) I{et<0}

O(r−1,r−1) O(r−1,1) I(r−1) O(r−1,1)


A′ (∆t) = (α1 (∆t) , . . . , αr−1 (∆t)) , B′ (∆t) = (β1 (∆t) , . . . , βr−1 (∆t)) .

The process
((
Λ′t ,∆t

)′
, t ∈ Z

)
represents a Markov chain on R2r × E. However, when investigating the

probabilistic properties of the model described in Eq (2.1), it is more convenient and advantageous to
utilize the model presented in Eq (2.2). Equation (2.2) is identical to the definition used for the recently
studied D-MSAR model by Ghezal [16]. Firstly, we establish the following significant result, implying
strict stationarity.

Theorem 2.1. The multivariate model with Markov-switching (2.2) is under consideration. Here, we
present the following:

i. Sufficient condition: If

γ (Ψ) := lim
n→∞

E

1
n

log

∥∥∥∥∥∥∥
n−1∏
j=0

Ψ
(
∆n− j

)∥∥∥∥∥∥∥
 a.s
= lim

n→∞

1
n

log

∥∥∥∥∥∥∥
n−1∏
j=0

Ψ
(
∆n− j

)∥∥∥∥∥∥∥
 < 0

then Eq (2.2) admits a unique, strictly stationary, causal and ergodic solution given by the
following series

Xt = εt

∞∏
k=0

exp

1
2

F′
 k−1∏

j=0

Ψ
(
∆t− j

)Υt−k (∆t−k)

 (2.3)

which converges absolutely almost surely for all t ∈ Z.
ii. Necessary condition: If

{
Υt (∆t) ,Ψ (∆t)

}
is controllable [17] and the multivariate stochastic

volatility model with Markov-switching (2.2) has a strictly stationary solution, then it follows
that γ (Ψ) < 0.

Proof. i. Sufficient Condition: A sufficient condition is provided by the subadditive ergodic
theorem. Almost surely, we have

lim sup
k

∥∥∥∥∥∥∥
k−1∏
j=0

Ψ
(
∆t− j

)∥∥∥∥∥∥∥
1/k

≤ exp {γ (Ψ)} < 1.

Conversely, utilizing the Borel-Cantelli lemma, it follows that

P
(
lim sup

k→+∞
|et−k|

1/k > λ

)
= 0 for all λ > 1.

Consequently,

lim sup
k→+∞

∥∥∥∥∥∥∥
 k−1∏

j=0

Ψ
(
∆t− j

)Υt−k (∆t−k)

∥∥∥∥∥∥∥
1/k

≤ exp {γ (Ψ)} < 1

and by Cauchy’s root test, the series (2.3) converges absolutely almost surely.
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ii. Necessary Condition: As for the second assertion, we establish a necessary condition. If there
exists a strictly stationary solution for Eq (2.2), thus∥∥∥∥∥∥∥

 k−1∏
j=0

Ψ
(
∆t− j

) β0 (∆t)

∥∥∥∥∥∥∥ −→k→∞
0 in probability.

By controllability, we consequently derive

∥∥∥∥∥∥
{

k−1∏
j=0
Ψ

(
∆t− j

)}∥∥∥∥∥∥ −→k→∞
0 in probability. Through a

straightforward modification of Lemma 3.4 in Picard [25], we deduce that γ (Ψ) < 0.
□

Remark 2.1. If any of the following conditions is satisfied, then it implies that γ (Ψ) < 0:

a. E
{

log

∥∥∥∥∥∥n−1∏
j=0
Ψ

(
∆n− j

)∥∥∥∥∥∥
}
< 0,

b. E
{∥∥∥∥∥∥n−1∏

j=0
Ψ

(
∆n− j

)∥∥∥∥∥∥
}
< 1,

c. ρ (|Ψ|) < 1, where |Ψ| = E {|Ψ (∆n)|}.

Example 2.1. The MS-TSV(1) model satisfies the following sufficient condition:
e∏

k=1
|α1(k)|κπ(k)|β1(k)|(1−κ)π(k) < 1, where κ = P(ε0 > 0) > 0. Consequently, in this state, there exists a

unique, strictly stationary, causal, and ergodic solution for the model. Hence, the requirement for
local strict stationarity is not essential. In other words, the presence of burst regimes (i.e.,
|α1(k0)|κπ(k0)|β1(k0)|(1−κ)π(k0) > 1) does not preclude the possibility of global strict stationarity. For the
specific case of MS-TSV(1) with two-regimes, Xt = σ

1/2
t εt and

logσt =

{
1 +

(
aI{Xt−1>0} + bI{Xt−1<0}

)
logσt−1 + et if ∆t = 1(

(a + 1) I{Xt−1>0} + (b − 1) I{Xt−1<0}
)

logσt−1 + et if ∆t = 2

π (1) = 7/9 with et ∼ N(0, 1), the zone of strict stationarity is illustrated in Figure 1 below.

-4 -3 -2 -1 0 1 2 3 4
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-1

0

1

2

3

4

b

π(1)=7/9

Figure 1. The zone of strict stationarity for MS-TSV(1) model.

The graphical representation in Figure 1 offers a comprehensive insight into the strict stationarity
region of the MS-TSV(1) process under the assumption of et ∼ N(0, 1). The illustration delineates two
clearly defined zones:
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• The inner zone signifies strict stationarity.
• The outer zone denotes nonstationarity.

This visualization not only facilitates a qualitative assessment of the model’s validity but also provides
valuable insights into the sensitivity of the model to various inputs.

The distinct delineation of these zones aids in understanding the behavior of the process and
contributes to a deeper comprehension of its dynamics.

It’s great to hear that other properties of the MS-TSV model, such as second-order stationarity and
the existence of moments, are clear and easily obtainable. These properties are essential in
understanding the behavior and statistical characteristics of the model. Second-order stationarity
ensures that the model’s statistical properties remain consistent over time, and the existence of
moments indicates that the model’s random variables have well-defined statistical properties, such as
mean, variance, and higher-order moments.

Theorem 2.2. Consider the MS-TSV(r) model (2.1) with its state-space representation (2.2). If

ρ
(
Q(Ψ(2))

)
< 1 (2.4)

for Ψ(2) :=
{
Ψ⊗2(i), i ∈ E

}
, hence, Eq (2.2) possesses a unique second-order stationary solution

represented by the Series (2.3). This solution demonstrates absolute almost sure convergence and
convergence in L2. Moreover, it is both strictly stationary and ergodic.

Proof. The result is derived from the second-order stationarity of the
(
Λt, t ∈ Z

)
defined by Eq (2.2).

This conclusion is obtained using the findings of Ghezal et al. [10]. □

To demonstrate this, we provide the explicit expressions of the moments up to the second-order in
the following result:

Proposition 2.1. Consider the MS-TSV(r) model (2.1) , if Xt ∈ L2, then

i. E {Xt} = 0.

ii. γX (h) = E {XtXt−h} =
∑

yt ,yt−1,...∈E

∏
k≥0

qyt−k−1yt−k E
{
∞∏

k=0
exp

(
F′

{
k−1∏
j=0
Ψ

(
yt− j

)}
Υt−k (yt−k)

)}
I{h=0}.

Proof. Given the last condition, obtaining the second-order moments becomes straightforward. For
brevity, specific details are omitted. □

Example 2.2. In the case of the MS-TSV(1) model, the Condition (2.4) simplifies to ρ
(
Q(ζ(2))

)
<

1, where ζ(2) :=
(
ζ(2)(k) = κα2

1(k) + (1 − κ) β2
1(k), k ∈ S

)′
. Specifically, for two regimes with α1(1) =

α1(2) − 1 = a, β1(1) = β1(2) + 1 = b, q11 = q22 = 1 − p, q12 = q21 = p and et ∼ N(0, 1), the
Condition (2.4) can be expressed as the following two equivalent conditions:

(2p − 1)
(
a2 + b2

) (
(a + 1)2 + (b − 1)2

)
+ 2(1 − p)

(
2
(
a + 1

2

)2
+ 2

(
b − 1

2

)2
+ 1

)
< 4

(1 − p)
(
2
(
a + 1

2

)2
+ 2

(
b − 1

2

)2
+ 1

)
≤ 4.

The zone of second-order stationarity is illustrated in Figure 2.
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Figure 2. Plots of the frontier curves ρ
(
Q(ζ(2))

)
= 1 for MS-TSV(1) model.

Figure 2 provides a nuanced understanding of the second-order stationarity region within the MS-
TSV(1) process, assuming et ∼ N(0, 1). The graphical representation delineates three crucial zones:

• The inner zone signifies second-order stationarity.
• The boundary curve represents the integrated MS-TSV(1), when ρ

(
Q(ζ(2))

)
= 1.

• The outer zone indicates non-second-order stationarity.

This figure prominently highlights that the second-order stationary zone of MS-TSV(1) is more
significant when considering a smaller value for p. Additionally, the visual representation of
second-order stationary zones serves as a valuable tool to observe the model’s behavior under
different conditions, enhancing our understanding of its dynamics.

Certainly, for the MS-TSV(r) model with a multivariate representation (2.2), certain assumptions are
required to ensure the existence of higher-order moments. These assumptions play a crucial role in
understanding the statistical properties and stability of the model.

Remark 2.2. When the odd-order moments of (Xt, t ∈ Z) exist, they are null. On the other hand, the
existence of even-order moments of (Xt, t ∈ Z) is succinctly summarized in the following theorem.

Theorem 2.3. Consider the MS-TSV(r) model (2.1) with its state-space representation (2.2). For all
integer l ≥ 1, assume that E

{
(max (εt, et))l

}
< +∞ and

ρ
(
Q(Ψ(l))

)
< 1 (2.5)

where Ψ(l) :=
{
Ψ⊗l ( j) , j ∈ E

}
. As a result, the MS-TSV model defined by the state-space

representation (2.2) possesses a unique, causal, ergodic, and strictly stationary solution given
by (2.3). This solution encompasses moments up to the l−order. Moreover, the closed form expression
for the l−th moment of Xt is as follows:

E
{
Xl

t

}
= E

{
εl

t

} ∑
yt ,yt−1,...∈E

∏
k≥0

qyt−k−1yt−k E

exp

 l
2

F′
 k−1∏

j=0

Ψ
(
yt− j

)Υt−k (yt−k)


 .
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Proof. The proof presented in the previous theorem remains applicable, and the results obtained can
be extended accordingly. Therefore, we have decided to omit the details. □

The autocovariance function of the
(
X2

t , t ∈ Z
)

process is concisely presented in the following theorem

Theorem 2.4. Given the assumptions stated in the previous theorem, we can deduce the following
result:

(1) If (Xt, t ∈ Z) follows the MS-TSV model (2.1) and Xt ∈ L4, then

γX2 (0) = E
{
ε4

t

} ∑
yt ,yt−1,...∈E

∏
k≥0

qyt−k−1yt−k E

exp

F′
 k−1∏

j=0

Ψ
(
yt− j

)Υt−k (yt−k)


 − γ2

X (0)

and γX2 (h) = 0 otherwise.
(2) If (Xt, t ∈ Z) follows the MS-TSV model (2.1) and Xt ∈ L2l, then

γXl (0) = E
{
ε2l

t

} ∑
yt ,yt−1,...∈E

∏
k≥0

qyt−k−1yt−k E

exp

lF′
 k−1∏

j=0

Ψ
(
yt− j

)Υt−k (yt−k)


 − (

E
{
Xl

t

})2

and γXl (h) = 0 otherwise.

Proof. Indeed, it suffices to note that both processes (X2
t ) and (X2l

t ) are white noise processes. □

3. Estimation

Estimating Markov-switching models is a complex task, and the literature has considered specific
models to address this challenge [15–18, 26]. Various established Markov Chain Monte Carlo
procedures exist for estimating certain states of Eq (2.1), as discussed in [23, 27], and other works. In
our study, we focus on a given realization (X1, X2, ..., Xn) generated from a unique, causal, and strictly
stationary MS-TSV model. We assume that r and e are known, and (εt) follows a standard Gaussian
distribution. The unknown parameters αi(.) and βi(.), i = 0, ..., r and

(
qi, j, i, j = 1, ..., e, i , j

)
are

combined in a vector θ belonging to the parameter space Θ, with θ0 representing the true values.
Xie [28] has advocated using QMLE and proved its strong consistency for MS-GARCH models.
Additionally, Ghezal et al. [16, 17]) introduced certain assumptions ensuring the strong consistency of
QMLE for the doubly MS-AR model and symmetric MSAR-SV. The Gaussian likelihood function
can be expressed as

Ln

(
θ
)
=

∑
∆1,...,∆n∈S

π (∆1)

 n∏
i=2

q∆i−1,∆i


 n∏

i=1

h∆i(X1, ..., Xi)

 (3.1)

where

h∆i(X1, ..., Xi) =
1(

2πσ∆i(X1, ..., Xi−1)
)1/2 exp

{
−

X2
i

2σ∆i(X1, ..., Xi−1)

}
with the log−transformed conditional stochastic variance process, denoted by logσ∆i(X1, ..., Xi−1),

logσ∆i(X1, ..., Xi−1) = α0 (∆t) +
r∑

i=1

(
αi (∆t) I{Xt−i>0} + βi (∆t) I{Xt−i<0}

)
logσt−i + β0 (∆t) et
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is defined by the second equation in Eq (2.1). Furthermore, the expression for this likelihood function
can be articulated in the subsequent manner:

Ln

(
θ
)
= 1′(e)

 n∏
i=1

Pθ (h(X1, ...Xi))

Π(h (X1)). (3.2)

A quasi-maximum likelihood estimation of θ0 is determined as any discernible solution, θ̂n, in the
context of:

θ̂n = arg max
θ∈Θ

Ln

(
θ
)
. (3.3)

In this section, consider h∆t

(
Xt| X
←−

t−1

)
(resp. h∆t

(
Xt| X1

)
) to be the density function characterizing Xt

given the all past observations (resp. past observations up to ε1). Similarly, let kθ
(
Xt| X
←−

t−1

)
(resp.

kθ
(
Xt| X1

)
) denote the corresponding logarithmic conditional density of Xt given {Xt−1, Xt−2, ...} (resp.

{Xt−1, Xt−2, ..X1}). Now, we proceed to establish the likelihood function L̃n

(
θ
)

based on all past

observations. This function, referred to as Ln

(
θ
)

in Eq (3.1), is fashioned by substituting the density

h∆t(X1, ...Xt) with h∆t

(
Xt| X
←−

t−1

)
. Elaborating further, L̃n

(
θ
)

can be represented as:

L̃n

(
θ
)
= 1′(e)

 n∏
t=2

Pθ

(
h
(
Xt| X
←−

t−1

))Π(h
(
X1| X
←−

0

)
). (3.4)

Here, the matrix Pθ
(
h
(
Xi| X
←−

i−1

))
(resp. the vector Π(h

(
X1| X
←−

0

)
)) takes the place of h∆i(X1, ...Xi) by

h∆i

(
Xi| X
←−

i−1

)
in Pθ (h(X1, ...Xi)) (resp. Π(h (X1))),for i = 1, .., n.

3.1. Demonstration of robust convergence for QMLE

To establish the robust convergence of the QMLE, we rely on the following assumptions:

A1. Θ constitutes a compact subset of R2e(r+1), encompassing the true value θ0 within its bounds.

A2. For any θ ∈ Θ, the sequence Ψ0 (derived by modifying the parameters θ0) satisfies γL

(
Ψ0

)
< 0.

A3. Given any θ and θ∗ within Θ, if kθ
(
Xt| X
←−

t−1

)
equals kθ∗

(
Xt| X
←−

t−1

)
almost surely, then it logically

follows that θ equals θ∗.

While the first assumption, A1, is a familiar cornerstone adopted extensively in various real analysis
results, the second assumption, A2, secures the principle of strict stationarity for the process (Xt, t ∈ Z) .
Moreover, A3, our third assumption, guarantees the distinguishability of the parameter θ. To forge
ahead, we lay down the foundation of our discourse through the presentation of pivotal lemmas.

Lemma 3.1. Given the robust underpinnings of Assumptions A2 and A3, almost surely, we have

lim
n−→∞

log L1/n
n

(
θ
)
= lim

n−→∞
log L̃1/n

n

(
θ
)
= Eθ0

{
kθ

(
Xt| X
←−

t−1

)}
.
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Proof. Harnessing the potency of the logarithmic function, we attain:

log L̃n

(
θ
)
=

n∑
t=1

kθ
(
Xt| X
←−

t−1

)
and log Ln

(
θ
)
=

n∑
t=1

kθ
(
Xt| X1

)
.

Hence,
1
n

n∑
t=1

kθ
(
Xt| X1

)
=

1
n

n∑
t=1

kθ
(
Xt| X
←−

t−1

)
+

1
n

n∑
t=1

(
kθ

(
Xt| X1

)
− kθ

(
Xt| X
←−

t−1

))
.

Presently, for all κ ∈ R, the process (Ut (s) , t ∈ Z) is defined as Ut (s) = sup
κ≥s

∣∣∣∣∣kθ (Xt|Xt−κ

)
− kθ

(
Xt|X
←−

t−1

)∣∣∣∣∣.
For a fixed value of s, the sequence (Ut (s) , t ∈ Z) represents a strictly stationary and ergodic process,
with Eθ0 {Ut (s)} < +∞. We have

lim sup
n

∣∣∣∣∣∣∣1n
n∑

t=1

(
kθ

(
Xt| X1

)
− kθ

(
Xt| X
←−

t−1

))∣∣∣∣∣∣∣
≤ lim sup

n

1
n

n∑
t=1

∣∣∣∣∣kθ (Xt| X1

)
− kθ

(
Xt| X
←−

t−1

)∣∣∣∣∣
≤ lim sup

n

1
n

n∑
t=s+1

Ut (s) = Eθ0 {U1 (s)}

the result is established. □

The following lemma provides a comparison between the ratios Ln(θ)
Ln(θ0)

and L̃n(θ)
L̃n(θ0)

. Define Tn

(
θ
)
=

log
(
L1/n

n

(
θ
)
/L1/n

n

(
θ0

))
. With this definition, we can observe that:

Lemma 3.2. Given the robust underpinnings of Assumptions A1–A3, we have

lim
n

(
L̃1/n

n

(
θ
)
/L̃1/n

n

(
θ0

))
= lim

n
Tn

(
θ
)
≤ 0

with lim
n

Tn

(
θ
)
= 0 iff θ = θ0 for all θ ∈ Θ.

Proof. Under assumptions A1–A3, the function Tn

(
θ
)

is well-defined. Additionally, leveraging
Lemma 3.1 and Jensen’s inequality, we obtain:

lim
n

Tn

(
θ
)
= Eθ0

{
log

(
kθ

(
Xt| X
←−

t−1

)
/kθ0

(
Xt| X
←−

t−1

))}
≤ log Eθ0

{
kθ

(
Xt| X
←−

t−1

)
/kθ0

(
Xt| X
←−

t−1

)}
= 0.

Given Assumption A3, it follows that Tn

(
θ
)

converges to the Kullback-Leinbler information, which
attains the value of zero only when θ = θ0. □

Lemma 3.3. Under assumptions A1–A3, for all θ̃ , θ0, there exists a neighborhood V
(̃
θ
)

of θ̃such
that

lim sup
n

sup
θ∈V(̃θ)

Tn

(
θ
)
< 0 almost surely.
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Proof. In Eq (3.4), we derive

min
j
π( j)h j

(
X1| X
←−

0

) ∥∥∥∥∥∥∥
 n∏

t=2

Pθ

(
h
(
Xt| X
←−

t−1

))
∥∥∥∥∥∥∥ ≤ L̃n

(
θ
)
≤ max

j
π( j)h j

(
X1| X
←−

0

) ∥∥∥∥∥∥∥
 n∏

t=2

Pθ

(
f
(
Xt| X
←−

t−1

))
∥∥∥∥∥∥∥ .

Hence, we obtain,

lim
n

log L̃1/n
n

(
θ
)
= lim

n
log

∥∥∥∥∥∥∥
 n∏

t=2

Pθ

(
h
(
Xt| X
←−

t−1

))
∥∥∥∥∥∥∥

1/n

= Eθ0

{
kθ

(
Xt| X
←−

t−1

)}
.

Consider the setVs

(̃
θ
)
=

{
θ :

∥∥∥θ − θ̃∥∥∥ ≤ s−1
}

and define Ω2:n (s) = sup
θ∈Vs(̃θ)

∥∥∥∥∥ n∏
t=2
Pθ

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥ . Due to

the multiplicativity of the norm, we derive the following result onVs

(̃
θ
)
,

sup
θ

∥∥∥∥∥∥∥
n+k∏
t=2

Pθ

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥∥∥ ≤ sup
θ

∥∥∥∥∥∥∥
n∏

t=2

Pθ

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥∥∥ . sup
θ

∥∥∥∥∥∥∥
n+k∏

t=n+1

Pθ

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥∥∥
implying:

logΩ2:n+k (s) ≤ logΩ2:n (s) + logΩn+1:n+k (s) , for all n, k .

Now, the process
(
logΩ2:n (s)

)
is both strictly stationary and ergodic, with Eθ0

{
logΩ2:n (s)

}
being finite.

Consequently, we obtain:

κs

(̃
θ
)
= lim

n
logΩ1/n

2:n (s) = inf
n>1

Eθ0
{
logΩ1/n

2:n (s)
}

almost surely

where γθ (H) represents the Lyapunov exponent of the sequence H =
(
Pθ0

(
h
(
Xt| X
←−

t−1

))
, t ∈ Z

)
, that is:

γθ (H) = inf
n>1

Eθ0

log

∥∥∥∥∥∥∥
n∏

t=2

Pθ0

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥∥∥
1/n

 a.s.
= lim

n
log

∥∥∥∥∥∥∥
n∏

t=2

Pθ0

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥∥∥
1/n

.

Therefore, by utilizing Lemma 3.2, we can establish the existence of δ > 0 and nδ ∈ N such that

1
nδ

Eθ0

log

∥∥∥∥∥∥∥
nδ∏

t=2

Pθ̃

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥∥∥
 < γθ0 (H) − δ.

Applying the dominated convergence theorem, we deduce that for sufficiently large s :

γθ̃,s (H) ≤ Eθ0

log

∥∥∥∥∥∥∥
nδ∏

t=2

Pθ̃

(
h
(
Xt| X
←−

t−1

))∥∥∥∥∥∥∥
1/nδ

 + δ2 < γθ0 (H) −
δ

2
.

The final result follows from Lemma 3.1. □

Additionally, we present the following main theorem.
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Theorem 3.1. Under Assumptions A1–A3, the sequence of QML estimators
(̂
θn

)
n

satisfying (3.3)
exhibits strong consistency, meaning that:

θ̂n → θ0 almost surely when n→ +∞.

Proof. Let’s assume that θ̂n does not converge to θ0 almost surely, i.e.,

∀n, ∃δ > 0, N > n, such that
∥∥∥θ̂N − θ

0
∥∥∥ ≥ δ.

Using the Lemma 3.3, we establish that Ln

(
θ̂n

)
< Ln

(
θ0

)
. However, according to the QMLE given

in (3.3), we have:
Ln

(
θ̂n

)
= sup
θ∈Θ̃

Ln

(
θ
)
≥ Ln

(
θ0

)
for any compact subset Θ̃ of Θ containing θ0. This inconsistency contradicts the result we aim to
prove. □

In the following remark, we delve into the consideration of an open problem

Remark 3.1. Multifractal processes have emerged as a novel formalism for modeling the time series
of returns in finance. The notable appeal of these processes lies in their capacity to generate varying
degrees of long memory across different powers of returns, a characteristic prevalent in virtually all
financial data. In contrast to MS-TSV-type models, multifractal models, as recently developed, are
distinguished by a multiplicative structure inherent in the volatility process. Within the multifractal
framework, instantaneous volatility is conceptualized as a product of m volatility components or
multipliers and a positive scale factor σ2,

Xt = σ
2
(
σ(1)

t σ
(2)
t · · ·σ

(m)
t

)1/2
εt.

The random multipliers or volatility components σ(l)
t are non-negative. For simplicity, we assume that

the multipliers σ(1)
t , σ

(2)
t , . . . , σ

(m)
t at a given time t are statistically independent. This model structure,

as outlined by Calvet et al. in [29] and [30], as well as Lux in [31], introduces a new perspective in the
representation of financial volatility. To address initial challenges stemming from non-stationarity and
the combinatorial nature of the original model, Calvet et al. [29] proposed an iterative multifractal
model. This iteration not only overcomes the challenges but also facilitates the estimation of model
parameters through methods such as maximum likelihood, providing a robust framework for Bayesian
forecasting of volatility in financial time series data.

4. Simulation study

We conducted a simulation study to assess the performance of the QML method for parameter
estimation. The study was based on the Gaussian MS-TSV(r) model with e = 2. We generated 500
data samples with varying lengths. The sample sizes considered in this simulation study were n ∈
{750, 1500, 3000}. The chosen parameter values were designed to satisfy the stationarity condition
γL (Ψ) < 0. For each data trajectory, we estimated the vector θ of the parameters of interest using
the QMLE, denoted as θ̂. The QMLE algorithm was executed using the “fminsearch.m” minimizer
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function in MATLAB8. In the tables presented below, the root mean square errors (RMSE) of θ̂
are displayed in parentheses. Additionally, the true values (TV) of the parameters for each of the
considered data-generating processes are reported.

The primary emphasis of this study centers on analyzing the root mean square errors. The results
obtained provide initial insights into the finite sample properties of the QMLE within the framework of
the MS-TSV model. It is evident from the analysis that the QMLE method delivers effective parameter
estimates. Upon examining Table 1, a noteworthy observation is the strong consistency of the QMLE
for the MS-TSV model. The corresponding root mean square errors demonstrate a significant reduction
as the sample size increases. This suggests that the estimation method becomes more robust with larger
datasets. The outcomes presented in Table 2 further reinforce the strong consistency of the QMLE
for the MS-TSV model. Notably, even with a relatively small sample size, the estimation procedure
produces favorable and reliable results.

Table 1. Average and RMSE of QMLE for Gaussian MS-TSV(1) models with varying
sample sizes.

Tv/n 750 1500 3000
p11 0.25 0.2471 (0.0053) 0.2529 (0.0032) 0.2479 (0.0014)
p22 0.85 0.8534 (0.0072) 0.8521 (0.0056) 0.8509 (0.0023)
α0 (1) 1.00 0.9925 (0.0355) 1.0051 (0.0169) 0.9973 (0.0087)
α0 (2) −1.50 −1.5060 (0.0175) −1.5071 (0.0083) −1.5031 (0.0038)
α1 (1) 0.45 0.4457 (0.0017) 0.4493 (0.0007) 0.4487 (0.0004)
α1 (2) 0.25 0.2504 (0.0012) 0.2504 (0.0006) 0.2499 (0.0003)
β1 (1) −0.55 −0.5524 (0.0018) −0.5523 (0.0009) −0.5511 (0.0004)
β1 (2) −0.25 −0.2480 (0.0013) −0.2496 (0.0005) −0.2506 (0.0003)
β0 (1) 0.85 0.8555 (0.0076) 0.8570 (0.0034) 0.8513 (0.0015)
β0 (2) −0.50 −0.5000 (0.0023) −0.4969 (0.0011) −0.4995 (0.0006)

Table 2. Average and RMSE of QMLE for Gaussian MS-TSV(1) models with varying
sample sizes.

Tv/n 750 1500 3000
p11 0.95 0.9483 (0.0114) 0.9494 (0.0082) 0.9506 (0.0028)
p22 0.15 0.1476 (0.0089) 0.1489 (0.0043) 0.1496 (0.0017)
α0 (1) 1.00 0.9835 (0.0290) 0.9950 (0.0158) 1.0011 (0.0073)
α0 (2) 1.50 1.4887 (0.0360) 1.4910 (0.0167) 1.4978 (0.0085)
α1 (1) −0.45 −0.4532 (0.0029) −0.4493 (0.0014) −0.4510 (0.0007)
α1 (2) 0.25 0.2520 (0.0028) 0.2507 (0.0017) 0.2503 (0.0007)
β1 (1) 0.15 0.1499 (0.0025) 0.1487 (0.0013) 0.1497 (0.0006)
β1 (2) 0.55 0.5479 (0.0033) 0.5492 (0.0015) 0.5480 (0.0007)
β0 (1) 0.00 0.0038 (0.0065) −0.0004 (0.0030) −0.0023 (0.0015)
β0 (2) 0.50 0.5053 (0.0168) 0.5032 (0.0078) 0.4998 (0.0038)
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5. Conclusions

In conclusion, this paper has introduced and thoroughly explored the MS-TSV model, a versatile
class specifically designed to address asymmetry and the leverage effect in financial time series
volatility. Building upon the classical threshold stochastic volatility model, the MS-TSV model
incorporates a homogeneous Markov chain to parameterize log-volatility dynamics. The paper
derived essential probabilistic properties of MS-TSV models, including strict stationarity, causality,
ergodicity, and higher-order moments, along with providing the covariance function of the squared
process. The QMLE for the MS-TSV model was introduced and its strong consistency was
demonstrated through a simulation study. The MS-TSV model stands out as a robust alternative to
traditional models, particularly in capturing nuanced volatility dynamics influenced by economic
factors and unexpected events. This research significantly contributes to the broader understanding of
modeling time series data and holds practical applications in financial analysis. However, it’s crucial
to recognize that ongoing research in this field, especially the exploration of multifractal processes,
opens avenues for further investigation. The integration of MS-TSV models with multifractal
processes represents a promising direction, offering a more nuanced perspective on volatility
modeling in finance. Future work could delve into this intersection, advancing our understanding and
refining tools for modeling complex financial time series data.
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