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Abstract: Let du be the degree of a vertex u of a graph G. The atom-bond sum-connectivity (ABS)
index of a graph G is the sum of the numbers (1 − 2(dv + dw)−1)1/2 over all edges vw of G. This paper
gives the characterization of the graph possessing the minimum ABS index in the class of all trees of
a fixed number of pendent vertices; the star is the unique extremal graph in the mentioned class of
graphs. The problem of determining graphs possessing the minimum ABS index in the class of all
trees with n vertices and p pendent vertices is also addressed; such extremal trees have the maximum
degree 3 when n ≥ 3p − 2 ≥ 7, and the balanced double star is the unique such extremal tree for the
case p = n − 2.
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1. Introduction

A property of a graph that is preserved by isomorphism is known as a graph invariant [1]. The order
and degree sequence of a graph are examples of graph invariants. The graph invariants that assume
only numerical values are usually referred to as topological indices in the chemical graph theory [2].

For evaluating the extent of branching of the carbon-atom skeleton of saturated hydrocarbons,
Randić [3] devised a topological index and called it as the branching index, which nowadays is known
as the connectivity index (also, the Randić index).
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The connectivity index of a graph G is the following number:∑
vw∈E(G)

1
√

dvdw
,

where dv and dw denote the degrees of the vertices v and w of G respectively, and E(G) denotes the set
of edges of a graph G. It is believed that the connectivity index is the most-studied topological index
(in both theoretical and applied aspects) [4]. Detail about the study of the connectivity index can be
found in the survey papers [5, 6], books [7, 8], and related papers cited therein.

Because of the success of the connectivity index, many modified versions of this index have been
introduced in the literature. The atom-bond connectivity (ABC) index [9,10] and the sum-connectivity
(SC) index [11] are among the well-studied modified versions of the connectivity index. The ABC and
SC indices of a graph are defined as

ABC(G) =
∑

vw∈E(G)

√
dv + dw − 2

dvdw
,

and
S C(G) =

∑
vw∈E(G)

1
√

dv + dw
.

The readers interested in detail about the ABC and SC indices are referred to the survey papers [12]
and [13], respectively.

Using the main idea of the SC index, a modified version of the ABC index was proposed in [14]
recently and it was referred to as the atom-bond sum-connectivity (ABS) index. The ABS index of a
graph G is defined as

ABS (G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv
=

∑
uv∈E(G)

√
1 −

2
du + dv

.

Although the ABS index is a special case of a general topological index considered in [15], no result
reported in [15] covers the ABS index. The graphs possessing the maximum/minimum ABS index in
the class of all (i) (molecular) trees (ii) general graphs, with a given order, were characterized in [14].
Analogous results for unicyclic graphs were reported in [16], where the chemical applicability of the
ABS index was also investigated.

A vertex of degree one in a tree T is called a pendent vertex and a vertex of degree at least three in
T is called a branching vertex. A path P in a tree T connecting a branching vertex and a pendent vertex
is called a pendent path, provided that every other vertex (if existing) of P has degree two in T . A path
P in a tree T is said to be an internal path if it connects two branching vertices and every other vertex
(if existing) of P has degree two in T . A tree with one non-pendent vertex is called a star. A double
star is a tree with exactly two non-pendent vertices. A double star tree with non-pendent vertices u and
v is called balanced if |du − dv| ≤ 1. For a general reference on graph theory, see [17].

Ali et al. [16] posed a problem asking to determine trees possessing the minimum value of the ABS
index among all trees with a fixed number of pendent vertices. The main goal of the present paper is to
determine trees possessing the minimum value of the ABS index in two classes of trees. For positive
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integers n and p, Γp denotes the class of all trees with p pendent vertices and Γn,p denotes the class of
all trees of order n and p pendent vertices. In Section 2 we give a complete solution to the problem
posed by Ali et al. [16], where we show that the star graph S p+1 uniquely attains the minimum value of
the ABS index in the class Γp. In Section 3 we provide results on trees that minimize the value of the
ABS index in Γn,p.

2. Trees with a fixed number of pendent vertices

We will need the next already known result.

Lemma 1. [14, Corollary 8] Let u and v be nonadjacent vertices in a connected graph G, then
ABS (G + uv) > ABS (G), where G + uv is the graph obtained from G by adding the edge uv.

Lemma 2. Let p ≥ 2 be an integer. If T ∗ is a tree attaining the minimum value of the ABS index in the
class Γp, then T ∗ has no vertex of degree 2.

Proof. Suppose to the contrary that T ∗ has at least one vertex of degree 2. Take v ∈ V(T ∗) such that
N(v) = {u,w} and du ≥ dw ≥ 1. Let T ′ be the tree formed by removing the vertex v (and its incident
edges) and adding the edge uw (see Figure 1). In what follows, by dx we denote the degree of a vertex
x in T ∗. Using the definition of the ABS index, we have

ABS (T ∗) − ABS (T ′) =

√
1 −

2
du + 2

+

√
1 −

2
dw + 2

−

√
1 −

2
du + dw

> 0,

a contradiction to the assumption that T ∗ attains the minimum value of the ABS index among all trees
with p pendent vertices.

�

H1H2

vu w

H1H2

u w

T ∗

T ′

Figure 1. The graph transformation used in the proof of Lemma 2. The subtree H1 may or
may not consist of only one vertex w.
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Lemma 3. The function f defined by

f (x, y) = (x − 1)


√

1 −
2

x + 1
−

√
1 −

2
x + y − 1


+ (y − 1)


√

1 −
2

y + 1
−

√
1 −

2
x + y − 1


+

√
1 −

2
x + y

,

with x ≥ y ≥ 3, is strictly decreasing on y.

Proof. We have

∂ f
∂y

=
1

(x + y)3/2
√

x + y − 2
−

x + y − 2

(x + y − 1)3/2
√

x + y − 3

−

√
x + y − 3
x + y − 1

+ g(y), (2.1)

where

g(y) =
y + 2
y + 1

√
y − 1
y + 1

.

Certainly, the function g is strictly increasing on y because y ≥ 3. Hence, g(y) < g(x + y − 2) as
x ≥ 3. Consequently, Eq (2.1) gives

∂ f
∂y

<
1

(x + y)3/2
√

x + y − 2
−

x + y − 2

(x + y − 1)3/2
√

x + y − 3

−

√
x + y − 3
x + y − 1

+
x + y

x + y − 1

√
x + y − 3
x + y − 1

=
1

(x + y)3/2
√

x + y − 2
−

1

(x + y − 1)3/2
√

x + y − 3
. (2.2)

Since the function ψ defined by

ψ(t) =
1

t3/2
√

t − 2

is strictly decreasing for t > 2, from (2.2) it follows that ∂ f
∂y < 0.

�

Lemma 4. Let

f (x, y) =

√
1 −

2
x + y

,
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and define the function ψ(x, y; s) as

ψ(x, y; s) = f (x + s, y) − f (x, y),

where x, y ≥ 1 and s > 0. Then ψ(x, y; s) is strictly decreasing on x and on y.

Proof. Since

ψ(x, y; s) = f (x + s, y) − f (x, y) = f (x, y + s) − f (x, y),

it suffices to show the case of x. Note that the first partial derivatives of f are calculated as

∂ f
∂x

(x, y) =
∂ f
∂y

(x, y) = (x + y − 2)−
1
2 (x + y)−

3
2 ,

which are both strictly decreasing in x. This implies that

∂

∂x
ψ(x, y; s) =

∂ f
∂x

(x + s, y) −
∂ f
∂x

(x, y) < 0,

and
∂

∂y
ψ(x, y; s) =

∂ f
∂y

(x + s, y) −
∂ f
∂y

(x, y) < 0.

Thus ψ(x, y; s) is strictly decreasing on x and on y. �

Theorem 1. Let p ≥ 2 be an integer, then for every T ∈ Γp,

ABS (T ) ≥ p

√
p − 1
p + 1

,

with equality holds if and only if T � S p+1.

Proof. Let T be a graph attaining the minimum ABS value among all trees with p pendent vertices. By
Lemma 2, T has no vertex of degree 2. We claim that T has only one vertex of degree greater than 2.
Contrarily, we assume that T contains at least two vertices of degree greater than 2. Among the vertices
of degrees at least 3, we pick u, v ∈ V(T ) such that uv ∈ E(G) (Lemma 2 guarantees the existence of
the vertices u and v when T has at least one pair of vertices of degrees greater than 2). Without loss of
generality, we suppose that du ≥ dv. Let v1, · · · , vdv−1 be the neighbors of v different from u. Construct
a new tree T ′ by dropping the vertex v (and its incident edges) and inserting the edges v1u, · · · , vdv−1u,
see Figure 2. Certainly, both the trees T and T ′ have the same number of pendent vertices. However,
in the following we show that ABS (T ) > ABS (T ′), which gives a contradiction to the minimality of
ABS (T ), and hence, T must contain exactly one vertex of degree greater than 2, as desired.
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H1

Hdv−1

J1

Jdu−1

H1

Hdv−1

J1

Jdu−1

T

T ′

u v

v1

vdv−1

u1

udu−1

u

u1

udu−1

v1

vdv−1

Figure 2. The graph transformation used in the proof of Theorem 1. For i ∈ {1, . . . , du − 1}
and j ∈ {1, . . . , dv − 1}, the subtree Ji may or may not consist of only one vertex ui and the
subtree H j may or may not consist of only one vertex v j, respectively.

In what follows, by dw we denote the degree of a vertex w in T . If u1, · · · , udu−1 are the neighbors of
u different from v, then

ABS (T ) − ABS (T ′) =

du−1∑
i=1


√

1 −
2

du + dui

−

√
1 −

2
du + dv + dui − 2


+

dv−1∑
j=1


√

1 −
2

dv + dv j

−

√
1 −

2
du + dv + dv j − 2


+

√
1 −

2
du + dv

. (2.3)
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By Lemma 4, the following inequalities hold for all i = 1, ..., du − 1 and j = 1, ..., dv − 1:√
1 −

2
du + dui

−

√
1 −

2
du + dv + dui − 2

≥

√
1 −

2
du + 1

−

√
1 −

2
du + dv − 1

,

and √
1 −

2
dv + dv j

−

√
1 −

2
du + dv + dv j − 2

≥

√
1 −

2
dv + 1

−

√
1 −

2
du + dv − 1

.

Thus, Eq (2.3) yields

ABS (T ) − ABS (T ′) ≥ (du − 1)
√1 −

2
du + 1

−

√
1 −

2
du + dv − 1


+ (dv − 1)

√1 −
2

dv + 1
−

√
1 −

2
du + dv − 1


+

√
1 −

2
du + dv

. (2.4)

Since du ≥ dv, by Lemma 3, Inequality (2.4) gives

ABS (T ) − ABS (T ′) ≥ 2(du − 1)
√1 −

2
du + 1

−

√
1 −

2
2du − 1


+

√
1 −

1
du
. (2.5)

By Lemma 3, the function g(s), which is defined by

g(s) = f (s, s) = 2(s − 1)

√1 −
2

s + 1
−

√
1 −

2
2s − 1

 +

√
1 −

1
s
,

with s ≥ 3, is strictly decreasing, and

lim
s→∞

g(s) = lim
s→∞

 −4s2 + 12s − 8
√

2s2 + s − 1
(√

2s2 − 3s + 1 +
√

2s2 − s − 3
) +

√
1 −

1
s

 = 0.

Therefore, the righthand side of (2.5) is positive for du ≥ 3. This completes the proof.
�

3. Trees with a fixed order and pendent vertices

In this section, we characterize trees attaining the minimum value of the ABS index in Γn,p, where
p ≥ 3 and n ≥ 3p − 2.

Lemma 5. If y is a fixed real number greater than or equal to 3 then the function f , defined in Lemma 4,
is strictly increasing in x.
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For a tree T , denote by W1(T ) the set of pendent vertices of T , W2(T ) = ∪v∈W1(T )N(v), and W3(T ) =

V(T ) \ (W1(T ) ∪ W2(T )). A vertex in T of degree at least three is called a branching vertex. A path
is called an internal path, if its end vertices are branching vertices and every other vertex has degree
two. A path is called a pendent path if one of the end vertices is pendent and every other vertex has
degree two.

Lemma 6. Let T ∗ ∈ Γn,p be attaining minimum ABS value, then every internal path of T ∗ has
length one.

Proof. For a contradiction, assume T ∗ contains an internal path v = v0 − v1 − v2 − .. − vr = u of length
r ≥ 2. Let w ∈ W2(T ) and let y be a pendent vertex adjacent to w. Let T ′ = T ∗ − {vv1, uvr−1}+ {vu, yv1}.
Clearly T ′ ∈ Γn,p. In what follows, by dx we denote the degree of a vertex x in T ∗. If r > 2, then

ABS (T ′) − ABS (T ∗) = f (dv, du) + f (2, 2) + f (dw, 2) − f (dv, 2)
− f (du, 2) − f (2, 2) + f (1, 2) − f (dw, 1)
= ( f (dv, du) − f (dv, 2)) − ( f (2, du) − f (2, 2))
+ ( f (dw, 2) − f (dw, 1)) − ( f (2, 2) − f (2, 1))
= ψ(2, dv; du − 2) − ψ(2, 2; du − 2) + ψ(1, dw; 1) − ψ(1, 2; 1) < 0,

which yields a contradiction. If r = 2, then

ABS (T ′) − ABS (T ∗) = f (dv, du) + f (2, 1) + f (dw, 2) − f (dv, 2) − f (du, 2) − f (dw, 1)
= ( f (dv, du) − f (dv, 2)) − ( f (2, du) − f (2, 2))
+ ( f (dw, 2) − f (dw, 1)) − ( f (2, 2) − f (2, 1))
= ψ(2, dv; du − 2) − ψ(2, 2; du − 2) + ψ(1, dw; 1) − ψ(1, 2; 1) < 0.

Again, this contradicts the minimality of ABS (T ∗). Thus T ∗ does not have an internal path of length
greater than one. �

Lemma 7. Let T ∗ ∈ Γn,p be attaining minimum ABS value, then du ≤ dv for every u ∈ W2(T ∗) and
v ∈ W3(T ∗).

Proof. Let y be a pendent vertex adjacent to u and let x be a non-pendent vertex adjacent to v and not
on the u − v path. Let T ′ = T ∗ − {xz | z ∈ N(x) \ {v}} + {zy | z ∈ N(x) \ {v}}. In what follows, by dx we
denote the degree of a vertex x in T ∗. Clearly, T ′ ∈ Γn,p, and so ABS (T ′) ≥ ABS (T ∗). Thus, we have

0 ≤ ABS (T ′) − ABS (T ∗) = f (dv, 1) − f (dv, dx) + f (du, dx) − d(du, 1) = ψ(1, du; dx − 1) − ψ1, dv, dx − 1).

Hence, du ≤ dv. �

Lemma 8. Let T ∈ Γn,p. If n = 3p − 2 + t for some t ≥ 0, then the following assertions hold.

(i) dv = 2 for all v ∈ W2(T ).

(ii)
∑

u∈W3(T ) du = 3p − 6 + 2t.

AIMS Mathematics Volume 9, Issue 2, 3707–3721.
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Proof. (i) We have p +
∑

v∈W2(T ) dv +
∑

u∈W3(T ) du = 6p− 6 + 2t. Seeking a contradiction, assume dv0 ≥ 3
for some v0 ∈ W2(T ). Let β = min{du | u ∈ W3(T )}, then by Lemma 7, β ≥ dv0 ≥ 3. On the other hand,
since dv ≥ 2 for all v ∈ W2(T ), we have

p + 2(|W2(T )| − 1) + 3 + β(2p − 2 + t − |W2(T )|) ≤ 6p − 6 + 2t.

Therefore,

β ≤
5p − 7 + 2t − 2|W2(T )|
2p − 2 + t − |W2(T )|

=
p − 3

2p − 2 + t − |W2(T )|
+ 2 < 3,

a contradiction. Thus, dv = 2 for all v ∈ W2(T ).
(ii) We conclude from part (i) that |W2(T )| = p, so p + 2p +

∑
u∈W3(T ) du = 6p − 6 + 2t, which yields∑

u∈W3(T ) du = 3p − 6 + 2t. �

Remark 9. Let T ∗ ∈ Γn,p be a tree attaining minimum ABS value. It results from Lemma 7 that
every vertex of T ∗ of degree two is on a pendent path. Assume there are two vertices u, v ∈ W3(T ∗)
such that du = dv = 2 and u and v do not belong to the same pendent path. Since v ∈ W3(T ∗) and
dv = 2, there are two vertices x and y such that dx ≤ dy = 2 and v − y − x. Let z be the pendent
vertex at the end of the pendent path containing u and let T ′ = T ∗ − xy + zy. Clearly, T ′ ∈ Γn,p and
ABS (T ′) = ABS (T ∗). We conclude that it is possible to obtain a tree T ∗1 ∈ Γn,p, in which all vertices
of degree two in W3(T ∗1) belong to the same pendent path, such that ABS (T ∗1) = ABS (T ∗). Moreover,
T ∗ and T ∗1 have the same maximum degree and the subtrees of T ∗ and T ∗1 induced on their sets of
branching vertices are isomorphic.

Theorem 2. Let p ≥ 3 and n ≥ 3p − 2. If T ∗ ∈ Γn,p be attaining the minimum ABS value, then the
maximum degree of T ∗ is three.

Proof. For a contradiction, assume T ∗ has a vertex of degree at least 4. Let β = min{dv | v ∈ W3(T )},
then by Lemma 8 (ii), 4 + β(|W3(T ∗)| − 1) ≤ 3p − 6 + 2t. Consequently, β ≤ 3p−10+2t

p−3+t < 3, so there is a
vertex u ∈ W3(T ∗) such that du = 2. We select u so that one of its neighbors is of degree at least three.
Now, let v be the farthest vertex from u that of degree at least 4. Clearly, for each vertex x ∈ N(v) that
does not lie on the u − v path, we have dx ≤ 3. In what follows, da denotes the degree of a vertex a
in T ∗.
Case 1. u ∈ N(v). In this case, choose y ∈ N(v) \ {u} and let T ′ = T ∗ − {yv} + {yu}, then

ABS (T ′) − ABS (T ∗) = f (dy, 3) − f (dy, dv) + f (2, 3) − f (2, 2)
+ f (3, dv − 1) − f (2, dv)

+
∑

x∈N(v)\{y,u}

( f (dx, dv − 1) − f (dx, dv))

≤ f (3, 3) + f (2, 3) − f (2, 2) − f (3, dv)
− (dv − 2)( f (3, dv) − f (3, dv − 1)).

Consider the function

h1(s) = f (3, 3) + f (2, 3) − f (3, s) − f (2, 2) − (s − 2)( f (3, s) − f (3, s − 1)).

AIMS Mathematics Volume 9, Issue 2, 3707–3721.
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We have
h′1(s) =

A1 − B1
√

s(s + 1)(s + 2)2(s + 3)2
,

where A1 = (s2 + 3s − 2)(s + 3)2√(s + 1)(s + 2) and B1 = (s2 + 5s + 2)(s + 2)2√s(s + 3). Since
A2

1 − B2
1 = −14s5 − 137s4 − 456s3 − 577s2 − 140s + 108 ≤ 0 for s ≥ 1, we get h′1(s) ≤ 0 for s ≥ 1 and,

thus, h1(s) is strictly decreasing for s ≥ 1. This implies that ABS (T ′)− ABS (T ∗) < h1(dv) ≤ h1(4) < 0,
a contradiction.
Case 2. u < N(v). Let w ∈ N(v) and z ∈ N(u) such that w and z lie on the u − v path. By Case 1, we
may suppose that dz ≥ 3. Now, we divide this case into four subcases.
Subcase 2.1. dv ≥ 5. Let y ∈ N(v) \ {w} and take T ′ = T ∗ − {yv} + {yu}, then T ′ ∈ Γn,p. Moreover, from
Lemma 4, it follows that

ABS (T ′) − ABS (T ∗) = f (dy, 3) − f (dy, dv) + f (2, 3) − f (2, 2)
+ f (dz, 3) − f (dz, 2)

+
∑

x∈N(v)\{y}

( f (dx, dv − 1) − f (dx, dv))

≤2 f (3, 3) − f (3, dv) − f (2, 2) − (dv − 2)( f (3, dv)
− f (3, dv − 1)) + f (dw, dv − 1) − f (dw, dv).

The function h2(s) = 2 f (3, 3) − f (3, s) − f (2, 2) − (s − 2)( f (3, s) − f (3, s − 1)) is strictly decreasing
for s ≥ 1, and so ABS (T ′) − ABS (T ∗) < h2(5) < 0, a contradiction.
Subcase 2.2. dv = 4 and dw ≤ 3. Let y ∈ N(v) \ {w} and take T ′ = T ∗ − {yv} + {yu}, then T ′ ∈
Γn,p. Moreover,

ABS (T ′) − ABS (T ∗) = f (dy, 3) − f (dy, 4) + f (2, 3) − f (2, 2)

+ f (dz, 3) − f (dz, 2) +
∑

x∈N(v)\{y}

( f (dx, 3) − f (dx, 4))

≤ 5 f (3, 3) − 4 f (3, 4) − f (2, 2) < 0, (3.1)

a contradiction.
Subcase 2.3. dv = 4 and dw ≥ 6. Note that dx ≤ 4 for each x ∈ Nw \ {w1, v} because, otherwise, we
reach a contradiction as in Subcase 2.1, where w1 is the unique neighbor of w in the u − v path. Let
T ′ = T ∗ − {vw} + {vu}, then

ABS (T ′) − ABS (T ∗) = f (4, 3) − f (4, dw) + f (2, 3) − f (2, 2) + f (dz, 3) − f (dz, 2)

+
∑

x∈N(w)\{v}

( f (dx, dw − 1) − f (dx, dw))

< f (4, 3) − f (4, dw) + f (3, 3) − f (2, 2)
− (dw − 1)( f (4, dw) − f (4, dw − 1)). (3.2)

The function

h4(s) = f (4, 3) − f (4, s) + f (3, 3) − f (2, 2) − (s − 1)( f (4, s) − f (4, s − 1)),
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is strictly decreasing for s ≥ 1. Thus, ABS (T ′) − ABS (T ∗) < h4(6) < 0, a contradiction.
Subcase 2.4. dv = 4 and 4 ≤ dw ≤ 5. Let w1 be the unique neighbor of w in the u − v path and let
b1, ..., bk be all vertices in N(w)\ {w1} of degree four (with b1 = v), then by Lemma 8 (ii), there are k +1
distinct vertices xi ∈ W3(T ∗) such that dxi = 2. The vertex xk+1 exists because dw ≥ 4. By Remark 9,
we may assume that these vertices form a path u = x1 − x2 − ... − xk − xk+1. For each i = 2, ..., k, select
ci ∈ N(bi) \ {w} and let T ′ = T ∗ − ({cibi, i = 2, ..., k} ∪ {vw}) + ({cixi, i = 2, ..., k} ∪ {vu}). Note that since
v is closer to u than ci, we have dci ≤ 3. Thus,

ABS (T ′) − ABS (T ∗) = f (2, 3) − f (2, 2) + f (dz, 3) − f (dz, 2)
+ f (4, 3) − f (4, dw) + (k − 1)( f (3, 3) − f (2, 2))
+ (k − 1)( f (4, dw) − f (3, dw − 1))

+

k∑
i=2

( f (dci , 3) − f (dci , 4))

+

k∑
i=2

∑
x∈N(bi)\{w,ci}

( f (dx, 3) − f (dx, 4))

+
∑

e∈N(w)\{b2,...,bk ,v}

( f (de, dw − 1)) − f (de, dw))

≤(4k − 2) f (3, 3) − 3(k − 1) f (3, 4)) − k f (2, 2) − f (4, dw)
− (k − 1)( f (4, dw) − f (3, dw − 1))
− (dw − k)( f (3, dw) − f (3, dw − 1)).

Calculations show that the righthand side of this inequality is negative when dw ∈ {4, 5} and k ∈
{1, ..., dw}. This also yields a contradiction. Therefore, the maximum degree of T ∗ is 3 as desired. �

Now, we are ready to characterize the trees that minimize ABS index in Γn,p, where p ≥ 3 and
n ≥ 3p − 2. For p ≥ 3 and n = 3p − 2 + t with t ≥ 0, let Γ∗n,p ⊂ Γn,p such that an arbitrary tree T ∗

belonging to the class Γ∗n,p is defined as follows.
(1) Let T0 be a tree of order p − 2 and maximum degree ∆ = min{p − 3, 3}.
(2) Construct a tree T1 from T0 by attaching 3 − i pendent path(s) of length two at each vertex of
degree i for i = 1, 2, 3. (Note that the order of T1 is 5n1(T0) + 3n2(T0) + n3(T0), which is equal to 3p− 2
because n1(T0) + n2(T0) + n3(T0) = p − 2 and n1(T0) + 2n2(T0) + 3n3(T0) = 2(p − 3), where nk(T0)
denotes the number of vertices of degree k in T0.
(3) Finally, T ∗ is obtained from T1 by inserting t vertices of degree two into one or more pendent paths.

Figure 3 gives a tree of the class Γ∗n,p.

p−2︷ ︸︸ ︷t︷ ︸︸ ︷

Figure 3. A tree attaining the minimum value of the ABS index in the class Γn,p, where p ≥ 3
and n ≥ 3p − 2.

AIMS Mathematics Volume 9, Issue 2, 3707–3721.



3718

Theorem 3. Let p ≥ 3 and n = 3p − 2 + t where t ≥ 0. If T ∈ Γn,p, then

ABS (T ) ≥

 2
√

6
+

√
3
5

+
1
√

3

 p +

√
2

2
t +

4
√

6
,

with equality if, and only if, T ∈ Γ∗n,p.

Proof. Let T ∗ ∈ Γn,p have the minimum ABS value, then by Theorem 2, the maximum degree in T
is three. For i, j = 1, 2, 3 let ni, j be the number of edges in T ∗ that joints vertices of degrees i and j.
Clearly, n1,1 = 0. From Lemma 8 (i), we get n1,2 = p and n1,3 = 0. Let d be the number of vertices of
degree 3, then by Lemma 8 (ii), we get 2(p−2 + t−d) + 3d = 3p−6 + 2t. Thus, d = p−2. Since T has
no internal paths of length more than one, the induced subgraph of T over the set of vertices of degree
three is a tree on p − 2 vertices. Thus, n3,3 = p − 3. There are 3(p − 2) edges incident with the vertices
of degree 3. Each one of these edges is either joining two vertices of degree 3 or a vertex of degree 3
and a vertex of degree 2. Thus, we get n2,3 + 2n3,3 = 3(p− 2) and, hence, n2,2 = 3(p− 2)− 2(p− 3) = p.
By subtracting the values n1,2 = p, n2,3 = p, n3,3 = p− 3 from n− 1 = 3p− 3 + t, we get n2,2 = t. Thus,

ABS (T ∗) = p f (1, 2) + t f (2, 2) + p f (2, 3) + (p − 2) f (3, 3)

=

 2
√

6
+

√
3
5

+
1
√

3

 p +

√
2

2
t +

4
√

6
.

�

Here, we remark that the statements of Lemma 3.11 and Corollary 3.12 in paper [18] concerning
chemical trees are not complete; these statements should include the condition n ≥ 3p − 2. Indeed,
Figure 4 gives the example of (general and chemical) trees with maximum degree ∆ ≥ 4 attaining
minimum ABS value in the class Γn,p with n ≤ 3p−3. Thus, the condition n ≥ 3p−2 in Theorem 2 and
in the aforementioned two results of [18] is necessary. The problem of characterizing trees attaining
the minimum values of the ABS index in Γn,p under the conditions p ≥ 3 and p + 1 ≤ n ≤ 3p − 3 is
still open (the maximal version of this problem was recently solved in [19]). In the remainder of this
section, we address this problem. Note that Γp+1,p consists of only one tree, namely, the star tree. The
next theorem deals with the case n = p + 2.

Theorem 4. Let p ≥ 3, then the minimum ABS index in Γp,p+2 is attained uniquely by the balanced
double star.

Proof. Let T ∗ ∈ Γp,p+2 be attaining minimum ABS index. Assume that u, v ∈ V(T ∗) are the non-pendent
vertices with du ≥ dv + 2. Let w ∈ N(u) \ {v} and let T ′ = T − {uw} + {vw}, then

ABS (T ′) − ABS (T ∗) =( f (1, dv + 1) − f (1, dv))dv − (du − 1)( f (1, du) − f (1, du − 1))
+ f (1, dv + 1) − f (1, du)
= g(dv) − g(du − 1);

where g(x) = x( f (1, x + 1) − f (1, x)) + f (1, x + 1). The derivative of g(x) is given by

g′(x) =
A − B

(x + 1)2(x + 2)2
√

x(x − 1)
,
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where A = (x2 +3x+1)(x+1)2√(x − 1)(x + 2) and B = (x2 + x−1)(x+2)2√x(x + 1). Since A2−B2 > 0
for x ≥ 1, we get that g(x) is decreasing, so ABS (T ′) − ABS (T ∗) < 0, a contradiction. �

Figure 4. Graphs attaining minimum ABS value in the class Γn,p for p = 4, 5, 6 and p + 3 ≤
n ≤ 3p − 3.

4. Conclusions

We have characterized the unique graph possessing the minimum ABS index in the class of all trees
of a fixed number of pendent vertices; the star is the unique extremal graph in the mentioned class of
graphs (see Theorem 1). We have also addressed the problem of determining graphs possessing the
minimum ABS index in the class of all trees with n vertices and p pendent vertices; such extremal trees
have the maximum degree 3 when n ≥ 3p − 2 ≥ 7, and the balanced double star is the unique such
extremal tree for the case p = n − 2 (see Theorems 2, 3 and 4). Figure 4 gives all the graphs attaining
minimum ABS index in the class Γn,p for p = 4, 5, 6 and p + 3 ≤ n ≤ 3p−3. These graphs are obtained
by utilizing a computer software. Observe that for every (n, p) < {(8, 4), (9, 5), (13, 6)} with p = 4, 5, 6
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and p + 3 ≤ n ≤ 3p − 3, there is the unique graph attaining minimum ABS index in the class Γn,p;
however, for every (n, p) ∈ {(8, 4), (9, 5), (13, 6)}, there exist exactly two such extremal graphs. From
the trees depicted in Figure 4, one may expect some certain structural properties of a tree attaining
minimum ABS index in the class Γn,p when p ≥ 7 and p + 3 ≤ n ≤ 3p − 3. However, these trees seem
to be insufficient for making some sound conjectures. In the future, it would be interesting to solve the
problem of determining graphs possessing the minimum ABS index in the class Γn,p when p ≥ 7 and
p + 3 ≤ n ≤ 3p − 3.
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6. M. Randić, The connectivity index 25 years after, J. Mol. Graph. Model., 20 (2001), 19–35.
https://doi.org/10.1016/S1093-3263(01)00098-5

7. I. Gutman, B. Furtula, Recent results in the theory of Randić index, Math. Chem. Monogr., 2008.
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