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∏
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1. Introduction

We can identify two types of graph invariants which are currently being studied in chemical graph
theory. Namely,

XΣ(G) = XΣ,FV (G) =
∑

u∈V(G)

FV(du) or

XΣ(G) = XΣ,FE (G) =
∑

uv∈E(G)

FE(du, dv)
(1.1)

and
XΠ(G) = XΠ,FV (G) =

∏
u∈V(G)

FV(du) or

XΠ(G) = XΠ,FE (G) =
∏

uv∈E(G)

FE(du, dv) .
(1.2)

Here, uv denotes the edge of the graph G = (V(G), E(G)) connecting the vertices u and v, du is the
degree of the vertex u, and FV(x) and FE(x, y) are appropriately defined functions (see e.g., [1]). Since
XΣ(G) and XΠ(G) are usually known as topological indices in the literature, here we will refer to XΠ(G)
as multiplicative topological indices (MTIs) to make a clear difference between both types of indices.

Among the vast amount of topological indices of the form XΣ(G), the first and second Zagreb
indices [2] stand out, and they are defined as

M1(G) =
∑

u∈V(G)

d2
u =

∑
uv∈E(G)

(du + dv) (1.3)

and
M2(G) =

∑
uv∈E(G)

dudv, (1.4)

respectively. Also, the Randić connectivity index [3]

R(G) =
∑

uv∈E(G)

1
√

dudv
, (1.5)

the harmonic index [4]

H(G) =
∑

uv∈E(G)

2
du + dv

, (1.6)

the sum-connectivity index [5]

χ(G) =
∑

uv∈E(G)

1
√

du + dv
, (1.7)

and the inverse degree index [4]

ID(G) =
∑

u∈V(G)

1
du
=

∑
uv∈E(G)

(
1
d2

u
+

1
d2

v

)
. (1.8)

The topological indices mentioned above and many others of the form XΣ(G) have been widely studied
during recent decades.
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More recently, MTIs have attracted a lot of attention, see e.g., [6–12]. Indeed, several MTIs have
already been deeply analyzed in the literature (see e.g., the work of V. R. Kulli). Among the most
relevant ones, the Narumi-Katayama index [13] should be mentioned:

NK(G) =
∏

u∈V(G)

du. (1.9)

Additionally, multiplicative versions of the Zagreb indices [14]

Π1(G) =
∏

u∈V(G)

d2
u, (1.10)

Π2(G) =
∏

uv∈E(G)

dudv (1.11)

and
Π∗1(G) =

∏
uv∈E(G)

(du + dv). (1.12)

In addition to the MTIs of Eqs (1.9)–(1.12), in this work we also consider multiplicative versions of
the indices in Eqs (1.5)–(1.8): the multiplicative Randić connectivity index

RΠ(G) =
∏

uv∈E(G)

1
√

dudv
, (1.13)

the multiplicative harmonic index

HΠ(G) =
∏

uv∈E(G)

2
du + dv

, (1.14)

the multiplicative sum-connectivity index

χΠ(G) =
∏

uv∈E(G)

1
√

du + dv
, (1.15)

and the multiplicative inverse degree index

IDΠ(G) =
∏

uv∈E(G)

(
1
d2

u
+

1
d2

v

)
. (1.16)

Therefore, motivated by their potential applications, in this work we perform an analytical as well
as computational study of MTIs. Specifically, the purpose of this work is threefold:

First, we follow an analytical viewpoint to find several new inequalities that relate two MTIs indices
between them as well as to their additive versions in Section 2. Note that the search for inequalities
between different indices is a classical topic in the study of topological indices. See e.g., [6–12] for
previous results relating MTIs.

Second, we want to establish the statistical analysis of MTIs as a generic tool for the study of average
properties of random networks in Section 3. For some previous works dealing with the statistical
analysis of (non-multiplicative) topological indices, see, e.g., [15–19].

Finally, in this paper we perform for the first time (to our knowledge) a scaling study of MTIs
on random networks which let us state a scaling law that relates different random graph models in
Section 4.
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2. Inequalities involving multiplicative topological indices

There are many works studying particular MTIs; see, e.g., [20, 21] and the references therein.
However, in this section we obtain several analytical inequalities involving the general MTIs XΠ,FV (G)
and XΠ,FE (G).

The following equalities are direct:

XΠ,FV (G) =
∏

u∈V(G)

FV(du) = e
∑

u∈V(G) log FV (du) = eXΣ,log FV (G),

XΠ,FE (G) =
∏

uv∈E(G)

FE(du, dv) = e
∑

uv∈E(G) log FE(du,dv) = eXΣ,log FE (G).

Since the geometric mean is at most the arithmetic mean (by Jensen’s inequality), we have the
following inequalities.

Proposition 2.1. Let G be a graph with n vertices and m edges. Then,

XΠ,FV (G)1/n ≤
1
n

XΣ,FV (G), XΠ,FE (G)1/m ≤
1
m

XΣ,FE (G).

This general result has as a particular consequence the following known inequality, see [9,
Theorem 2.1].

Corollary 2.1. Let G be a graph with n vertices and m edges. Then,

Π1(G) ≤
(2m

n

)2n
.

Proof. If we take FV(du) = du, then

XΠ,FV (G) = Π1(G)1/2, XΣ,FV (G) = 2m,

and Proposition 2.1 gives

Π1(G)1/(2n) ≤
2m
n
,

which implies the desired inequality. □

Proposition 2.1 has several consequences:

Proposition 2.2. Let G be a graph with n vertices and m edges.
(1) If FE(du, dv) = h(du) + h(dv) and FV(du) = duh(du) for some function h, then

XΠ,FV (G)1/n ≤
1
n

XΣ,FE (G), XΠ,FE (G)1/m ≤
1
m

XΣ,FV (G).

(2) If FE(du, dv) = h(du)h(dv) and FV(du) = h(du)du for some function h, then

XΠ,FE (G)1/n ≤
1
n

XΣ,FV (G), XΠ,FV (G)1/m ≤
1
m

XΣ,FE (G).
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Proof. Let G be a graph with n vertices and m edges.
If FE(du, dv) = h(du) + h(dv) and FV(du) = duh(du) for some function h, then

XΣ,FE (G) =
∑

uv∈E(G)

FE(du, dv) =
∑

uv∈E(G)

(
h(du) + h(dv)

)
=

∑
u∈V(G)

duh(du) = XΣ,FV (G).

Consequently, Proposition 2.1 implies

XΠ,FV (G)1/n ≤
1
n

XΣ,FV (G) =
1
n

XΣ,FE (G),

XΠ,FE (G)1/m ≤
1
m

XΣ,FE (G) =
1
m

XΣ,FV (G).

If FE(du, dv) = h(du)h(dv) and FV(du) = h(du)du for some function h, then

XΠ,FE (G) =
∏

uv∈E(G)

FE(du, dv) =
∏

uv∈E(G)

h(du)h(dv)

=
∏

u∈V(G)

h(du)du = XΠ,FV (G).

Hence, Proposition 2.1 gives

XΠ,FE (G)1/n = XΠ,FV (G)1/n ≤
1
n

XΣ,FV (G),

XΠ,FV (G)1/m = XΠ,FE (G)1/m ≤
1
m

XΣ,FE (G).

□

Theorem 2.1. Let G be a graph with m edges. Assume that F1(du, dv) = h(du) + h(dv) and F2(du, dv) =
h(du)h(dv) for some function h. Then,

XΠ,F2(G) ≤
( 1
2m

XΣ,F1(G)
)2m
.

Proof. Since the (weighted) geometric mean is at most the (weighted) arithmetic mean (by Jensen’s
inequality), the following inequality holds for every xi,wi > 0:( n∏

i=1

xwi
i

)1/
∑n

i=1 wi
≤

1∑n
i=1 wi

n∑
i=1

xi wi.

If we take xi = h(du) and wi = du, then we get( ∏
u∈V(G)

h(du)du
)1/

∑
u∈E(G) du

≤
1∑

u∈V(G) du

∑
u∈V(G)

duh(du),

( ∏
uv∈E(G)

h(du)h(dv)
)1/(2m)

≤
1

2m

∑
uv∈E(G)

(
h(du) + h(dv)

)
,

XΠ,F2(G) ≤
( 1
2m

XΣ,F1(G)
)2m
.

□
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This general result has as a particular consequence the following known inequality, see [9,
Theorem 3.1].

Corollary 2.2. Let G be a graph with m edges. Then,

Π2(G) ≤
( 1
2m

M1(G)
)2m
.

Proof. If we take h(x) = x, then F1(du, dv) = du + dv, F2(du, dv) = dudv, XΠ,F2(G) = Π2(G), XΣ,F1(G) =
M1(G), and Theorem 2.1 gives the desired inequality. □

In [22] appears the following Jensen-type inequality.

Theorem 2.2. Let µ be a probability measure on the space X and a ≤ b be real constants. If f : X →
[a, b] is a measurable function and φ is a convex function on [a, b], then f and φ ◦ f are µ-integrable
functions, and

φ
(
a + b −

∫
X

f dµ
)
≤ φ(a) + φ(b) −

∫
X
φ ◦ f dµ.

Theorem 2.2 allows one to find the following converse of Proposition 2.1, if we consider the
normalized counting measure as µ.

Theorem 2.3. Let G be a graph with n vertices and m edges, aV ≤ bV , aE ≤ bE be real constants, and
FV , FE be functions satisfying

aV ≤ FV(du) ≤ bV ∀ u ∈ V(G), aE ≤ FE(du, dv) ≤ bE ∀ uv ∈ E(G).

Then,
1
n

XΣ,FV (G) ≤ eaV + ebV − eaV+bV XΠ,FV (G)−1/n,

1
m

XΣ,FE (G) ≤ eaE + ebE − eaE+bE XΠ,FE (G)−1/m.

Proof. Since φ(x) = ex is a convex function on R, Theorem 2.2 gives

eaV+bV−
1
n
∑

u∈V(G) log FV (du) ≤ eaV + ebV −
1
n

∑
u∈V(G)

elog FV (du),

eaV+bV elog(Πu∈V(G)FV (du))−1/n
≤ eaV + ebV −

1
n

∑
u∈V(G)

FV(du),

eaV+bV XΠ,FV (G)−1/n ≤ eaV + ebV −
1
n

XΣ,FV (G).

In a similar way,

eaE+bE−
1
m

∑
uv∈E(G) log FE(du,dv) ≤ eaE + ebE −

1
m

∑
uv∈E(G)

elog FE(du,dv),

eaE+bE elog(Πuv∈E(G)FE(du,dv))−1/m
≤ eaE + ebE −

1
m

∑
uv∈E(G)

FE(du, dv),

eaE+bE XΠ,FE (G)−1/m ≤ eaE + ebE −
1
m

XΣ,FE (G).

□
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Theorem 2.3 provides the following new lower bounds of Π1 and Π∗1.

Corollary 2.3. Let G be a graph with n vertices and m edges, minimum degree δ, and maximum degree
∆. Then,

Π1(G) ≥
(
e−δ

2
+ e−∆

2
−

e−δ
2−∆2

n
M1(G)

)−n
,

Π∗1(G) ≥
(
e−2δ + e−2∆ −

e−2δ−2∆

m
M1(G)

)−m
.

Proof. Since δ2 ≤ d2
u ≤ ∆

2 and 2δ ≤ du + dv ≤ 2∆, Theorem 2.3 implies

1
n

M1(G) ≤ eδ
2
+ e∆

2
− eδ

2+∆2
Π1(G)−1/n,

Π1(G) ≥
(
e−δ

2
+ e−∆

2
−

e−δ
2−∆2

n
M1(G)

)−n
,

1
m

M1(G) ≤ e2δ + e2∆ − e2δ+2∆Π∗1(G)−1/m,

Π∗1(G) ≥
(
e−2δ + e−2∆ −

e−2δ−2∆

m
M1(G)

)−m
.

□

The following Kober’s inequalities in [23] (see also [24, Lemma 1]) are useful.

Lemma 2.1. If a j > 0 for 1 ≤ j ≤ k, then

k∑
j=1

a j + k(k − 1)
( k∏

j=1

a j

)1/k
≤

( k∑
j=1

√
a j

)2
≤ (k − 1)

k∑
j=1

a j + k
( k∏

j=1

a j

)1/k
.

Lemma 2.1 has the following consequence.

Theorem 2.4. Let G be a graph with n vertices and m edges. Then,

XΣ,F2
V
(G) + n(n − 1)XΠ,FV (G)2/n ≤ XΣ,FV (G)2 ≤ (n − 1)XΣ,F2

V
(G) + nXΠ,FV (G)2/n,

XΣ,F2
E
(G) + m(m − 1)XΠ,FE (G)2/m ≤ XΣ,FE (G)2 ≤ (m − 1)XΣ,F2

E
(G) + mXΠ,FE (G)2/m.

Proof. Lemma 2.1 gives∑
u∈V(G)

FV(du)2 + n(n − 1)
( ∏

u∈V(G)

FV(du)2
)1/n
≤

( ∑
u∈V(G)

FV(du)
)2
,

XΣ,F2
V
(G) + n(n − 1)XΠ,FV (G)2/n ≤ XΣ,FV (G)2,

and ( ∑
u∈V(G)

FV(du)
)2
≤ (n − 1)

∑
u∈V(G)

FV(du)2 + n
( ∏

u∈V(G)

FV(du)2
)1/n
,

XΣ,FV (G)2 ≤ (n − 1)XΣ,F2
V
(G) + nXΠ,FV (G)2/n.
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In a similar way, replacing FV(du) and n with FE(du, dv) and m, respectively, we obtain∑
uv∈E(G)

FE(du, dv)2 + m(m − 1)
( ∏

uv∈E(G)

FE(du, dv)2
)1/m
≤

( ∑
uv∈E(G)

FE(du, dv)
)2
,

XΣ,F2
E
(G) + m(m − 1)XΠ,FE (G)2/m ≤ XΣ,FE (G)2,

and ( ∑
uv∈E(G)

FE(du, dv)
)2
≤ (m − 1)

∑
uv∈E(G)

FE(du, dv)2 + m
( ∏

uv∈E(G)

FE(du, dv)2
)1/m
,

XΣ,FE (G)2 ≤ (m − 1)XΣ,F2
E
(G) + mXΠ,FE (G)2/m.

□

Let us recall the following known Petrović inequality [25].

Theorem 2.5. Let φ be a convex function on [0, a], and w1, . . . ,wn ≥ 0. If t1, . . . , tn ∈ [0, a] satisfy∑n
k=1 tkwk ∈ (0, a], and

n∑
k=1

tkwk ≥ t j, j = 1, . . . , n,

then
n∑

k=1

φ(tk)wk ≤ φ
( n∑

k=1

tkwk

)
+

( n∑
k=1

wk − 1
)
φ(0).

Theorem 2.5 has the following consequence.

Proposition 2.3. Let φ be a convex function on [0, a]. If t1, . . . , tn ∈ [0, a] satisfy
∑n

k=1 tk ∈ (0, a], then
n∑

k=1

φ(tk) ≤ φ
( n∑

k=1

tk

)
+ (n − 1)φ(0).

Proposition 2.3 allows for the proof of the following inequalities.

Theorem 2.6. Let G be a graph with n vertices and m edges. Then,

XΣ,FV (G) ≤ XΠ,FV (G) + n − 1, XΣ,FE (G) ≤ XΠ,FE (G) + m − 1.

Proof. Let us consider the convex function φ(x) = ex. Proposition 2.3 gives

XΣ,FV (G) =
∑

u∈V(G)

FV(du) =
∑

u∈V(G)

elog FV (du)

≤ e
∑

u∈V(G) log FV (du) + n − 1 = elogΠu∈V(G)FV (du) + n − 1
= Πu∈V(G)FV(du) + n − 1 = XΠ,FV (G) + n − 1.

In a similar way,

XΣ,FE (G) =
∑

uv∈E(G)

FE(du, dv) =
∑

uv∈E(G)

elog FE(du,dv)

≤ e
∑

uv∈E(G) log FE(du,dv) + m − 1 = elogΠuv∈E(G)FE(du,dv) + m − 1
= Πuv∈E(G)FE(du, dv) + m − 1 = XΠ,FE (G) + m − 1.

□
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Theorem 2.7. Let G be a graph. Then,

XΠ,FV (G) ≥ XΣ,log FV (G) + 1, XΠ,FE (G) ≥ XΣ,log FE (G) + 1.

Proof. The equality ex ≥ x + 1 holds for every x ∈ R. This inequality gives

XΠ,FV (G) = elog XΠ,FV (G) ≥ log XΠ,FV (G) + 1

= log
(
Πu∈E(G)FV(du)

)
+ 1 =

∑
u∈E(G)

log FV(du) + 1

= XΣ,log FV (G) + 1.

The same argument gives the second inequality. □

In [26], the Gutman-Milovanović index is defined as

Mα,β(G) =
∑

uv∈E(G)

(dudv)α(du + dv)β,

which is a natural generalization of Zagreb indices.
Next, we present an inequality relating some multiplicative indices and the Gutman-Milovanović

index.

Theorem 2.8. Let G be a graph with m edges, and α, β ∈ R. Then,

Mα,β(G) ≥ mΠ2(G)α/mΠ∗1(G)β/m.

The equality is attained for any α, β if G is regular.

Proof. Since the geometric mean is at most the arithmetic mean, we get

1
m

Mα,β(G) =
1
m

∑
uv∈E(G)

(dudv)α(du + dv)β

≥
( ∏

uv∈E(G)

(dudv)α(du + dv)β
)1/m
= Π2(G)α/mΠ∗1(G)β/m.

Thus,
Mα,β(G) ≥ mΠ2(G)α/mΠ∗1(G)β/m.

If the graph is δ-regular, then Mα,β(G) = 2βδ2α+βm, Π2(G)α/m = (δ2m)α/m = δ2α, Π∗1(G)β/m =
((2δ)m)β/m = 2βδβ, and the equality holds. □

We have some direct formulas for some multiplicative indices, e.g.,

Π1(G) = NK(G)2, Π2(G) = RΠ(G)−2,

Π∗1(G) = 2−mHΠ(G)−1, Π∗1(G) = S Π(G)−2, HΠ(G) = 2mS Π(G)2,

for every graph G with m edges.
Let us show some inequalities relating different multiplicative indices.
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Theorem 2.9. Let G be a graph with m edges, maximum degree ∆ and minimum degree δ. Then,

2m

∆m Π2(G) ≤ Π∗1(G) ≤
2m

δm Π2(G),( 2
√
∆δ

∆ + δ

)m
RΠ(G) ≤ HΠ(G) ≤ RΠ(G),(

2δ2)m
Π2(G)−2 ≤ IDΠ(G) ≤

(
2∆2)m

Π2(G)−2,

2mΠ2(G)−1 ≤ IDΠ(G) ≤
( ∆2 + δ2

∆δ

)m
Π2(G)−1.

Furthermore, the equality in each inequality is attained for every regular graph.

Proof. First of all, note that if

c ≤
FE(x, y)α

F′E(x, y)β
≤ C

for every δ ≤ x, y ≤ ∆, then we have for every uv ∈ E(G),

c F′E(du, dv)β ≤ FE(du, dv)α ≤ C F′E(du, dv)β,

cm

 ∏
uv∈E(G)

F′E(du, dv)


β

≤

 ∏
uv∈E(G)

FE(du, dv)


α

≤ Cm

 ∏
uv∈E(G)

F′E(du, dv)


β

,

cmXΠ,F′E (G)β ≤ XΠ,FE (G)α ≤ CmXΠ,F′E (G)β,

for every graph G with m edges, maximum degree ∆, and minimum degree δ.
Since

2
∆
≤

1
x
+

1
y
=

x + y
xy
≤

2
δ
,

we have
2m

∆m Π2(G) ≤ Π∗1(G) ≤
2m

δm Π2(G).

Since
2
√
∆δ

∆ + δ
≤

2
√

xy
x + y

=

2
x+y
1
√

xy

≤ 1,

we have ( 2
√
∆δ

∆ + δ

)m
RΠ(G) ≤ HΠ(G) ≤ RΠ(G).

Since

2δ2 ≤ x2 + y2 =

1
x2 +

1
y2

(xy)−2 ≤ 2∆2,

we have (
2δ2)m

Π2(G)−2 ≤ IDΠ(G) ≤
(
2∆2)m

Π2(G)−2.

Let us consider the function

A(x, y) =
1
x2 +

1
y2

1
xy

=
x
y
+

y
x
= f (t) ,
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where
t =

x
y
, f (t) = t +

1
t
.

Since

f ′(t) = 1 −
1
t2 =

t2 − 1
t2

f is decreasing on (0, 1] and increasing on [1,∞). Since f (1) = 2, we conclude

2 ≤ A(x, y) ≤
∆2 + δ2

∆δ
.

Hence,

2mΠ2(G)−1 ≤ IDΠ(G) ≤
( ∆2 + δ2

∆δ

)m
Π2(G)−1.

Let G be a δ-regular graph. Hence,

Π2(G) = δ2m, Π∗1(G) = (2δ)m,

RΠ(G) = δ−m, HΠ(G) = δ−m, IDΠ(G) = 2mδ−2m,

2
√
∆δ

∆ + δ
= 1,

∆2 + δ2

∆δ
= 2.

Therefore, the equality in each inequality is attained for every regular graph. □

Recall that a biregular graph is a bipartite graph for which any vertex in one side of the given
bipartition has degree ∆ and any vertex in the other side of the bipartition has degree δ. We say that a
graph is (∆, δ)-biregular if we want to write explicitly the maximum and minimum degrees.

Theorem 2.10. If G is a graph with m edges, minimum degree δ, and maximum degree ∆, then

23mΠ∗1(G)−2 ≤ IDΠ(G) ≤ (∆ + δ)2m(
∆−2 + δ−2)m

Π∗1(G)−2.

The equality in the lower bound is attained if and only if each connected component of G is a regular
graph. The equality in the upper bound is attained if and only if G is a regular or biregular graph.

Proof. Define

A(x, y) :=
x−2 + y−2

(x + y)−2 = (x + y)2(x−2 + y−2),
for x, y ∈ [δ,∆]. Note that, in order to find the bounds of A, it suffices to consider the case y ≥ x. We
have

∂A
∂y

(x, y) = 2(x + y)
(
x−2 + y−2) − 2(x + y)2y−3

= 2x−2y−3(x + y)
(
y3 + x2y − x3 − x2y

)
= 2x−2y−3(x + y)

(
y3 − x3) > 0,

for every y ∈ (x,∆]. Hence, A(x, x) ≤ A(x, y) ≤ A(x,∆). Note that A(x, x) = 8.
Define

B(x) = A(x,∆) = (x + ∆)2(x−2 + ∆−2),
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for x ∈ [δ,∆]. We get
B′(x) = 2∆−2x−3(x + ∆)

(
x3 − ∆3) < 0,

for every x ∈ [δ,∆). Therefore,

A(x,∆) = B(x) ≤ B(δ) = (∆ + δ)2(∆−2 + δ−2),
for x ∈ [δ,∆]. Hence,

8 ≤ A(x, y) ≤ (∆ + δ)2(∆−2 + δ−2),
and so,

23mΠ∗1(G)−2 ≤ IDΠ(G) ≤ (∆ + δ)2m(
∆−2 + δ−2)m

Π∗1(G)−2.

The previous argument gives that the equality in the lower bound is attained if and only if du = dv

for every uv ∈ E(G), and this happens if and only if each connected component of G is a regular graph.
Also, the equality in the upper bound is attained if and only if {du, dv} = {∆, δ} for every uv ∈ E(G),

and this happens if and only if G is a regular (if ∆ = δ) or (∆, δ)-biregular (if ∆ , δ) graph. □

3. Statistical properties of multiplicative topological indices on random networks

The statistical properties of topological indices in random networks have been intensively studied,
see, e.g., [27, 28]. Within this statistical approach, it has been recently shown that the average values
of indices of the type XΣ(G), normalized to the order of the network n, scale with the average degree
⟨d⟩, see, e.g., [15–18]. That is, ⟨XΣ(G)⟩ /n is a function of ⟨d⟩ only. Moreover, it was also found
that ⟨XΣ(G)⟩, for indices like R(G) and H(G), is highly correlated with the Shannon entropy of the
eigenvectors of the adjacency matrix of random networks [19]. This is a notable result because
it puts forward the application of topological indices beyond mathematical chemistry. Specifically,
given the equivalence of the Hamiltonian of a tight-binding network (in the proper setup) and the
corresponding network adjacency matrix, either ⟨R(G)⟩ or ⟨H(G)⟩ could be used to determine the
eigenvector localization and delocalization regimes which in turn determine the insulator and metallic
regimes of quantum transport.

Below, for the first time to our knowledge, we apply the MTIs of Eqs (1.9)–(1.16) on three models of
random networks: Erdös-Rényi (ER) networks, random geometric (RG) graphs, and bipartite random
(BR) networks.

ER networks [29–31] GER(n, p) are formed by n vertices connected independently with probability
p ∈ [0, 1]. While RG graphs [32, 33] GRG(n, r) consist of n vertices uniformly and independently
distributed on the unit square, where two vertices are connected by an edge if their Euclidean distance
is less than or equal to the connection radius r ∈ [0,

√
2]. In addition, we examine BR networks

GBR(n1, n2, p) composed of two disjoint sets, set 1 and set 2, with n1 and n2 vertices each such that
there are no adjacent vertices within the same set, being n = n1 + n2 the total number of vertices in the
bipartite network. The vertices of the two sets are connected randomly with probability p ∈ [0, 1].

3.1. Multiplicative topological indices on Erdös-Rényi random networks

Before computing MTIs on ER random networks, we note that in the dense limit, i.e., when ⟨d⟩ ≫ 1,
we can approximate du ≈ dv ≈ ⟨d⟩ in Eqs (1.9)–(1.16), with

⟨d⟩ = (n − 1)p. (3.1)
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Thus, for example, when np ≫ 1, we can approximate NKΠ(GER) as

NK(GER) =
∏

u∈V(G)

du ≈
∏

u∈V(G)

⟨d⟩ ≈ ⟨d⟩n ,

which leads us to
ln NK(GER) ≈ n ln ⟨d⟩

or
ln NK(GER)

n
≈ ln ⟨d⟩ . (3.2)

A similar approximation gives
lnΠ1(GER)

n
≈ 2 ln ⟨d⟩ . (3.3)

Also, for Π2(GER), we have that

Π2(GER) =
∏

uv∈E(G)

dudv ≈
∏

uv∈E(G)

⟨d⟩ ⟨d⟩ =
∏

uv∈E(G)

⟨d⟩2 ≈ ⟨d⟩n⟨d⟩

where we have used | E(GER) |= n ⟨d⟩ /2. Therefore,

lnΠ2(GER) ≈ n ⟨d⟩ ln ⟨d⟩

or
lnΠ2(GER)

n
≈ ⟨d⟩ ln ⟨d⟩ . (3.4)

Following this procedure, for the rest of the MTIs of Eqs (1.12)–(1.16) we get:

lnΠ∗1(GER)
n

≈
1
2
⟨d⟩ ln(2 ⟨d⟩), (3.5)

ln RΠ(GER)
n

≈ −
1
2
⟨d⟩ ln ⟨d⟩ , (3.6)

ln HΠ(GER)
n

≈ −
1
2
⟨d⟩ ln ⟨d⟩ , (3.7)

ln χΠ(GER)
n

≈ −
ln 2
4
⟨d⟩ −

1
4
⟨d⟩ ln ⟨d⟩ , (3.8)

and
ln IDΠ(GER)

n
≈

ln 2
2
⟨d⟩ − ⟨d⟩ ln ⟨d⟩ . (3.9)

From the approximate expressions above we note that the logarithm of the MTIs on ER random
networks, normalized to the network size n, does not depend on n. That is, in the dense limit, we
expect ln XΠ(GER)/n to depend on ⟨d⟩ only; here, XΠ represents all the MTIs of Eqs (1.9)–(1.16).

With Eqs (3.2)–(3.9) as a guide, in what follows we compute the average values of the logarithm of
the MTIs listed in Eqs (1.9)–(1.16). All averages are computed over ensembles of 107/n ER networks
characterized by the parameter pair (n, p).

In Figure 1 we present the average logarithm of the eight MTIs of Eqs (1.9)–(1.16) as a function of
the probability p of ER networks of sizes n = {125, 250, 500, 1000}. Since ⟨ln XΠ(GER)⟩ < 0, for RΠ,

AIMS Mathematics Volume 9, Issue 2, 3646–3670.



3659

HΠ, and χΠ we conveniently plotted − ⟨ln XΠ(GER)⟩ in log scale to have a detailed view of the data for
small p, see Figure 1(e–g). Thus, we observe that ⟨ln XΠ(GER)⟩ for NK, Π1,2, and Π∗1 [for RΠ, HΠ, and
χΠ] is a monotonically increasing [monotonically decreasing] function of p. In contrast, ⟨ln IDΠ(GER)⟩
is a nonmonotonic function of p, see Figure 1(h).
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Figure 1. Average logarithm of the multiplicative topological indices of Eqs (1.9)–(1.16)
as a function of the probability p of Erdös-Rényi networks of size n. The inset in (h) is an
enlargement for small p.

Then, following Eqs (3.2)–(3.9), in Figure 2 we show again the average logarithm of the MTIs, but
now normalized to the network size, ⟨ln XΠ(GER)⟩ /n, as a function of ⟨d⟩. As can be clearly observed
in this figure, the curves ⟨ln XΠ(GER)⟩ /n versus ⟨d⟩ fall one on top of the other for different network
sizes; so, these indices are properly scaled where ⟨d⟩ works as the scaling parameter. That is, ⟨d⟩ is
the parameter that fixes the average values of the normalized MTIs on ER networks. It is remarkable
that the scaling of ⟨ln XΠ(GER)⟩ /n with ⟨d⟩, expected for ⟨d⟩ ≫ 1 according to Eqs (3.2)–(3.9), works
perfectly well for all values of ⟨d⟩; even for ⟨d⟩ ≪ 1. Since the topological properties of random graphs
and networks, when characterized by indices of the form XΣ(G), have been shown to scale with ⟨d⟩ for
all values of ⟨d⟩ (see e.g., [15–19]), we should expect other topological measures to also scale with ⟨d⟩,
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such as the MTIs studied here. Also, in Figure 2, we show that Eqs (3.2)–(3.9) (orange-dashed lines)
indeed describe well the data (thick full curves) for ⟨d⟩ ≥ 10, which can be regarded as the dense limit
of the ER model.
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Figure 2. Average logarithm of the multiplicative topological indices of Eqs (1.9)–(1.16),
normalized to the network size n, as a function of the average degree ⟨d⟩ of Erdös-Rényi
networks. Orange dashed lines in (a-h) are Eqs (3.2)–(3.9), respectively. The vertical
magenta dashed lines indicate ⟨d⟩ = 10. The inset in (h) is an enlargement for small ⟨d⟩.

3.2. Multiplicative topological indices on random geometric graphs

As in the previous Subsection, here we start by exploring the dense limit. Indeed, for RG graphs in
the dense limit, i.e., when ⟨d⟩ ≫ 1, we can approximate du ≈ dv ≈ ⟨d⟩, where

⟨d⟩ = (n − 1)g(r) (3.10)
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and [34]

g(r) =


r2

[
π − 8

3r + 1
2r2

]
, 0 ≤ r ≤ 1 ,

1
3 − 2r2 [1 − arcsin(1/r) + arccos(1/r)]

+4
3 (2r2 + 1)

√
r2 − 1 − 1

2r4, 1 ≤ r ≤
√

2 .

(3.11)

Thus, we obtain

ln NK(GRG)
n

≈ ln ⟨d⟩ , (3.12)

lnΠ1(GRG)
n

≈ 2 ln ⟨d⟩ , (3.13)

lnΠ2(GRG)
n

≈ ⟨d⟩ ln ⟨d⟩ , (3.14)

lnΠ∗1(GRG)
n

≈
1
2
⟨d⟩ ln(2 ⟨d⟩), (3.15)

ln RΠ(GRG)
n

≈ −
1
2
⟨d⟩ ln ⟨d⟩ , (3.16)

ln HΠ(GRG)
n

≈ −
1
2
⟨d⟩ ln ⟨d⟩ , (3.17)

ln χΠ(GRG)
n

≈ −
ln 2
4
⟨d⟩ −

1
4
⟨d⟩ ln ⟨d⟩ , (3.18)

and

ln IDΠ(GRG)
n

≈
ln 2
2
⟨d⟩ − ⟨d⟩ ln ⟨d⟩ . (3.19)

Remarkably, the approximate Eqs (3.12)–(3.19) for RG graphs are exactly the same as the
corresponding equations for ER graphs, see Eqs (3.2)–(3.9); however, note that the definition of ⟨d⟩ is
different for both models, i.e., compare Eqs (3.1), (3.10), and (3.11).

Then, in Figure 3 we present the average logarithm of the eight MTIs of Eqs (1.9)–(1.16) as a
function of the connection radius r of RG graphs of sizes n = {125, 250, 500, 1000}. All averages
are computed over ensembles of 107/n random graphs, and each ensemble is characterized by a fixed
parameter pair (n, r).
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Figure 3. Average logarithm of the multiplicative topological indices of Eqs (1.9)–(1.16) as
a function of the connection radius r of random geometric graphs of size n. The inset in (h)
is an enlargement for small r.

For comparison purposes, Figure 1 for ER networks and Figure 3 for RG graphs have the same
format and contents. In fact, all the observations made in the previous Subsection for ER networks
are also valid for RG graphs by replacing GER → GRG and p → g(r). Therefore, in Figure 4 we
plot ⟨ln XΠ(GRG)⟩ /n as a function of ⟨d⟩ showing that all curves are properly scaled; that is, curves
for different graph sizes fall on top of each other. Also, in Figure 4 we show that Eqs (3.12)–(3.19)
(orange-dashed lines) indeed describe the data well (thick full curves) for ⟨d⟩ ≥ 10, which can be
regarded as the dense limit of RG graphs.
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Figure 4. Average logarithm of the multiplicative topological indices of Eqs (1.9)–(1.16),
normalized to the graph size n, as a function of the average degree ⟨d⟩ of random geometric
graphs. Orange dashed lines in (a-h) are Eqs (3.12)–(3.19), respectively. The vertical
magenta dashed lines indicate ⟨d⟩ = 10. The inset in (h) is an enlargement for small ⟨d⟩.

3.3. Multiplicative topological indices on bipartite random networks

We start by writing approximate expressions for the MTIs on BR networks in the dense limit.
Moreover, since edges in a bipartite network join vertices of different sets, and we are labeling here the
sets as set 1 and set 2, we replace du by d1 and dv by d2 in the expression for the MTIs. Thus, when
n1 p ≫ 1 and n2 p ≫ 1, we can approximate du = d1 ≈ ⟨d1⟩ and dv = d2 ≈ ⟨d2⟩ in Eqs (1.9)–(1.16),
with 〈

d1,2
〉
= n2,1 p. (3.20)

Therefore, in the dense limit, the MTIs of Eqs (1.11)–(1.16) on BR networks are well approximated by

lnΠ2(GBR)
n1,2

≈
〈
d1,2

〉
ln(⟨d1⟩ ⟨d2⟩), (3.21)
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lnΠ∗1(GBR)
n1,2

≈
〈
d1,2

〉
ln(⟨d1⟩ + ⟨d2⟩), (3.22)

ln RΠ(GBR)
n1,2

≈ −
1
2

〈
d1,2

〉
ln (⟨d1⟩ ⟨d2⟩) , (3.23)

ln HΠ(GBR)
n1,2

≈
〈
d1,2

〉
[ln 2 − ln (⟨d1⟩ + ⟨d2⟩)] , (3.24)

ln χΠ(GBR)
n1,2

≈ −
1
2

〈
d1,2

〉
ln (⟨d1⟩ + ⟨d2⟩) , (3.25)

and

ln IDΠ(GBR)
n1,2

≈
〈
d1,2

〉
ln

(
1
⟨d1⟩

2 +
1
⟨d2⟩

2

)
. (3.26)

Above we used | E(GBR) |= n1n2 p = n1,2
〈
d1,2

〉
. We note that we are not providing approximate

expressions for neither NK(GBR) nor Π1(GBR).

Now we compute MTIs on ensembles of 107/n BR networks. In contrast to ER and RG networks,
now the BR network ensembles are characterized by three parameters: n1, n2, and p. For simplicity,
but without lost of generality, in our numerical calculations we consider n1 = n2. It is remarkable to
notice that, in the case of n1 = n2 = n/2, where ⟨d1⟩ = ⟨d2⟩ = ⟨d⟩ = np/2, Eqs (3.21)–(3.26) reproduce
Eqs (3.4)–(3.9).

Then, in Figure 5 we present the average logarithm of the eight MTIs of Eqs (1.9)–(1.16) as a
function of the probability p of BR networks of sizes n1 = n2 = {125, 250, 500, 1000}. Therefore, by
plotting ⟨ln XΠ(GBR)⟩ /n as a function of ⟨d⟩ (see Figure 6), we confirm that the curves of the MTIs
on BR networks are properly scaled, as predicted by Eqs (3.21)–(3.26); see the orange dashed lines in
Figure 6 (c–h). Here, we can also say that ⟨d⟩ ≥ 10 can be regarded as de dense limit of BR networks.
We have verified (not shown here) that we arrive at equivalent conclusions when n1 , n2.
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Figure 5. Average logarithm of the multiplicative topological indices of Eqs (1.9)–(1.16) as
a function of the probability p of bipartite random networks of sizes n1 and n2. In all panels,
n1 = n2 = {125, 250, 500, 1000}. The inset in (h) is an enlargement for small p.
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Figure 6. Average logarithm of the multiplicative topological indices of Eqs (1.9)–(1.16),
normalized to the network size n, as a function of the average degree ⟨d⟩ of bipartite random
networks of sizes n1 and n2. In all panels, n1 = n2 = {125, 250, 500, 1000}. Orange
dashed lines in (a,b) are Eqs (3.2) and (3.3), respectively. Orange dashed lines in (c–h)
are Eqs (3.21)–(3.26), respectively. The vertical magenta dashed lines indicate ⟨d⟩ = 10.
The inset in (h) is an enlargement for small ⟨d⟩.

Note that in panels (a,b) of Figure 6 we included Eqs (3.2) and (3.3) as orange dashed lines. Those
equations were obtained for ER networks, however they reproduce perfectly well both NK(GBR) and
Π1(GBR) when ⟨d⟩ ≥ 10 since we are considering n1 = n2 = n/2.

4. Discussion and conclusions

In this work we have performed a thorough analytical and statistical study of multiplicative
topological indices (MTIs) XΠ.

From an analytical viewpoint, we found several inequalities that relate MTIs among themselves as
well as to their additive versions XΣ. To find inequalities between different indices is a classical topic
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in the study of topological indices.
Within a statistical approach we computed MTIs on random networks. Some previous works deal

with the statistical analysis of (non-multiplicative) topological indices. As models of random networks
we have used Erdös-Rényi (ER) networks, random geometric (RG) graphs, and bipartite random (BR)
networks. We showed that the average logarithm of the MTIs, ⟨ln XΠ(G)⟩, normalized to the order of the
network, scale with the network average degree ⟨d⟩. Thus, we conclude that ⟨d⟩ is the parameter that
fixes the average values of the logarithm of the MTIs on random networks. Moreover, the equivalence
among Eqs (3.2)–(3.9) for ER networks, Eqs (3.12)–(3.19) for RG graphs, and Eqs (3.21)–(3.26) for
BR networks (when the subsets are equal in size) allows us to state a scaling law that connects the three
graph models. That is, given the MTI XΠ, the average of its logarithm divided by the network size is
the same function of the average degree regardless the network model:

⟨ln XΠ(GER)⟩
n

≈
⟨ln XΠ(GRG)⟩

n
≈
⟨ln XΠ(GBR)⟩

n
≈ f (⟨d⟩). (4.1)

To validate Eq (4.1), without loss of generality we choose three MTIs: the Narumi-Katayama index,
the multiplicative sum-connectivity index, and the multiplicative inverse degree index. We apply these
indices to ER networks, RG graphs, and BR networks and plot ⟨ln NKΠ(G)⟩ /n, − ⟨ln χΠ(G)⟩ /n and
⟨ln IDΠ(G)⟩ /n in Figure 7. There, for each index, we can clearly see that the curves corresponding to
the three network models fall one on top of the other, thus validating Eq (4.1). Also, notice that we
are using networks of different sizes to stress the scaling law in Eq (4.1). We observe the same scaling
behavior in all the other MTIs of Eqs (1.10)–(1.14) (not shown here).
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Figure 7. Average logarithm of (a) NK(G), (b) χΠ(G), and (c) IDΠ(G), normalized to the
network size n, as a function of the average degree ⟨d⟩ of random geometric graphs of size
n = 500, Erdös-Rényi networks of size n = 250 and bipartite random networks of size
n = 2n1 = 2n2 = 2000. Orange dashed lines are (a) Eq (3.2), (b) Eq (3.8), and (c) Eq (3.9).
The inset in (c) is an enlargement for small ⟨d⟩.

Finally, it is fair to mention that we found that the multiplicative version of the geometric-arithmetic
index GAΠ(G) on random networks does not scale with the average degree. This situation is quite
unexpected for us since all other MTIs we study here scale with ⟨d⟩. In addition, our previous
statistical and theoretical studies of topological indices of the form XΣ(G) (see Eq (1.1)), showed that
the normalized geometric-arithmetic index GAΣ(G) scales with ⟨d⟩ [16]. Thus, we believe that the
multiplicative index GAΠ(G) on random graphs requires further analysis.
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Augmented Reality (AR) algorithms have shown rapid development in recent years when applied
to the study of different networks, such as neural and communication networks (see e.g., [35, 36]).
Therefore, it would be interesting to apply AR techniques in the analysis of random networks.

We hope that our work may motivate further analytical and computational studies of MTIs.
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