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Abstract: Identifying influential spreaders in complex networks is a crucial issue that can help
control the propagation process in complex networks. An aviation network is a typical complex
network, and accurately identifying the key city nodes in the aviation network can help us better
prevent network attacks and control the spread of diseases. In this paper, a method for identifying key
nodes in undirected weighted networks, called weighted Laplacian energy centrality, was proposed
and applied to an aviation network constructed from real flight data. Based on the analysis of
the topological structure of the network, the paper recognized critical cities in this network, then
simulation experiments were conducted on key city nodes from the perspectives of network dynamics
and robustness. The results indicated that, compared with other methods, weighted Laplacian energy
centrality can identify the city nodes with the most spreading influence in the network. From the
perspective of network robustness, the identified key nodes also have the characteristics of accurately
and quickly destroying network robustness.
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1. Introduction

Many real-world networks can be regarded as complex networks, such as social networks [1] and
transportation networks [2]. The development of the complex systems theory has provided a strong
theoretical foundation for the analysis of complex networks in real life. Studies in [3–5] have shown
that the failure of a few nodes in a network often leads to complex cascading failure effects, even
causing widespread network paralysis. Therefore, the identification of key nodes in networks has
become a popular and important research topic. Currently, the study of network centrality is mostly
based on the perspective of network topology [6–8]. The topology of a network contains a lot of
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functional information about the network. Starting from considering different degrees of topological
structure information, the recognition method is extended from locality to globality. The simplest local
method is degree centrality [9], which is simple and efficient, and suitable for large-scale networks.
Degree centrality applied to weighted networks is known as strength centrality [10], which defines the
strength of a node in terms of the total weight of its connection. The most classic global centrality
methods are closeness centrality [11] and betweenness centrality [12]. Nodes with high closeness
centrality have the best perspective to observe the information propagation in the network, while nodes
with high betweenness centrality can directly influence the flow of information in the network. When
applying these two methods to weighted networks, the calculation of the shortest paths was defined
correspondingly as the weighted shortest paths in [13]. In recent years, Ma et al. [14] has applied
graph energy to identify central nodes in networks. In [15], we proposed the application of Laplacian
energy centrality on undirected unweighted networks, which showed promising results. However, this
method has not been extended to weighted graphs.

The aviation network is a complex network formed by cities as nodes and airlines between them as
edges. The aviation network serves as a platform for social communication and economic development.
Events such as adverse weather conditions, public health emergencies, and terrorist attacks can result
in airport closures or flight suspensions, impacting the transportation efficiency of the entire aviation
network and causing significant economic losses. Therefore, identifying key nodes in the aviation
network has become a crucial issue. The theoretical analysis methods of complex networks have
effectively matched with the study of the topological structure of networks [16–19]. In [20–23], a
global aviation transportation network model was established and the analysis of this model shows
that the air transport network exhibits small world characteristics and scale-free properties. Key city
nodes in transportation networks often have a significant impact on the operational performance of the
network. Shen et al. [19] used principal component analysis (PCA) to identify key transportation
cities in the transportation network and improve its performance. Lordan et al. [24] studied the
robustness of the global aviation transportation network using complex network theory, proposed a
method to determine key airports and intentionally attack the network based on different importance
indicators, and compared the differences in the corresponding evaluation results. This method can
accurately identify the central node and open some paths to future research in this area. Mo et al. [25]
introduced classical centrality methods to analyze airport nodes based on the analysis of the aviation
network structure, showing that traditional centrality methods can effectively identify the airport’s
structural system, but the paper did not consider the weight of the network. Li et al. [26] applied the
concept of minimum connected dominating sets to complex networks. This method can simultaneously
identify both key nodes and edges in the network, which is of practical significance for studying
network resilience and backbone network construction. This method is highly integrated with the
actual situation of air transportation, but the experimental data in this paper has limitations and the
applicability of the theory is not well verified. Lou et al. [27] analyzed the changes in the robustness of
network structures after attacks on different airline companies. However, the aforementioned literature
only focused on network robustness and did not verify the identified key nodes from the perspective of
network dynamics.

Based on the above research, we will extend Laplacian energy centrality to weighted networks and
apply it to identify key nodes in the Chinese aviation network in this paper. We validate the identified
key nodes from the perspectives of network propagation dynamics and network robustness. The rest of
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this paper is structured as follows: Section 2 provides a detailed exposition of the methods employed
for network construction, the topology of the network, and several classical centrality measures.
Following that, Section 3 focuses on the principles of the weighted Laplacian energy centrality method.
In Section 4, we validate the weighted Laplacian energy centrality from the perspectives of influence
and robustness. We give a conclusion in the last section.

2. Preliminaries

In this section, we first introduce the way to construct the Chinese aviation network. Subsequently,
the constructed aviation network and its topological structure are introduced, with the analysis of the
network’s topological structure being able to uncover various information about the network. Finally,
other centrality measures that serve as comparisons to the methods proposed in this paper are listed.

2.1. Aviation network model

The flight data between various cities of China from January 1–7, 2022 is obtained by an app called
‘Ctrip’. The aviation network is abstracted as G = (V, E, W), where the node set V = {v1, v2, v3, . . . , vn}

represents all cities with air transport. If a city has two or more airports, merge them into one node.
The edge set E represents the connections between cities; if there are flights between two cities vi and
v j, then an edge viv j exists between these two cities. The weight of an edge viv j, denoted by wi, j,
is the total number of round-trip flights between these two cities vi and v j from January 1–7, 2022,
excluding the self-loop formed by routes between two different airports in the same city. The weight
set W contains the weights of all edges. The aviation network constructed in this paper consists of 198
nodes and 2379 edges. The topological structure of the flight data on January 1, 2022, is shown in
Figure 1.

Figure 1. Topology structure of Chinese aviation network on Jan. 1, 2022.
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2.2. The topological structure of the aviation network

2.2.1. Degree and degree distribution

The node degree is an important indicator that reflects the statistical characteristics of the
interconnections between nodes in a network. The degree ki of a node vi is defined as the sum of the
number of edges connected to the node vi. The degree of a node refers to the number of connections the
node has in a network. The five largest cities in terms of node degrees in the aviation network shown
in Figure 1 are Beijing, Shanghai, Chengdu, Guangzhou, and Shenzhen. It can be seen that these are
the major hub cities in China.

Degree distribution [28] is the proportion of nodes with degree k in the network, denoted as p(k).
Figure 2 shows the degree distribution of the aviation network depicted in Figure 1. From Figure 2,
it can be observed that the degree distribution of this network approximates a power law distribution.
This is consistent with the fact that most airports have very few routes, while a few large hub airports
directly connect to hundreds of other airports.

Figure 2. Degree distribution of Chinese aviation network on Jan. 1, 2022.

2.2.2. Weighted average path length

In an unweighted network, the average path length is defined as the average of the shortest paths
between any two nodes in the network, calculated as follows:

L =
1

N(N − 1)

∑
i, j

di j, (2.1)

where N represents the number of nodes in the network and di j represents the length of the shortest
path between nodes vi and v j. A lower L value indicates better connectivity in the network.

Calculating the shortest path between nodes in a weighted network requires consideration of
weights, where the weight between two neighboring nodes indicates the length of the path between
the two nodes. According to the definition of the average shortest path, a smaller average shortest path
indicates better network connectivity, but in the aviation network, if we use the number of flight routes
as the weight between two adjacent nodes, larger values indicate more flight routes, which means better
connectivity. Thus in this paper, we normalize the weights of the network, and then use the method
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of taking the reciprocal of the weights to make the weights between strong connections smaller than
those between weak connections. This normalization method was introduced in [29] as follows:

Wi, j =
wi, j∑

viv j∈E(G)
wi, j

m

, (2.2)

where Wi, j represents the normalized weight value, and wi, j denotes the original weight value between
node vi and node v j before normalization. m represents the total number of edges in network G.

The calculation method for the weighted shortest path length sw
i j [30] between node vi and node v j

is as follows:
sw

i j =
1

Wi,c
+ . . . +

1
Wd, j
, (2.3)

where c and d refer to the nodes traversed by the shortest path between node vi and node v j, then the
average path length of a weighted network with N nodes in this paper is calculated as follows:

Lw =
1

N(N − 1)

∑
i, j

sw
i j. (2.4)

The average path length of the Chinese aviation network in Figure 1 is calculated to be 2.5097. This
relatively small value indicates that we require only a few transfers to reach any city, which satisfies
the transportation needs of our airline at the current stage.

2.2.3. The clustering coefficient

The clustering coefficient of a network refers to the proportion of actual connections among the
neighbors of a node in the network. It is commonly used to measure the density of connections between
nodes and the strength of community structures within a network. Let Ei be the number of edges that
exist among the neighbors of the node vi. The clustering coefficient Ci for a node vi is defined as Ei

divided by the maximum number of possible edges, that is,

Ci =
2Ei

ki(ki − 1)
. (2.5)

A network with a relatively high average clustering coefficient means that the nodes in that network
are more closely connected to each other, forming a stronger community structure. The clustering
coefficient C of the network refers to the average value of the clustering coefficients of all nodes in
the network. Note that C ∈ [0, 1]. The clustering coefficient of the network shown in Figure 1 is
calculated to be C = 0.7365, which indicates that the network is more closely connected, and because
the weighted average path length of this network is relatively small, we conclude that the aviation
network in our country exhibits characteristics of small-world networks.

2.3. Centrality methods

2.3.1. Strength centrality (SC)

In weighted networks, the importance of a node vi is determined by the sum of the weights of the
edges incident to node vi. The formula for strength centrality [10] is as follows:

DC(vi) =
∑
v j∈Ni

wi, j, (2.6)

where wi, j represents the weight between nodes vi and v j and Ni represents the neighbor sets of vi.
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2.3.2. Betweenness centrality (BC)

Betweenness centrality [30] takes this position by giving higher centrality values to the nodes that
fall within the shortest path of many pairs of nodes. In simpler terms, nodes with higher betweenness
centrality often have a direct influence on the flow of information in the network. In this study on the
aviation network, a shortest path between two nodes is determined by the minimum weighted shortest
path lengths between them. The betweenness centrality of a node vi is represented by the following
equation:

BC(vi) =
∑
k, j,i

δk j(i)
δk j
, (2.7)

where δk j represents the number of weighted shortest paths between vk and v j, and δk j(i) represents the
number of weighted shortest paths between vk and v j that pass through the node vi.

2.3.3. Closeness centrality (CC)

The definition of closeness centrality [13] states that the closer a node is to the rest of the nodes in
the network in terms of the weighted average distance, the faster information can spread throughout the
network. The normalized value of closeness centrality essentially represents the inverse of the distance
and can be expressed using the following equation:

CC(vi) =
N − 1∑

i, j sw
i j
, (2.8)

where N is the number of nodes in the network and sw
i j is defined before.

2.3.4. Eigenvector centrality (EC)

The eigenvector centrality [31] suggests that the importance of a node depends on both the number
of its neighboring nodes and the importance of those neighboring nodes. The more important the
neighboring nodes that are connected to a particular node, the more important that node is considered.
The calculation formula is as follows:

EC (vi) = xi = c
N∑

j=1

ai jx j, (2.9)

where c is a proportionality constant, x = (x1, x2, . . . , xN)T , and after multiple iterations to reach a
stable state, it can be written in matrix form as follows:

x = cAx.

Here, A = (ai j) refers to the adjacency matrix of the network, and x is the eigenvector corresponding
to the eigenvalue c−1 of matrix A.

3. Weighted Laplacian energy centrality

In this section, we will extend a centrality method, called Laplacian energy centrality [15], to
weighted networks. For this, we first give some definitions.
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Let G = (V, E, W) be a weighted network with n nodes and m edges, without loops and multi-edges,
where the node set is V(G) = {v1, v2, v3, . . . , vn} and the edge set is E(G) = {(e1, e2, . . . , em)}. Any edge
e = (viv j) in E(G) has a weight value wi, j which is contained in set W(G). It is clear that wi, j = w j,i and
wi,i = 0. Then the adjacency matrix of G is defined below:

A(G) =


0 w1,2 . . . w1,n

w2,1 0 . . . w2,n

· · . . . ·

wn,1 wn,2 . . . 0

.
For each row i, we define its sum as si =

∑n
i=1 wi, j =

∑
v j∈Ni

wi, j, where Ni is the set of neighboring
nodes of node vi. si represents the weighted sum of node vi. The degree matrix of G is defined by
D(G) = diag{s1, s2, . . . , sn}.

The Laplacian matrix of the weighted network G is defined as L(G) = D(G) − A(G). Some well-
known properties of the Laplacian matrix L(G) are listed as follows:

• L(G) is symmetric, singular, and positive semi-definite;
• All eigenvalues are real and nonnegative;
• The smallest eigenvalue is always 0.

The eigenvalues of L(G) can be arranged as µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0. Using the spectral
features of L(G), the third Laplacian energy of G is defined as:

E3
L (G) =

n∑
i=1

µ3
i (G).

The third Laplacian energy centrality LCw(vi) of a node vi in the weighted network G (the unweighted
version was defined in [15]) is then defined as

LCw(vi) = E3
L(G) − E3

L(G − vi).

In this paper, we call the above centrality weighted Laplacian energy centrality. For the reason
of choosing the third power of eigenvalues, readers can refer to the paper [15]. Next, we give an
expression of LCw(vi) by the local information of the node vi.

Theorem 3.1. (weighted Laplacian energy centrality): Let G be a weighted network with n nodes. For
a node vi ∈ V(G), we have

LCw(vi) = s3
i +
∑

v j∈N(i)

3siw2
i, j + 3wi, js2

j − 2w3
i, j + 3wi, j

n∑
k=1

w2
j,k

 + 6∆w
i , (3.1)

where si is the strength of node vi and ∆w
i is the sum of the weights of the triangles containing the node

vi (the weight of a triangle means the product of the weights of its three edges).

Proof. Let ∆w be the sum of weights of all triangles in G. From the definition of E3
L(G), we have

E3
L(G) = tr

(
(D − A)3

)
= tr(D3 − D2A − DAD + DA2 − AD2 + ADA + A2D − A3).
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Since tr(D2A) = tr(DAD) = tr(AD2) = 0, tr(DA2) = tr(ADA) = tr(A2D) =
∑n

k=1 sk
∑n

j=1 w2
k, j and

tr(A3) = 6∆w, from the above equation, we obtain

E3
L (G) =

n∑
k=1

s3
k + 3sk

n∑
j=1

w2
k, j

 − 6∆w.

Therefore,

LCw (vi) = E3
L (G) − E3

L (G − vi)

=
∑
v j∈Ni

s3
j −
(
s j − wi, j

)3
+ 3s j

n∑
k=1

w2
j,k − 3(s j − wi, j)

 n∑
k=1

w2
j,k − w2

i, j


+s3

i + 3si

n∑
j=1

w2
i, j + +6∆w

i

=
∑
v j∈Ni

wi, j

(
s2

j +
(
s j − wi, j

)2
+ s j(s j − wi, j)

)
+ 3wi, j

n∑
k=1

w2
j,k + 3

(
s j − wi, j

)
w2

i, j


+s3

i + 3si

n∑
j=1

w2
i, j + 6∆w

i

= s3
i +
∑
v j∈Ni

3siw2
i, j +
∑
v j∈Ni

3wi, js2
j + w3

i, j − 3s jw2
i, j + 3wi, j

n∑
k=1

w2
j,k + 3s jw2

i, j − 3w3
i, j

 + 6∆w
i

= s3
i +
∑
v j∈Ni

3siw2
i, j + 3wi, js2

j − 2w3
i, j + 3wi, j

n∑
k=1

w2
j,k

 + 6∆w
i .

□

If we only consider the case that all weights of edges in the network are nonnegative, then from the
above theorem with the fact that 3siw2

i, j − 2w3
i, j ≥ 0, we conclude that LCw (vi) ≥ 0 for any node vi.

Moreover, by the above theorem, one can easily obtain an expression of Laplacian energy centrality
for unweighted networks, which is given in [15]. In the rest of the paper, LCw is simplified to LC for
short.

4. Experiment and analysis

The performance of the LC is evaluated by network dynamics and robustness for assessing central
nodes in the network. We will present experimental results showcasing the performance of weighted
Laplacian energy centrality and a series of other methods under these metrics.

4.1. Evaluation metrics

In this paper, we assess the importance of identified key nodes by evaluating their significance
from two perspectives: The influence of central nodes on information propagation and the degree of
change in network robustness after being subjected to attacks. The SIR model (Susceptible-Infected-
Recovered, which will be defined in next section) is used to simulate information propagation, while
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the primary indicators of network robustness include the relative size of the maximum connectivity
subgraph and the network efficiency.

4.1.1. SIR model

To analyze the failure process of the network under dynamic conditions, the most important thing
is to study the propagation dynamics model, which can effectively analyze the dynamic connection
between various factors in the network, and derive the law followed by the system under dynamic
conditions. In recent years, some scholars have used the SIR model [32] to simulate the spread of
disease in the global aviation network, and have given a strategy to curb the spread and provide a set of
risk assessment systems. The SIR model can be used to simulate the spread of disease in the aviation
network and the impact of flight delays.

In the SIR model, the nodes can be in one of three states: susceptible (S), infected (I), or recovered
(R). In the initial stage, the states of individual nodes in the network are established. At each time step,
nodes in the infected state (I) attempt to infect susceptible nodes (S) with an infection rate β, while
recovering to the immune state (R) with a certain probability γ. The recovered nodes become immune
and cannot be infected or infect others. The propagation process concludes when there are no nodes in
the infected state (I) present in the network, then we have

dS
dt = −β

SI

n
dI
dt = β

SI

n − γI
dR
dt = γI

(4.1)

with n = S + I + R, where S, I and R represent the number of susceptible nodes, infected nodes, and
recovered nodes at time t, respectively.

4.1.2. Network robustness

The robustness of a complex network refers to the ability of the network to resist damage when it
suffers different degrees of damage [33]. The robustness of the aviation network studied in this paper
refers to the ability of the network to maintain its overall transportation function when natural disasters,
public health emergencies, terrorist attacks, and other emergencies trigger route disruptions or airport
closures, specifically whether it can reach the final destination at the time of the attack and ensure
transportation efficiency as much as possible while ensuring that it reaches the destination. Consider
that an attack can change the structure and transportation efficiency of the network. The following
section introduces two of the most classical measures of maximum connected subgraph relative size
and weighted network efficiency to measure the robustness of networks.

The maximum connectivity subgraph is the maximum connectivity component split after a network
is attacked, which is an index reflecting the connectivity of the network. The relative size of the
maximum connectivity subgraph S is defined as the ratio of the number of nodes in the maximum
connectivity subgraph of a network after it is attacked to the total number of nodes in the original
network, which is calculated as follows:

S =
N
′

N
, (4.2)
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where N
′

is the number of nodes in the largest connected component after the attack, and N is the
number of nodes in the original network.

Network efficiency refers to the effect of structural changes on the shortest path distance between
nodes after a network has been attacked. For unweighted networks, the shortest path refers to a path
with the least number of edges between two nodes vi and v j is the number of edges of the shortest path
length di j between two nodes. If there is no path between two nodes in the network, the shortest path
length is infinite, and the efficiency between two nodes is expressed by the inverse of the shortest path
length between two nodes, and its inverse is 0 which does not affect the result of the calculation. The
efficiency of the entire network is defined as the average efficiency between all nodes denoted by E.
The calculation is as follows:

E =
1

N(N − 1)

∑
i, j

1
di j
. (4.3)

In the case of a weighted network, the calculation of the shortest path length between two nodes
considers the weights assigned to the edges, denoted as sw

i j. Therefore, the weighted network efficiency
Ew is defined as:

Ew =
1

N(N − 1)

∑
i, j

1
sw

i j
. (4.4)

4.2. Experimental analysis

4.2.1. Influence experiment

This paper simulates the spread process of the aviation network using the SIR model. The initial
state of the network consists of the top 10 ranked nodes obtained through a certain method, as shown
in Table 1, which serves as the initial infected node, and the remaining nodes are susceptible. In
this aviation network, if we use an infection threshold βc [34] as the probability of infection, then the
probability of infection between any two adjacent nodes is the same. However, since the edges of
the network have weights, the edge with a large weight value means that the more round-trip flights
between the two cities, then the probability of propagation of information between the two cities should
be different according to the weight value of the edge, and the infection probability of the edge with
a large weight value βi j should also be larger. According to this principle, we set the infection rate
between two adjacent nodes vi and v j as follows:

βi j =
wi, j

wmax
, (4.5)

where wmax is the maximum weight among all edges in the aviation network.
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Table 1. Top 10 major cities obtained by different methods.

Ranking DC BC CC EC LC
1 Beijing Beijing Beijing Shanghai Shanghai
2 Shanghai Shanghai Shanghai Beijing Beijing
3 Shenzhen Chengdu Shenzhen Shenzhen Shenzhen
4 Chengdu Shenzhen Guangzhou Chengdu Chengdu
5 Guangzhou Guangzhou Chengdu Guangzhou Guangzhou
6 Chongqing Kunming Chongqing Chongqing Chongqing
7 Kunming Hangzhou Hangzhou Hangzhou Hangzhou
8 Hangzhou Hohhot Kunming Kunming Kunming
9 Xiamen Urumqi Nanjing Nanjing Nanjing
10 Zhengzhou Chongqing Zhengzhou Harbin Harbin

The recovery rate γ of the network is set to 1. The SIR propagation experiments based on each
method are repeated 100 times to take the average value. The increase in the number of nodes that
have been infected in the network as time increases is plotted in Figure 3. It can be observed that the
number of infected nodes in the network increases rapidly with time during t < 5, while it gradually
stabilizes after t > 5, in which the top 10 ranked nodes derived from the LC method as the initial
infected nodes when propagation is stabilized can infect the network with the maximum number of
nodes. This demonstrates that the top 10 ranked nodes derived from the LC method have the most
influence and can maximize the influence of the nodes in the network. It can be seen that the top ten
nodes of EC and LC are the same. Due to the issue of propagation probability in the propagation
process, the SIR model has produced different results, but still ranks first and second. Protecting the
most influential hub cities in the aviation network identified by the LC method can effectively stop the
spread process of similar disease outbreaks.

Figure 3. SIR propagation graph of the aviation network.
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4.2.2. Robustness experiment

In Figure 4, the X-axis represents the percentage of attacked nodes, that is, the ratio of the number of
nodes that have been removed from the network to the initial number of nodes in the network, and the
Y-axis represents the five evaluation methods for assessing the network stickiness metrics: The average
degree < k >, the average clustering coefficients C, the ratio of maximally connected subgraphs S , the
global efficiency Ew, and the average path length Lw. The networks all adopt two types of modes:
random attacks and intentional attacks.

The trend of the average degree of the network < k > in the aviation network under random and
intentional attack modes are shown in Figure 4a. The change of the average degree can reflect the
robustness and anti-jamming ability of the network. As can be seen in Figure 4a: In the random attack
mode, < k > shows a slow decreasing trend throughout the process. In the intentional attack mode,
< k > shows an exponential decrease. It can be seen from the trend that the LC method of attack
minimizes < k > the fastest compared to other methods.

(a) (b)

(c) (d)

(e)

Figure 4. Variations of five robustness metrics for node-attacked networks.
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The trends of the clustering coefficient C of the Chinese aviation network in random and intentional
attack modes are shown in Figure 4b. It can be seen that in the random attack mode, the value of C
changes more smoothly, indicating that the impact of random interference on the local transportation
efficiency is not too great at the initial stage. Compared to random attack, in intentional attack mode,
the value of C decreases sharply and collapses rapidly, and the air transportation industry enters a
paralyzed state rapidly, indicating that intentional attack has a large impact on local transportation
efficiency. It can be seen that the LC method is very close to DC and EC in attacking network
effectiveness, but is generally superior to BC and CC.

The trends in the relative size of the maximum connected subgraph (S ) in the Chinese aviation
network under random and intentional attack modes are shown in Figure 4c. In Figure 4c, S exhibits a
linear and continuously decreasing trend throughout the process in the random attack mode. It shows
that the aviation is resistant to random attacks. In the intentional attack mode, S decreases dramatically.
At %n = 20, the decreasing trend slows down, at which the network also nearly collapses, and at
%n = 25, S is almost equal to 0. It can be seen from the changing trend that the LC method of attack
minimizes S the fastest compared to other methods.

The trends of global efficiency Ew of in the Chinese aviation network under random and intentional
attack modes are shown in Figure 4d. In the random attack mode, Ew shows a flat trend throughout,
and the global efficiency does not decrease with the attack of the nodes, indicating that the random
attack has little impact on the robustness of the network. While in the intentional attack mode, a
variety of methods lead to a sharp drop in Ew. Between %n = 8 and %n = 19, the experimental
difference between the various methods is not large, and Ew of the LC method drops to its lowest
value at %n = 19 then remains stable. The trend shows that the LC method can minimize the global
efficiency of the network faster.

The trend of the average shortest path Lw is shown in Figure 4e. For the aviation network, the smaller
Lw means fewer node cities need to transit in the air transportation process. In random attack mode, the
change of the value of Lw is smooth with slight fluctuation. When %n = 13.5, the value of Lw increases
slightly, but is not very different from the initial value of the average shortest path of the network,
and it has remained stable. These changes show that random attacks have little effect on the general
convenience of the aviation network. In the case of an intentional attack, there is a sharp increase and
then a sharp decrease, at %n = 13.5. The fastest increase of Lw is caused by the attack of the LC
method, which shows that the intentional attack has a significant impact on the overall convenience
of the aviation network in the initial stage, because the node cities removed in the initial stage are the
central cities of navigation. The intercity air transportation needs to make multiple transits, so the value
of the node cities will increase dramatically as the nodes are removed. After two sharp changes, the
remaining nodes of intercity transportation by the removed nodes of the impact of the nodes become
smaller or even unaffected, that is, the number of transshipments will also be reduced to the average
level, so after %n = 23, the convenience of the entire network is gradually completely lost. The above
changes indicate that intentional attacks have a large impact on the overall convenience of the aviation
network. It can be seen that in the initial stage, the LC method breaks the network at the fastest speed,
and in the later stage, the BC method can lead the other methods to make the average shortest path of
the network maximize the words; the LC method is also superior to the other methods.
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5. Conclusions

In this paper, we extended the Laplacian energy centrality to weighted networks and applied this
method to a real dataset, a Chinese aviation network, which was transformed into a weighted undirected
complex network. Based on the analysis of the topological characteristics of the aviation network, the
central nodes of the network were identified using weighted Laplacian energy centrality. The results
were validated from the perspectives of network dynamics and robustness.

The results of the topological analysis indicated that the weighted aviation network exhibits the
characteristics of a small-world network with a low clustering coefficient. Experimental findings
demonstrated that the weighted Laplacian energy centrality accurately identifies key hub nodes in the
Chinese aviation network. In dynamic-based experiments, when the information propagation process
simulated by SIR tends to stabilize, the results showed that weighted Laplacian energy centrality infects
the most nodes at the end of propagation. It showed that weighted Laplacian energy centrality has
the maximum impact on information propagation within the network compared to other methods. In
robustness analysis experiments, we divided the attack modes into intentional attacks and random
attacks. In attack scenarios, the results showed that the sequence of key nodes obtained by weighted
Laplacian energy centrality can effectively and quickly destroy the network and weighted Laplacian
energy centrality consistently outperforms other methods in terms of the average degree, clustering
coefficient, global efficiency, maximum connected subgraph, and average shortest path of the aviation
network. These results are valuable for identifying critical nodes in the aviation network, optimizing
its layout, protecting crucial network nodes, and minimizing losses caused by unexpected events.
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