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Abstract: In this paper, I study a planar m-piecewise discontinuous polynomial differential system
x=y,y=—-x-&(f(x,y) + gu.(x,y)h(x)), which has a linear center in each zone partitioned by those
switching lines, where f(x,y) = X7, a;x'y’, h(x) = Zézo bjx/,a;;,b; € R,n,l € N, and g, (x,y) with
the positive even number m as the union of m/2 different straight lines passing through the origin of
coordinates dividing the plane into sectors of angle 27/m. Using the averaging theory, I provide the
lower bound L,,(n, [) for the maximun number of limit cycles, which bifurcates which bifurcating from
the annulus of the origin of this system.
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1. Introduction

One of the main topics in the qualitative theory of differential equations is to determine the cyclicity
of a given differential system. The cyclicity refers to the maximum number of limit cycles that the
system possesses. The well-known second part of Hilbert’s 16th problem (proposed by David Hilbert
in 1900) is concerned with the cyclicity of planar polynomial systems of a specific degree. Over the
past few decades, several results [ 1-3] have been obtained regarding the cyclicity of planar polynomial
systems of degrees 2 and 3.

Recently, attention has been focused on discontinuous differential systems (see [4]). The problem
of cyclicity in discontinuous differential systems has been re-examined. In 2001, Coll, Gasull, and
Prohens [5] conducted a comprehensive investigation on switching systems, including FF-type, FP-
type, and PP-type, for degenerate Hopf bifurcations near a weak focus. In the FF-type case, they
computed five Lyapunov quantities for a switching quadratic system and proved that at least four limit
cycles can bifurcate from the weak focus O : (0, 0). Subsequently, Gasull and Torregrosa [6] discovered
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five limit cycles for a switching quadratic system. For the PP-type case, Novaes and Silva [7] provided
a general recursive formula for the Lyapunov coefficients for monodromic tangential singularities in
Filippov vector fields, which encompasses the PP-type singularities studied in [5]. In 2010, Han and
Zhang [8] proved that a planar switching linear system may have two limit cycles and they conjectured
that such systems could have at most two limit cycles. However, in 2012, Huan and Yang [9] refuted
this conjecture by presenting an example where three limit cycles could be numerically observed. In
the same year, Llibre and Ponce [10] analytically proved the existence of these numerically observed
limit cycles. Since then, many other works have provided examples with three limit cycles (see, for
instance, [11-13]). In 2013, Llibre, Ord’o nez, and Ponce [14] extended some techniques used to
demonstrate the existence and uniqueness of limit cycles, originally stated for smooth vector fields, to
continuous piecewise-linear differential systems. They obtained new results for systems with three
linearity zones without symmetry and with one equilibrium point in the central region. In 2015,
Chen, Romanovski, and Zhang [15] introduced the fractional order for weak foci in FF-type switching
systems and proved that the cyclicity of these FF-type switching systems is at least five for weak foci
and eight for centers, respectively.

The averaging theory, as proposed in the classical work in [16], is a well-established tool for
studying the existence of periodic solutions in nonlinear smooth dynamical systems. Building upon
this theory, Llibre, Novaes, and Teixeira [17] extended its applicability to non-smooth systems with
two zones in 2015. In 2017, Llibre, Novaes, and Camila [18] further expanded the averaging theory
to encompass discontinuous differential systems with multiple zones . In their work, they considered
discontinuous differential systems in R? that were defined in two half-planes separated by a straight
line. By employing the averaging theory, Chen, Llibre, and Zhang [19] established that the cyclicity of
a Hopf bifurcation in such systems is at least 5.

Efforts have also been made to determine the number of limit cycles bifurcated from the periodic
annulus of a linear center under a switching polynomial Liénard perturbation

xX=y,

: (1.1)
y = =x = e(f(x)y + sgn(y)(xix + k2)),

where f is a polynomial of degree n € N and «;,«, € R, sgn(y) is the sign of y. In [20], Martins and
Mereu studied the number of limit cycles of system (1.1), and obtained that for any n > 1 the cyclicity
of the differential system (1.1), is [%] + 1. In 2023, Tiago M.P. De Abreu and Ricardo M. Martins [21]
considered the piecewise smooth system of differential equations X = y, y = —x—&-(f(x)y+sgn(y)g(x)),
where f(x) and g(x) be real polynomials of degrees n > 1 and m > 1, respectively. Using the averaging
method, concluded that for sufficiently small values of |g|, a lower bound for the maximum number of
limit cycles in this system is [g] + [%] + 1.

In recent years, the interest on this topic was extended to the m-piecewise discontinuous polynomial
Liénard differential system

xX=y+ Sgn(gm(x’ J’))f(x),

' (1.2)
y=-x

where f(x) = ap + ax + - - - + a,x" and the zero set of the function g,,(x, y) with positive even number
m is the union of m/2 different straight lines passing through the origin of coordinates dividing the
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plane into sectors of angle 27r/m. This system is commonly encountered in many applications such as
control theory (see [4]), economics (see [22]), mechanical systems (see [23]), and nonlinear oscillations
(see [24]). In [25] , Llibre and Teixeira proved that the cyclicity L(m, n) of the system (1.2) satisfies

L0, n)>[ 21] L(2. n)>[2] L(4,n)2[n;1],

where [z] denotes the integer part of z, i.e., the greatest integer less than or equal to z, and conjectured

that
L(m,n) > [% (n - mT—z)] ,

for any even m > 6. In [26], Dong and Liu proved this conjecture. In [27], Novaes showed that if the
discontinuity set {(x,y) : gn(x,y) = 0} consists of m rays starring at the origin whose slopes can be
taken freely, many other limit cycles can appear; then, L(m, n) > n. Finally, it has been proven in [28]
that the maximum number of limit cycles of such a planar switching linear system is indeed uniformly
bounded by 8.

In this paper, I study the number of limit cycles that can bifurcate from the periodic orbits of the
linear center x = y,y = —x perturbed inside the following m-piecewise discontinuous polynomial
differential system

X=y,

. (1.3)
y = =x = &(f(x,) + gm(x, Y)h(X)),

where

n

I
flx,y) = Z aijxiy</, h(x) = ijxj,a,-j,bj eR,n,leN.

i+j=0 j=0

I assume that g, is a sign-switching function on the (x, y)-plane partitioned equally by m/2 lines ¢; :
y = tan(2krw/m)x, k = 0, ...,m/2—1 such that g,,(x, y) = 0 on those {;-lines and g,,(x,y) = (=1)*if (x,y)
lies in the angular region between ¢; and ;.. For convenience, I call system (1.3) an m-piecewise
discontinuous generalized Liénard systems of degree (n,[) if a;; # 0 for some i, j with i + j = n and
b; # 0. Let L,(n,[) denote lower bound for the maximun number of limit cycles which bifurcating
from the annulus of the origin of this system. I will prove the following.

Theorem 1.1. For the system (1.3), L,,(n, 1) satisfies

5], if 4 m, |5 <2t |5 < 8,
5t [15t] - i 5] <[] 2
Ly, 24 max ([ ] [S]}, it 41m, |5H] = 22, (1.4)
5], if 44m,[4] <28,
5] -t it rm || 22,

for any even number m > 2.
Theorem 1.1 includes the result of Theorem 1.1 of [26] and the result of Corollary 2 of [20]. In
fact, in the case that f(x,y) = 0, system (1.3) is equivalent to system (1.2) in [26]. From Theorem
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Aifd | m[(I-1)/2) > (m—4)/4or 4 m[l/2] > (m — 2)/4, then system (1.3) can has at least
[(I = (m —2)/2) /2] limit cycles, i.e., the same result of Theorem 1.1 in [26]. In the case that f(x,y) =
Zfig aix'y,m = 2, h(x) = k1 X + Ky, system (1.3) is equivalent to system (1.1) in [20]. By Theorem 1.1,
system (1.3) can has at least [n/2] + 1 limit cycles, 1.e., the same result of Corollary 2 in [20].

2. Preliminary results

In this section, I will introduce some preliminary results on the averaging theory and the zeros
of function, which will be applied to studying the m-piecewise discontinuous polynomial differential
equations (1.3). For the proof, refer the reader to [16, 18].

Let m > 1 be a positive integer, @,, = 2r and @ = (ag, @1, - ,@,-1) is a m-tuple of angles such
that 0 = g < @) < -+ < @y < @y = 2. For j = 1,2,--- ,m let L; be the intersection between
the open bounded neighborhood U C R? of the origin with the ray starting at the origin and passing

through the point (cos @, sine;), and take £ = |J L; . Note that T splits the set U \ £ c R? in m
J=1
disjoint open sectors. Denote the sector delimited by L; and Lj,;, in counterclockwise sense, by C; ,
forj=1,2,--- ,m.
Let D be an open bounded subset of R, and S'! = R\ (27Z), consider the following differential
equation

o1 OFLO0, 1) + 41 Yia, )OO, 1, 2), .1

1 j=1

M=

r(0) = Zk: g

i=0

~.
I

where F/ : S'x D — Rand R/ : R' x D X (=g9,8) — R(i = 0,1,--- ,k,j = 1,2,--+ ,m) are both
C**! functions and 27-periodic in the first variable. The characteristic function y,;(6) of an interval J is
defined as

o - 1, if6el
X200, ife e
Then system (2.1) becomes
k
() = Z EF(0,r) + &R, 1, &), 2.2)

i=0

where

m

Fi(6,r) = Z XiapraOF)0,1), i=0,1,--- K

=1

R(H, r, 8) = ZX[(I/_],(I/](H)Rj(H’ r, 8)-
=1
m—1
Clearly, system (2.2) is a periodic system having a discontinuity set }; = |J {6 = «;} . Denote by ¢(6, p)
j=0
the solution of the system r'(6) = Fy(0, r) such that ¢(0, p) = p. From now on, system r’'(6) = Fy(6, r)

will be called unperturbed system. I need the following hypothesis,
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(H) For each p € D the solution ¢(6, p) of the unperturbed system is well defined for all 6 € S!,
2n-periodic, and reaches X only at crossing points.
Then, lety; : Rx D — Rfori=1,2,---,k, be defined recurrently by

0
)’1(9,P) :jo‘ Fl(s’ 90(5,,0))(15,

0 i
. 1
yl(e’p) =i! ‘ﬁ (Fi(s’ QO(Sap)) + IZ; ; bl!bz!z!bz e bl!l!bl (23)
= 1

I
0" Fi1(s, (s, p)) Hyj(s, p)ilds,i=2,---,k,

J=1

where 0*G(¢, p) denotes the L-th order derivative of G with respect to p and S is the set of all /-tuples
of non-negative integers (by, by, - - - , by) satisfying by +2b, +---+1lb, =1, and L = by + by + --- + b,.
Thus, as shown in [18], I can define f; : D — R such that

yi(27, p)
i

filp) = (2.4)
called the i-th order averaged function.
Lemma 2.1. (Theorem 1 of [18]) Assume that for some | € {1,2,--- ,k} the functions defined in (2.4)
satisfy fs = 0 for s = 1,2,--- .1 =1 and f; # 0. If there exists p* such that fi(p*) = 0 and f/(p*) # 0,
then for |g| # O sufficiently small there exists a 2n-periodic solution r(6, ) of system (2.2) such that
r(0,&) — p* when & — 0.

I recall the Descartes Theorem about the number of zeros of a real polynomial. For a proof, see
pages 81-83 of book [29].
Descartes Theorem. Consider the real polynomial p(x) = a; x" + a;, x> + --+ + a; x'", where r > 1
and 0 <1y <ip <--- <1, are all integers and the coefficients a;,,- - - ,a; do not vanish simultaneously.
If coefficients of p have m variations of sign, i.e., there are m consecutive pairs a;, and a; .1, j €
{1,....r}, such that a;.a;,+1 < O, then p(x) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(x) in such a way that p(x) has exactly r — 1 positive real roots.

In order to obtain the simple zeros of a real polynomial, I need
Lemma 2.2. (Lemma 2.1 of [30]) Consider p+1 linearly independent analytical functions f; : U — R,
i=0,1,---,p, where U C R is an interval.

(1) Given p arbitrary values x; € U,i = 1,2,---, p, there exist p + 1 constants C;,i = 0,2,--- ,p
such that

P
f) = Cifi(x), (2.5)
i=0

is not the zero function and f(x;) =0 fori=1,2,---,p.
(2) Furthermore,there exist f(x) in (2.5) such tant it has at least p simple zeroes in U.
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3. Proof of Theorem 1.1

3.1. The first order averaged function

Using the polar coordinates transformation x = rcos 6,y = rsin 8 and taking 6 as the new variable,
I change system (1.3) into the following equivalent equation

% = gF(0,r) + O(Y), (3.1)

where
F(0,r) = f(rcos8,rsin@)sinf + g,,(rcos b, r sin @)h(r cos 0) sin 6,

and

n
f(rcosf,rsind) = Z a;;r"*/ cos' @ sin’ 6,
i+j=0
0, if g =22,
(_l)k ifg e (2k7r 2(k+Dm

m’ m

gm(rcose,rsine):{ ) k=0,1,--- , m—-1,

/
h(rcosf) = Z bjrj cos’ 6.

J=0

Clearly, Eq (3.1) is of the form (2.2) with k = 1, Fo(0,r) = 0,¢(0,r) = r and F(6,r) = F(0,r). One
can check that (3.1) satisfies hypothesis (H). Thus, as in (2.4), I can compute the first order averaged
function of the system (3.1)

27
filr) = f F(0,r)dé £ I + 1,
0

where

n 271
I, = Z aijr’”f cos' @sin’*! 9do,
0

i+j=0
2
0

I
L = Z br! f gm(rcos 8, rsin 0) cos’ 6 sin Ad6.
=0

First, I compute /.
Obviously, fozﬂ cos®*! gsin’t 9do = 0, f02” cos’ @sin®*1 6dg = 0, so, I have

Proposition 3.1.
e 1]
2k+1 2k+1
I = Z [Z 612i,2(k—i)+1Czi,z(k—i)+1)” = Ayr -,
k=0 i=0 k=0

2 e (ki vy ; . . ..
where ¢oip4-i+1 = fo " cos? 9 sin®* 2 gdg = % 22 > 0@ = 0,1,--- ,k) is a positive

constant and A, = Zi'{:o 21 2(k-iy+1C2i2(k—i)+1 Can be chosen arbitrarily.
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Second, I compute ;. In order to simplify the notation, I define the following function:
21 )
dp,j = f gm(rcos 6, rsin @) cos’ 0 sin 6d6.
0

Letv = ef’,i = V-1, by Lemma 2.1 of [26], I have
Lemma 3.1. If j = 2p + 1)k, p is an integer, then
. \2 \2k—1
1+(—v1)+(—vf) +-~~+(—vf) = 2k;
and if j is other integer, then

1+ (—vj) + (—v-")2 4+ (—v-’)zk_l =0.

Using Lemma 3.1, I have
Lemma 3.2. Fort € N, the following results hold:
@ ifm=4s,s =1,2,---, then dasp, = 0 for all t, dys+1 = 0 for 0 <t < s—1and dssp01 > 0 for
t>s—1;
@) ifm=4s+2,5s=0,1,2,---, then dys22+1 = 0 for all t, dyss22, = 0 for 0 <t < s and dysi22 > 0
fort>s.

Proof. 1)) If m=4s,s=1,2,---, then

27
dysj = f g45(rcos 6, r sin @) cos’ 6 sin 6d6
0

45-1  AGsbr
= E (=1)* cos’ 6sin 6dO
km
k=0 * 2%

SN AT Ay N

where
is—1 (k4

2s .
J; = § (=) cos’ Osin@dg, i=1,2,3,4.
km
k=(i—1)s 2s

Let 6 = ¢ + &, have

3s—1 (k+1-25)1

J; = Z(—l)k ﬁz) cos’ (¢ + m)sin (¢ + m) dy
k=2s (2%
&+

‘ s—1 = . ‘
= 1 Y 1 f cos! g sin gy = (—1)/*1];,
Kn
k=0

2s

and in the same manner, have
Jo= (D",

moreover,
disj = (1+ (1) (1 + ).
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Hence, if j = 2t,¢t € N, then dssp, = 0. Let j =2t + 1,7 € N, and let

n n; n!
w=ex' w=ex=w! Cyu=——.
" k'(n —k)!
So,
kr - km -
wt=edl, W =e 2l =wk,
and
km  wk+w* (k+ D wkt! 4y~ &+D
COS— = ————, COS =
2s 2 7 2s 2
Hence
_ 2042
o2 G D (w4 DN
2s 2
1 ' 2+2-i
k+1\ (. —(k+1 -
= 53 D Coni (1) (w7)
i=0
1 k+1
2i-2t-2
= WZCZHZJ(Wl ' ) )
i=0
2t+2
km 1 ‘ k
2042 KT (., 2i-2t-2
cos 7 = am ZCsz,, (w ) .
i=0
Thus, by Lemma 3.1, I obtain
4s-1 et
dysoret = Z j: (-1)¥ cos**! 6 sin 6dO
=0 Y3
3 (—e k+1 k
( ) 21+2( )7T 2t+2 7
= ———|cos”"™" ——— —cos™" —
e 2t +2 2s 2s
4s—1 (2142 g U%2 .
W22 2i-2t-2
(Hl)zmz[z% =) o ()
i=0
242 4s-1 P 4s5-1 .
=22 2i-2t-2
Scun S s S S )
(t + 1)22’+3 P pn
242 4s-1 242 4s-1 .
2i-2t-2 21— 2 22
G (z%x o 5 ) S 3 () )
m Z Cor,i
0<i<2t+2, 550 =0p+1,pez.
> c
= 21+2,2p+)s+t+1
2t
(t * 1)2 —(t+1)<2p+1)s<t+1
e 2 C
= - 2042,2p+1)s+1+1 -
21
t+1)2 0<@p+1)s<t+l

AIMS Mathematics Volume 9, Issue 2, 3613-3629.



3621

If 0 <t < s— 1, then there does not exist p € Z such that 0 < 2p + 1)s < ¢+ 1. Thus,
C2t+2,(2p+1)s+t+1 =0,
0<p+1)s<i+1
and this implies dy ;41 = 0.
Ift > s—1, then

K
dasorel = W Z Corr2,02p+tys+i+1 > 0.
0<2p+1)s<t+1

(i) Ifm=4s+2,5s=0,1,2,---, then

27
dysinj = f 8as+2(rcos b, rsin 0) cos’ 0 sin 6d6
0

4541 Atbr
25+1 X . . A
= Z (=1)*cos’Osin6d = K, + K>,
k;
k=0 ¥ 2531

where
(k+ 1)1

25 25+1 .
K, = Z(—l)k ) cos’ 6 sin 6d6,
k=0

2s+1

4s+1 (kD
2s5+1

K, = Z(—l)k k cos’ 6 sin 6d6.

k=2s+1 25+1

Let 6 = ¢ + &, have

As+1 (k=2s)m

25+1 .
K, = Z (—l)kf cos’ (¢ + m)sin (¢ + 7) de
(k=2s—1)m

k=2s+1 2541

K +Dr

2s
. , 25+1
(_1)]+1 § (_1)k+1f
K
k’=0

2s+1

cos’ g sinpdy = (=1)K,

$0, dsa; = (1 +(=1)) Ky. Hence, if j = 2t + 1, € N, then dy2041 = 0. Let j = 2,1 € N. Now, take

w = eﬁi, w=e il =yl
Hence
km wh + wk (k+ Dr whkth 4 =D
cos = cos =
25+ 1 2 7 2s+1 2 ’
and
sy (k4 D (Wt gy
cos™* =
25+ 1 2
1 2t+1 . sl
l =1l
— o ZCZHl,i (Wk+1) (W—(k+l))
i=0
1 X k+1
2i-2t-1
= —22,+1 ZC21+1,1‘ (W ' ) >
i=0
2t+12

km 1 ‘ k
2t+1 _ (,2i-2-1
cos 511 oo E Corr1i (w ) .

i=0
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So, by Lemma 3.1, the following equalities hold:

4s5+1 70;*1)1”
S+
disino = Z k (=1)* cos* @sin 6de
k=0 ¥ 24T
1 2t+1 4s+1 et 2t+1 4s+1 k
2i-21-1 2i-21-1
T @+ )22 [Z Carnrg Y (=W )74 ) Conni ) (0P ) )
j= k=0 i=0 k=0
2t+1 4s+1 2t+1 4s+1 P
2i-2t—1 21— 1 w21
T 1)22t+1 [Z Cartil=w™ )Z ZCZHUZ ; )]
2s +1
Cot1,i

T Q2r+ 1222

0<i<2t+1, 22 =2 pt1,peZ
25+ 1
Q2+ 1)222
B 25+ 1
(2t + 1)223

2s + 1
= W Z Cort 1 (@p+1)2s+1)+2141)/2-

=5
0<p<357

C2t+1,((2p+1)(2s+1)+2t+1)/2
—2t+1)<@2p+1)(2s+1)<21+1

Corrt (@p+1)2s+1)+21+1))2
0<(2p+1)(2o+1)<21+1

If 0 < < s, then there does not exist p € Z so that 0 < p < =%, thus,

- 2s+1°

Z C21+1,((2p+1)(2s+1)+2t+1)/2 = 0’

0sp<aat
and this implies dyg422, = 0.
If ¢t > s, then
25+ 1
d4s+2,2t = W Z C2t+1,((2p+1)(2s+1)+2t+1)/2 > 0.
0<p<7a
Hence, the Lemma 3.1 is proved. O

Hence, according to Lemma 3.2, have
Proposition 3.2.

(2] 2k+1
Z b2k+1dm2k+1r , 41|m,
k=4
12 = = 4
[:] "
boydyy 7™, 44 m,
k:m72

7

where dyop1 > 04 | mk=(m—=4)/4,--- ,[(I = 1)/2]), dpo > 04t m, k= (m—2)/4,---,[1/2]).
From Propositions 3.1 and Propositions 3.2, have
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Proposition 3.3. The first order averaged function of the system (3.1) is

[%'] [5]
io Akt 4 22: ) boks1dmar1 ™, 4| m,
MO =1 ) W G2
kZO A+ S bydy i 4 4 m.
— k:mT

3.2. Proof of Theorem 1.1

Now, I am going to prove Theorem 1.1 and divide it into two cases:

3.2.1. The even number m is multiple of 4

Letm=4s,s=1,2, -

. From Proposition 3.1, the first order averaged function of the system (3.1)

(3.3)

, the term Z[ 2] ., bori1dys i 7! does not appear, the monomials
4

is
] 5]
filr) = Z A+ Z boierdas e ™!
k=0 k:%
If [%] < mT‘“ and [%]
which appear in the polynomial f1 (r) in (3.3) are the following N + 1 monomials
7, r3, cee, rz[%]_'-l’
where N = [%

If [551] < =
following N + 1 monomials

3 2[5 ]+l 21 2
[2]+,}”2 RN

r’r’...”/‘

5] -5

where N = [71]
> m— 4

4 and [ ] > "= 4 the monomials which appear in the polynomial f;(r) in (3.3) are the

[+
2

If [" 1] =~ ,the monomials which appear in the polynomial f;(r) in (3.3) are the following N + 1

monomials

where N = maX{["zl]’[lzl]}

By Descartes Theorem and Lemma 2.2, the polynomial fl(r) in (3.3) has exactly N simple positive

real roots. Hence, by Lemma 2.1, if m = 45,5 = 1,2,--
system (3.1) has N limit cycles, i.e.,

K if "%
Lun, D) 2 4 [55H]  [5F] - 25, if 25
max{%],[%] Cif %

AIMS Mathematics

, then for € > 0 sufficiently small the

m—=4 |[-1 m=38
< 4 01 2 = 4
m=4 |I-1 m—=4
< ratl R > 70 3.4)
> m—4
Z -
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3.2.2. The even number m is not multiple of 4

Letm = 4s+2,s = 0,1,2,---. From Proposition 3.1, the first order averaged function of the
system (3.1) is

e [5]
filr) = Z A+ bydyssr ™. (3.5)
=0

_m=2
k=7

1z
If [é] <22 1, then dyyoor = 0,k =0,1,2,-- -, [%] So, the term Z,Eit] byrdagr 27 does not appear,
the monomials which appear in the polynomial fi(r) in (3.5) are the following N + 1 monomials

-1
r, r3’ IRy , rz[nT]+1’

where N = [% )
If [é] > ’"T_z, the monomials which appear in the polynomial fi(r) in (3.5) are the following N + 1
monomials

P A2 2l

)

2 2 4
By Descartes Theorem and Lemma 2.2, the polynomial fi(r) in (3.5) has exactly N simple positive

real roots. Hence, by Lemma 2.1, if m = 45 + 2,5 = 0,1,2, - -, then for € > 0 sufficiently small the
system (3.1) has N limit cycles, i.e.,

Lod > [%J if
m(, 1) 24 .2 o
71 + [é] —m6 - f

As discussed in the above two parts, for any even number m > 2, the cyclicity L,(n,l) of
system (3.1) satisfies

where N = [ﬂ] + [i] — m6

i
[o)}

(3.6)

vV A

N~ NI~
3

->|| IS
(3]

2] if 4| m, |5 <2t |5 < 8,

5]+ 5] -t ipa 15t <t [ 5 s
Lo D) 2§ max{[5]. |5}, if4)m, |5t > =2,

1], if 44m,[4] <28,

[+ 4] -t ifdrm |l 2 2

The proof of Theorem 1.1 is completed.
Remark 3.1. If f(x,y) = 0, then (3.2) can be simplified as

[5']
bokr1dmor1 7Y, 4| m,
k=14
filr) = %‘]‘ (3.7)
> byduur®, 4 4 m.
=12
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Remark 3.2. (i) If f(x,y) = 0and m = 4s,s = 1,2,---, from Remark 3.1 and Theorem 1.1, for &
sufficiently small the system (3.1) has at least L(m, [) limit cycles, where as defined in [25],

=[5 254 o252

So, those are the results conjectured in [25].
) If f(x,y)=0andm =4s+2,5s=0,1,2,---, from Remark 3.1 and Theorem A, for ¢ sufficiently
small the system (3.1) has at least L(m, [) limit cycles, where as defined in [25],

wni]- 22322

So, those are the results conjectured in [25].

(iii) If £(x,y) = 0, from (i) (ii), for & sufficiently small the system (3.1) has at least |1 (I - 22|
limit cycles for any positive even number m. So, those are the results of Theorem 1.1 in [26].
Remark 3.3. If f(x,y) = YL aix'y,m = 2,h(x) = k1x + ka, from (3.6), for & sufficiently small the
system (3.1) has [g] + 1 limit cycles. So, it’s the result of Corollary 2 in [20].

4. Examples

Example 4.1. Consider the following system
x=y,
Y L @.1)
y=-x-0.02(=2y + y" + x“y — 10sgn(xy)rx),
where, £ = 0.02,m = 4,n = 3,/ = 1. The first order averaged function fi(r) of the system (4.1) is
Sfilr) = ar’ — 22xr.

So, fi(r) has unique positive real root r; = V22 and f{(r1) = 44r > 0. The system (4.1) has a stable
limit cycle, as shown in Figure 1.

L
-6 -4 -2 0 2 4 6

Figure 1. The phase diagram of system (4.1).

AIMS Mathematics Volume 9, Issue 2, 3613-3629.
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Then Ly(3, 1) = max {[%5}]. [ 5]} = 1.

Example 4.2. Consider the following system

xX=y,

s 4.2)
y=—-x—-0.17(-6y +y’ + xy + sgn(y)r(1 + x)),

where, £ = 0.17,m = 2,n = 3,1 = 1. The first order averaged function fi(r) of the system (4.2) is

fi(r) = nr’ — 6nr + 4.

So, f>(r) has two positive real roots r; = V3 = 1,7, = 2 and fI(ry) = 6(1 = V3)r < 0, f/(r2) = 6 > 0.
The system (4.2) has two limit cycles, as shown in Figure 2.

Figure 2. The phase diagram of system (4.2).
Then L3, 1) 2 |5 | + [§] - %5 = 2.
5. Conclusions
In this paper, I discuss the lower bound of the maximum number of limit cycles for a class of m-
piecewise discontinuous polynomial systems and obtain the lower bound of the maximum number of

limit cycles for this class of differential systems. This result generalizes the results of the existing
literature.
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