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Abstract: In this paper, I study a planar m-piecewise discontinuous polynomial differential system
ẋ = y, ẏ = −x − ε( f (x, y) + gm(x, y)h(x)), which has a linear center in each zone partitioned by those
switching lines, where f (x, y) =

∑n
i+ j=0 ai jxiy j, h(x) =

∑l
j=0 b jx j, ai j, b j ∈ R, n, l ∈ N, and gm(x, y) with

the positive even number m as the union of m/2 different straight lines passing through the origin of
coordinates dividing the plane into sectors of angle 2π/m. Using the averaging theory, I provide the
lower bound Lm(n, l) for the maximun number of limit cycles, which bifurcates which bifurcating from
the annulus of the origin of this system.
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1. Introduction

One of the main topics in the qualitative theory of differential equations is to determine the cyclicity
of a given differential system. The cyclicity refers to the maximum number of limit cycles that the
system possesses. The well-known second part of Hilbert’s 16th problem (proposed by David Hilbert
in 1900) is concerned with the cyclicity of planar polynomial systems of a specific degree. Over the
past few decades, several results [1–3] have been obtained regarding the cyclicity of planar polynomial
systems of degrees 2 and 3.

Recently, attention has been focused on discontinuous differential systems (see [4]). The problem
of cyclicity in discontinuous differential systems has been re-examined. In 2001, Coll, Gasull, and
Prohens [5] conducted a comprehensive investigation on switching systems, including FF-type, FP-
type, and PP-type, for degenerate Hopf bifurcations near a weak focus. In the FF-type case, they
computed five Lyapunov quantities for a switching quadratic system and proved that at least four limit
cycles can bifurcate from the weak focus O : (0, 0). Subsequently, Gasull and Torregrosa [6] discovered

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024177


3614

five limit cycles for a switching quadratic system. For the PP-type case, Novaes and Silva [7] provided
a general recursive formula for the Lyapunov coefficients for monodromic tangential singularities in
Filippov vector fields, which encompasses the PP-type singularities studied in [5]. In 2010, Han and
Zhang [8] proved that a planar switching linear system may have two limit cycles and they conjectured
that such systems could have at most two limit cycles. However, in 2012, Huan and Yang [9] refuted
this conjecture by presenting an example where three limit cycles could be numerically observed. In
the same year, Llibre and Ponce [10] analytically proved the existence of these numerically observed
limit cycles. Since then, many other works have provided examples with three limit cycles (see, for
instance, [11–13]). In 2013, Llibre, Ord’o nez, and Ponce [14] extended some techniques used to
demonstrate the existence and uniqueness of limit cycles, originally stated for smooth vector fields, to
continuous piecewise-linear differential systems. They obtained new results for systems with three
linearity zones without symmetry and with one equilibrium point in the central region. In 2015,
Chen, Romanovski, and Zhang [15] introduced the fractional order for weak foci in FF-type switching
systems and proved that the cyclicity of these FF-type switching systems is at least five for weak foci
and eight for centers, respectively.

The averaging theory, as proposed in the classical work in [16], is a well-established tool for
studying the existence of periodic solutions in nonlinear smooth dynamical systems. Building upon
this theory, Llibre, Novaes, and Teixeira [17] extended its applicability to non-smooth systems with
two zones in 2015. In 2017, Llibre, Novaes, and Camila [18] further expanded the averaging theory
to encompass discontinuous differential systems with multiple zones . In their work, they considered
discontinuous differential systems in R2 that were defined in two half-planes separated by a straight
line. By employing the averaging theory, Chen, Llibre, and Zhang [19] established that the cyclicity of
a Hopf bifurcation in such systems is at least 5.

Efforts have also been made to determine the number of limit cycles bifurcated from the periodic
annulus of a linear center under a switching polynomial Liénard perturbation

ẋ = y,

ẏ = −x − ε( f (x)y + sgn(y)(κ1x + κ2)),
(1.1)

where f is a polynomial of degree n ∈ N and κ1, κ2 ∈ R, sgn(y) is the sign of y. In [20], Martins and
Mereu studied the number of limit cycles of system (1.1), and obtained that for any n ≥ 1 the cyclicity
of the differential system (1.1), is

[
n
2

]
+ 1 . In 2023, Tiago M.P. De Abreu and Ricardo M. Martins [21]

considered the piecewise smooth system of differential equations ẋ = y, ẏ = −x−ε·( f (x)y+sgn(y)g(x)),
where f (x) and g(x) be real polynomials of degrees n ≥ 1 and m ≥ 1, respectively. Using the averaging
method, concluded that for sufficiently small values of |ε|, a lower bound for the maximum number of
limit cycles in this system is

[
n
2

]
+

[
m
2

]
+ 1.

In recent years, the interest on this topic was extended to the m-piecewise discontinuous polynomial
Liénard differential system

ẋ = y + sgn(gm(x, y)) f (x),
ẏ = −x,

(1.2)

where f (x) = a0 + a1x + · · · + anxn and the zero set of the function gm(x, y) with positive even number
m is the union of m/2 different straight lines passing through the origin of coordinates dividing the
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plane into sectors of angle 2π/m. This system is commonly encountered in many applications such as
control theory (see [4]), economics (see [22]), mechanical systems (see [23]), and nonlinear oscillations
(see [24]). In [25] , Llibre and Teixeira proved that the cyclicity L(m, n) of the system (1.2) satisfies

L(0, n) ≥
[
n − 1

2

]
, L(2, n) ≥

[n
2

]
, L(4, n) ≥

[
n − 1

2

]
,

where [z] denotes the integer part of z, i.e., the greatest integer less than or equal to z, and conjectured
that

L(m, n) ≥
[
1
2

(
n −

m − 2
2

)]
,

for any even m ≥ 6. In [26], Dong and Liu proved this conjecture. In [27], Novaes showed that if the
discontinuity set {(x, y) : gm(x, y) = 0} consists of m rays starring at the origin whose slopes can be
taken freely, many other limit cycles can appear; then, L(m, n) ≥ n. Finally, it has been proven in [28]
that the maximum number of limit cycles of such a planar switching linear system is indeed uniformly
bounded by 8.

In this paper, I study the number of limit cycles that can bifurcate from the periodic orbits of the
linear center ẋ = y, ẏ = −x perturbed inside the following m-piecewise discontinuous polynomial
differential system

ẋ = y,

ẏ = −x − ε( f (x, y) + gm(x, y)h(x)),
(1.3)

where

f (x, y) =
n∑

i+ j=0

ai jxiy j, h(x) =
l∑

j=0

b jx j, ai j, b j ∈ R, n, l ∈ N.

I assume that gm is a sign-switching function on the (x, y)-plane partitioned equally by m/2 lines ℓk :
y = tan(2kπ/m)x, k = 0, ...,m/2−1 such that gm(x, y) = 0 on those ℓk-lines and gm(x, y) = (−1)k if (x, y)
lies in the angular region between ℓk and ℓk+1. For convenience, I call system (1.3) an m-piecewise
discontinuous generalized Liénard systems of degree (n, l) if ai j , 0 for some i, j with i + j = n and
bl , 0. Let Lm(n, l) denote lower bound for the maximun number of limit cycles which bifurcating
from the annulus of the origin of this system. I will prove the following.
Theorem 1.1. For the system (1.3), Lm(n, l) satisfies

Lm(n, l) ≥



[
n−1

2

]
, if 4 | m,

[
n−1

2

]
< m−4

4 ,
[

l−1
2

]
≤ m−8

4 ,[
n−1

2

]
+

[
l−1
2

]
− m−8

4 , if 4 | m,
[

n−1
2

]
< m−4

4 ,
[

l−1
2

]
≥ m−4

4 ,

max
{[

n−1
2

]
,
[

l−1
2

]}
, if 4 | m,

[
n−1

2

]
≥ m−4

4 ,[
n−1

2

]
, if 4 ∤ m,

[
l
2

]
≤ m−6

4 ,[
n−1

2

]
+

[
l
2

]
− m−6

4 , if 4 ∤ m,
[

l
2

]
≥ m−2

4 ,

(1.4)

for any even number m ≥ 2.
Theorem 1.1 includes the result of Theorem 1.1 of [26] and the result of Corollary 2 of [20]. In

fact, in the case that f (x, y) = 0, system (1.3) is equivalent to system (1.2) in [26]. From Theorem
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A, if 4 | m, [(l − 1)/2] ≥ (m − 4)/4 or 4 ∤ m, [l/2] ≥ (m − 2)/4, then system (1.3) can has at least
[(l − (m − 2)/2) /2] limit cycles, i.e., the same result of Theorem 1.1 in [26]. In the case that f (x, y) =∑i=n

i=0 aixiy,m = 2, h(x) = κ1x + κ2, system (1.3) is equivalent to system (1.1) in [20]. By Theorem 1.1,
system (1.3) can has at least [n/2] + 1 limit cycles, i.e., the same result of Corollary 2 in [20].

2. Preliminary results

In this section, I will introduce some preliminary results on the averaging theory and the zeros
of function, which will be applied to studying the m-piecewise discontinuous polynomial differential
equations (1.3). For the proof, refer the reader to [16, 18].

Let m > 1 be a positive integer, αm = 2π and α = (α0, α1, · · · , αm−1) is a m-tuple of angles such
that 0 = α0 < α1 < · · · < αm−1 < αm = 2π. For j = 1, 2, · · · ,m let L j be the intersection between
the open bounded neighborhood U ⊂ R2 of the origin with the ray starting at the origin and passing

through the point (cosα j, sinα j), and take Σ =
m⋃

j=1
L j . Note that Σ splits the set U \ Σ ⊂ R2 in m

disjoint open sectors. Denote the sector delimited by L j and L j+1, in counterclockwise sense, by C j ,
for j = 1, 2, · · · ,m.

Let D be an open bounded subset of R+ and S1 ≡ R \ (2πZ), consider the following differential
equation

r′(θ) =
k∑

i=0

εi
m∑

j=1

χ[α j−1,α j](θ)F
j
i (θ, r) + εk+1

m∑
j=1

χ[α j−1,α j](θ)R
j(θ, r, ε), (2.1)

where F j
i : S1 × D → R and R j : R1 × D × (−ε0, ε0) → R(i = 0, 1, · · · , k, j = 1, 2, · · · ,m) are both

Ck+1 functions and 2π-periodic in the first variable. The characteristic function χJ(θ) of an interval J is
defined as

χJ(θ) =

1, if θ ∈ J,

0, if θ < J.

Then system (2.1) becomes

r′(θ) =
k∑

i=0

εiFi(θ, r) + εk+1R(θ, r, ε), (2.2)

where

Fi(θ, r) =
m∑

j=1

χ[α j−1,α j](θ)F
j
i (θ, r), i = 0, 1, · · · , k,

R(θ, r, ε) =
m∑

j=1

χ[α j−1,α j](θ)R
j(θ, r, ε).

Clearly, system (2.2) is a periodic system having a discontinuity set
∑
=

m−1⋃
j=0
{θ = α j} . Denote by φ(θ, ρ)

the solution of the system r′(θ) = F0(θ, r) such that φ(0, ρ) = ρ. From now on, system r′(θ) = F0(θ, r)
will be called unperturbed system. I need the following hypothesis,
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(H) For each ρ ∈ D the solution φ(θ, ρ) of the unperturbed system is well defined for all θ ∈ S1,
2π-periodic, and reaches Σ only at crossing points.

Then, let yi : R × D→ R for i = 1, 2, · · · , k, be defined recurrently by

y1(θ, ρ) =
∫ θ

0
F1(s, φ(s, ρ))ds,

yi(θ, ρ) =i!
∫ θ

0

Fi(s, φ(s, ρ)) +
i∑

l=1

∑
S l

1
b1!b2!2!b2 · · · bl!l!bl

·∂LFi−1(s, φ(s, ρ))
l∏

j=1

y j(s, ρ)b j

 ds, i = 2, · · · , k,

(2.3)

where ∂LG(ϕ, ρ) denotes the L-th order derivative of G with respect to ρ and S l is the set of all l-tuples
of non-negative integers (b1, b2, · · · , bl) satisfying b1 + 2b2 + · · · + lbl = l, and L = b1 + b2 + · · · + bl.
Thus, as shown in [18], I can define fi : D→ R such that

fi(ρ) :=
yi(2π, ρ)

i!
, (2.4)

called the i-th order averaged function.
Lemma 2.1. (Theorem 1 of [18]) Assume that for some l ∈ {1, 2, · · · , k} the functions defined in (2.4)
satisfy fs = 0 for s = 1, 2, · · · , l − 1 and fl . 0. If there exists ρ∗ such that fl(ρ∗) = 0 and f ′l (ρ∗) , 0,
then for |ε| , 0 sufficiently small there exists a 2π-periodic solution r(θ, ε) of system (2.2) such that
r(0, ε)→ ρ∗ when ε→ 0.

I recall the Descartes Theorem about the number of zeros of a real polynomial. For a proof, see
pages 81-83 of book [29].
Descartes Theorem. Consider the real polynomial p(x) = ai1 xi1 + ai2 xi2 + · · · + air x

ir , where r > 1
and 0 ≤ i1 < i2 < · · · < ir are all integers and the coefficients ai1 , · · · , air do not vanish simultaneously.
If coefficients of p have m variations of sign, i.e., there are m consecutive pairs ai j and ai j+1, j ∈
{1, ..., r}, such that ai jai j+1 < 0, then p(x) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(x) in such a way that p(x) has exactly r − 1 positive real roots.

In order to obtain the simple zeros of a real polynomial, I need
Lemma 2.2. (Lemma 2.1 of [30]) Consider p+1 linearly independent analytical functions fi : U → R,
i = 0, 1, · · · , p, where U ⊂ R is an interval.

(1) Given p arbitrary values xi ∈ U, i = 1, 2, · · · , p, there exist p + 1 constants Ci, i = 0, 2, · · · , p
such that

f (x) =
p∑

i=0

Ci fi(x), (2.5)

is not the zero function and f (xi) = 0 for i = 1, 2, · · · , p.
(2) Furthermore,there exist f (x) in (2.5) such tant it has at least p simple zeroes in U.
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3. Proof of Theorem 1.1

3.1. The first order averaged function

Using the polar coordinates transformation x = r cos θ, y = r sin θ and taking θ as the new variable,
I change system (1.3) into the following equivalent equation

dr
dθ
= εF(θ, r) + O(ε2), (3.1)

where
F(θ, r) = f (r cos θ, r sin θ) sin θ + gm(r cos θ, r sin θ)h(r cos θ) sin θ,

and

f (r cos θ, r sin θ) =
n∑

i+ j=0

ai jri+ j cosi θ sin j θ,

gm(r cos θ, r sin θ) =
 0, if θ = 2kπ

m ,

(−1)k, if θ ∈
(

2kπ
m ,

2(k+1)π
m

)
,

k = 0, 1, · · · ,m − 1,

h(r cos θ) =
l∑

j=0

b jr j cos j θ.

Clearly, Eq (3.1) is of the form (2.2) with k = 1, F0(θ, r) = 0, φ(θ, r) = r and F1(θ, r) = F(θ, r). One
can check that (3.1) satisfies hypothesis (H). Thus, as in (2.4), I can compute the first order averaged
function of the system (3.1)

f1(r) =
∫ 2π

0
F(θ, r)dθ ∆= I1 + I2,

where

I1 =

n∑
i+ j=0

ai jri+ j
∫ 2π

0
cosi θ sin j+1 θdθ,

I2 =

l∑
j=0

b jr j
∫ 2π

0
gm(r cos θ, r sin θ) cos j θ sin θdθ.

First, I compute I1.
Obviously,

∫ 2π

0
cos2s+1 θ sin j+1 θdθ = 0,

∫ 2π

0
cosi θ sin2t+1 θdθ = 0, so, I have

Proposition 3.1.

I1 =

[ n−1
2 ]∑

k=0

 k∑
i=0

a2i,2(k−i)+1c2i,2(k−i)+1

 r2k+1 ∆=

[ n−1
2 ]∑

k=0

Akr2k+1,

where c2i,2(k−i)+1 =
∫ 2π

0
cos2i θ sin2(k−i)+2 θdθ = (2k−2i+2)!!(2i)!!

(2k+2)!! · 2π > 0 (i = 0, 1, · · · , k) is a positive
constant and Ak =

∑k
i=0 a2i,2(k−i)+1c2i,2(k−i)+1 can be chosen arbitrarily.
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Second, I compute I2. In order to simplify the notation, I define the following function:

dm, j =

∫ 2π

0
gm(r cos θ, r sin θ) cos j θ sin θdθ.

Let v = e
π
k i, i =

√
−1, by Lemma 2.1 of [26], I have

Lemma 3.1. If j = (2p + 1)k, p is an integer, then

1 +
(
−v j

)
+

(
−v j

)2
+ · · · +

(
−v j

)2k−1
= 2k;

and if j is other integer, then

1 +
(
−v j

)
+

(
−v j

)2
+ · · · +

(
−v j

)2k−1
= 0.

Using Lemma 3.1, I have
Lemma 3.2. For t ∈ N, the following results hold:
(i) if m = 4s, s = 1, 2, · · · , then d4s,2t = 0 for all t, d4s,2t+1 = 0 for 0 ≤ t < s − 1 and d4s,2t+1 > 0 for
t ≥ s − 1;
(ii) if m = 4s + 2, s = 0, 1, 2, · · · , then d4s+2,2t+1 = 0 for all t, d4s+2,2t = 0 for 0 ≤ t < s and d4s+2,2t > 0
for t ≥ s.

Proof. (i) If m = 4s, s = 1, 2, · · · , then

d4s, j =

∫ 2π

0
g4s(r cos θ, r sin θ) cos j θ sin θdθ

=

4s−1∑
k=0

∫ (k+1)π
2s

kπ
2s

(−1)k cos j θ sin θdθ

∆
= J1 + J2 + J3 + J4,

where

Ji =

is−1∑
k=(i−1)s

(−1)k
∫ (k+1)π

2s

kπ
2s

cos j θ sin θdθ, i = 1, 2, 3, 4.

Let θ = φ + π, have

J3 =

3s−1∑
k=2s

(−1)k
∫ (k+1−2s)π

2s

(k−2s)π
2s

cos j (φ + π) sin (φ + π) dφ

= (−1) j+1
s−1∑
k′=0

(−1)k′
∫ (k′+1)π

2s

k′π
2s

cos j φ sinφdφ = (−1) j+1J1,

and in the same manner, have
J4 = (−1) j+1J2,

moreover,
d4s, j =

(
1 + (−1) j+1

)
(J1 + J2) .
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Hence, if j = 2t, t ∈ N, then d4s,2t = 0. Let j = 2t + 1, t ∈ N, and let

w = e
π
2s i, w̄ = e−

π
2s i = w−1, Cn,k =

n!
k!(n − k)!

.

So,

wk = e
kπ
2s i, w̄k = e−

kπ
2s i = w−k,

and

cos
kπ
2s
=

wk + w−k

2
, cos

(k + 1)π
2s

=
wk+1 + w−(k+1)

2
.

Hence

cos2t+2 (k + 1)π
2s

=

(
wk+1 + w−(k+1)

2

)2t+2

=
1

22t+2

2t+2∑
i=0

C2t+2,i

(
wk+1

)i (
w−(k+1)

)2t+2−i

=
1

22t+2

2t+2∑
i=0

C2t+2,i

(
w2i−2t−2

)k+1
,

cos2t+2 kπ
2s
=

1
22t+2

2t+2∑
i=0

C2t+2,i

(
w2i−2t−2

)k
.

Thus, by Lemma 3.1, I obtain

d4s,2t+1 =

4s−1∑
k=0

∫ (k+1)π
2s

kπ
2s

(−1)k cos2t+1 θ sin θdθ

=

4s−1∑
k=0

(−1)k+1

2t + 2

(
cos2t+2 (k + 1)π

2s
− cos2t+2 kπ

2s

)

=
1

(t + 1)22t+3

4s−1∑
k=0

2t+2∑
i=0

C2t+2,i

(
−w2i−2t−2

)k+1
+

2t+2∑
i=0

C2t+2,i

(
−w2i−2t−2

)k


=
1

(t + 1)22t+3

2t+2∑
i=0

C2t+2,i

4s−1∑
k=0

(
−w2i−2t−2

)k+1
+

2t+2∑
i=0

C2t+2,i

4s−1∑
k=0

(
−w2i−2t−2

)k


=
1

(t + 1)22t+3

2t+2∑
i=0

C2t+2,i(−w2i−2t−2)
4s−1∑
k=0

(
−w2i−2t−2

)k
+

2t+2∑
i=0

C2t+2,i

4s−1∑
k=0

(
−w2i−2t−2

)k


=
s

(t + 1)22t

∑
0≤i≤2t+2, i−t−1

s =2p+1,p∈Z

C2t+2,i

=
s

(t + 1)22t

∑
−(t+1)≤(2p+1)s≤t+1

C2t+2,(2p+1)s+t+1

=
s

(t + 1)22t−1

∑
0≤(2p+1)s≤t+1

C2t+2,(2p+1)s+t+1.
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If 0 ≤ t < s − 1, then there does not exist p ∈ Z such that 0 ≤ (2p + 1)s ≤ t + 1. Thus,∑
0≤(2p+1)s≤t+1

C2t+2,(2p+1)s+t+1 = 0,

and this implies d4s,2t+1 = 0.
If t ≥ s − 1, then

d4s,2t+1 =
s

(t + 1)22t−1

∑
0≤(2p+1)s≤t+1

C2t+2,(2p+1)s+t+1 > 0.

(ii) If m = 4s + 2, s = 0, 1, 2, · · · , then

d4s+2, j =

∫ 2π

0
g4s+2(r cos θ, r sin θ) cos j θ sin θdθ

=

4s+1∑
k=0

∫ (k+1)π
2s+1

kπ
2s+1

(−1)k cos j θ sin θdθ ∆= K1 + K2,

where

K1 =

2s∑
k=0

(−1)k
∫ (k+1)π

2s+1

kπ
2s+1

cos j θ sin θdθ,

K2 =

4s+1∑
k=2s+1

(−1)k
∫ (k+1)π

2s+1

kπ
2s+1

cos j θ sin θdθ.

Let θ = φ + π, have

K2 =

4s+1∑
k=2s+1

(−1)k
∫ (k−2s)π

2s+1

(k−2s−1)π
2s+1

cos j (φ + π) sin (φ + π) dφ

= (−1) j+1
2s∑

k′=0

(−1)k′+1
∫ (k′+1)π

2s+1

k′π
2s+1

cos j φ sinφdφ = (−1) jK1,

so, d4s+2, j =
(
1 + (−1) j

)
K1. Hence, if j = 2t + 1, t ∈ N, then d4s+2,2t+1 = 0. Let j = 2t, t ∈ N. Now, take

w = e
π

2s+1 i, w̄ = e−
π

2s+1 i = w−1.

Hence

cos
kπ

2s + 1
=

wk + w−k

2
, cos

(k + 1)π
2s + 1

=
wk+1 + w−(k+1)

2
,

and

cos2t+1 (k + 1)π
2s + 1

=

(
wk+1 + w−(k+1)

2

)2t+1

=
1

22t+1

2t+1∑
i=0

C2t+1,i

(
wk+1

)i (
w−(k+1)

)2t−i+1

=
1

22t+1

2t+1∑
i=0

C2t+1,i

(
w2i−2t−1

)k+1
,

cos2t+1 kπ
2s + 1

=
1

22t+1

2t+12∑
i=0

C2t+1,i

(
w2i−2t−1

)k
.
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So, by Lemma 3.1, the following equalities hold:

d4s+2,2t =

4s+1∑
k=0

∫ (k+1)π
2s+1

kπ
2s+1

(−1)k cos2t θ sin θdθ

=
1

(2t + 1)22t+1

2t+1∑
i=0

C2t+1,i

4s+1∑
k=0

(
−w2i−2t−1

)k+1
+

2t+1∑
i=0

C2t+1,i

4s+1∑
k=0

(
−w2i−2t−1

)k


=
1

(2t + 1)22t+1

2t+1∑
i=0

C2t+1,i(−w2i−2t−1)
4s+1∑
k=0

(
−w2i−2t−1

)k
+

2t+1∑
i=0

C2t+1,i

4s+1∑
k=0

(
−w2i−2t−1

)k


=
2s + 1

(2t + 1)22t−2

∑
0≤i≤2t+1, 2i−2t−1

2s+1 =2p+1,p∈Z

C2t+1,i

=
2s + 1

(2t + 1)22t−2

∑
−(2t+1)≤(2p+1)(2s+1)≤2t+1

C2t+1,((2p+1)(2s+1)+2t+1)/2

=
2s + 1

(2t + 1)22t−3

∑
0≤(2p+1)(2s+1)≤2t+1

C2r+1,((2p+1)(2s+1)+2t+1)/2

=
2s + 1

(2t + 1)22t−3

∑
0≤p≤ t−s

2s+1

C2t+1,((2p+1)(2s+1)+2t+1)/2.

If 0 ≤ t < s, then there does not exist p ∈ Z so that 0 ≤ p ≤ t−s
2s+1 , thus,∑

0≤p≤ t−s
2s+1

C2t+1,((2p+1)(2s+1)+2t+1)/2 = 0,

and this implies d4s+2,2t = 0.
If t ≥ s, then

d4s+2,2t =
2s + 1

(2t + 1)22t−3

∑
0≤p≤ t−s

2s+1

C2t+1,((2p+1)(2s+1)+2t+1)/2 > 0.

Hence, the Lemma 3.1 is proved. □

Hence, according to Lemma 3.2, have
Proposition 3.2.

I2 =


[ l−1

2 ]∑
k=m−4

4

b2k+1dm,2k+1r2k+1, 4 | m,

[ l
2 ]∑

k=m−2
4

b2kdm,2kr2k, 4 ∤ m,

where dm,2k+1 > 0(4 | m, k = (m − 4)/4, · · · , [(l − 1)/2]), dm,2k > 0(4 ∤ m, k = (m − 2)/4, · · · , [l/2]).
From Propositions 3.1 and Propositions 3.2, have
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Proposition 3.3. The first order averaged function of the system (3.1) is

f1(r) =


[ n−1

2 ]∑
k=0

Akr2k+1 +
[ l−1

2 ]∑
k=m−4

4

b2k+1dm,2k+1r2k+1, 4 | m,

[ n−1
2 ]∑

k=0
Akr2k+1 +

[ l
2 ]∑

k=m−2
4

b2kdm,2kr2k, 4 ∤ m.
(3.2)

3.2. Proof of Theorem 1.1

Now, I am going to prove Theorem 1.1 and divide it into two cases:

3.2.1. The even number m is multiple of 4

Let m = 4s, s = 1, 2, · · · . From Proposition 3.1, the first order averaged function of the system (3.1)
is

f1(r) =
[ n−1

2 ]∑
k=0

Akr2k+1 +

[ l−1
2 ]∑

k=m−4
4

b2k+1d4s,2k+1r2k+1. (3.3)

If
[

n−1
2

]
< m−4

4 and
[

l−1
2

]
≤ m−8

4 , the term
∑[ l−1

2 ]
k=m−4

4
b2k+1d4s,2k+1r2k+1 does not appear, the monomials

which appear in the polynomial f1(r) in (3.3) are the following N + 1 monomials

r, r3, · · · , r2[ n−1
2 ]+1,

where N =
[

n−1
2

]
.

If
[

n−1
2

]
< m−4

4 and
[

l−1
2

]
≥ m−4

4 ,the monomials which appear in the polynomial f1(r) in (3.3) are the
following N + 1 monomials

r, r3, · · · , r2[ n−1
2 ]+1, r

m
2 −1, · · · , r2[ l−1

2 ]+1,

where N =
[

n−1
2

]
+

[
l−1
2

]
− m−8

4 .

If
[

n−1
2

]
≥ m−4

4 ,the monomials which appear in the polynomial f1(r) in (3.3) are the following N + 1
monomials

r, r3, · · · , r2N+1,

where N = max
{[

n−1
2

]
,
[

l−1
2

]}
.

By Descartes Theorem and Lemma 2.2, the polynomial f1(r) in (3.3) has exactly N simple positive
real roots. Hence, by Lemma 2.1, if m = 4s, s = 1, 2, · · · , then for ε > 0 sufficiently small the
system (3.1) has N limit cycles, i.e.,

Lm(n, l) ≥


[

n−1
2

]
, if

[
n−1

2

]
< m−4

4 ,
[

l−1
2

]
≤ m−8

4 ,[
n−1

2

]
+

[
l−1
2

]
− m−8

4 , if
[

n−1
2

]
< m−4

4 ,
[

l−1
2

]
≥ m−4

4 ,

max
{[

n−1
2

]
,
[

l−1
2

]}
, if

[
n−1

2

]
≥ m−4

4 .

(3.4)
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3.2.2. The even number m is not multiple of 4

Let m = 4s + 2, s = 0, 1, 2, · · · . From Proposition 3.1, the first order averaged function of the
system (3.1) is

f1(r) =
[ n−1

2 ]∑
k=0

Akr2k+1 +

[ l
2 ]∑

k=m−2
4

b2kd4s+2,2kr2k. (3.5)

If
[

l
2

]
≤ m−2

4 − 1, then d4s+2,2k = 0, k = 0, 1, 2, · · · ,
[

l
2

]
. So, the term

∑[ l
2 ]

k=t b2kd4s+2,2kr2k does not appear,
the monomials which appear in the polynomial f1(r) in (3.5) are the following N + 1 monomials

r, r3, · · · , r2[ n−1
2 ]+1,

where N =
[

n−1
2

]
.

If
[

l
2

]
≥ m−2

4 , the monomials which appear in the polynomial f1(r) in (3.5) are the following N + 1
monomials

r, r3, · · · , r2[ n−1
2 ]+1, r

m−2
2 , · · · , r2[ l

2 ],

where N =
[

n−1
2

]
+

[
l
2

]
− m−6

4 .
By Descartes Theorem and Lemma 2.2, the polynomial f1(r) in (3.5) has exactly N simple positive

real roots. Hence, by Lemma 2.1, if m = 4s + 2, s = 0, 1, 2, · · · , then for ε > 0 sufficiently small the
system (3.1) has N limit cycles, i.e.,

Lm(n, l) ≥


[

n−1
2

]
, if

[
l
2

]
≤ m−6

4 ,[
n−1

2

]
+

[
l
2

]
− m−6

4 , if
[

l
2

]
≥ m−2

4 .
(3.6)

As discussed in the above two parts, for any even number m ≥ 2, the cyclicity Lm(n, l) of
system (3.1) satisfies

Lm(n, l) ≥



[
n−1

2

]
, if 4 | m,

[
n−1

2

]
< m−4

4 ,
[

l−1
2

]
≤ m−8

4 ,[
n−1

2

]
+

[
l−1
2

]
− m−8

4 , if 4 | m,
[

n−1
2

]
< m−4

4 ,
[

l−1
2

]
≥ m−4

4 ,

max
{[

n−1
2

]
,
[

l−1
2

]}
, if 4 | m,

[
n−1

2

]
≥ m−4

4 ,[
n−1

2

]
, if 4 ∤ m,

[
l
2

]
≤ m−6

4 ,[
n−1

2

]
+

[
l
2

]
− m−6

4 , if 4 ∤ m,
[

l
2

]
≥ m−2

4 .

The proof of Theorem 1.1 is completed.
Remark 3.1. If f (x, y) = 0, then (3.2) can be simplified as

f1(r) =


[ l−1

2 ]∑
k=m−4

4

b2k+1dm,2k+1r2k+1, 4 | m,

[ l
2 ]∑

k=m−2
4

b2kdm,2kr2k, 4 ∤ m.
(3.7)
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Remark 3.2. (i) If f (x, y) = 0 and m = 4s, s = 1, 2, · · · , from Remark 3.1 and Theorem 1.1, for ε
sufficiently small the system (3.1) has at least L(m, l) limit cycles, where as defined in [25],

L(m, l) =
[
l − 1

2

]
−

m − 4
4
=

[
1
2

(
l −

m − 2
2

)]
.

So, those are the results conjectured in [25].
(ii) If f (x, y) = 0 and m = 4s+2, s = 0, 1, 2, · · · , from Remark 3.1 and Theorem A, for ε sufficiently

small the system (3.1) has at least L(m, l) limit cycles, where as defined in [25],

L(m, l) =
[

l
2

]
−

m − 2
4
=

[
1
2

(
l −

m − 2
2

)]
.

So, those are the results conjectured in [25].
(iii) If f (x, y) = 0, from (i) (ii), for ε sufficiently small the system (3.1) has at least

[
1
2

(
l − m−2

2

)]
limit cycles for any positive even number m. So, those are the results of Theorem 1.1 in [26].
Remark 3.3. If f (x, y) =

∑n
i=0 aixiy,m = 2, h(x) = κ1x + κ2, from (3.6), for ε sufficiently small the

system (3.1) has
[

n
2

]
+ 1 limit cycles. So, it’s the result of Corollary 2 in [20].

4. Examples

Example 4.1. Consider the following system

ẋ = y,

ẏ = −x − 0.02(−2y + y3 + x2y − 10sgn(xy)πx),
(4.1)

where, ε = 0.02,m = 4, n = 3, l = 1. The first order averaged function f1(r) of the system (4.1) is

f1(r) = πr3 − 22πr.

So, f1(r) has unique positive real root r1 =
√

22 and f ′1(r1) = 44π > 0. The system (4.1) has a stable
limit cycle, as shown in Figure 1.

Figure 1. The phase diagram of system (4.1).
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Then L4(3, 1) ≥ max
{[

n−1
2

]
,
[

l−1
2

]}
= 1.

Example 4.2. Consider the following system

ẋ = y,

ẏ = −x − 0.17(−6y + y3 + x2y + sgn(y)π(1 + x)),
(4.2)

where, ε = 0.17,m = 2, n = 3, l = 1. The first order averaged function f1(r) of the system (4.2) is

f1(r) = πr3 − 6πr + 4π.

So, f2(r) has two positive real roots r1 =
√

3 − 1, r2 = 2 and f ′1(r1) = 6(1 −
√

3)π < 0, f ′1(r2) = 6 > 0.
The system (4.2) has two limit cycles, as shown in Figure 2.

Figure 2. The phase diagram of system (4.2).

Then L2(3, 1) ≥
[

n−1
2

]
+

[
l
2

]
− m−6

4 = 2.

5. Conclusions

In this paper, I discuss the lower bound of the maximum number of limit cycles for a class of m-
piecewise discontinuous polynomial systems and obtain the lower bound of the maximum number of
limit cycles for this class of differential systems. This result generalizes the results of the existing
literature.
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