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Abstract: The prevention and control of the spread of Cystic Echinococcosis is an important public
health issue. Health education has been supported by many governments because it can increase public
awareness of echinococcosis, promote the development of personal hygiene habits, and subsequently
reduce the transmission of echinococcosis. In this paper, a dynamic model of echinococcosis is used to
integrate all aspects of health education. Theoretical analysis and numerical model fitting were used to
quantitatively analysed by the impact of health education on the spread of echinococcosis. Theoretical
findings indicate that the basic reproduction number is crucial in determining the prevalence of
echinococcosis within a given geographical area. The parameters of the model were estimated and
fitted by using data from the Ningxia Hui Autonomous Region in China, and the sensitivity of the
basic reproduction number was analysed by using the partial rank correlation coefficient method.
These findings illustrate that all aspects of health education demonstrate a negative correlation with
the basic reproduction number, suggesting the effectiveness of health education in reducing the basic
reproduction number and mitigating the transmission of echinococcosis, which is consistent with
reality. Particularly, the basic reproduction number showed a strong negative correlation with the
burial rate of infected livestock (b) and the incidence of infected livestock viscera that is not fed to
dogs (q). This paper further analyzes the implementation plan for canine deworming rates and sheep
immunity rates, as well as the transmission of infected hosts over time under different parameters b and
q. According to the findings, emphasizing the management of infected livestock in health education
has the potential to significantly reduce the risk of echinococcosis transmission. This study will provide
scientific support for the creation of higher quality health education initiatives.
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1. Introduction

Cystic Echinococcosis (CE) is one of the most widespread parasitic diseases in China, especially in
western China [1,2]. It is estimated that approximately 380,000 people are affected by Echinococcoses,
and 50 million are at risk of infection nationwide [3]. The transmission of CE seriously threatens the
health of farmers and herdsmen and hampers the development of local animal husbandry. Moreover,
it is also considered as a disease that can drive farmers and herdsmen into poverty or return them to
poverty [4].

CE always in remote rural areas and urban slums across the world. These places most often have
no safe drinking water, poor sanitation and limited access to basic health care and it is impossible
to control CE just relying on treatment [5]. The most important means of prevention is to change
people’s attitude towards CE from the way of thinking and living habits, and then control its root
cause. Actually, health education can popularize knowledge, modify attitudes, and change behaviors
among the populations [6]. Regarding history, Iceland’s success in eradicating CE relied heavily on
health education [7, 8]. Recently, diverse health education products have been designed and applied
in the control of CE in China, and some of them have garnered first-class awards [2, 9]. For example,
the health education film Galsang Flowers in Blossom depicts the journey of a big family of Tibetan
compatriots who did not know about Echinococcosis as they learned with the help of the government.
It showed that this film does play a positive role in improving the knowledge, attitude, and behavior
intention of CE prevention among the high-risk groups [10, 11].

This paper highlights the importance of mathematical modeling and operations research in the
understanding of the dynamics of the transmission of CE, and, in particular, of the impact of health
education. The proposed study was designed to contribute to existing knowledge by comprehensively
analysing the mathematical model and providing insights that can inform effective CE control and
prevention strategies. Compartmental modelling is a powerful tool for the qualitative and quantitative
analysis of the dynamics of the transmission of infectious diseases. Based on the mechanism of
disease transmission, these models typically divide the population into different compartments [12–16].
Several mathematical models have been developed to study the transmission dynamics and control of
CE, such as [17–26]. Wang et al. [27] proposed a deterministic model centered around dogs, livestock,
humans and eggs in the environment to study the dynamics of the transmission of echinococcosis in
Xinjiang. He et al. [28] formulated a mathematical model analyzing livestock and dogs to reveal the
effect of increasing the sheep number. Sun et al. [29] studied the dynamics of stochastic echinococcosis
infection with environmental noise. They presented the sufficient condition for ergodic stochasticity.
However, there are very few models that have been developed to examine the impact of health education
on the spread of CE. Rong et al. [30,31] studied the potential role of free-roaming dogs in transmitting
echinococcosis and provided effective measures to control free-roaming dogs. Zhang and Xiao [32]
proposed an impulsive intervention mathematical model with periodic transmission to describe multi-
host echinococcosis transmission dynamics and explore the effectiveness of control and prevention
measures. Their findings suggest that key strategies for controlling the spread of echinococcosis in
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humans include culling wild dog populations and implementing environmental sanitation.
Based on the works of Wang et al. [27], Rong et al. [30] and Zhao et al. Zhao and Yang [24] in

the field of mathematical modeling, our study formulated a compartmental model of echinococcosis
with health education to find effective health education products that can control the spread of
echinococcosis. We have extended the existing model to include a death compartment and incorporated
the most important aspects of health education. This allows us to qualitatively assess the impact
of health education on CE transmission dynamics. The research directly addresses a critical issue
in zoonoses: CE control. CE remains a global burden for several countries, and understanding its
dynamics through analysis is in line with the interests of prevention and control of parasitic diseases.

To the best of our knowledge, this is the first study to consider the combination of the death
compartment and the main aspects of health education on CE. Our main objectives are to assess
the impact of health education, and to investigate how health education influences the transmission
dynamics of CE. This research represents a significant advance the understanding of the dynamics
of CE and may contribute to the development of more effective strategies to control the spread of
the disease. The rest of the paper is organized as follows: A CE model with health education and
control measures will be formulated in the next section. The existence and stability of equilibria will
be analyzed in Section 3, and numerical simulations are given in Section 4. The discussion of our
theoretical and numerical results will be presented in the final section.

2. Model formulation

CE is a multi-host parasitic disease, which is produced by Echinococcus granulosus. In
Echinococcus granulosus’s life cycle (Figure 1 (left)), most adult worms inhabit the small intestine
of dogs; the E. granulosus eggs produced by an adult worm are released through the feces of dogs,
ultimately polluting the water source, grassland, and so on; after viable E. granulosus eggs are ingested
by a suitable host (e.g., under natural conditions: sheep, goat, and other livestock; under contingent
condition: human), then the oncosphere emerges from the egg, penetrates the intestinal mucosa, and
reaches different organs via the bloodstream, mainly, the liver and lungs. In the organ tissues, the
oncosphere develops into a cystic larva. The cycle is completed when the dog eats the infected organs
of dead livestock. It is obvious that E. granulosus eggs in the environment are an integral part of the life
cycle of Echinococcus granulosus. Moreover, in the life cycle of Echinococcus granulosus, dogs are
considered as the definitive host, and livestock and humans are considered as the intermediate hosts. It
is worth noting that the human being, as an intermediate host of the accident, does not take part in the
spread of the CE.

By referencing the modeling ideas of existing works [24, 27, 30], in this paper, we divide definitive
host dogs into two classes (susceptible dogs S d and infected dogs Id), intermediate host livestock into
four classes (susceptible livestock S l, vaccinated livestock Vl, infected livestock Il, and dead livestock
Dl), and humans into three classes (susceptible human S h, exposed human Eh, and infected human Ih);
we also denote the E. granulosus eggs in the environment as x.

In the model, the probability that one person is infected by ingesting a viable E. granulosus egg is
assumed to be β and the rate of ingestion of viable E. granulosus eggs by a person is assumed to be
r. Then, the transmission rate for a person who ingests an E. granulosus egg should be β · r, which is
simply denoted as βh. Similarly, βl is the transmission rate of an E. granulosus egg via ingestion by
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livestock.

Figure 1. Life cycle of Echinococcosis granulosus (left) and transmission diagram of CE
among dogs, livestock, and humans (right).

In reality, health education primarily involves assisting individuals in the practice of good hygiene
(e.g., washing hands before meals, consuming boiled water, eating thoroughly cooked meat) and proper
disposal of livestock carcasses (e.g., through burial or incineration, or by not feeding them to dogs)
[10, 33]. To better incorporate these parts of health education in our model, we make the following
assumptions for each host:

First, health education can help people to form good health habits such as, washing hands before
meals or after playing with dogs or cats, drinking boiled water, and so on. Good health habits cut
off the contact between humans and E. granulosus eggs; that is, good health habits can decrease the
infection rate for humans. If we denote coefficient of influence of health education on people as p, then
the transmission rate from E. granulosus eggs to humans is (1 − p)βh.

Second, health education helps people to develop the habit of deeply burying the livestock carcasses,
especially the internal organs of dead livestock. To better describe this situation, we chose to add a
dead compartment class (Dl) in the model, which is considered in a CE model for the first time, and
it is reasonable and necessary, as it could better understand the effect of livestock carcass disposal. If
we denote b as the buried rate of livestock carcasses, then the dead livestock Dl will reduce by bDl per
unit time. And, it is also convenient to describe the habit of not feeding dead livestock organs to dogs.
As health education raises the awareness of humans who do not feed livestock carcasses to dogs. This
decreases the transmission rate from dead livestock to susceptible dogs. If we denote the coefficient
of influence of health education on dogs as q, then the effective transmission rate from dead livestock
(Dl) to susceptible dogs (S d) is (1 − q)βd.

Finally, dog deworming and sheep immunization, as two primary control measures, are also
considered in the model. The recovery rate γd of dogs can reflect the degree of dog deworming. It
was observed that the canine was prone to reinfection after deworming [34]; this can be modeled
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by returning from compartment Id to S d. The vaccination rate µ and the rate of loss of immunity
σ of livestock can reflect the immune sheep. As E. granulosus eggs can remain viable for several
weeks or months in a water source and grassland, we also consider environmental disinfection in the
model. Environmental disinfection can reduce the density of E. granulosus eggs. We denote c as the
environmental disinfection rate; then, the density of eggs will reduce cx per unit time.

Based on the above assumptions and the flowchart shown in Figure 1 (right), the CE model with
health education can be given by the following system of differential equations:

dS h

dt
= Λh − (1 − p)βhxS h + γhIh − dhS h,

dEh

dt
= (1 − p)βhxS h − (δ + dh)Eh,

dIh

dt
= δEh − (γh + dh)Ih,

dS l

dt
= Λl − βlxS l + σVl − (ν + κ + dl)S l,

dVl

dt
= νS l − (σ + κ + dl)Vl,

dIl

dt
= βlxS l − (κ + dl)Il,

dDl

dt
= (κ + dl)Il − bDl,

dS d

dt
= Λd − (1 − q)βdS dDl + γdId − dS d,

dId

dt
= (1 − q)βdS dDl − (γd + d)Id,

dx
dt
= mId − (c + dx)x,

(2.1)

where Λh is the annual recruitment rate for human population, βh is the transmission rate from the
environment to humans, p is the coefficient of influence of health education on humans, δ is the rate
of transition rate from exposed humans to infectious humans, γh is the treatment rate for infectious
humans, dh is the natural death rate of humans, Λl is the annual recruitment rate for livestock, βl is the
rate of transmission from hte environment to livestock, q is incidence of infected livestock viscera that
is not fed to dogs, ν is the vaccination rate of livestock, σ is the invalid livestock vaccination rate, κ is
the fraction of annual slaughtered livestock, b is the burial rate for infected livestock carcasses, dl is the
natural death rate of livestock, Λd is the annual recruitment rate for dogs, βd is the rate of transmission
from livestock carcasses with CE to dogs, γd is the deworming recovery rate for infectious dogs, d is
the natural death rate of dogs, m is the release rate from infectious dogs, c is the cleaning/disinfection
rate of E. granulosus eggs in the environment, and dx is the natural death rate of E. granulosus eggs in
the environment. All parameters in this paper are assumed to be non-negative.

Based on the biological meaning, we assume that all solutions of model (2.1) satisfy the following
positive initial conditions:

S h(0) = S h0 > 0, Eh(0) = Eh0 > 0, Ih(0) = Ih0 > 0,
S l(0) = S l0 > 0, Vl(0) = Vl0 > 0, Il(0) = Il0 > 0, Dl(0) = Dl0 > 0,
S d(0) = S d0 > 0, Id(0) = Id0 > 0, x(0) = x0 > 0.

(2.2)
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Let (S h(t), Eh(t), Ih(t), S l(t),Vl(t), Il(t),Dl(t), S d(t), Id(t), x(t)) be any solution of model (2.1) with the
initial conditions given by (2.2); using a similar argument as in [27], one can prove that S h(t) >
0, Eh(t) > 0, Ih(t) > 0, S l(t) > 0,Vl(t) > 0, Il(t) > 0,Dl(t) > 0, S d(t) > 0, Id(t) > 0, and x(t) > 0 for all
t > 0.

Define

Γ =
{
(S h, Eh, Ih, S l,Vl, Il,Dl, S d, Id, x) ∈ R10

+ : S h + Eh + Ih ≤
Λh

dh
,

S l + Vl + Il ≤
Λl

κ + dl
,Dl ≤

(κ + dl)Λl

b(κ + dl)
, S d + Id ≤

Λd

d
, x ≤

mΛd

(c + dx)d

}
.

(2.3)

It is not difficult to show that Γ is positively invariant with respect to model (2.1), such that any solution
with positive initial values will ultimately enter Γ as t → +∞.

3. Dynamical behaviors of model (2.1)

Let all of the right-hand sides of model (2.1) equal to zero; one can calculate that model (2.1) always
has a unique disease-free equilibrium E0 = (S 0

h, 0, 0, S
0
l ,V

0
l , 0, 0, S

0
d, 0, 0), where

S 0
h =
Λh

dh
, S 0

l =
ϵΛl

κ + dl
, V0

l =
(1 − ϵ)Λl

κ + dl
, S 0

d =
Λd

d
, and ϵ =

σ + κ + dl

ν + σ + κ + dl
.

It follows from the concepts of the next-generation matrix provided by Diekmann et al. [35] and
van den Driessche and Watmough [36] that the basic reproduction number can be given as

R0 =
3

√
m
γd + d

· βl
1

c + dx

ϵΛl

κ + dl
· (1 − q)βd

1
b
Λd

d
.︸   ︷︷   ︸ ︸            ︷︷            ︸ ︸            ︷︷            ︸

eggs by dog infected sheep infected dogs
by eggs by sheep

(3.1)

The basic reproduction number (R0) denotes the expected number of secondary cases from an infected
individual in the susceptible population [35]. That is, R0 represents the number of susceptible people
that an infected person can infect during the infectious period. Here, R0 is the number of new infected
human/sheep that are produced by infected dogs during the infectious period. Each infected dog
releases E. granulosus eggs at the density m/(γd + d). All susceptible livestock, i.e., ϵΛl/(κ + dl),
are infected via contact with E. granulosus eggs at the rate βl during the dogs’ expected infectious
period 1/(c + dx). Moreover, the total number of dogs Λd/d that are infected at the rate (1 − q)βd

via ingestion of infectious cyst-containing organs of dead livestock during the livestock’s burial period
1/b. The cube root depicts a complete transmission cycle of echinococcosis, that is, the transmission
from infectious dogs to E. granulosus eggs, to livestock, and then to infectious dogs again.

Besides the disease-free equilibrium E0, there also exists a unique endemic equilibrium E∗ =
(S ∗h, E

∗
h, I
∗
h, S

∗
l ,V

∗
l , I
∗
l ,D

∗
l , S

∗
d, I
∗
d, x
∗) when R0 > 1, where

S ∗h =
Λh

dh
− (dh + dh

γh + dh

δ
)I∗h, E∗h =

γh + dh

δ
I∗h,

I∗h =
(1 − p)βhΛhmδI∗d

(1 − p)mβh(dh(δ + dh) + γhdh)I∗d + (c + dx)(δ + dh)(γh + dh)dh
,
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S ∗l =
ϵΛl

κ + dl
−
ϵ(κ + dl)
κ + dl

I∗l , V∗l =
ν

σ + κ + dl
S ∗l , I∗l =

bd(c + dx)(γd + d)(κ + dl)(R3
0 − 1)

(1 − q)βd(κ + dl)(d(c + dx)(κ + dl) + mϵβlΛd
,

D∗l =
κ + dl

b
I∗l , S ∗d =

Λd

d
− I∗d, I∗d =

b(c + dx)(γd + d)(κ + dl)(R3
0 − 1)

mϵβl((1 − q)βdΛl + b(γd + d))
, x∗ =

m
c + dx

I∗d.

For the stability of disease-free equilibrium E0 and endemic equilibrium E∗, we have the following
results.

Theorem 1. If R0 < 1, then the disease-free equilibrium E0 of model (2.1) is globally asymptotically
stable in Γ.

Proof. The Jacobian matrix at E0 is

J(E0) =
[

J1 J2

0 J3

]
,

where

J1 =


−dh 0 γh

0 −(δ + dh) 0
0 δ −(γh + dh)

 , J2 =


0 0 0 0 0 0 −(1 − p)βh

Λh
dh

0 0 0 0 0 0 (1 − p)βh
Λh
dh

0 0 0 0 0 0 0

 ,

J3 =



−(ν + κ + dl) σ 0 0 0 0 −βl
ϵΛl
κ+dl

ν −(σ + κ + dl) 0 0 0 0 0
0 0 −(κ + dl) 0 0 0 βl

ϵΛl
κ+dl

0 0 κ + dl −b 0 0 0
0 0 0 −(1 − q)βd

Λd
d −d γd 0

0 0 0 (1 − q)βd
Λd
d 0 −(γd + d) 0

0 0 0 0 0 m −(c + dx)


.

□

The corresponding characteristic equation is

Φ(λ) := (λ + dh)(λ + γh + dh)(λ + δ + dh)(λ + d)(λ + κ + dl)
×(λ + ν + σ + κ + dl)(λ4 + a1λ

3 + a2λ
2 + a3λ + a4) = 0,

where
a1 = κ + dl + b + γd + d + c + dx > 0,
a2 = (κ + dl)(b + γd + d + c + dx) + b(γd + d + c + dx) + (γd + d)(c + dx) > 0,
a3 = (κ + dl)b(γd + d + c + dx) + (b + κ + dl)(γd + d)(c + dx) > 0,
a4 = (κ + dl)(γd + d)(c + dx)b(1 − R3

0).

When R0 < 1, direct calculation yields

H2 := a1a2 − a3

= (b + κ + dl)(b + γd + d + c + dx)(γd + d + c + dx + κ + dl)
+(γd + d + c + dx)(γd + d)(c + dx) > 0,

H3 := a3(a1a2 − a3) − a2
1a4

> (κ + dl + b)(γd + d + c + dx)(γd + d)2(c + dx)2 > 0.
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Meanwhile, H1 := a1 > 0 and H4 := a4H3 > 0. Therefore, by Routh-Hurwitz criteria, all roots of Φ(λ)
have negative real parts; hence E0 is locally stable.

Notice that the first three equations of model (2.1) are independent of the remaining equations; we
then split it up into two subsystems:

dS h

dt
= Λh − (1 − p)βhxS h + γhIh − dhS h,

dEh

dt
= (1 − p)βhxS h − (δ + dh)Eh,

dIh

dt
= δEh − (γh + dh)Ih,

(3.2)

and 

dS l

dt
= Λl − βlxS l + σVl − (ν + κ + dl)S l,

dVl

dt
= νS l − (σ + κ + dl)Vl,

dIl

dt
= βlxS l − (κ + dl)Il,

dDl

dt
= (κ + dl)Il − bDl,

dS d

dt
= Λd − (1 − q)βdS dDl + γdId − dS d,

dId

dt
= (1 − q)βdS dDl − (γd + d)Id,

dx
dt
= mId − (c + dx)x.

(3.3)

To proof the global attractivity of E0, we first consider subsystem (3.3). Let g(x) = x − 1 − ln x,
x > 0. One can easily verify that g(x) ≥ 0 with g(x) = 0 if and only if x = 1 and (x − 1)(y − 1) =
g(x) + g(y) − g(xy) for any x, y ∈ R+. Define

V1(t) = S 0
l g
( S l

S 0
l

)
+ V0

l g
( Vl

V0
l

)
.

Differentiating V1 along subsystem (3.3) and using S 0
l and V0

l is the solution of subsystem (3.3); simple
calculation implies that

dV1(t)
dt

∣∣∣∣
(3.3)
=
(
1 −

S 0
l

S l

)
S ′l +

(
1 −

V0
l

Vl

)
V ′l

=
(
1 −

S 0
l

S l

)[
− βlxS l + σV0

l

( Vl

V0
l

− 1
)
− (ν + κ + dl)S 0

l

( S l

S 0
l

− 1
)]

+
(
1 −

V0
l

Vl

)[
νS 0

l

( S l

S 0
l

− 1
)
− (σ + κ + dl)V0

l

( Vl

V0
l

− 1
)]

= −βlxS l + βlxS 0
l − (κ + dl)g

( S l

S 0
l

)
− (κ + dl)g

( Vl

V0
l

)
−Λlg

(S 0
l

S l

)
− σV0

l g
(S 0

l Vl

S lV0
l

)
− νS 0

l g
(S lV0

l

S 0
l Vl

)
.

(3.4)
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Let (S l(t),Vl(t), Il(t),Dl(t), S d(t), Id(t), x(t)) be any solution of system (3.3) in Γ; then, for any t ≥ 0, we
have that S d(t) ≤ Λd/d = S 0

d. Define

V2(t) = Il +
mβlS 0

l (1 − q)βdS 0
d

b(γd + d)(c + dx)
Dl +

mβlS 0
l

(γd + d)(c + dx)
Id +

βlS 0
l

c + dx
x.

Differentiating V2(t) along subsystem (3.3), one can derive

dV2(t)
dt

∣∣∣∣
(3.3)
= βlxS l − (κ + dl)Il +

mβlS 0
l (1 − q)βdS 0

d

b(γd + d)(c + dx)
[(κ + dl)Il − bDl]

+
mβlS 0

l

(γd + d)(c + dx)
[(1 − q)βdS dDl − (γd + d)Id] +

βlS 0
l

c + dx
[mId − (c + dx)x]

≤ βlxS l − (κ + dl)Il +
mβlS 0

l (1 − q)βdS 0
d

b(γd + d)(c + dx)
[(κ + dl)Il − bDl]

+
mβlS 0

l

(γd + d)(c + dx)
[(1 − q)βdS 0

dDl − (γd + d)Id] +
βlS 0

l

c + dx
[mId − (c + dx)x]

= βlxS l − (κ + dl)Il +
mβlS 0

l (1 − q)βdS 0
d

b(γd + d)(c + dx)
(κ + dl)Il − βlS 0

l x.

(3.5)

Consider the following Lyapunov candidate function:

V(t) = V1(t) + V2(t).

Then, combining (3.4) and (3.5) and using the expression of R0, we have

dV
dt

∣∣∣∣
(3.3)
= −Λlg

(S 0
l

S l

)
− (κ + dl)

[
g
( S l

S 0
l

)
+ g
( Vl

V0
l

)]
− σV0

l g
(S 0

l Vl

S lV0
l

)
−νS 0

l g
(S lV0

l

S 0
l Vl

)
−
(
1 − R0

)
(κ + dl)Il.

(3.6)

Therefore, if R0 ≤ 1, then dV/dt ≤ 0 and dV/dt = 0 if and only if S l = S 0
l ,Vl = V0

l , and Il = 0. It is not
difficult to verify that (S 0

l ,V
0
l , 0, 0, S

0
d, 0, 0) is the only invariant set of subsystem (3.3). By LaSalle’s

invariant principle, (S 0
l ,V

0
l , 0, 0, S

0
d, 0, 0) is globally asymptotically stable.

Now, we consider the subsystem (3.2). Since x → 0 as t → +∞, it is not difficult to show that
S h(t) → Λh/dh, Eh(t) → 0, and Ih(t) → 0 as t → +∞. Hence, (Λh/d, 0, 0) is attractive with respect to
subsystem (3.2). Thus, according to the theory of asymptotic autonomous systems [37], the disease-
free equilibrium E0 of system (2.1) is globally asymptotically stable when R0 ≤ 1.

This theorem suggests that the propagation of CE can be eliminated when the basic reproduction
number R0 is less than one. In other words, it is necessary to keep the value of the basic reproduction
number as less than unity to ensure the extinction of echinococcosis. The lower the value, the better
the prevention and control of the CE.

Theorem 2. If R0 > 1, then the endemic equilibrium E∗ of model (2.1) is globally asymptotically stable
in Γ.
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Proof. First, we investigate the global asymptotic stability of the endemic equilibrium of subsystem
(3.3). Let g(x) = x − 1 − ln x and

V♯ = ♯∗g
( ♯
♯∗

)
,

where ♯ represents S l,Vl, Il,Dl, S d, Id, and x. Note that (x−1)(1−y) = g(x)+g(y)−g(xy) for all x, y ∈ R+.
Then, using the equilibrium equation Λl − βlx∗S ∗l + σV∗l − (ν + κ + dl)S ∗l = 0 and differentiating VS l

along subsystem (3.3), one has

dVS l

dt

∣∣∣∣
(3.3)
=
(
1 −

S ∗l
S l

)
S ′l

=
(
1 −

S ∗l
S l

)
[−βlxS l + βlx∗S ∗l + σ(Vl − V∗l ) − (ν + κ + dl)(S l − S ∗l )]

= βlx∗S ∗l
(
1 −

S ∗l
S l

)(
1 −

xS l

x∗S ∗l

)
+ σV∗l

(
1 −

S ∗l
S l

)( Vl

V∗l
− 1
)

−(ν + κ + dl)S ∗l
(
1 −

S ∗l
S l

)( S l

S ∗l
− 1
)

= βlx∗S ∗l g
( x

x∗
)
− βlx∗S ∗l g

(S ∗l
S l

)
− βlx∗S ∗l g

( xS l

x∗S ∗l

)
+ σV∗l g

( Vl

V∗l

)
+σV∗l g

(S ∗l
S l

)
− σV∗l g

(S ∗l Vl

S lV∗l

)
− (ν + κ + dl)S ∗l

[
g
(S ∗l

S l

)
+ g
( S l

S ∗l

)]
= βlx∗S ∗l g

( x
x∗
)
− Λlg

(S ∗l
S l

)
− βlx∗S ∗l g

( xS l

x∗S ∗l

)
+ σV∗l g

( Vl

V∗l

)
−σV∗l g

(S ∗l Vl

S lV∗l

)
− (ν + κ + dl)S ∗l g

( S l

S ∗l

)
.

(3.7)

Using the equilibrium equation νS ∗l − (σ + κ + dl)V∗l = 0 and differentiating VVl along subsystem
(3.3), one can derive

dVVl

dt

∣∣∣∣
(3.3)
=
(
1 −

V∗l
Vl

)
V ′l

=
(
1 −

V∗l
Vl

)
[ν(S l − S ∗l ) − (σ + κ + dl)(Vl − V∗l )]

= νS ∗l
(
1 −

V∗l
Vl

)( S l

S ∗l
− 1
)
− (σ + κ + dl)V∗l

(
1 −

V∗l
Vl

)( Vl

V∗l
− 1
)

= νS ∗l g
( S l

S ∗l

)
− νS ∗l g

(S lV∗l
S ∗l Vl

)
+ νS ∗l g

(V∗l
Vl

)
−(σ + κ + dl)V∗l g

(V∗l
Vl

)
− (σ + κ + dl)V∗l g

( Vl

V∗l

)
= νS ∗l g

( S l

S ∗l

)
− νS ∗l g

(S lV∗l
S ∗l Vl

)
− (σ + κ + dl)V∗l g

( Vl

V∗l

)
.

(3.8)
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Similarly, we have

dVIl

dt

∣∣∣∣
(3.3)
= βlx∗S ∗l g

( xS l

x∗S ∗l

)
− βlx∗S ∗l g

( xS lI∗l
x∗S ∗l Il

)
− (κ + dl)I∗l g

( Il

I∗l

)
,

dVDl

dt

∣∣∣∣
(3.3)
= (α + κ + dl)I∗l g

( Il

I∗l

)
− (α + κ + dl)I∗l g

( IlD∗l
I∗l Dl

)
− bD∗l g

(Dl

D∗l

)
,

dVS d

dt

∣∣∣∣
(3.3)
= −Λdg

(S ∗d
S d

)
− (1 − q)βdS ∗dD∗l g

( S dDl

S ∗dD∗l

)
+ (1 − q)βdS ∗dD∗l g

(Dl

D∗l

)
+γdI∗dg

( Id

I∗d

)
− γdI∗dg

(S ∗dId

S dI∗d

)
− dS ∗dg

(S d

S ∗d

)
,

dVId

dt

∣∣∣∣
(3.3)
= (1 − q)βdS ∗dD∗l g

( S dDl

S ∗dD∗l

)
− (1 − q)βdS ∗dD∗l g

( S dDlI∗d
S ∗dD∗l Id

)
− (γd + d)I∗dg

( Id

I∗d

)
,

dVx

dt

∣∣∣∣
(3.3)
= mI∗dg

( Id

I∗d

)
− mI∗dg

( x∗Id

xI∗d

)
− (c + dx)x∗g

( x
x∗
)
.

(3.9)

Then, consider the following Lyapunov candidate function:

V̄ = VS l + VVl + VIl +
mβlS ∗l (1 − q)βdS ∗d
b(γd + d)(c + dx)

VDl

+
mβlS ∗l

b(γd + d)(c + dx)
(VS d + VId ) +

βlS ∗l
c + dx

Vx.

(3.10)

It follows from the equations βlx∗S ∗l − (κ + dl)I∗l = 0 and (1 − q)βdS ∗dD∗l − (γd + d)I∗d = 0 that

mβlS ∗l (1 − q)βdS ∗d
b(γd + d)(c + dx)

=
m (κ+dl)I∗l

x∗ ·
(γd+d)I∗d

D∗l

b(γd + d)(c + dx)
.

And, D∗l =
κ+dl

b I∗l and x∗ = m
c+dx

I∗d imply that

mβlS ∗l (1 − q)βdS ∗d
b(γd + d)(c + dx)

= 1. (3.11)

Combining (3.7) (3.8), and (3.9) and using (3.11), we have

dV̄
dt

∣∣∣∣
(3.3)
= −Λlg

(S ∗l
S l

)
− σV∗l g

(S ∗l Vl

S lV∗l

)
− (κ + dl)S ∗l g

( S l

S ∗l

)
− νS ∗l g

(S lV∗l
S ∗l Vl

)
−(κ + dl)V∗l g

( Vl

V∗l

)
− βlx∗S ∗l g

( xS lI∗l
x∗S ∗l Il

)
−

mβlS ∗lΛd

(γd + d)(c + dx)
g
(S ∗d
S d

)
−

mβlS ∗l (1 − q)βdS ∗d(α + κ + dl)I∗l
b(γd + d)(c + dx)

g
( IlD∗l
I∗l Dl

)
−

mβlS ∗l (1 − q)βdS ∗dD∗l
(γd + d)(c + dx)

g
( S dDlI∗d
S ∗dD∗l Id

)
−

mβlS ∗l γdI∗d
(γd + d)(c + dx)

g
(S ∗dId

S dI∗d

)
−

mdβlS ∗l S ∗d
(γd + d)(c + dx)

g
(S d

S ∗d

)
−

mβlS ∗l I∗d
c + dx

g
( x∗Id

xI∗d

)
.

(3.12)

Therefore, dV̄/dt ≤ 0 and dV̄/dt = 0 if and only if S l = S ∗l ,Vl = V∗l , Il = I∗l ,Dl = D∗l , S d = S ∗d, Id = I∗d,
and x = x∗, that is, (S ∗l ,V

∗
l , I
∗
l ,D

∗
l , S

∗
d, I
∗
d, x
∗) is the only invariant set of subsystem (3.3). It follows from

LaSalle’s invariant principle that (S ∗l ,V
∗
l , I
∗
l ,D

∗
l , S

∗
d, I
∗
d, x
∗) is globally asymptotically stable.
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The pervious proof implies that x → x∗ as t → +∞. Therefore, the limiting system of subsystem
(3.2) can be given as 

dS h

dt
= Λh − (1 − p)βhx∗S h + γhIh − dhS h,

dEh

dt
= (1 − p)βhx∗S h − (δ + dh)Eh,

dIh

dt
= δEh − (γh + dh)Ih,

(3.13)

Using the Lyapunov candidate function

Ṽ = S ∗hg
(S h

S ∗h

)
+ E∗hg

(Eh

E∗h

)
+ I∗hg

( Ih

I∗h

)
,

one can easily derive that dṼ/dt|(3.13) ≤ 0 and dṼ/dt|(3.13) = 0 if and only if S h = S ∗h, Eh = E∗h,
and Ih = I∗h. Therefore, (S ∗h, E

∗
h, I
∗
h) is the only invariant set of (3.13), and it is globally asymptotically

stable based on LaSalle’s invariant principle. Hence, according to the theory of asymptotic autonomous
systems [37], if R0 > 1, the unique endemic equilibrium E∗ of system (2.1) is globally asymptotically
stable. □

A simple interpretation and epidemiological implication of Theorem 2 is that CE will persist among
humans, livestock, and dogs when the basic reproduction number is larger than one. In other words,
CE will never become extinct when R0 > 1.

4. Numerical simulation

In this paper, the data were mainly taken from the Data Center of China Public Health Science
(https://www.phsciencedata.cn/) and Ningxia Statistical Yearbook (NSY) (http://nxdata.com.cn/).
Nevertheless, part of the data could not be acquired easily. We had to rely on published papers
and our estimation, such as the number of E. granulosus eggs in the environment and the number
of infected dogs in Ningxia Hui Autonomous Region (NHAR) in China. Wolfram Mathematica 10.2
was employed for the calculation, curve fitting, and sensitivity analysis. The values of the model
parameters were estimated based on the following facts and assumptions:

(a) The number of dogs in NHAR was estimated to be 515000 in 2004 (NSY). The average life
span of dogs was set as 12.5 years [27]. Thus, the natural death rate of dogs depends on the life span
of dogs, with d = 1/12.5 = 0.08. The annual recruitment rate for dogs, Λd, equals the total number of
dogs times the natural death rate with Λd = 515000 × 0.08 = 41200. The deworming recovery rate for
infectious dogs γd was estimated as 0.91, and the coefficient of influence q on dogs has been assumed
to be 0.1.

(b) The natural death rate of sheep dl was set as 0.152 [31]. Based on the number of livestock
(only considering the sheep in this study, as sheep constitute the main livestock infected with CE)
slaughtered and handled in the NSY, the fraction of the annual slaughtered rate for livestock κ was
calculated as 0.49, and the annual recruitment rate for livestock Λl was estimated to be 7.48 × 106.
According to the assumption of immune effect on livestock, the vaccination rate of livestock ν and the
invalid vaccination rate among livestock σ were assumed to be 0.92 and 0.14, respectively. In addition,
the burial rate b of infected livestock carcasses was set as 0.09.
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(c) The life span of E. granulosus eggs was assumed to be 35 days [38]; then, dx = 365/35 =
10.42. We supposed that the farmers perform a major disinfection once a year, which means that
c = 1/1 = 1. Based on the assumptions in [39], the release rate for infectious dogs can be expressed
as m = ϕ(h/η)(1 − exp(−ηtd), where ϕ denotes the number of E. granulosus eggs released by adult
worms per year, h is the average number of E. granulosus eggs in the small intestines of dogs during a
one-year period, td represents the average life span of dogs, and η means the natural mortality rate of
adult worms. From Budke et al. [40] and Torgerson and Heath [41], the E. granulosus egg release rate
for one worm per unit time was 42, the worm production rate per dog per year was set as 560, the E.
granulosus egg mortality rate in the dogs’ body is 12/5, and the average life span of dogs was set as 5;
thus, m = 9799.

(d) The human annual birth population in NHAR was applied as 1.57 × 105 (NSY). Then, we have
that Λh = 1.57 × 105. The average life span of people in NHAR is 76.5 years; thus, dh = 1/76.5.
The recovery rate γh was estimated to be 35%, and the coefficient of influence of health education on
humans was assumed to be 0.2. The incubation period of CE can be months to years, even decades;
we chose 14 years [27]; thus, δ = 1/14. And, the parameters βh, βl, and βd were fitted by using the data
in NHAR.

For clarity, we summarize the description, default values, and references of the parameters of model
(2.1) in Table 1.

Table 1. Description of model parameters, default values (ranges), and references.

Parameters Biological descriptions Value(Range) Source
Λh Annual recruitment rate for human population 1.57 × 105 NSY
βh Transmission rate from environment to humans 3.1 × 10−8 Fitting
p Coefficient of influence of health education on humans 0.2 (0,1) Assumption
δ Transition rate from exposed humans to infectious humans 1/14 [27]
γh Treatment rate for infectious humans 0.35 Fitting
dh Natural death rate of humans 1/76.5 NSY
Λl Annual recruitment rate for livestock 7.48 × 106 NSY
βl Transmission rate from environment to livestock 3.2 × 10−9 Fitting
q Incidence of infected livestock viscera that is not fed to dogs 0.1 Assumption
ν Vaccination rate of livestock 0.92 Assumption
σ Invalid livestock vaccination rate 0.14 Assumption
κ Fraction of annual slaughtered livestock 0.49 NSY
b Burial rate for infected livestock carcass 0.09 Assumption
dl Natural death rate of livestock 0.152 [31]
Λd Annual recruitment rate for dogs 4.12 × 104 NSY
βd Transmission rate from livestock carcass with CE to dogs 1.33 × 10−8 Fitting
γd Deworming recovery rate for infectious dogs 0.91 Assumption
d Natural death rate of dogs 0.08 [27]
m Release rate for infectious dogs 9799 Calculation
c Cleaning/disinfection rate of E. granulosus eggs in the environment 1 Assumption
dx Natural death rate of E. granulosus eggs in the environment 10.42 [38]

NSY: Ningxia Statistical Yearbook.

Using the parameter values in Table 1, the time plot for infected human cases in NHAR was
constructed as presented in Figure 2. One can see that our model provides a relatively good match
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with the reported data in NHAR. That means that our studies based on this model are rational. In what
follows, we will use model (2.1) and the parameter values listed in Table 1 to investigate the effect of
health education on the spread of CE.

Figure 2. Simulation and prediction of human CE in NHAR. The initial conditions are
S h(0) = 5.837×106, Eh(0) = 2000, Ih(0) = 60, S l(0) = 8.528×106,Vl(0) = 2.38×105, Il(0) =
4.68 × 105,Dl(0) = 1600, S d(0) = 4.077 × 105, Id(0) = 3.121 × 104, and x(0) = 3.57 × 107.

Notice the important role of the basic reproduction number R0. We first use the partial rank
correlation coefficient (PRCC) to identify critical parameters that have a significant impact on the
value of R0. From Figure 3, one can see that the biggest values of the PRCC for R0 were observed for
parameters q (the incidence of infected livestock viscera that is not fed to dogs) and b (burial rate for
infected livestock carcasses). That means that q and b have the most significant impact on R0. These
two parameters were first considered in the CE model, and their values completely depend on health
education. This implies that health education is strongly related to R0. Figure 3 also shows that R0 is
more sensitive to γd (deworming recovery rate for infectious dogs) and ν (vaccination rate of livestock).
This is consistent with the Chinese policy of canine deworming as primary and sheep immunization as
auxiliary. Regarding the livestock vaccination, the PRCC values for ν and σ inform us that vaccination
coverage plays a more significant role in preventing the prevalence of CE. Moreover, κ and c are
also negatively correlated with R0, that is, the higher the livestock slaughter rate and environmental
disinfection rate, the lower the value of R0. In all, Figure 3 shows that health education plays a positive
role in reducing the values of R0, especially education on the infected livestock carcass disposal (b and
q).

Figure 3. PRCC for the basic reproduction number R0.
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To further clarify the effects of b, q, ν, and γd on R0, we further present the contour plots for R0 from
the perspectives of γd and ν with different values of q and b. From Figure 4(a) and (b) or Figure 4(c)
and (d), we have that, once we increase the value of b by 20%, the value of γd sharply decreases from
0.9267 to 07589 when we fix ν = 0.92 to keep R0 = 1. Similar results can be obtained for ν if we fix
γd. If we want to increase the value q from 0.1 to 0.12, Figure 4(a) and (c) tell us that the dependence
on γd will slightly decrease if we fix ν to keep R0 = 1. Similarly results can be derived from Figure
4(a) and (c) or Figure 4(b) and (d). These four plots illustrate that increases in b and q are both can
independently the dependence on γd and ν. However, from the perspective of effects, the influence of
b is more obvious. That means that deeply burying infected livestock carcasses is the most important
behavior to reduce the value of R0. Meanwhile, the time plots of Figure 5 tell us that the trends of
infected humans, livestock, and dogs all indicate high correlation with b and q. The higher the values
of b and q, the lower the risk for humans, livestock, and dogs. These results indicate that infected
livestock carcass disposal awareness should be stressed during health education.

Figure 4. Contour plots for γd and ν with different values of b and q. The red line indicates
that R0 = 1, the dashed green line is the scenario of a fixed γd = 0.91, and the dashed blue
line represents the scenario when ν = 0.92. The other parameters are the same as in Table 1.
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Figure 5. Time plots for Ih, Il, and Id with different values of b and q. The red line represents
the baseline with b = 0.09 and q = 0.1. The green (dashed green) lines indicate a decrease
(increase) in b by 20%, and the blue (dashed blue) lines denote a (increase) decrease in q by
20%. The other parameters are the same as in Table 1.

Finally, time plots for infected humans, livestock, and dogs with different values of p are given in
Figure 6. It shows that Ih proportionally decreases with the increase of p, while the time series of Il

and Id are steady without much change. That is because humans do not participate in the spread of
CE. In the model, p reflects the actions of washing hands before meals, drinking boiled water, and
eating thoroughly cooked meal. That is, if people pay attention to personal hygiene, the spread of CE
in humans will be mitigated.

Figure 6. Time plots for Ih, Il and Id with different values of p. The red line represents the
baseline with p = 0.2. The other parameters are the same as in Table 1.

5. Conclusions

CE, as one of the most important diseases in the world, is mainly distributed in the western part
of China, including Ningxia, Tibet, and other western provincial capitals [42]. Health education plays
a vital role in controlling and preventing CE, which can mitigate and reduce the transmission of CE.
This paper presents a deterministic mathematical model that explores the dynamics of a CE model,
encompassing the main aspects of health education while also incorporating dog deworming and sheep
immunity into the model. The study include a rigorous analysis of the model, with a number of key
findings. The dynamical behaviors indicate that the transmission of CE is mainly determined by the
basic reproduction number R0. That is, CE will persist when R0 > 1, while it will die out when R0 < 1.
With the parameter values in Table 1, model (2.1) can mimic the reported human echinococcosis data
from 2004 to 2018 in NHAR (Figure 2). It should be noted that the basic reproduction number in
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NHAR is 1.0056 > 1, which means that CE is an endemic disease in NHAR.
For the sensitivity analysis of R0, we analyzed the correlation of various parameters of R0. The

strong negative correlation between R0 and the deworming recovery rate for dogs γd is consistent with
the results in [30, 31]. It is interesting that R0 has strong negative correlations with the burial rate for
infected livestock carcasses b and the incidence of infected livestock viscera that is not fed to dogs q
(Figures 3 and 4). This indicates that suitable disposal of infected livestock carcasses is very important
for the prevention and control of the transmission of CE.

The study presented here is just a primary investigation into the effect of health education on the
prevention and control of the spread of CE. The major conclusions are provided as follows.

1) The spread of CE is determined by the basic reproduction number, and the lower the value the
better the ability to prevent and control the spread.

2) Health education is an effective means for the prevention of CE.
3) Infected livestock carcass disposal awareness should be stressed in the process of health

education.
Various directions can be improved and generalized in the future. As in [43], we can further explore

cost-effective approaches for CE. We could further explore the most effective health education products
and treatment measures for CE, investigate the impact of climate change on the spread of CE, or analyze
the geographical distribution of CE in China for our next study.
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