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Abstract: We presented a comprehensive theory for deriving closed-form expressions and
representations of the general solutions for a specific case of systems involving Riccati difference
equations of order m + 1, as discussed in the literature. However, our focus was on coefficients
dependent on the Jacobsthal sequence. Importantly, this system of difference equations represents
a natural extension of the corresponding one-dimensional difference equation, uniquely characterized
by its theoretical solvability in a closed form. Our primary objective was to demonstrate a direct
linkage between the solutions of this system and Jacobsthal and Lucas-Jacobsthal numbers. The
system’s capacity for theoretical solvability in a closed form enhances its distinctiveness and potential
applications. To accomplish this, we detailed offer theoretical explanations and proofs, establishing
the relationship between the solutions and the Jacobsthal sequence. Subsequently, our exploration
addressed key aspects of the Jacobsthal system, placing particular emphasis on the local stability of
positive solutions. Additionally, we employed mathematical software to validate the theoretical results
of this novel system in our research.
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1. Introduction

Difference equations and their systems have long been instrumental in addressing classical
challenges within combinatorics, probability, and time series analysis. These challenges span a
spectrum of problems, including doubly AutoRegressive [1], bilinear [2–6], bilinear-Generalized
AutoRegressive Conditional Heteroskedasticity [7,8], threshold GARCH [9], logGARCH [10,11], and
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stochastic volatility [12]. The quest for practical solutions to these scientific dilemmas underscores
the paramount importance of acquiring closed-form formulas for the solutions, serving as intricate
models for the problems at hand. The exploration of closed-form solutions for difference equations and
systems has a rich history, rooted in seminal works such as [13–16]. Subsequent literature dedicated
to difference equations, as well as broader topics like calculus, numerical mathematics, combinatorics,
and economics, has delved into these subjects in depth (see, for instance, [17–20]). While recent
years have witnessed a resurgence of interest within the mathematical community, with the field
steadily expanding and evolving (refer to [21–37] and related citations), the increased utilization of
computers, particularly leveraging symbolic algebra packages, has played a pivotal role in fueling
this renewed interest, facilitating a diverse range of computations. Consequently, the question of
solvability for difference equations and their systems has emerged as an intriguing subject, given that
many of these equations remain practically or theoretically unsolvable. Some scholars strive to, at a
minimum, identify specific constants, which in turn prove invaluable in scrutinizing and elucidating
the long-term behavior of solutions to these equations and systems (see, for example, [38, 39]).
Various methodologies exist for studying the prolonged behavior of solutions, as exemplified by works
such as [23, 40–51]. For practical applications of closed-form formulas, one may refer to sources
like [17, 18, 52–54].

An early example of a nonlinear difference equation with a comprehensively derived closed-form
solution is the bilinear equation

∀n ≥ 0, Ωn+1 =
α1 + α2Ωn

α3 + α4Ωn

where α1, α2, α3, α4, Ω0 ∈ R, and α2
3 + α2

4 , 0. This equation, commonly known as the Riccati
difference equation, has been extensively studied in the literature. Over the last two decades,
numerous papers have been published on such equations, systems, or systems derived from them
associated with number sequences, including Fibonacci, Lucas, Padovan, Tetranacci, Horadam, Pell,
Jacobsthal, and Jacobsthal-Lucas sequences (see citations in [29,30,48,55–61] and references therein).
Fibonacci numbers as well as Jacobsthal sequences remain of great interest for researchers due to their
theoretical richness and applications. The Fibonacci sequence in particular is an inexhaustible source of
interesting identities, constituting one of the most famous numerical sequences in mathematics. Similar
statements apply to Jacobsthal sequences, which scientists have utilized for their fundamental theory
and applications (see citations in [62–65]). In computer science, for instance, Jacobsthal numbers have
been employed in conditional instructions to change the flow of program execution. The properties of
these numbers were first summarized by Horadam.

In this paper, we extend the investigation of the solvability of a bilinear system of difference
equations, where the coefficients are dependent on the Jacobsthal sequence. We provide general
solutions using the Jacobsthal sequence. To achieve this objective, we examine the ensuing
m−dimensional system of difference equations:

∀n ≥ 0, Ω
(1)
n+1 =

Jk+2 + 2Jk+1Ω
(2)
n−m

Jk+3 + 2Jk+2Ω
(2)
n−m

, Ω
(2)
n+1 =

Jk+2 + 2Jk+1Ω
(3)
n−m

Jk+3 + 2Jk+2Ω
(3)
n−m

, ..., (1.1)

Ω
(s)
n+1 =

Jk+2 + 2Jk+1Ω
(1)
n−m

Jk+3 + 2Jk+2Ω
(1)
n−m

, k, m, s ∈ N0
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and the initial values Ω
( j)
−v, j ∈ {1, ..., s} , v ∈ {0, ...,m}.

Motivated by the above-mentioned investigations on solvability systems of difference equations,
the aim of this paper is to provide detailed theoretical explanations for obtaining closed-form formulas
and representations for the general solutions of Eq (1.1) and give natural proofs of the results. We also
demonstrate the main results on the long-term behavior, particularly local stability, of the solutions to
Eq (1.1).

2. Main results

To tackle the solution of the system (1.1), we need to leverage the insights provided by the following
lemmas.

Lemma 2.1. The recurrence relation for the Jacobsthal sequence is governed by a homogeneous linear
difference equation with constant coefficients:

∀k ≥ 0, Jk+2 = Jk+1 + 2Jk

with initial conditions J0 = 0 and J1 = 1. The closed-form expressions for the Jacobsthal numbers are
elegantly given as Jk =

(
αk − βk

)
/ (α − β), where α = 2 and β = −1. This yields significant relations

for n, p ∈ N,

• Jp+n = JpJn+1 + 2Jp−1Jn,
• J2

n = (−2)n−1 + Jn−1Jn+1,
• 2Jn−1 + Jn+1 = jn,

where ( jn) represents the Lucas-Jacobsthal sequence.

Lemma 2.2. Consider the homogeneous linear difference equation with constant coefficients

∀n ≥ 0, Ψn+1 − jkΨn − (−2)k Ψn−1 = 0, k > 3 (2.1)

with initial conditions Ψ0, Ψ−1 ∈ R
∗, then, the solution is given by:

∀n ≥ 0, Ψn =
λn+1

1 − λn+1
2

λ1 − λ2
Ψ0 − λ1λ2

λn
1 − λ

n
2

λ1 − λ2
Ψ−1

where 2λi = jk + (−1)i−1
√

j2
k + 12βk jk + 4, i = 1, 2, and ( jk, k ≥ 0) represents the Lucas-Jacobsthal

sequence.

Proof. The difference equation (2.1) is typically solved using the characteristic polynomial:

λ2 − jkλ − (−2)k = λ2 −
(
αk + βk

)
λ − αkβk

= (λ − λ1) (λ − λ2) = 0, k > 3

where λ1 and λ2 are the roots of this equation, linked to the Lucas-Jacobsthal number. The closed form
of the general solution for Eq (2.1) is given by

∀n ≥ −1, Ψn = cλn
1 + cλn

2
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where Ψ0, Ψ−1 are initial values such that

Ψ0 = c + c, Ψ−1 =
c
λ1

+
c
λ2

and we have
c = λ1

Ψ0 − λ2Ψ−1

λ1 − λ2
, c = −λ2

Ψ0 − λ1Ψ−1

λ1 − λ2
.

After some calculations, we obtain:

Ψn =
Ψ0 − λ2Ψ−1

λ1 − λ2
λn+1

1 −
Ψ0 − λ1Ψ−1

λ1 − λ2
λn+1

2 , ∀n ≥ −1

=

(
λn+1

1 − λn+1
2

)
Ψ0 − λ1λ2

(
λn

1 − λ
n
2

)
Ψ−1

λ1 − λ2
.

Thus the lemma is proven. �

Lemma 2.3. Consider the following rational difference equation,

Ωn+1 =
Jk + 2Jk−1Ωn

Jk+1 + 2JkΩn
, ∀n ≥ 0 (2.2)

then, the solution is given by:

∀n ≥ 1, Ωn =
2Jk

((
λn+1

1 − λn+1
2

)
− Jk+1

(
λn

1 − λ
n
2

))
Ω0

2Jk

(
2Jk

(
λn

1 − λ
n
2

)
Ω0 +

(
λn

1 − λ
n
2

)
Jk+1 − λ1λ2

(
λn−1

1 − λn−1
2

))
+

Jk+1

(
λn+1

1 − λn+1
2

)
−

(
J2

k+1 + λ1λ2

) (
λn

1 − λ
n
2

)
+ λ1λ2Jk+1

(
λn−1

1 − λn−1
2

)
2Jk

(
2Jk

(
λn

1 − λ
n
2

)
Ω0 +

(
λn

1 − λ
n
2

)
Jk+1 − λ1λ2

(
λn−1

1 − λn−1
2

)) .

Proof. Using the change of variables Φn = Jk+1 + 2JkΩn,∀n ≥ 0, we can express (2.2) as

Φn+1 =
(Jk+1 + 2Jk−1) Φn + 2

(
J2

k − Jk−1Jk+1

)
Φn

=
jkΦn + (−2)k

Φn
, ∀n ≥ 0. (2.3)

Furthermore, if Φn = Ψn/ Ψn−1,∀n ≥ 0, we obtain Ψn+1− jkΨn−(−2)k Ψn−1 = 0, ∀n ≥ 0. By Lemma 2.2,
the closed form of the general solution for Eq (2.3) is given by:

Φn =

(
λn+1

1 − λn+1
2

)
Ψ0 − λ1λ2

(
λn

1 − λ
n
2

)
Ψ−1(

λn
1 − λ

n
2

)
Ψ0 − λ1λ2

(
λn−1

1 − λn−1
2

)
Ψ−1

, ∀n ≥ 1

=

(
λn+1

1 − λn+1
2

)
Φ0 − λ1λ2

(
λn

1 − λ
n
2

)(
λn

1 − λ
n
2

)
Φ0 − λ1λ2

(
λn−1

1 − λn−1
2

)
AIMS Mathematics Volume 9, Issue 2, 3576–3591.
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then,

Ωn = (Φn − Jk+1) /2Jk, ∀n ≥ 1

=


(
λn+1

1 − λn+1
2

)
Φ0 − λ1λ2

(
λn

1 − λ
n
2

)(
λn

1 − λ
n
2

)
Φ0 − λ1λ2

(
λn−1

1 − λn−1
2

) − Jk+1

/ 2Jk

=

((
λn+1

1 − λn+1
2

)
− Jk+1

(
λn

1 − λ
n
2

))
Φ0 − λ1λ2

((
λn

1 − λ
n
2

)
− Jk+1

(
λn−1

1 − λn−1
2

))
2Jk

((
λn

1 − λ
n
2

)
Φ0 − λ1λ2

(
λn−1

1 − λn−1
2

))
=

2Jk

((
λn+1

1 − λn+1
2

)
− Jk+1

(
λn

1 − λ
n
2

))
Ω0

2Jk

(
2Jk

(
λn

1 − λ
n
2

)
Ω0 +

(
λn

1 − λ
n
2

)
Jk+1 − λ1λ2

(
λn−1

1 − λn−1
2

))
+

Jk+1

(
λn+1

1 − λn+1
2

)
−

(
J2

k+1 + λ1λ2

) (
λn

1 − λ
n
2

)
+ λ1λ2Jk+1

(
λn−1

1 − λn−1
2

)
2Jk

(
2Jk

(
λn

1 − λ
n
2

)
Ω0 +

(
λn

1 − λ
n
2

)
Jk+1 − λ1λ2

(
λn−1

1 − λn−1
2

)) .

Therefore, the lemma is proven. �

2.1. On the system (2.4)

In this subsection, we examine the following system of 1st-order difference equations:

∀n ≥ 0, Ω
(1)
n+1 =

Jk+2 + 2Jk+1Ω
(2)
n

Jk+3 + 2Jk+2Ω
(2)
n

, Ω
(2)
n+1 =

Jk+2 + 2Jk+1Ω
(3)
n

Jk+3 + 2Jk+2Ω
(3)
n

, ...,

Ω
(s)
n+1 =

Jk+2 + 2Jk+1Ω
(1)
n

Jk+3 + 2Jk+2Ω
(1)
n

, k, s ∈ N0. (2.4)

Now, utilizing the last difference equation in (2.4), we obtain:

Ω
(s−1)
n+1 =

Jk+2 + 2Jk+1Ω
(s)
n

Jk+3 + 2Jk+2Ω
(s)
n

=
J2k+4 + 2J2k+3Ω

(1)
n−1

J2k+5 + 2J2k+4Ω
(1)
n−1

, ∀n ≥ 1.

Similarly, we get:

Ω
(s−2)
n+1 =

Jk+2 + 2Jk+1Ω
(s−1)
n

Jk+3 + 2Jk+2Ω
(s−1)
n

=
J3k+6 + 2J3k+5Ω

(1)
n−1

J3k+7 + 2J3k+6Ω
(1)
n−1

, ∀n ≥ 2

and recursively for the above, we can get

Ω
(1)
n+1 =

Js(k+2) + 2Js(k+2)−1Ω
(1)
n−(s−1)

Js(k+2)+1 + 2Js(k+2)Ω
(1)
n−(s−1)

, ∀n ≥ s − 1.

System (2.4) can be expressed as the following rational difference equation of sth−order:

Ωn+1 =
Js(k+2) + 2Js(k+2)−1Ωn−(s−1)

Js(k+2)+1 + 2Js(k+2)Ωn−(s−1)
, ∀n ≥ s − 1.
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Let Ωn (i) = Ωsn+i, i ∈ {0, 1, ..., s − 1} . For this, we have

∀n ≥ 0, Ωn+1 (i) =
Js(k+2) + 2Js(k+2)−1Ωn (i)
Js(k+2)+1 + 2Js(k+2)Ωn (i)

, i ∈ {0, 1, ..., s − 1} . (2.5)

By Lemma 2.3, the closed form of the general solution of Eq (2.5) is easily obtained. In the following
corollary:

Corollary 2.1. Let {Ωn, n ≥ 0} be a solution of Eq (2.5), then, for i ∈ {0, 1, ..., s − 1},

∀n ≥ s − 1, Ωsn+i =
2Js(k+2)

((
λn+1

1 − λn+1
2

)
− Js(k+2)+1

(
λn

1 − λ
n
2

))
Ωi

2Js(k+2)

(
2Js(k+2)

(
λn

1 − λ
n
2

)
Ωi +

(
λn

1 − λ
n
2

)
Js(k+2)+1 − λ1λ2

(
λn−1

1 − λn−1
2

))
+

Js(k+2)+1

(
λn+1

1 − λn+1
2

)
−

(
J2

s(k+2)+1 + λ1λ2

) (
λn

1 − λ
n
2

)
+ λ1λ2Js(k+2)+1

(
λn−1

1 − λn−1
2

)
2Js(k+2)

(
2Js(k+2)

(
λn

1 − λ
n
2

)
Ωi +

(
λn

1 − λ
n
2

)
Js(k+2)+1 − λ1λ2

(
λn−1

1 − λn−1
2

))
where (Jk, k ≥ 0) is the Jacobsthal sequence.

Through the above discussion, we can introduce the following theorem:

Theorem 2.1. Let
{
Ω

(1)
n , Ω

(2)
n , ..., Ω

(s)
n , n ≥ 0

}
be a solution of the system (2.4), then, for all n ≥ 0,

Ω
(1)
sn+i =


4Js(k+2)Ji(k+2)−1

((
λn+1

1 − λn+1
2

)
− Js(k+2)+1

(
λn

1 − λ
n
2

))
Ω

(i+1)
0

+λ1λ2Js(k+2)+1

(
λn−1

1 − λn−1
2

)
+

(
Js(k+2)+1 + 2Js(k+2)Ji(k+2)

) (
λn+1

1 − λn+1
2

)
−

(
J2

s(k+2)+1 + 2Js(k+2)Ji(k+2)Js(k+2)+1 + λ1λ2

) (
λn

1 − λ
n
2

)


×


2


(
4J2

s(k+2)Ji(k+2)−1 + Js(k+2)+1Ji(k+2)

) (
λn

1 − λ
n
2

)
−λ1λ2Ji(k+2)

(
λn−1

1 − λn−1
2

)  Ω
(i+1)
0

+
(
4J2

s(k+2)Ji(k+2) + Js(k+2)+1Ji(k+2)+1

) (
λn

1 − λ
n
2

)
−λ1λ2Ji(k+2)+1

(
λn−1

1 − λn−1
2

)


−1

for i ∈ {0, 1, ..., s − 1}, l ∈ {1, ..., s} where (Jk, k ≥ 0) is the Jacobsthal sequence.

Proof. From Corollary 2.1, for i ∈ {0, 1, ..., s − 1}, l ∈ {1, ..., s}, we have

∀n ≥ s − 1, Ω
(1)
sn+i =

2Js(k+2)

((
λn+1

1 − λn+1
2

)
− Js(k+2)+1

(
λn

1 − λ
n
2

))
Ω

(1)
i

2Js(k+2)

(
2Js(k+2)

(
λn

1 − λ
n
2

)
Ω

(1)
i +

(
λn

1 − λ
n
2

)
Js(k+2)+1 − λ1λ2

(
λn−1

1 − λn−1
2

))
+

Js(k+2)+1

(
λn+1

1 − λn+1
2

)
−

(
J2

s(k+2)+1 + λ1λ2

) (
λn

1 − λ
n
2

)
+ λ1λ2Js(k+2)+1

(
λn−1

1 − λn−1
2

)
2Js(k+2)

(
2Js(k+2)

(
λn

1 − λ
n
2

)
Ω

(1)
i +

(
λn

1 − λ
n
2

)
Js(k+2)+1 − λ1λ2

(
λn−1

1 − λn−1
2

))
and by system (2.4), we get

Ω
(1)
i =

Ji(k+2) + 2Ji(k+2)−1Ω
(i+1)
0

Ji(k+2)+1 + 2Ji(k+2)Ω
(i+1)
0

, i ∈ {0, 1, ..., s − 1} , l ∈ {1, ..., s} .
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Now, using Ω
(1)
i , i ∈ {0, 1, ..., s − 1}, l ∈ {1, ..., s}, we obtain

∀n ≥ s − 1,

Ω
(1)
sn+i =

2Js(k+2)

((
λn+1

1 − λn+1
2

)
− Js(k+2)+1

(
λn

1 − λ
n
2

)) Ji(k+2) + 2Ji(k+2)−1Ω
(i+1)
0

Ji(k+2)+1 + 2Ji(k+2)Ω
(i+1)
0

2Js(k+2)

2Js(k+2)

(
λn

1 − λ
n
2

) Ji(k+2) + 2Ji(k+2)−1Ω
(i+1)
0

Ji(k+2)+1 + 2Ji(k+2)Ω
(i+1)
0

+
(
λn

1 − λ
n
2

)
Js(k+2)+1 − λ1λ2

(
λn−1

1 − λn−1
2

)
+

Js(k+2)+1

(
λn+1

1 − λn+1
2

)
−

(
J2

s(k+2)+1 + λ1λ2

) (
λn

1 − λ
n
2

)
+ λ1λ2Js(k+2)+1

(
λn−1

1 − λn−1
2

)
2Js(k+2)

2Js(k+2)

(
λn

1 − λ
n
2

) Ji(k+2) + 2Ji(k+2)−1Ω
(i+1)
0

Ji(k+2)+1 + 2Ji(k+2)Ω
(i+1)
0

+
(
λn

1 − λ
n
2

)
Js(k+2)+1 − λ1λ2

(
λn−1

1 − λn−1
2

)
then,

∀n ≥ s − 1, Ω
(1)
sn+i =


4Js(k+2)Ji(k+2)−1

((
λn+1

1 − λn+1
2

)
− Js(k+2)+1

(
λn

1 − λ
n
2

))
Ω

(i+1)
0

+λ1λ2Js(k+2)+1

(
λn−1

1 − λn−1
2

)
+

(
Js(k+2)+1 + 2Js(k+2)Ji(k+2)

) (
λn+1

1 − λn+1
2

)
−

(
J2

s(k+2)+1 + 2Js(k+2)Ji(k+2)Js(k+2)+1 + λ1λ2

) (
λn

1 − λ
n
2

)


×


2


(
4J2

s(k+2)Ji(k+2)−1 + Js(k+2)+1Ji(k+2)

) (
λn

1 − λ
n
2

)
−λ1λ2Ji(k+2)

(
λn−1

1 − λn−1
2

)  Ω
(i+1)
0

+
(
4J2

s(k+2)Ji(k+2) + Js(k+2)+1Ji(k+2)+1

) (
λn

1 − λ
n
2

)
−λ1λ2Ji(k+2)+1

(
λn−1

1 − λn−1
2

)


−1

.

The theorem is proved. �

2.2. On the system (1.1)

In this article, we study the system (1.1), which is an extension of system (2.4). Therefore, the
system (1.1) can be written as follows:

∀n ≥ 0, Ω
(1)
(m+1)(n+1)−u =

Jk+2 + 2Jk+1Ω
(2)
(m+1)n−u

Jk+3 + 2Jk+2Ω
(2)
(m+1)n−u

, Ω
(2)
(m+1)(n+1)−u =

Jk+2 + 2Jk+1Ω
(3)
(m+1)n−u

Jk+3 + 2Jk+2Ω
(3)
(m+1)n−u

, ..., (2.6)

Ω
(s)
(m+1)(n+1)−u =

Jk+2 + 2Jk+1Ω
(1)
(m+1)n−u

Jk+3 + 2Jk+2Ω
(1)
(m+1)n−u

for u ∈ {0, 1, ..., m} . Now, using the following notation for all n ≥ 0,

Ω(1)
n (u) = Ω

(1)
(m+1)n−u, Ω(2)

n (u) = Ω
(2)
(m+1)n−u, ..., Ω(s)

n (u) = Ω
(s)
(m+1)n−u, u ∈ {0, 1, ..., m}

we can get (m + 1)−systems similar to system (2.4),

∀n ≥ 0, Ω
(1)
n+1 (u) =

Jk+2 + 2Jk+1Ω
(2)
n (u)

Jk+3 + 2Jk+2Ω
(2)
n (u)

, (2.7)
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Ω
(2)
n+1 (u) =

Jk+2 + 2Jk+1Ω
(3)
n (u)

Jk+3 + 2Jk+2Ω
(3)
n (u)

, ...,

Ω
(s)
n+1 (u) =

Jk+2 + 2Jk+1Ω
(1)
n (u)

Jk+3 + 2Jk+2Ω
(1)
n (u)

for u ∈ {0, 1, ..., m} . Through the above discussion, we can introduce the following theorem:

Theorem 2.2. Let
{
Ω

(1)
n , Ω

(2)
n , ..., Ω

(s)
n , n ≥ 0

}
be a solution of system (1.1), then, for u ∈ {0, 1, ..., m},

i ∈ {0, 1, ..., s − 1}, l ∈ {1, ..., s},

∀n ≥ 0, Ω
(l)
(m+1)(sn+i)−u =


4Js(k+2)Ji(k+2)−1

((
λn+1

1 − λn+1
2

)
− Js(k+2)+1

(
λn

1 − λ
n
2

))
Ω

(i+l) mod(s)
−u

+λ1λ2Js(k+2)+1

(
λn−1

1 − λn−1
2

)
+

(
Js(k+2)+1 + 2Js(k+2)Ji(k+2)

) (
λn+1

1 − λn+1
2

)
−

(
J2

s(k+2)+1 + 2Js(k+2)Ji(k+2)Js(k+2)+1 + λ1λ2

) (
λn

1 − λ
n
2

)


×


2


(
4J2

s(k+2)Ji(k+2)−1 + Js(k+2)+1Ji(k+2)

) (
λn

1 − λ
n
2

)
−λ1λ2Ji(k+2)

(
λn−1

1 − λn−1
2

)  Ω
(i+l) mod(s)
−u

+
(
4J2

s(k+2)Ji(k+2) + Js(k+2)+1Ji(k+2)+1

) (
λn

1 − λ
n
2

)
−λ1λ2Ji(k+2)+1

(
λn−1

1 − λn−1
2

)


−1

where (Jk, k ≥ 0) is the Jacobsthal sequence.

2.3. Local stability of positive solutions of (1.1)

In the following, we will study the local stability character of the solutions of system (1.1).
Obviously, the unique positive equilibrium of system (1.1) is

E =

(
Ω

(1)
, Ω

(2)
, ..., Ω

(s)
)

= −γ1′(s)

where γ =
(
1 −
√

7
)
/4 and 1(s) denotes the vector of order s × 1 whose entries are ones. Let the

functions Γ j : (0,+∞)s(m+1)
→ (0,+∞), j ∈ {1, ..., s} be defined by

Γ j

((
y(1)

0:m

)′
,
(
y(2)

0:m

)′
, ...,

(
y(s)

0:m

)′)
=

Jk+2 + 2Jk+1y( j+1) mod s
m

Jk+3 + 2Jk+2y( j+1) mod s
m

, j ∈ {1, ..., s}

where y
0:m

= (y0, y1, ..., ym)′ . To facilitate the study, it is customary to linearize the system (1.1)

around the equilibrium point E. Introducing the vectors Y ′n :=
((

Y (1)
n

)′
,

(
Y (2)

n

)′
, ...,

(
Y (s)

n

)′)
where

Y ( j)
n =

(
y( j)

n , y( j)
n−1, ..., y( j)

n−m

)
, j ∈ {1, ..., s}, we obtain the following representation

Yn+1 = ΛmYn (2.8)
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where

Λm =



O′(m−1) 0 O′(m−1)
(−2)k

(Jk+3+2γJk+2)2 · · · O′(m−1) 0 O′(m−1) 0
I(m−1) O(m−1) O(m−1) O(m−1) · · · O(m−1) O(m−1) O(m−1) O(m−1)
...

...
...

...
. . .

...
...

...
...

O(m−1) 0 O′(m−1) 0 · · · O′(m−1) 0 O′(m−1)
(−2)k

(Jk+3+2γJk+2)2

O(m−1) O(m−1) I(m−1) O(m−1) · · · I(m−1) O(m−1) O(m−1) O(m−1)

O′(m−1)
(−2)k

(Jk+3+2γJk+2)2 O(m−1) 0 · · · O(m−1) 0 O′(m−1) 0
O(m−1) O(m−1) O(m−1) O(m−1) · · · O(m−1) O(m−1) I(m−1) O(m−1)


with O(k,l) denoting the matrix of order k× l whose entries are zeros. For simplicity, we set O(k) := O(k,k)

and O(k) := O(k,1), and I(m) is the m × m identity matrix. We summarize the above discussion in the
following theorem:

Theorem 2.3. The positive equilibrium point E is locally asymptotically stable.

Proof. After some preliminary calculations, the characteristic polynomial of Λm is given by:

PΛm (λ) = det
(
Λm − λI(s(m+1))

)
= (−1)s(m+1) χ1 (λ) + (−1)m χ2,k (λ)

where

χ1 (λ) = λs(m+1), and χ2,k (λ) =
(−2)ks

(Jk+3 + 2γJk+2)2s

then ∣∣∣χ2,k (λ)
∣∣∣ < |χ1 (λ)| , ∀λ : |λ| = 1.

According to Rouche’s Theorem, all zeros of χ1 (λ) − χ2,k (λ) = 0 lie in the unit disc |λ| < 1. Thus, the
positive equilibrium point E is locally asymptotically stable. �

3. Numerical simulation results

For the purpose of numerical solutions, we provide illustrative examples to visually validate the
theoretical outcomes for each system under consideration in this manuscript.

Illustrative Example 1: The figure below depicts the numerical solution of Eq (2.2) when k = 2
under specified initial condition Ω0 = −0.09 (refer to Figure 1).

Illustrative Example 2: The figure below depicts the numerical solution of system (2.4) when
k = s = 2 under specified initial conditions Ω

(1)
0 = −0.5 and Ω

(2)
0 = 1.3 (refer to Figure 2).

Illustrative Example 3: The figure below depicts the numerical solution of system (1.1) when
k = s = 2 and m = 1 under specified initial conditions Ω

(1)
−1 = 1/4, Ω

(1)
0 = −0.7, Ω

(2)
−1 = −0.8, and

Ω
(2)
0 = 1/6 (refer to Figure 3).

Illustrative Example 4: The figure below depicts the numerical solution of system (1.1) when
m = k = 2 and s = 3 under specified initial conditions Ω

(1)
−2 = 14, Ω

(1)
−1 = −7, Ω

(1)
0 = 11, Ω

(2)
−2 = −8,

Ω
(2)
−1 = 16, Ω(2)

0 = −4, Ω(3)
−2 = 5, Ω(3)

−1 = 2, and Ω
(3)
0 = 1 (refer to Figure 4).
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Figure 1. Graphical representation of the solution of equation when k = 2 under specified
initial condition Ω0 = −0.09.
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Figure 2. Graphical representation of the solution of system (2.4) when k = s = 2 under
specified initial conditions Ω

(1)
0 = −0.5 and Ω

(2)
0 = 1.3.
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Figure 3. Graphical representation of the solution of system (1.1) when k = s = 2 and m = 1
under specified initial conditions Ω

(1)
−1 = 1/4, Ω

(1)
0 = −0.7, Ω

(2)
−1 = −0.8, and Ω

(2)
0 = 1/6.
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Figure 4. Graphical representation of the solution of system (1.1) when m = k = 2 and
s = 3 under specified initial conditions Ω

(1)
−2 = 14, Ω

(1)
−1 = −7, Ω

(1)
0 = 11, Ω

(2)
−2 = −8, Ω

(2)
−1 =

16,Ω(2)
0 = −4, Ω

(3)
−2 = 5,Ω(3)

−1 = 2, and Ω
(3)
0 = 1.
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4. Conclusions

In this paper, we have conducted a detailed analysis of the system (1.1), building upon the
foundational concepts introduced in system (2.4). Our primary focus was on the positive equilibrium
state denoted as E. Our investigation into the local stability of the system around the equilibrium point
E has yielded significant results. Utilizing Rouché’s theorem, we have established the local asymptotic
stability of the positive equilibrium. This insight enhanced our comprehension of the system’s behavior
in the vicinity of positive equilibrium states. The implications of our findings extend to the broader
realm of dynamical systems and stability within applied mathematics.

By offering a comprehensive analysis of the system’s stability, this study established a solid
foundation for future research endeavors, and contributed to the advancement of mathematical
understanding. Ultimately, this investigation represents a meaningful contribution to the field of
mathematical dynamics. The outcomes presented herein serve as a springboard for further exploration
and research initiatives.
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