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1. Introduction

The aim of this paper is to establish some new results that focus on boundedness and compactness
for the iterated commutators of the #-type Calderén-Zygmund singular integral and its fractional variant
on the weighed Morrey spaces. Let us recall some definitions and the background. For 0 < @ < n, the
0-type Calderon-Zygmund integral operator Tk, is defined by

T = [ Kueyf )y for x ¢ supps (1)

RV!

with kernel K, satisfying the size condition

C
Ko, y)] £ —— (1.2)
lx =yl
and a smoothness condition
lx — z] 1

IKa(x,3) = Kalz )| + 1Ka(y, %) = Koy, 2)| < 6(——) (1.3)

lx =y’ |x = |-’

for all
lx =yl > 2[x — 2],
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where 6: [0, 1] — [0, c0) is a modulus of continuity, that is, 6 is a continuous, increasing, subadditive
function with 8(0) = 0 that satisfies the Dini condition

1
dt
f 0(t)— < oo,
0 t

When @ = 0, we denote Ty, = Tx. If Tx is bounded on L*(R"), then Tk is just the 6-type
Calder6én-Zygmund operator. When @ € (0, 1), the operator Tk, is the 6-type fractional integral
operator.  Particularly, when 6(t) =  for some § > 0, the operator Tx is the classical
Calder6n-Zygmund singular integral operator. It was shown in [1,2] that T is bounded on L”(w) for
I <p<ooandw e A,(R"). When a € (0, 1), we get from (1.2) that

Ty, | < Ck,Llf,

where [, is the classical fractional integral operator defined by

L,(N)(x) = f lﬂ%dy
re X =yl

As an immediate consequence of the boundedness for /,, we have that Tk, is bounded from L?(w”) to
Liw?) forl <p<g<oo,1/g=1/p—a/nandw € A, ,(R"). Here we recall two definitions.

Definition 1.1. (A,(R") weight) ([3]) A weight is a nonnegative, locally integrable function on R" that
takes values in (0, co) almost everywhere. For 1 < p < oo, a weight w is said to be in the Muckenhoupt
weight class A,(R") if there exists a positive constant C such that

sup (éLw(x)dx)(éLw(x)l_pldx)p_l <C. (1.4)

Q cubes in R"

The smallest constant C in the inequality (1.4) is the corresponding A, constant of w, which is denoted
by [wla,-

Definition 1.2. (4, ,(R") weight) ([4]) LetO <a <n,1 < p,g<ooand 1/q=1/p — a/n. A weight w
is said to be in the Muckenhoupt weight class A, ,(R") if there exists a positive constant C such that

I I , :
sup (|—Q| fQ wq(x)dx)(|—Q| fQ w? (dx)"" <. (1.5)

Q cubes in R"

The smallest constant C in the inequality (1.5) is the corresponding A, , constant of w, which is denoted
by [wl4,,-

On the other hand, investigation into the boundedness and compactness of the commutators has
been the subject of many recent papers in the field of harmonic analysis. In 1976, Coifman et al. [5]
first introduced the following commutator

[0, T1(F)(x) = bT f(x) = T(bf)(x)

with the suitable operator 7" and function b. More precisely, they established the L” boundedness for
[b, T] with T denoting the Riesz transform for 1 < p < oo if and only if » € BMO(R"). Later on,
Uchiyama [6] improved the above result by showing that [b, To] with T being the rough singular
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integral operator with rough kernel Q € Lip,(S"™") is bounded (resp., compact) on L”(R") for all
p € (1,00) if and only if the symbol b € BMO(R") (resp., b € CMO(R")). Here CMO(R") is the
closure of C°(R") in the BMO(R") topology, which coincides with the space of functions of vanishing
mean oscillation. Since then, a considerable amount of attention has been focused on studying
boundedness and compactness for the commutators of various operators. For examples, see [7-9] for
the L” boundedness of the commutators of the rough singular integral and [10-17] for the L”
compactness of the commutators of various integral operators. Other interesting works related to this
topic are [18-24]. Let us recall the definition of BMO(R").

Definition 1.3. (BMO(R") space) ([25]) The BMO(R") space is given by

BMOR") := {f e L, R") : ”f”BMO(]R”) = ”Mﬁf”L""(R") < oo},

loc

where M? f is the sharp maximal function, i.e.,

Mﬁf(x) = sup !

w fQ £ = foldy.

where the supremum is taken over all cubes Q in R” that contain the given point x.

In this paper we focus on the commutators of the 6-type integral operators. More precisely, let T,
be defined in (1.1). For a locally integrable function b defined on R”, the commutator [b, Tk, ] is given
by

[D, Tk, 1(/)(x) := b(X) Tk, (f)(x) = Tk, (bf)(x)

for suitable functions devoted by f. Let N = {0, 1,---} and m € N \ {0}. The m-th iterated commutator
(Tk,); 1s defined by

Ty (f) = [0, (T, )y 1) (Tr)p(f) = [b. Tk, ().
For convenience, we denote
(Tk,), =Tk,

when m = 0.
Very recently, Guo et al. [14] showed that

Theorem A. ([14]) Let0 <a<n,meN\{0}, 1 <p<g<oo, 1/g=1/p—a/nandw € A, ,(R").
(1) If b € BMO(R"), then

1Tk, )y llzaowsy < Cllblgpogn L llerar, Y € LP(WP).

(i1) If b € BMO(R"), then (Tx,)] is a compact operator from LP(wF) to L(w?).

The primary motivation of this note is to establish the corresponding results for (T, );' on weighted
Morrey spaces. Let us recall one definition.

Definition 1.4. (Weighted Morrey spaces) ([26]) Let w, v be two weights on R"”. For 1 < p < oo and
0 < B < 1, the weighted Morrey space MP#(w,v) is defined as

MPE(w,v) := (f € Lj W) < || fllarson < o0},

loc
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where

||f||Mpﬂ( vy = sup
" B balls in R” V(B)B

jﬁmwmm :
where the supremum is taken over all balls in R”.

This type of Morrey space was originally introduced by Komori and Shirai [26] who established
that the fractional maximal operator M,, with 0 < « < n is bounded from MPA(wP, w?) to M%9P/P(w9),
provided that 1 < p < g < oo, 1/g = 1/p—a/nandw € A, (R"). When w = v, then MPP(w,v)
reduces to the classical weighted Morrey space MP#(w), which was also introduced by Komori and
Shirai [26] who established the boundedness for the Hardy-Littlewood maximal operator and the
Calderén-Zygmund singular integral operator on MP#(w). When w = 1, the space M”#(w) reduces to
the classical Morrey space MP#(R"), which was first introduced by Morrey [27] to study the local
behavior of solutions to second order elliptic partial differential equations. In 1991, Di Fazio and
Ragusa [28] presented a characterization of MP#(R") boundedness for [b,Tq]. Since then, the
characterizations of boundedness and compactness of [b, T] on Morrey spaces MP#(R") have been
studied by many authors (see [29-31]).

In this paper we establish the following results.

Theorem 1.1. Letm e N,0<a<n 1<p<g<oo l/g=1/p—a/n, 0<B<p/qgandw € A, ,(R").
Let T, be a linear or sublinear operator satisfying

|mmmuafT]M)b@Nmﬂa» (1.6)

where b = (b1, -+, by) with each b; € BMO(R"). When m = 0, we denote T = T. If T, satisfies

T ()l zagwey < Ca l_[ 16 /llsmo@n Il fllrourys Y f € LP(WP), (L.7)

j=1

then for any f € MPP(wP, w9),

ITon(llssaaerouay < C(Cr, C2,8) H 1 jllmo@ L llazreor wa)- (1.8)

J=1

Theorem 1.2. Letm e N,0<a<n 1<p<g<oo, l/g=1/p—a/n, 0<B<p/qgandw € A, ,(R").
(1) If b € BMO(R"), then

Tk, Yy (P pgaasioguay < ClBlgao@n L lrsgor ways Y € MPE(W, w).

(i) If m € N\ {0} and b € BMOR"), then (Tx,);' is a compact operator from MPBwP wi) to
MEPBIP (),

We would like to remark that Theorem 1.1 provides a boundedness criterion for a class of sublinear
operators on weighted Morrey spaces. In fact, Theorem 1.1 can apply to the multilinear commutator.

Let m € N\ {0} and Tk, be defined as (1.1). For a vector function b= (by,--+ ,by) with each b; €
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BMO(R"), the multilinear commutator (TKH)? is defined as
(T, VF ()X) = [y - - [, [b1, Tk, 11+ -+ 1(x)
f H(b 0= bo) 0 (y| —fo)dy.

Clearly,
(Tg,)! = (Tx, )}

ifb = (b1,-+- ,by) withb; = bfor 1 < j < m. Recently, Guo et al. [14] proved that (TKG)%" is bounded
from LP(w”) to Liw?) for0 <a <n,1 < p<g<oo,1/qg=1/p—-a/nandw € A, ,(R"), provided
that each b; € BMO(R") for all 1 < j < m (see [14, Theorem 5.3]). It is clear that (TKU)Z? satisfies the
condition (1.6). These facts, together with Theorem 1.1 and a slight modification of the proof of the
compactness part in Theorem 1.2, directly imply the following result.
Corollary 1.1. Letm e N, 0<a<n 1 <p<g<oo, 1/g=1/p—a/nandw € A, ,(R").

(1) Ifl; = (b1, ,by) with each b; € BMO(R"), then

1Tk, llsaasioguny < € 1—[ 16 jllsson) L arrs e wr)
j=1

holds for all f € MPP(wP, w9).

@) If b = (b1, ,by) with each b; € CMO(R"), then (TKH)’;1 is a compact operator from
Mpﬁ(wp, w) to Mq,qﬁ/p(wq).
Remark 1.1. When 8 = 0, Theorem 1.2 implies Theorem A. There are some examples that satisfy the
conditions of Theorem 1.2, such as w = |x|” with y € (o — %, n-— %). By Lemma 2.2, it is not difficult
to verify that [x[" € A, ,(R") forO0 <a<n,1<p<g<oo,1/g=1/p—a/nandy € (a - %,n - 1%)'

As an application of Theorem 1.2, we have the corresponding results for the #-type Calderéna-
Zygmund operator and its commutators.
Corollary 1.2. Letm e N, 1 <p<o0,0<gB < 1landw € A,(R").

(1) If b € BMO(R"), then

TR llaarsay < CllbIEvoEn | lrson, Y € MPP(w).
(i) If m € N \ {0} and b € BMO(R"), then (T)}' is a compact operator from MPP(w) to MPB(w).

The paper is organized as follows. In Section 2 we present some definitions and lemmas, which
are the main ingredients we used to prove our main results. The proofs of Theorems 1.1 and 1.2 will
be given in Section 3. We remark that some ideas of our methods are taken from [14, 15, 32], but our
methods and techniques are more delicate and complex than that of [14, 15, 32].

Throughout the paper, for any p € (1, o] we let p” denote the conjugate index of p which satisfies
that 1/p + 1/p” = 1 (here we set co’ = 1). The letter C will denote a positive constant that is not
necessarily the same at each occurrence but is independent of the essential variables. For
x=(x;,---,x, we set

|X|ee = max |x;].
1<i<n
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2. Materials and methods

In order to prove Theorem 1.2, we need the following properties for A,(R") and A, ,(R") weights.

Lemma 2.1. ([32]) Let 1 < p < coand w € A,(R"). Then, the following holds

(i) There exists a constant 6 € (0, 1) such that w'*’ € A,(R"). Both 6 and [w'*®],  depend only on
n, p and the A, constant of w.

(i1) There exists a constant € € (0, 1) such that w € A,_(R").

(ii1) The measure w(x)dx is doubling, i.e., for all 1 > 1 we have

w1Q) _

u
Q cubes in R” W(Q)

< [wla, ™.

(iv) There exists a constant y,, > 1 such that

inf w20)
Q cubes in R” W(Q) -

we

(v) Let b e BMO(R"). Then we have

b(x) = bol w(x)d 1o, IBllmyos)-
chi::lspm R7 W(Q)fl (x) = bol "w(x) x) =p.wla, lBllBMoOR)

Lemma 2.2. ([4]) LetO<a <n, 1 <p,g<oo, 1/g=1/p—a/nandw € A, (R"). Then, the following
holds true:

(1) w” € A,(R"), w? € A,(R") and w™P € A, (R").
(i1)
weA, (R") & w!e€AjauR")
S W€ AyyRY) © w7 € Ay RY).
For convenience, we always use the weighted Morrey spaces associated with cubes. Let 1 < p < oo

and 0 < B < 1. For two weights w and v defined on R", the weighted Morrey space associated with
cubes is defined by

MPEw,v) 1= {f € L ) ¢ Ifllfinsguy < ),

where

W l5zes0w0) = sUp
PEG) Q cubes in R” V(Q)ﬁ

where the supremum is taken over all cubes in R".

f FCPwod) ",

Remark 2.1. If the weight w is doubling, then we have that MP#(w, v) = MPA(w,v), i.e.,

I 2080wy = 1Fbar6cu)s 2.1)

which can be seen by the doubling property for w and the following observation
Q(-x07 r) c B(an \/ﬁ/zr) - Q(X(), \/ﬁr)’ V-XO € Rn, r>0.
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To end this section, we shall present the characterization that a subset in MP#(w) is a strongly
pre-compact set, which plays a key role in the proof of compactness part of Theorem 1.2.

Proposition 2.1. ([32]) Let 1 < p <00, 0 < B < 1andw € A,(R"). Then a subset F of MPE(w) is a
strongly pre-compact set in MPP(w) if ¥ satisfies the following conditions:
(1) sup || fllarsqw) < o0;
feF
(ii) For any f € F, we have that

Nl_iglw ||fXEN||Mp-ﬁ(w) =0,

where Ey = {x € R"; |x| > N}.
(iii) For any f € F, we have that

lim sup [If(- +h) = fOllursen = 0

0 heB(0,r)
3. Proofs of main results
In this section we present the proofs of Theorems 1.1 and 1.2. We first prove Theorem 1.1.

Proof of Theorem 1.1. Let f € MpB wP,w?), B € (0,p/q) andw € A, ,(R"). Fix a cube Q = Q(xo, r).
We divide the proof into two parts:

Step 1. Proof of (1.8) for m = 0. By Remark 2.1, to prove (1.8), it is enough to show that

(wq(Q)qﬁ/Pf T ) " < Ol (3.1)

where C > 0 is independent of x, and r.
We write f as

f=Ix20+ fxeor
Then we have

( q(Q)qﬁ/pflT(f)(x)|qu(X)dx)

l/q
fQ | T(Frap) (0w (x)d)

< (;
- Wq(Q)qﬁ/p (3.2)

1
+(W Q| T(f)((zg)v)(X)Iqwq(x)dx)l/q

By Lemma 2.2(i), we have that w? € A,(R"). By Lemma 2.1(iii), we see that

wi(2Q)

wig) = I
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This together with the condition (1.7) with m = O implies that

1
h= <W f TH@IW(d)

f FCPw(xdx)

q(Q)B/p
(Gt Q)B f F@Pw ()"
w(20),
SCZ(( wi(0) w‘l(2Q)ﬁf |f(x)|l’wp(x)dx)

< C(CZ’ n,p, qaﬁa [wq Aq)Hf“MP#(WP,WfJ)'

We now estimate I,. Fix x € Q, in view of the condition (1.6) with m = 0, we have

T(fxoy)(x) < C; f I/ @)

o X ="

Note that

1
|x — 2] > |x = Z]e 2 |2 — Xoloo — |X = Xploo > §|Z_x0|oo

for z € (2Q)°. By (3.4), we have

T(fxox)(x) < 2"7°C; Z f /(@)

=0 Y2'rslz—xolew<2*!r |Z - x0|go_f’

<2y @ [ i
=0

21+1 Q

Fix [ € N. Using Holder’s inequality, one has

[ veues( [ rorved) ([ wred)
21+I Q 21+1 Q 2/+1 Q

. 1/p
WL s [ w7 )
21+1Q

’

/p

Since w € A, ,(R"), then

. 1/17/ _a —
(f[ wP (Z)dZ) < [W]X:}qlleQll nw(Z(zH—lQ) l/q.
2+]Q ’

Combining (3.7) with (3.6) yields

wa)*

f F@ldz < [w]? R QI w2 0)"
21+1Q

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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In light of (3.5) and (3.8) we have

T(freon <27C Y @ [ (s
=0

2/+1Q
< C(Cy,n,q, [W]Ap,q)”f”i[pm (wP )

X Z(zlr)a—nlel Qll—f q(2l+1 Q)

qﬁ/p

qB/p=1
< C(Crym @, W, Nl gins0m Z w21 Q)"
=0

Note that gB/p < 1. Invoking Lemma 2.1(iv) and (3.9), we have

had Wq(21+1 0) 98/p=1
12 < C(Cla n,a,p,q, [W]Ap’q)l|f||]t7[[’ﬁ(wl7,w(1) Z (— !
=0

wi(Q)
e I a))
< C(Crom, @, o @ WL, N losun iy D Vs

=0
S C(Cl , N, &, p’ Qa [W]Apyq)”fllﬂpﬁ(wp,wﬂ'

Combining this with (3.2) and (3.3) implies that

( q(Q)q,B/p

This proves (3.1) and completes the proof of the case for m = 0.

f THEIW )" < CCrCoymy e, g, [Wla M insr oy

(3.9)

Step 2: Proof of (1.8) for m € N\ {0}. Let f € Mp’ﬁ(wp, w?) and B € (0, p/q). Fix a cube

QO = Q(xp, r). By Remark 2.1, to prove (1.8) for m € N \ {0}, it suffices to show that

(Wq(Q)Qﬁ/P f |Tm(f)(X)|qwq(X)dx S 1:1[||bj||BMO(R")”f”]\?ﬂﬁ(wp,wq),

where C > 0 is independent of x,, r and b.
Decompose f as follows

f = Fx20 + fxeor-
We can write

( q(Q)qﬁ/p f |Tmf(x)|qwq(X)dx)

1
S(W‘fQ|Tm(f)(zg)(x)|qwq(x)a'x)l/q

1
+(W fQ |Tm(f)((zg)f)(x)lqwq(x)dx)l/q

By Theorem A, (1.7) and the fact that

wi(2Q)

wicg) = a2

(3.10)

(3.11)
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we have .
Ji <G l;[ 16 jllBMOER) q(Q)ﬁ/p f |f(x)|pr(x)dX)
m 1 l/p
= C b n PyyP d
21;[” illBMOGR: )(W‘I(Q)ﬁ f;g [FOIPWP (x) x)
<G [ [ 1psllmvon (3.12)
j=1
w‘I(ZQ)
(G wq(ZQ)B f P ods)

< C(Coyn, o g, B [W714,) ﬂ 16 llmmon 1 176

j=1
Next we estimate J,. Fix x € Q. By (1.6) and the fact that

1
|)C - Zl > §|Z - )C()loo
for z € (2Q)°, one has

ITu(fxeor)l < Ci f@ ) ﬂ'“ )by L If(zl)l
oA

n—-a - m | Z)l
< C12 E f | | |bJ(X) - bJ(Z)|LHdZ
=0 21"S|Z—xo|oos2”1r /=1 |Z p— xoloo

<02 Y (@ f F@I| | 16,00 = bi2)ldz.
=0 J=1

20+1 Q

For convenience, we set E = {1,--- ,m}. Forany j € {1,2,--- ,m}and [ € N, we let

1

bj,21+lQ = m bJ(Z)dZ

21+1Q
Note that
]_[|b () — b(z)|<]—[(lb () = bjaigl + b;(@) = bjamgl)

<Z [116.00 = Buzsgl)( [ ] 16 = bl

TCE et veE\T

Then we have

Tu(fxeo)® <277°C1 > ([ [15u) = Buzmiol)

TCE  puer
YL fz QN 1000t
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Fix Tt Cc E. Let
(1+ep

T (trep—¢
Clearly, t € (1, p). By Holder’s inequality, we have

> f2 @I [ 940 = byl

veE\T

i 2'r)*( f r@rdz) " (3.13)

20+1 Q

=0
(T wia-seaf )

veE\tT

On the other hand, we can choose {s;}icg\: C (1, ©0) such that

Z 1/s; = 1.

i€eE\T

By Holder’s inequality and the property of BMO(R"), one has

f2 (T 10~ brasol) )

Y veE\T
’ 1/(syt)

<[] f 1b4(2) = byl dz)

veE\r V210 (3.14)

I+1 A1/ (st

< [ ] 1bullssion 2 010"

veE\T

1+1 1/¢
<21 [ | Ibslismoce-
veE\T

Let s = p/t. Then
1/(s't) =1/t =1/p =1/(p'(1 + €)).

By Holder’s inequality, one has

t 1/t 1/p _¢t 1/(s't)
( f2 oV dz)" <( f2 HQIf(Z)IPWP(z)dz) ( fz e (2)d2)

)1/<p'<1+e)) (3.15)

< w(2[+1 Q)ﬁ/p”f”]ﬁﬁ’ﬁ(wp,wq)( ﬁ | W_pl(1+€)(z)dz
2410
Since w € A, ,(R"), by Lemma 2.2, we have that w? e A, »(R"). By Lemma 2.1 (i), there exists a
constant € € (0, 1) such that !

w P+ ¢ 4 '(R") C A1 P +e) (1+e) (R™).

1+”

Then we have

L+ (1+€)

/ 1/(p'(1+€)) 1 e _a 1
-p'(1 -pa +e 41y Tt oo — 2 11 Ay 1
(f, w P 49(2)dz) < [w ”*f)]“” 21 QI 7 w2 Q) fll sy (3.16)
2+1Q
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Note that
1 € 3 1

+ =-.
l+e p(l+e ¢

It follows from (3.13)—(3.16) that

Z(zln"‘" f @I ] 1bu@) = gl

2 veE\T

[Se]
a-ny, —p'(l+e) p(l+5) l+1 1_a
Z T 2

1+1 1 1+1
X2 QPP fll s 2 OF | | b IBMOGR) (3.17)
veE\tT
-p’(1 +€
< w7 +f>]A R L s
9 yveE\t

X W(ZIHQ)[?/P*I/!I.
By (3.13), (3.17), Lemma 2.1(iv) and the fact that gB8/p < 1, one has

520" [ | 1bslssowell lgins g o

TeE veE\t
- aB/p=1\q 1/q
X(Wq(Q)qﬁ/p f Z H |b/1(x) - bﬂ’zl+1Q|) X wq(2l” q ) Wq(x)dx)
=0 et
< C > ] bullsssoeef lginscum e
T€E veE\T
bl Wq(21+1Q) qﬁ/nl 1/q (3.18)
1b,(x) = byl wi(x)dx
w‘f(Q)f ZZ 1:[ ) X (S5 wi(Q) ) ) )
<C > | | Wbdismonll lginsgum oy v (Q)
T€E veE\T
= qﬁ/p)(Hl) q 1/q
f Zywq (] [1outx) = Buzerl)) windx) ™.
HET

We can choose {t;}ic; C (1,00) such that };., 1/, = 1. By Minkowski’s inequality and Holder’s
inequality, one has

f Z,yw:l qﬁ/p>(1+l) 1—[ |b (x) — bp 2’+1Q|)) wq(x)dx)
UET
< i _a- qﬁ/p)(l+1) j;(l—l |b#(x) B bﬂ’2,+1Q|)qwq(x)dx)l/q (319)
=0 HeET
< i " ‘fﬁ/”)(/“) l_[(f (|bu(X) 2l+1Q|) wq(X)dx) /(%).
=0 MET 0
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Note that w? € A,(R"). By Lemma 2.1(v), Minkowski’s inequality and the fact that

|buo — byoiol < CU+ D||b,llBMOE™Y,

we obtain
9t 1/(qt,)
(f (|b,1(x) - bﬂ,zmgl) w‘i(x)dx) < |buo — bﬂ’leQlwq(Q)l/(qzﬂ)
)
n 1/(qty
+ f (Bu) = b)) " (3.20)
0

< C(L+ Dlbyllemognw(Q)/ @)
It follows from (3.18)—(3.20) that

m o)
[+1
Jo < [ [0 lsstomn 1AW gans g sl W iznscun iy D, —rgms

q

=1 =0
" Vs (3.21)
< C [ [ 1B ltmmocenll s
j=1

since y,« > 1 and gB/p < 1. Then (3.10) follows from (3.11), (3.12) and (3.21). This completes the
proof of Theorem 1.1. o

Proof of Theorem 1.2. The boundedness part of Theorem 1.1 follows easily from Corollary 1.1. We
prove the compactness part of Theorem 1.1 by considering five steps:

Step 1. Reduction via approximation argument. For a fixed » € CMO(R") and € € (0, 1), there
exists b, € C°(R") such that ||b. — b|lpmor < €. Itis clear that
b —b" = (be — b)Y + b b+ -+ b7,

For convenience, we set

m—1 m-2 m—1

- —_—— > —_— - —_—
b] = (be_b?bea"' ,b€)7b2 = (be_babe,”' 7b67b)7”' ’bm = (be_bvba"' 7b)

We can write .
I(Tk, ). ()(x) = (Tk,)p (F)0] < Z(TK(,);/_(JC )(x),
=1

which combined with Corollary 1.2 and Minkowski’s inequality implies that
||(TK(,)Z1E(f) - (TK(Y)g(f)”MWIﬁ/I’(w‘I) < Z ||(TK(Y)glj(f)||Mq>qﬁ/P(wq) < Cf”f”Ml"ﬁ(wP,w‘i)~
=1

This together with [33, Theorem (iii)] imply that to obtain the compactness for (Tk,); with
b € CMO(R"), it suffices to prove the compactness for (T, ), with b € CZ(R").

In what follows, we let b € (C)°(R"). We want to show that (T, )" is compact from MPP(wP wi) —
MaBIP (),
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Step 2. Reduction via smooth truncated techniques. We shall adopt the truncated techniques
followed from [15] to prove the compactness part. Let ¢ € C*([0, 00)) satisfy that 0 < ¢ < 1, ¢(¥) = 1
if £ €[0,1] and ¢(r) = 0 if # € [2, c0). For any > 0, we define the function K, , by

Kon(x,y) = Ko(x, )(1 = (217" [x = y1)).
By (1.2), we have

| (T, () = Tk, )y (NI < f 6() = b@)" f@N(Kay(x,2) = Kalx, 2)ldz

= | 1(b(x) = b(2)" F@IK(x, D)2 |x = 2l)dz
Rn
DA

|n—a—1

(3.22)
< Ck, (16l zorry + |b(x)|)m_l||Vb”L°°(R")f

[x—z|<n |X —Z

< Ci, (IBlls=qgny + 1BCON™ VDl oy 2" Wt Mo () ()

for every x € R", where w, = |B(0,1)|. Here M, with 0 < @ < n is the usual fractional maximal
operator defined by

1
Mo (f)(x) = sup 1B, i~/ \f|y|5r lfCx = yldy.

r>0

Combining (3.22) with the MPA(wP, w?) — M4%/P(w?) boundedness for M, implies that

1Tk, )y () = (T, )y (Dllssaasroay < Crll fllmarsur iy, V. € MPEWP, w). (3.23)

By (3.23) and [33, Theorem (iii)], the compactness for (T, ), reduces to the compactness for
(Tk,,), when n > 0 is small enough. We set

F =Tk, ) 1 flazrswr way < 1}

To prove the compactness of (Tk,, )}, it is enough to show that ¥ is pre-compact when n > 0 is small

enough. By Proposition 2.1, it is enough to verify that ¥ satisfies conditions (i)—(iii) of Proposition 2.1.
Step 3. A verification for condition (i) of Proposition 2.1. Let € (0,1). By (3.23) and the

boundedness part of Theorem 1.1, one gets

|| (TKQ,,,)Z"(f )”M‘I’qﬁ/ﬂ(w‘i) < ||(TK‘,,,,)Zl(f ) - (TK‘,)Zl(f )||quqﬁ/1’(wq) + ||(TK‘,)Zl(f )||quqﬁ/1’(wq)
< Cllflazrsiwrway < C,

when
£ 11 azr 8000 way < 1.
This yields that  satisfies condition (i) of Proposition 2.1.
Step 4. A verification for condition (ii) of Proposition 2.1. Assume that b € C7(R") and is
supported in a cube Q = Q(0, ). Fix f € MPA(wP, w?) with

f 1 par s way <1
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and
Ey:={xeR":|x| >N}

when x € Ey and z € Q. By (1.2), we have

C
K (X, )] < 1Ko, )] < ﬁ for x # .

Note that b(x) = 0 when x € Ey since N > nr. By (3.24), we have
|(b(x) — b(2))" f (z)l

R |x — z|*~

< 27 C 1Bl 11" f @Mz
0

(Tk,,), (F)(x) < Ck,

for every x € Ey. By arguments similar to those used to derive (3.8), we have

f @Iz < W1 W QPP 101 fl
B :
For a fixed cube O = Q(xo, 1), we get from (3.25) and (3.26) that

wq(Q)qﬁ/p f |(Tk,,)p ()x ey (Ol (x)dx

< Ciw(QPr QI = () x

Wq(Q)q,B/p LOEN
< Cwi(Q)Pr QI

X" (x)d x

——
wi(Q)bIr ‘=5 Jonmo2rnBO2IN)

ity e
< Cn( QPO — e
X Y QIN) 1O N (BO,27*'N) \ B(O,2'N)))

=0
< Ciw!(Q)PP QI

X Z(zw)—w—qu@ N (B(0,277'N) \ B(0,2/N)))!~#/7,

J=0

(3.24)

(3.25)

(3.26)

(3.27)
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where

Ci = Q" C, DIz w1 208000 i) W4, -
Invoking Lemma 2.2, we see that w? € A, (R"). Applying Lemma 2.1 (ii), there exists € > 0 such
that w? € Aq%_g(R”). Then by Lemma 2.1 (iii) we have

wi(Q N (B(0,27*'N) \ B(0,2/N))) < wi(B(0,2/*'N)) < w(Q(0, 27**N))
< W oy (27P2NYIOO709(Q(0, 1)).

This together with (3.27) yields that
" Q)qﬂ,p f Tk, ) (F)X £y (O W (x)dx
< G w1 P L WP T WI(Q(0, 1) P

Agrge B

x Z (29 N)~ (=@ (2+2 pyy(a(n=a)-ne)1-qB/p)
j=0

< QWP W QPO W(Q(0, 1)

x ) (27 Ny 4= p-ne(1-qB/p)
< Gl 27w QP w(Q(O, 1)

Aqn @ _

x N~4°Bn=)/p-ne(1-4B/p)

which gives

1-gB/p

LG SN [ A o [ o 4 YA L wi(Q)*
qﬁ/
xwi(Q(0, 1))«

This, together with (3.27), implies that ¥ satisfies the condition (ii) of Proposition 2.1.

n-a

“lol

N—ab(n—a)/p-ne(l/q=B/p)

Step 5. A verification for condition (iii) of Proposition 2.1. It suffices to show that
l}l}g%) I(Tk,,), (G +h) = (Tk,,)y FOllagasingpry = 0 (3.28)

for a fixed n € (0, 1).
At first we shall prove that

|X—Z|) 1

(3.29)
lx =y’ |x — y|"=@

|Ka,11(x’ y) - Ka,n(z’ Y)| < Cé(
for all [x — y| > 2|x — 2|, where 6 := 6(f) + ¢ and the constant C is independent of 7.
When |x — y| > 2|x — z|, we consider the following different cases:
Case 1: (lx —y| > nand |z — y| > n). In this case we have that K, ,(x,y) = K,(x,y) and K, ,(z,y) =
K,.(z,y). This together with (1.3) yields (3.29).
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Case 2: (|x —y| < nand |z — y| < 7). Without loss of generality we may assume that [x —y| > |z — y|.
It is clear that [y — z| > %lx —y|. We have

1Ko (X, 9) = Koz, )] < 1Ko(X,Y) = Koz, V)| + [Ka(x,¥) = Koz, (207 x = y])
+ Koz Wl x = yD) = o217z = yD)I.

Similarly,

|Koz,77(y’ X) - Koz,i](y’ Z)l < |Ka(y’ X) - Ka(y’ Z)l + |Ka(y’ )C) - K(t(y’ Z)|90(277_1|x - )’|)
+ 1Koy, DMl 1 = Y1) = 217z = yD)

The above facts, together with (1.2) and (1.3), imply that

|Kay (X, Y) = Ko (2, Y| + Koy (¥, X) = Koy (v, 2|
< 2(|Ko(x,y) = Koz, Y)| + [Ko(y, x) = Ko (3, 2)I)

+ (IKa(z )| + 1Ko (3, DDl x = y1) — 017 'z = y))|
lx — Z|) 1 2CK01

< 20( +
lx =yl lx =yl fy -z

len ' x =y — e2n~ 'z = Y.

Note that |¢' ()| < Cy1<<(¢) for all > 0. Then we have

_ _ 2, 2 4x -z |x — 2]
e x = y) — 27z — DI < =l¢’ (Dllx — 2l £ C=x14(t) < C <C , (3.30)
n n nt lx =yl
where t € (%IZ =l %Ix —y|). Therefore, we get
K5 9) = Koo 0 + 1Ky %) = Koy 0] < CO( =)L
a,n\Vs a,n\&Ks an\ys a,n\ys = |X _ y| |x — yln_a s

which gives (3.29) in this case.
Case 3: (Jx—y| > nand |z—y| < i7). In this case we have that K, ,(x,y) = K,(x,y) and |[z—y| > %Ix—yl
since |x — y| > 2|x — z|. This together with (1.2), (1.3) and (3.30) implies that

|Ka.p (X, ¥) = Ko (2, V)| + [Ka (¥, X) = Koy (¥, 2|
= |Ko (X, ) = Koy (z, V)| + |Ko(y, X) = Ko (5 2]
< |Ko(x,y) = Ko(2, Y| + [Ke (3, X) = Koy, 2)
+ (1Ko (2 )| + Ko (y, D2 ' |z = y1)
< Ko (X, ) = Ko (2, )| + [Ko (3, X) = Koy, 2)| + (1Ko (2, Y)|
+ Ko (v, DDle2n 7"z = ) — 027" x — y))|
S9(|X—Z|) 1 _ 2CK(,_ |X—Z|’
x =yl lx =yl ly—zl"*|x -yl

which proves (3.29) in this case.
Case 4: (Ix —y| < nand |z — y| > n). The case is similar to Case 3.
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In what follows, we set |h| < g and n7 € (0, 1). By the definition of (Tk,, )},

Tk, (H)(x + h) = (Tk,, )y ()X

(b(x + h) = b(0))" (Kay(x + h, y) = Ko (X, ) f()Idy

RVL

(3.31)
+ f [((D(x + h) = D)™ = (b(x) = b)) K (x, ) f(V)ldy
=L+ L,.

For L,. Because |A| < I, we have
Ka,r](x + h, y) = Ka,n(xa y) =0

when |x — y| < . Moreover, |x — y| > 2|h| when |x —y| > By (3.29), we have that for almost every
x e R",

Li< f b(x + 1) = DO K (x + s ) = Kon(5, WIFO)IdY
[x=yl>7
1 — |h
<c| " )If(y)ldy
|x—y|>ﬂ |X—y| |x—y|

02
Ze =" S

2i2n<|x—y|<2i-1y |X— yre
(o)

I/\

22 g Ihl

|/\
|

M. f(x).

Note that

©  A2- 25
Ze 2 thl Zf 9(4l|h|/77) Cf @t/
‘oo J2 0 4

j=0
8lkl/n
< Cf @dt < 00
0 t

This, together with the boundedness for M,: MPA(wP, w?) — M9%9/P(w4), implies that

”Ll ”M‘Iﬁz(wq)

SIhI/n (7 8\hl/n 7y 0(1)
SC&[ -—ﬂ%MAmmmwﬂ<qj1 —ﬂ@wwmwm
0 0

Slil/n 3
scj‘ 00 40
0 t

which yields that [|L;|[yq8/p(a) — 0 as |h| — 0.
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Divide the second term L, as follows

Ly = | (b(x+h)=b(y)" = (b(x) = b(y))" | Kan(x, y)fOD)dy

R

= fl | I(b(x + h) = b(y))™ = (b(x) = b)) " |Kan(x, y) f(W)ldy
x—y|>n

+ f/z - (b(x + h) = b)) = (b(x) — b)) | K (. ¥) F )y
n/2<|x=yl<n

= L2’1 + Lz’z.
We write
(b(x + h) = b(y))" = (b(x) — b(y))"
= (b(x + h) = b(x) + b(x) — b(y))" — (b(x) — b(y))"
= Z CL(b(x + h) — b(x))'(b(x) = b))
i=1
= D Ci(b(x + ) = b(x)) Z C), b0 (=)™,
i=1 j=0
where |
, N
Cx = rI(N = r)!

for any r, N € N with r < N. Hence, we obtain
Ly < Z C,|b(x + ) = b(x)| Z C! bl
i=1 j=0
x| f Ko, »bOY"™ F()dy|
lx=yI>n

<Y ChlbCx+ By = bl " Ch_IbGVITx, (0" F)(0)
i=1 =0

<C|h||Tk,(f)(x)I.
From this and the MP#(wP, w?) — M%%/P(w?) boundedness of Tk, , we obtain

L2 1llmassivguny < ClAIT &, fllssaasrouay < CIAIFllstrsur ey < ClAI.

On the other hand, one has

[ Ko o] <€ [ Kl fody
1/2<lx=yl<n n

/2=<|x=y|<n

1
seom [ 1oy < em.
n n/2<]x-y<n
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It yields that
Lyy <) ChlbCx+h) = b)Y Cl_ b0l
i=1 =0
X ’ f Kony(x, )b f (y)dy’
1/2<lx=yl<n

<ClhIMq(f)(x).

It follows that
Lo 2 psaasroiway < ClAINM o (llpaasioiway < ClANflIrsaor way < ClA.

It follows from above estimates of L;, L, and L, that

I(Tk,,)s (N +h) = (Tk, )y (HOllyassrngeay = 0

as |h| — O uniformly for all f with || f|[yps(ue ey < 1. This verifies the condition (ii1) of Proposition 2.1.
Theorem 1.2 is now proved. O

4. Conclusions

This paper is devoted to establishing some new results focusing on the boundedness and
compactness for the iterated commutators of the 6-type Calderén-Zygmund singular integral and its
fractional variant on the weighed Morrey spaces. The main results improve and extend some known
ones.
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