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Abstract: Vaccination is widely acknowledged as an affordable and cost-effective approach to guard 
against infectious diseases. It is important to take vaccination rate, vaccine effectiveness, and 
vaccine-induced immune decline into account in epidemic dynamical modeling. In this paper, an 
epidemic dynamical model of vaccination is developed. This model provides a framework of the 
infectious disease transmission dynamics model through qualitative and quantitative analysis. The 
result shows that the system may have multiple equilibria. We used the next-generation operator 
approach to calculate the maximum spectral radius, that is, basic reproduction number vacR . Next, 
by dividing the model into infected and uninfected subjects, we can prove that the disease-free 
equilibrium is globally asymptotically stable when 1vacR < , provided certain assumptions are 
satisfied. When 1vacR > , there exists a unique endemic equilibrium. Using geometric methods, we 
calculate the second compound matrix and demonstrate the Lozinskii measure 0q £ , which is 
equivalent to the unique endemic equilibrium, which is globally asymptotically stable. Then, using 
center manifold theory, we justify the existence of forward bifurcation. As the vaccination rate 
decreases, the likelihood of forward bifurcation increases. We also theoretically show the presence of 
Hopf bifurcation. Then, we performed sensitivity analysis and found that increasing the vaccine 
effectiveness rate can curb the propagation of disease effectively. To examine the influence of 
vaccination on disease control, we chose the vaccination rate as the optimal vaccination control 
parameter, using the Pontryagin maximum principle, and we found that increasing vaccination rates 
reduces the number of infected individuals. Finally, we ran a numerical simulation to finalize the 
theoretical results. 
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1. Introduction  

Infectious diseases remain a significant contributor to overall human mortality. According to 
data reported by the WHO, a large number of people die from infectious diseases every year. In 2019, 
new measles cases worldwide increased to 869 770, and since 2016, the death rate from measles has 
increased by almost 50%. In 2019 alone, the number of measles deaths was about 207 500 [1]. In 2022, 
there were major outbreaks of monkeypox in the Americas and Western Pacific, with 87 929 
confirmed cases and 146 deaths in 111 countries by June 2023 [2]. COVID-19 also remains a 
significant risk to people’s lives, with at least 767 million cases confirmed and over 6.9 million 
fatalities worldwide by June 4, 2023 [3]. These data show that infectious diseases pose a severe 
threat to human lives.  

Vaccination is one of the most important means of reducing both mortality and the number of 
infected persons. For most infectious diseases, vaccination could reduce the number of infected 
people, thus decreasing the mortality rate. New antibodies are produced when an unfamiliar etiologic 
agent or disease enters the body. Many vaccines are or contain a weakened or inactivated part of a 
specific pathogen that, when injected into the body, forms an antigen and induces an immune 
response [4]. For example, from 2000 to 2017, measles immunization has averted an estimated 21.1 
million deaths, and vaccination efforts contributed to an 80% decline in measles deaths worldwide, 
making the measles vaccine one of the most effective products in public health [5]. After years of 
research, three vaccines (MVA-BN, LC16, and OrthopoxVac) have been approved for the prevention 
of monkeypox [6]. Coronavirus vaccination has been shown to increase immunity to COVID-19 and 
reduce the incidence of the disease. As of today, at least 70.3% of the global population has received 
at least a single dose of coronavirus vaccine [7].  

Many scholars have explored epidemic dynamical models of infectious diseases. In 1927, 
Kermack and McKendrick first studied the deterministic compartment model and proposed the 
susceptible-infectious-recovered (SIR) model [8]. Other scholars have since developed improved 
epidemic dynamical models on this foundation, including the susceptible-infectious-susceptible (SIS) 
and susceptible-exposed-infectious-recovered (SEIR) models [9]. Considering the 
susceptible-vaccinated-infectious-recovered (SVIR) model with vaccination age, Duan et al. showed 
the influence of vaccine effectiveness and vaccination age on disease transmission [10]. By 
establishing a SVIR model with two different vaccination strategies, Liu et al. demonstrated that 
diseases can be eliminated under appropriate vaccination strategies [11].  

Guzzi et al. investigated some graph-based epidemiological models, and their results showed 
that these models significantly improved disease transmission control [12]. Petrizzelli et al. 
considered a network-based model to assess the impact of different vaccination strategies and 
showed that topological awareness and age-based vaccination strategies were able to mitigate the 
spread of virus [13]. Han et al. formulated the vaccinated-susceptible-exposed-infectious-recovered 
(VSEIR) model with vaccination and immunity decline, and investigate the impact of vaccination on 
the transmission of COVID-19 [14]. Further, they considered the effects of the Omicron variant, and 
the susceptible-exposed-asymptomatic infected-infected-recovered (SEIAIR) model was developed to 
explore prevention and control strategies to contain COVID-19 [15]. Song et al. applied an 
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susceptible-exposed-asymptomatic infected-symptomatic infectious-isolated-recovered (SEAIQR) 
model with vaccination and isolation delays, and their results showed that decreasing the isolation 
delays and increasing the vaccination rate were effective in preventing the spread of COVID-19 [16]. 
Zhang et al. established a multi-patch model of heterosexual transmission and investigated the 
impact of population migration on HIV /AIDS spreading [17]. Considering different age groups, 
Chen et al. investigated the transmission dynamics model and optimal control strategy of COVID-19 
in Hong Kong [18]. To study the monkeypox outbreak in Nigeria, Li et al. developed a new 
mathematical model to study the optimal control measures to contain the epidemic [19]. 

There is always some level of discrepancy between the actual data and the parameter values. 
However, sensitivity analysis can be used to measure the robustness of the predicted values with 
respect to the parameter values provided [20]. By analyzing the sensitivity of the basic reproduction 
number, Ndaïrou et al. found the two parameters with the largest impact on 0R  to be the contact 
rate and the mortality rate from disease [21]. To identify the vital parameters in the mechanism of the 
Zika virus, Biswas et al. performed a sensitivity analysis of important threshold numbers, and their 
results produced a scheme to control the transmission of Zika virus [22]. Optimal control can help 
decision-makers develop the most cost-effective solutions to minimize losses to people and society. 
Li et al. used optimal control theory to develop an optimal solution to this problem and to realize the 
aim of the lowest possible number of infections and the lowest possible vaccination rate for a given 
vaccination period [23]. Wang et al. studied the time-varying optimal control model, considering 
seasonal factors, and they addressed the issue numerically using the symplectic pseudospectral 
method, showing that seasonality changes may cause optimal vaccination strategies to also shift [24]. 

Our model takes into account the vaccination rate, vaccine effectiveness and the 
vaccine-induced decline in the immune rate, thus analyzing the stability of equilibria. We also 
performed a sensitivity analysis on these threshold parameters. We found solutions to the optimal 
vaccination control problem using the Pontryagin maximum principle, and we chose the proper 
parameters to prove that the theoretical results hold. 

This paper is organized as follows. The formulation of the model and the basic reproduction 
number are presented in Section 2. The stability of equilibria is analyzed in Section 3. The 
bifurcation analysis of the model is presented in Section 4. The sensitivity analysis of the threshold 
parameters is described in Section 5. The optimal vaccination model is shown in Section 6. 
Numerical simulation is presented in Section 7. The conclusion is presented in Section 8.  

2. Model formulation 

Developing an epidemic dynamical model of vaccination, the total population is (t)N , 
which consists of vaccinated ( )V t , susceptible ( )S t , infected ( )I t , and recovered individuals 

( )R t , where  

( ) ( ) ( ) ( )(t) .N V t S t I t R t= ) ) )        (2.1) 

Suppose all the population is homogeneously mixed. After vaccination, susceptible people will 
carry antibodies to the vaccine and develop immunity. With the increase of time, the immunity of the 
vaccine will weaken and eventually disappear, and the vaccinated people become susceptible. 
Susceptible people become infected by coming into contact with infected people, and because 
immunity disappears over time, a subset of individuals in the vaccinated population become infected 
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again. As the treatment progresses, some of the infected individuals may recover, while others may 
succumb to the disease. Assuming that the natural mortality rate is equal in each compartment, the 
schematic diagram of this model is in Figure 1, and the epidemic dynamical model is given by the 
following four equations:  

( ) ( )

( )

( )

d ( ) 1 ,
d

d ( ) ,
d

d ( ) 1 ( ) ,
d

d ( ) ,
d

V t S VI d V
t

S t V SI d S
t

I t SI VI d b I
t

R t bI dR
t

g q b b

b b g

b q b a

ìïï = - - - )ïïïïïï = L) - - )ïïïíïï = ) - - ) )ïïïïïïï = -ïïî

                (2.2) 

where L  represents the susceptible individuals recruited by immigration or birth. b  represents 
the effective contact rate which results from contact between susceptible individuals and infected 
individuals, d represents the natural death rate of each compartment. q  represents vaccine 
effectiveness rate, which is between 0 and 1. When 0q= , the vaccines are invalid, and when 1q= , 
it shows that the vaccines are completely active. g  represents the vaccination rate of susceptible 
individuals. b  represents the cure rate of infected individuals. a  represents the disease-induced 
mortality, since the immunity of the vaccine weakens over time. d  represents the loss rate of 
immunity. All parameters are non-negative. 

V(t) S(t) I(t) R(t)
δV

γS
βSI bI

   
dV dS  dI dRΛ αI

(1-θ)βSI

 

Figure 1. A schematic diagram SVIR for the transmission of diseases. 

2.1. Invariant set 

Theorem 2.1. The solutions of the system remain non-negative, when ( )0 0S > , ( )0 0I ³ , 

( )0 0V ³ , ( )0 0R ³ , for all 0t > . 
Proof. According to the expression of the system (2.2), we have  

( )( )d ( ) 1 ( )
d
I t S V d b I

t
b q b a= ) - - ) ) . 

Simultaneously integrating from 0  to t  for the above equation, then getting the analytic 
expression for ( )I t , 

AIMS Mathematics  Volume 9, Issue 2, 3453–3482. 



3457 
 

( ) ( ) ( )( )
0

0 exp 1 ( ) d
t

I t I S V d b sb q b a= ) - - ) )ò . 

Similarly, 

( ) ( ) ( ) ( )
0

0 exp 1 d
t SV t V I d s

V
e

q b d
æ ö÷ç= - - - + ÷ç ÷çè øò , 

( ) ( ) ( )
0

0 exp d
t VS t S I d s

S
d

b e
æ öL+ ÷ç= - - + ÷ç ÷çè øò ,  

( ) ( )
0

0 exp d
t bIR t R d s

R
æ ö÷ç= - ÷ç ÷çè øò .  

Since ( )0 0S > , ( )0 0I ³ , ( )0 0V ³ , ( )0 0R ³ , that is, ( ) 0S t > , ( ) 0I t ³ , ( ) 0V t ³ , ( ) 0R t ³ . 
Theorem 2.2. The closed set  

 ( ), , , | , , 0, 0,V S I R R V I R S V S I R
d

ì üLï ïï ïG= Î ³ > +++   £í ýï ïï ïî þ
  (2.3) 

is a bounded set.  
Proof. According to [25], we have  

( )
d ( )

d
0t

N
N

t
d t= L- £ , 

by the comparison theorem [26],  

( )limsup
t

N t
d®¥

L
£ . 

In summary, the close set G  is a positively invariant set. 

2.2. The basic reproduction number 

The basic reproduction number 0R is an essential threshold parameter which can show the 
prevalence of the disease in the epidemic dynamical model. If 0 1R < , it will die out, and if 0 1R > , 
it will become prevalent in the population. In our paper, 0R  is determined via the next-generation 
matrix method [27]. 

When 0q g d= = = , the system (2.2) reduced to the SIR model without the vaccine,  

d ( ) ,
d

d ( ) ( ) ,
d

d ( ) ,
d

S t SI dS
t

I t SI d b I
t

R t bI dR
t

b

b a

ìïï = L- -ïïïïïï = - ) )íïïïïï = -ïïïî

 

computing the regeneration matrix and transfer matrix for the SIR model, 
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0 0
0

SIb

=

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

= , 0

( )d b I
bI dR

SI dS

a

b

æ ö) ) ÷ç ÷ç ÷ç ÷= - )ç ÷ç ÷ç ÷÷ç-L) )è ø

  

differentiating 0  and 0 , calculate the value of ( )00 00 ,0,0 ,0,0E S
d

æ öL ÷ç= = ÷ç ÷çè ø
 which is the 

disease-free equilibrium point of SIR model  

00

0

0 0
0 0 0
0 0 0

F

Sb
=

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

, 0

0

0 0
0

0

d b
V b d

S d

a

b

æ ö++  ÷ç ÷ç ÷ç ÷= -ç ÷ç ÷ç ÷÷çè ø

 

Then, ( )
( )

1 00
0 0 0

SR F V
d b d d b

b b
r

a a
- L

= = =
++++  

, and 
1

d b a++
is the number of the secondary 

infections developed by an infected person throughout his or her infectious period [28].  
To compute the system’s disease-free equilibrium, let the left of system (2.2) equal to be zero, 

that is, 

0 0 0
( )( , ,0,0) ( , ,0,0).

( ) ( )
dE V S

d d d d
g d

d g d g
L L )

= =
) ) ) )

              (2.4) 

Let ( ), , , Tx I R V S= , and the system (2.2) can be written as x -= =  , where the regeneration 
matrix   and the transfer matrix   is as follows: 

( )1
0
0
0

SI VIb q b

=

+ -æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

= ,
( )

( )

1
( )

d b I
bI dR

S VI d V
V SI d S

a

g q b b
b b g

æ ö) ) ÷ç ÷ç ÷ç ÷- )ç ÷ç ÷=ç ÷ç ÷- ) - ) ) ÷ç ÷ç ÷ç ÷ç -L- ) ) )è ø

（ ）
 , 

differentiating   and  , calculate the value of 0E , 

( )0

0
0 0
F

D E =
é ù
ê ú
ê úë û

= , ( )0
3 4

0
D

V
E

J J
=
é ù
ê ú
ê úë û

 , 

where 

( )0 01 0
0 0

S V
F

b q bé ù+ -ê ú= ê úë û
, 

0d b
V

b d
aé ù++

ê ú= ê ú-ë û
, 

( ) 0
3

0

1 0
0

J
V

S
q b
b

é ù-ê ú= ê úë û
, 4J

d
d

d g
d g

é ù+ -
ê ú= ê ú- +ë û

, 

since the basic reproduction number is the spectral radius of 1FV - , thus 

( ) ( )( )1
0 01 .FV S V

d b
b

r q
a

- = + -
++

                      (2.5) 
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So, the basic reproduction number of the system (2.2) is  

( )( )0 01vacR S V
d b

b
q

a
= + -

++
                       (2.6) 

0
1 .

( )
R

d d d
qg

d g

æ ö÷ç ÷= -ç ÷ç ÷ç ) )è ø
  

The interpretation of Eq (2.6) is as follows: 
( ) ( )d b d d

b q g
a b g

L
) ) ) )

 is the proportion of 

secondary infections attributed to the average vaccinated people with a vaccination rate g , 

( )d b d
b
a

L
++

 is the number of secondary infections attributed to the susceptible individuals [29]. 

3. Stability analysis 

In the above, we defined the basic reproduction number of the system (2.2). In the following 
text, the local asymptotic stability (LAS) and globally asymptotically stable (GAS) of the equilibria 
is analyzed using the relationship between the magnitude of vacR  and unity. 

3.1. Local stability of disease-free equilibrium 

Since the equation for variable ( )R t  is decoupled from the first three equations of system (2.2), 
it is just considering the following system (3.1). 

 

( ) ( )

( )

d ( )
1

d
d ( )

( ) ,
d

d ( )
1 ( ) .

d

,V t
S VI

t
S t

V SI d S
t

I t
SI VI d b I

t

d Vg q b

b b g

b q b a

b= - - -

= L) - - )

= ) - - ) )

ìïï )ïïïïïïíïïïïïïïïî

                  (3.1) 

Theorem 3.1. When 1vacR < , 0E¢  is LAS, and when 1vacR > , it is unstable. 
Proof. The disease-free equilibrium of the system (3.1) is as follows:  

0 0 0
( )( , ,0) ( , ,0).

( ) ( )
dE V S

d d d d
g d

d g d g
L L )¢ = =
) ) ) )              

 (3.2) 

Calculating the Jacobian matrix at 0E¢  ,  

( )
( )

( )

0

0 0

0 0

( 1
( )

0 0 1 ( )
J

d V
E d S

S V d b

b g q b
b g b

b q b a

é ù- ) - -ê ú
ê ú¢ = - ) -ê ú
ê ú) - - ) )ê úë û

）

, 

where ( ) ( )0 01 ( ) 1 ( )vacS V d b R d bb q b a a) - - ) ) = - ) ) . 
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The characteristic equation is 

( ) ( ) ( )( )1 0,vacd d R d bl l b g l aé ù é ù++++    - - ++  =ë û ë û            (3.3) 

then solve Eq (3.3), and the eigenvalues are as follows: 

1 dl =- , ( )2 dl d g=- ++  , ( )( )3 1vacR d bl a= - ++  , 

that is, when 1vacR < , all eigenvalues are negative, which shows that 0E¢  is LAS, and otherwise, it 
is unstable. 

3.2. Global stability of disease-free equilibrium 

In this context, we analyze the global stability of 0E¢ . [30] proposed a method to prove the 
global asymptotically stable of the disease-free equilibrium, by dividing system (3.1) into two 
subsystems, that is,  

( )d ,
d
X F X Z
t
= , 

( ) ( )d , ,G ,0 0
d
Z G X Z X
t
= = , 

where X denotes uninfected individuals, and Z denotes infected individuals. If system (3.1) 
satisfies (H1) and (H2), the disease free equilibrium is globally asymptotically stable. 

(H1) If ( )d ,0
d
X F X
t
= , *X is the disease free equilibrium; 

(H2) ( ) ( )ˆG ,Z ,ZX FZ G X= - , where ( )ˆ , Z 0G X ³  for ( ),G X Z ÎW , and ( )0 ,0ZF D G X=  is a 
M-matrix (i.e., the M-matrix is the non-diagonal element is non-negative), W  is positive invariant 
set. In this paper, it can obtain the following Theorem 3.2. 
Theorem 3.2. If 1vacR < , 0E¢  is GAS. 
Proof. Let X  denotes the uninfected individuals, Z  denotes the infected individuals. So, we can 
get ( )= , TX V S , and Z I= . 

( )
( ) ( )

( )
1d ,

d
S VI d VX F X Z

V SI d St
g q b d

d b g

æ ö- - - + ÷ç ÷= =ç ÷ç ÷ç L+ - - +è ø
, 

( ) ( ) ( )d , 1
d
Z G X Z SI VI d b I
t

b q b a= = + - - ++  . 

From the Eq (3.2), we have computed 0E¢ . Here, it is noted as ( )0 0 ,0U X= , where 

0
( )( , )

( ) ( )
dX

d d d d
g d

d g d g
L L )

=
) ) ) )

. 

For ( )d ,0
d
X F X
t
= , assumption (H1) is satisfied, and when t ®+¥ , 0X X® , i.e., 0X  is 

AIMS Mathematics  Volume 9, Issue 2, 3453–3482. 



3461 
 

GAS. 
Computing matrix F  at 0X ,   

( ) ( )( )
0

0 ,0 ( (1 ) ( )) 1 ,Z vacX
F D G X S V d b R d bb q b a a= = ) - - ) ) = - ) )  

where F is a M-matrix. 

( ) ( )( ) ( )
( )0 0

1( )1
( ) ( )

dFZ S V d b I d b I
d d d d

q b gb b
b q b a a

b g b g

æ ö- LL ) ÷ç ÷= ) - - ) ) = ) - ) )ç ÷ç ÷ç ) ) ) )è ø
, 

from assumption (H2),    

( ) ( )
( )1( )ˆ , 1

( ) ( )
dG X Y I S I V

d d d d
q b gb d

b q b
d g d g

æ öæ ö - LL ) ÷÷ çç ÷÷= - ) - -çç ÷÷ çç ÷ç ÷ç) ) ) )è ø è ø
, 

thus 

( ) ( ) ( )( ) ( )ˆ ˆ, , 1 ,vacG X Y FZ G X Y R d b I G X Ya= - = - ++  - . 

Since G  is a positive invariant set, i.e.,
( )

( )
dS

d d
d

d g
L )

£
) )

,
( )

V
d d

g
d g

L
£

) )
, then 

( )ˆ , 0G X Y ³ . That is, when t ®+¥ , then ( ) 0I t I® . 

Consequently, if 1vacR < , 0E¢  is GAS. 

3.3. Existence of endemic equilibrium 

From the system (3.1), the expressions for calculating the endemic equilibrium are as follows. 
* 0I ¹ , so by the third expression of the system (3.1), where 

( ) ( ) *
* 1d b V

S
a q b
b

++  - -
= , 

bringing *S  into the first equation 

( )
( ) ( ) ( )

*
*1 1

d b
V

I d
g a

b q g q b b

++
=

é ù- + - ++ ê úë û
, 

so  

( ) ( ) ( )
( ) ( ) ( )

*
*

*

1

1 1

d b I d
S

I d

a q b b

b q g q b b

é ù++  - ++ ê úë û=
é ù- + - ++ ê úë û

, 

bringing *S  and *V  into the second equation, set *I  as the positive root of Eq (3.4).  

*2 * 0,AI BI C++  =                              (3.4) 

where  
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( )
2

(1 )A d bq a b=- - ) ) , 

( ) ( ) ( ) ( )( ){ }1 1B d b d db b q a b g qé ù= L - - +++++     -ë û ,

( ) ( )( )(1 )C d d d b dbg q b b a b g=L - )L ) - ) ) ) ) , 

( )( )( )1vacd d b d Ra b g= ++++    - , 

obviously, 0A< . Clearly, it shows that 1vacR > Û 0C > ; 1vacR = Û 0C = ; 1vacR < Û 0C < .  
Since 0A<  combined with the above equivalence relationship, the results show that: when 

1vacR = , i.e., 0C = , Eq (3.4) has one positive root provided 0B > , otherwise Eq (3.4) has no 
positive root; when 1vacR >  i.e., 0C > , Eq (3.4) has a unique positive root

2

1
4

2
B B ACI

A
- - -

= . Next, we will consider the case of the roots of the equation, when 1vacR < , 

i.e., 0C < . 
Let 2 4 0B ACB= - = , that is,  

( ) ( ) ( ) ( )( ){ } ( ) ( )( )( )
2 2 22 1 1 4 1 1 0.vacd b d d d d b d Rb q a b gb q a b g q bé ùL - - +++++     - +++++     - - =ë û  

Set 

( ) ( ) ( ) ( )( ){ }
( ) ( )( )

2

*
2

1 1

4 1
1 ,

d b d
R

d

d d b d

b q a b g q

a b g q

é ùL - - +++++     -ë û
++++    -

= -
          

 (3.5) 

And then get the following equivalence: 

* 0vacR R< ÛD< ; * 0vacR R= ÛD= ; * 0vacR R> ÛD> . 

Thus, when it satisfies 1vacR <  and 0B £ , Eq (3.4) does not exist positive root, and when it 
satisfies 1vacR <  and 0B > , the following equivalence relationship is established:  

(1) if * 1vacR R< < , there are two positive roots 
2

2
4

2
B B ACI

A
- - -

=  and 

2

3
4

2
B B ACI

A
- + -

= ;  

(2) if * 1vacR R= < , there is a unique positive root 4 2
BI
A

=- ;  

(3) if *
vacR R< , there is no positive root.  

In summary, the following theorem can be derived. 
Theorem 3.3. In the system (3.1), when 1vacR > , there exists a unique endemic equilibrium

( )1 1 1 1, ,E I S V= ; when 1vacR = , there is an endemic equilibrium with 0B > ; when 1vacR <  and 
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0B £ , there exists no endemic equilibrium; when 1vacR <  and 0B > , there are two endemic 

equilibria ( )2 2 2 2, ,E I S V=  and ( )3 3 3 3, ,E I S V=  for *
vacR R< , the unique endemic equilibrium 

( )4 4 4 4, ,E I S V=  for *
vacR R= , no endemic equilibrium for *

vacR R< . 

3.4. Local stability of endemic equilibrium 

Lemma 1. [31] Suppose *A  is 3 3´ , a real matrix, if ( )* 0tr A < , ( )*det 0A < , ( )*[2]det 0A < . 

Then, all eigenvalues of *A  have negative real parts. 
In [32], for n n´  matrix ( )*

ijA a= , when 2n = , the second additive compound matrix of *A  

is *[2]
11 22A a a= + , when 3n = , 

11 22 23 13
*[2]

32 11 33 12

31 21 22 33

a a a a
A a a a a

a a a a

é ù+ -
ê ú
ê ú= +ê ú
ê ú- +ë û

. 

Theorem 3.4. When 1vacR >  and ( ) ( ) ( ){ }11 1 0I dd q q b dé ù- - - ++  <ë û , 1E  is LAS. 

Proof. Calculating the Jacobian matrix of the system (3.1),  

( )

( ) ( )

(1 ) ( 1
( ) ,

1 1 ( )
J

I d V
I d S

I I S V d b

q b b g q b
b b g b
q b b b q b a

é ù- - - ) - -ê ú
ê ú= - - ) -ê ú
ê ú- ) - - ) )ê úë û

）

    (3.6) 

we can compute ( ) ( )1 =0S V d bb q b a+ - - ++  , then 

( ) (1 ) ( ( ) 0,tr J I d I dq b d b g=- - - ) - ) <）-               (3.7) 

( ) ( ) ( )2 2det 1 1J IV ISd q b q b e=- - - -  

( ) ( ) ( )( )2 2 21 1 0.I d IV I d SIq b b g b q b d- - ++  - - ++  <            (3.8) 

Computing [ ]2J   

[ ]

( )( ) ( )
( )( )

( ) ( )

2

1 2 1

1 ,

1

I I d S V

J I I d

I I d

q b b d g b q b

b q b d g

q b d b g

é ù- - ++++    - -ê ú
ê ú= - - ++ ê ú
ê ú
ê ú- - - ++ ë û

  (3.9) 

then, calculate the value of the determinant of [ ]2J  

( ) ( )( ) ( )( )( ) ( )[2] 2det 2 2 1 1J I d I d I d IVq b ed  q b d b e q b dé ù=- - +++   - +++++     -ê úë û         

( ) ( )( )( ) ( )22 2 21 1 1SI I d IV I d SIq b g q b d q b b g b+ - - - ++  - - ++

( ) ( )2 2 ,I dq b g dd gé ù+ - +++  ë û  

( ) ( )( ) ( )( ) ( )( ) ( )2 22 2 1 1I d I d d I d dq b g d q b d g q b d gé ù=- - +++   - ++++    - +++  ê úë û                
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( ) ( ) ( ){ }( )2 21 1 1I d SI I d IVqg b b d q q b d q bé ù- +++   - - - ++  -ë û .               (3.10) 

When 1vacR > , bringing 1E  into matrices (3.8) and (3.10), it can be calculated as ( )1 0tr J < , 

( )1det 0J < , if ( ) ( ) ( ){ }11 1 0I dd q q b dé ù- - - ++  <ë û  is satisfied, then ( )[2]
1det 0J < . According to 

Lemma 1, every eigenvalue of 1J  has a negative real part, it shows that 1E  is LAS. 

3.5. Global stability of endemic equilibrium 

In this context, the geometric method is used to demonstrate GAS of endemic equilibriums. In 
Li and Muldowney [33], it shows the theoretical knowledge about how to prove GAS of endemic 
equilibriums, which considering the following differential system, 

( )x f x= ,  

where ( ) : nf x D R® be 1C  continuous, nD RÌ  be an open set, ( )0,x t x  is uniquely determined 

by the initial value condition ( ) 00x x= . Suppose system ( )x f x=  satisfies the following three 
hypotheses:  
(1) The open set D is a simply connected, 
(2) There exists a compact absorbing set K DÌ , 
(3) There exists a unique endemic equilibrium x  in open set D . 

Suppose  represents the vector norm induced by the n n´  order matrix. The Lozinskii 
measure of matrix W  with respect to the induced matrix norm is defined by  

( )1
0

1
lim
x

I xW
W

x
m

+®

+ -
= . 

Lemma 2. [34] The Lozinskii measure of a real n n´  matrix *M  for the matrix norm induced by 
the 1l  vector norm is given by 

( )*
1 max .ii jii

j i

M m mm
¹

æ ö÷ç ÷ç= + ÷ç ÷÷çè ø
å

                    
  (3.11) 

Theorem 3.5. If 0q £ , x  is GAS. 
In the system (2.2), we have the following lemma:  

Lemma 3. [35,36] The system (2.2) is uniformly persistent, i.e., there exists constant 0j>  such 
that 

( ) ( ) ( ) ( ){ }liminf , , ,
t

V t S t I t R t j
®¥

³ .                   (3.12) 

Proof. In the above section, 0E  exists on the boundary of region G , and Theorem 3.1 provides the 
stability condition for 0E , i.e., 0E  is stable when 1vacR < , and otherwise 0E , is unstable, which 
leads to the instability of 0E . Since the instability of 0E  is equivalent to the uniform persistence of 
the system (2.2), it can be proved that the system (2.2) uniformly persists in the interior of G , that is, 
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there exists a constant 0j>  such that  
( )liminf

t
V t j

®¥
> , ( )liminf

t
S t j

®¥
> , ( )liminf

t
I t j

®¥
> , ( )liminf

t
R t j

®¥
> , 

with original values ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0V S I R DÎ , which shows the hypothesis (2) holds.  

In the system (2.2), when 1vacR > , there exists 1E  which is a unique equilibrium in the region 
of G , and then hypotheses (1) and (3) are satisfied. 
Theorem 3.6. When 1vacR > , 1E  is GAS. 
Proof. Consider the following subsystem (3.13): 

( )

( ) ( )

( ) 1 ( ) ,

( ) 1 ,

dI t SI VI d b I
dt

dV t S VI d V
dt

b q b a

g q b b

ìïï = ) - - ) )ïïïíïï = - - - )ïïïî                

 (3.13) 

the Jacobian matrix is as follows: 

( ) ( ) ( )
( )1

1 1
1 (1 ) ( )

I d V
J

I S V d b
q b b q b

q b b q b a

é ù- - - ) - -ê ú= ê ú- ) - - ) )ë û
, 

then, the second compound matrix is  
[ ] ( ) ( )2

1 (1 ) ( ) 1 .J S V d b I d Qb q b a q b b= ) - - ) ) - - - )           (3.14) 

Set matrix-value functions  

( )
0

,
0

V
IP P V I

V
I

é ù
ê ú
ê ú

= = ê ú
ê ú
ê úê úë û

, 

thus 
2

2

0

0
f

V I I V
IP

V I I V
I

é ù¢ ¢-ê ú
ê ú

= ê ú
¢ ¢ê ú-

ê ú
ê úë û

, 1
0

0

I
VP

I
V

-

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

, 1
0

0
f

V I
V IP P

V I
V I

-

é ù¢ ¢
ê ú-
ê ú

= ê ú
ê ¢ ¢ ú
ê ú-
ê úë û

, 

then, [ ]2 1
1

0
0
Q

PJ P
Q

-
é ù
ê ú= ê úë û

. 

Clearly, we can obtain 

[ ]2 11 121 1
1

21 22

,f

W W
W P P PJ P

W W
- -

é ù
ê ú= + = ê úë û

                     (3.15) 

where 

11 22
V IW W Q
V I
¢ ¢

= = - + , 12 21 0W W= = . 

The Lozinskii measure is determined as follows:  
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( ) { }1 1 2max , ,W g gm £                            (3.16) 

where ( )1 1 11 12g W Wm= + , ( )2 21 1 22g W Wm= + , obviously  

12 21 0W W= = , ( )1 1 11g Wm= , ( )2 1 22g Wm= . 

Thus, we have  

( )1 .V IW Q
V I

m
¢ ¢

£ - +                             (3.17) 

According to the system (2.2), computing that,  

(1 ) ( ),I S V d b
I

b q b a
¢
= ) - - ) )

                 
 (3.18) 

substitute the above equation into ( )1 Wm , that is  

{ } ( ) ( ) ( )1 2max , 1 ,V Vg g I d d
V V

q b dd
¢ ¢

= - - - + £ - +            (3.19) 

then the measure q  is as follows 

( ) ( )1
0 0

1 1limsupsup d limsupsup d ,
t t

t t

Vq W s d s
t t V

m d
®¥ ®¥

æ ö¢ ÷ç= £ - + ÷ç ÷÷çè øò ò  

( )
( )

( )1ln
0

V t
d

t V
d= - + . 

The above inequality indicates 0q £ , so 1I I® , 1V V®  with t ®+¥ . 
Under expression of the system (2.2), we have 

d ( )
( ) ,

d
S t

V SI d S
t

d b g= L) - - )                      (3.20) 

when t ®+¥ , we have  

1 1
d ( )

( ) ,
d
S t

V SI d S
t

d b g= L) - - )                      (3.21) 

that is ( )1 1
d ( )

( )
d
S t

I d S V
t

b g d) ) ) = L) , apparently a linear differential equation about S , thus 

( )
1

1
1

VS S
I d

d
b g

L+
® =

++
, 1

1
bIR R
d

® =  as t ®+¥  [37].  

Comprehensively stated, when t ®+¥ , we have ( ) ( )1 1 1 1, , , , , ,V S I R V S I R® , thus 1E  is GAS. 

4. Bifurcation analysis 

Bifurcation analysis plays a vital role in controlling and eradicating epidemic diseases. In 
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modeling epidemic diseases, when the basic reproduction number is less than unity, the disease will 
be eradicated. However, when bifurcation occurs, and the basic reproduction number exceeds unity, 
the endemic equilibrium will persist, i.e., susceptible individuals and infected individuals coexist. 
Thus, it is significant to analyze the bifurcation of the model in epidemiology. 

4.1. Forward bifurcation 

Theorem 4.1. If 1vacR = , the system (2.2) will undergo forward bifurcation at *b b= . 
Proof. Compute the Jacobian matrix at 0E¢ ,  

( )
( ) 0

0 0

( 1
( )

0 0 ( 1)( )vac

J
d V

E d S
R d b

b g q b
b g b

a

é ù- ) - -ê ú
ê ú¢ = - ) -ê ú
ê ú- ) )ê úë û

）

, 

when 1vacR = , calculate the characteristic polynomial as follows: 

( )
( ) 0

0 0

( 1
( ) 0

0 0
J

d V
I E d S

l d g q b
l d l g b

l

é ù) ) - -ê ú
ê ú¢- = - ) ) - =ê ú
ê úê úë û

）

, 

that is  

( ) ( )( )2 2 0d d dl l d g l d g++++++      = .                   (4.1) 

The three eigenvalues that can be calculated for this characteristic equation are 

1 0l = , ( )2 dl d g=- ++  , 3 dl =- . 

There is a zero eigenvalue and the rest of the roots are negative, in the light of the center 
manifold theorem [38], the system (3.1) exists the forward bifurcation.  

When 1vacR = , let bifurcation parameter 

( )( )
( ) ( )

* : .
1

d d d b
d

b g a
b b

q g b
++++  

= =
é ùL - ++ ë û                       

 (4.2) 

Then compute the eigenvector whose eigenvalue is zero, set the right eigenvector 
( )1 2 3, , Tw w w w= , and then we can obtain  

( ) 0 1

0 2

3

1 0
0

0 0 0 0

d V w
d S w

w

d g q b
d g b

æ öæ ö æ ö+ - - ÷ç ÷ ÷ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷- + =ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ÷ç ç÷ ÷ç ÷ ÷ ÷ç ç÷ç è ø è øè ø

, 

getting the following relation: 

( )( ) ( )
( )

* *
0 0

1 3

1 d V S d
w w

d d
q g b b d

d g
- +++ 

=-
++

, 
( ) ( )

( )

* *
0 0

2 3

1 V d S
w w

d d
q b dd  b

d g
- ++

=-
++

. 
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Similarly, set the left eigenvector ( )1 2 3, ,v v v v= , and then we can obtain 

( )
( ) 0

1 2 3 0

1 0
, , 0

0 0 0 0

d V
v v v d S

d g J b
d g b

æ ö æ ö+ - - ÷ç ÷ç÷ ÷ç ç÷ ÷ç ç÷ ÷- + =ç ç÷ ÷ç ç÷ ÷ç ÷ ç ÷ç ÷ ÷ç÷ç è øè ø

, 

it also satisfies 1v w× = , that is, 1 1 2 2 3 3 1v w v w v w++  = . So we can get the left eigenvector as follows, 

1 0v = , 2 0v = , 3 3 1v w = . 

To determine the type of bifurcation, set 1V x= , 2S x= , 3I x= , ( )1
d
d
V f x
t
= , ( )2

d
d
S f x
t
= , 

( )3
d
d
I f x
t
= , according to the system (3.1), it can obtain 

 
( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1 2 1 3 1

2 1 2 3 2

3 2 3 1 3 3

1 ,
,

1 .

f x x x x d x
f x x x x d x

f x x x x x d b x

g q b b
b b g

b q b a

ì = - - - +ïïïï =L+ - - +íïï = + - - ++ ïïî

               (4.3) 

According to v  and w  computing 1e  and 2e , where  

( )
23

*
1 0

, , 1

, ,k
k i j

k i j i j

fe v w w E
x x

b
=

¶ ¢=
¶ ¶å  

 
( )

( )
( )

( )
( )

( ) ( )
2 2 2 2

2 * 2 * 2 * *1 1 1 1
1 1 0 1 2 0 1 3 0 1 1 2 02 2 2

1 21 2 3

, , , 2 ,f f f fv w E v w E v w E v w w E
x xx x x

b b b b
¶ ¶ ¶ ¶¢ ¢ ¢ ¢= +++ 

¶ ¶¶ ¶ ¶
 

( ) ( )
( )

( )
( )

( )
2 2 2 2

* * 2 * 2 *1 1 2 2
1 1 3 0 1 2 3 0 2 1 0 2 2 02 2

1 3 2 3 1 2

2 , 2 , , ,f f f fv w w E v w w E v w E v w E
x x x x x x

b b b b
¶ ¶ ¶ ¶¢ ¢ ¢ ¢++++  
¶ ¶ ¶ ¶ ¶ ¶

 

( )
( ) ( ) ( ) ( )

2 2 2 2
2 * * * *2 2 2 2

2 3 0 2 1 2 0 2 1 3 0 2 2 3 02
1 2 1 3 2 33

, 2 , 2 , 2 ,f f f fv w E v w w E v w w E v w w E
x x x x x xx

b b b b
¶ ¶ ¶ ¶¢ ¢ ¢ ¢++++  

¶ ¶ ¶ ¶ ¶ ¶¶

    
( )

( )
( )

( )
( )

( ) ( )
2 2 2 2

2 * 2 * 2 * *3 3 3 3
3 1 0 3 2 0 3 3 0 3 1 2 02 2 2

1 21 2 3

, , , 2 ,f f f fv w E v w E v w E v w w E
x xx x x

b b b b
¶ ¶ ¶ ¶¢ ¢ ¢ ¢++++  

¶ ¶¶ ¶ ¶
 

( ) ( )
2 2

* *3 3
3 1 3 0 3 2 3 0

1 3 2 3

2 , 2 , ,f fv w w E v w w E
x x x x

b b
¶ ¶¢ ¢++
¶ ¶ ¶ ¶

 

( )
23

*
2 0

, 1

, ,k
k i

k i i

fe v w E
x

b
b=

¶ ¢=
¶ ¶å  

( ) ( ) ( )
2 2 2

* * *1 1 1
1 1 0 1 2 0 1 3 0

1 2 3

, , ,f f fv w E v w E v w E
x x x

b b b
b b b

¶ ¶ ¶¢ ¢ ¢= ++
¶ ¶ ¶ ¶ ¶ ¶

 

AIMS Mathematics  Volume 9, Issue 2, 3453–3482. 



3469 
 

( ) ( ) ( )
2 2 2

* * *2 2 2
2 1 0 2 2 0 2 3 0

1 2 3

, , ,f f fv w E v w E v w E
x x x

b b b
b b b

¶ ¶ ¶¢ ¢ ¢+++ 
¶ ¶ ¶ ¶ ¶ ¶

 

( ) ( ) ( )
2 2 2

* * *3 3 3
3 1 0 3 2 0 3 3 0

1 2 3

, , , .f f fv w E v w E v w E
x x x

b b b
b b b

¶ ¶ ¶¢ ¢ ¢+++ 
¶ ¶ ¶ ¶ ¶ ¶       

(4.4) 

Then, calculate the partial derivative at ( )*
0 ,E b¢ ,  

( )
2

*1

1 3

1f
x x

q b
¶

=- -
¶ ¶

, ( )
2

*3

1 3

1f
x x

q b
¶

= -
¶ ¶

, 
2

*3

2 3

f
x x

b
¶

=
¶ ¶

, 
2

*2

2 3

f
x x

b
¶

=-
¶ ¶

, 

( )
2

3
0 0

3

1f S V
x

q
b

¶
= + -

¶ ¶
, ( )

2
1

0
3

1f V
x

q
b

¶
=- -

¶ ¶
, 

2
2

0
3

f S
x b
¶

=-
¶ ¶

, 

and others are zero. Then 1e  and 2e  are computed, 

( )
( )

( )
23

* * *
1 0 1 3 2 3

, , 1

2, 1 0k
k i j

k i j i j

fe v w w E w w w w
x x d d

b q b b
de =

¶ é ù¢= = - + <ê úë û¶ ¶ ++ å , 

( )
2 23

* 3
2 0 3 3

, 1 3

, 0k
k i

k i i

f fe v w E v w
x x

b
b b=

¶ ¶¢= = >
¶ ¶ ¶ ¶å . 

According to [39], the system (3.1) will undergo forward bifurcation. Since the fourth equation of 
system (2.2) is decoupled from the previous three, system (3.1) has the same stability as system (2.2), 
and there also exists a forward bifurcation for the system (2.2). 

4.2. Hopf bifurcation 

Theorem 4.2. [40] Suppose 1vacR > . When vaccination rate g  exceeds thresholds *g , there will 
be a Hopf bifurcation around 1E .  
Proof. When 1vacR > , calculate the Jacobian matrix of 1E , and then matrix (3.8) is as follows: 

( )
( )

( ) ( )

1 1

1 1 1

1 1 1 1

(1 ) ( 1
( ) .

1 1 ( )
J

I d V
E I d S

I I S V d b

）q b b g q b
b b g b
q b b b q b a

é ù- - - ) - -ê ú
ê ú= - - ) -ê ú
ê ú- ) - - ) )ê úë û

  (4.5) 

Calculate its characteristic equation, 
3 2

1 2 3 0,a a al l l+++   =                            (4.6) 

where  
( )1 12 2a I dq b g d= - +++   , 

( ) ( )( ) ( )2 2 2
2 1 1 1 1 1 11 1a I d I d I V I Sb g q b d q b b dg= ++  - +++   - + - , 

( ) ( ) ( )( ) ( )( )22 2 2 2
3 1 1 1 1 1 1 1 1 1 11 1 1 1a I V S I I d I V I S I dq db q gb b g q b b q b d= - + - +++   - + - ++  . 

AIMS Mathematics  Volume 9, Issue 2, 3453–3482. 



3470 
 

Let *g g= , and ( ) ( ) ( )* * *
1 2 3 0a a ag g g- = , and the roots of characteristic Eq (4.6) are  

( )*
1 2a il g=- , ( )*

2 2a il g= , ( )*
3 1al g=- , 

1l  and 2l  are a pair of purely imaginary roots. 
In general, the form of characteristic roots l  is 

1 1 2il i i= + , 2 1 2il i i= - , 3 1al =- , 

thus, when 1 1 2il i i= + , characteristic Eq (4.6) is replaced by the following equation: 

( ) ( )3 2 2 2 2 3
1 1 2 1 1 1 2 1 2 3 1 1 2 2 2 1 2 23 2 3 0a a a a a a ii i i i i i i i i i i i- + - ++++    - - = , 

separate the real and imaginary parts, let ( ) 3 2 2 2
1 1 1 2 1 1 1 2 1 2 3, 3R a a a ak g kkkkkk     = - + - ++  , then, 

compute the transversality conditions, by the implicit function theorem, 

1

1d ,
d

R
R

g

k

k
g

¶
=-

¶
                                (4.7) 

and 1 0k = , 2 2ak = , then  

*
1 3 1 2 2 1

2

d
d 2

a a a a a
ag g

k
g =

¢ ¢ ¢- -
= , 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

2* 2 * *
1 1 1 1 1 1

2* 2 2 *
1 1 1 1 1 1

1 1 1 1 2 2

2 1 1

I d I d I V I d I d

I d I d I V I S

b g q b d q b dg q b q b g d

b g q b d q b b dg

- ++  - ++  - - - - - - + - +++ 
=

++  - +++   - + -

since 1dsgn( ) 1
d
k
g

=- , and thus it generates Hopf bifurcation at *g g= . 

5. Sensitivity analysis 

In determining how vaccines contribute to the reduction of mortality from disease in 
populations and control disease transmission of disease, we must explore the importance of vaccines 
in relation to different factors involved in disease transmission and epidemiology. Sensitivity analysis 
of vacR  shows how each parameter contributes to the propagation of the disease. In Section 2.2, we 
calculate vacR , which is correlated with the transmission and prevalence. In this paper, the 
normalized forward sensitivity index analysis is used to analyze the parametric variable’s effect on vacR . 
Definition 1. [41] The normalized forward sensitivity index of vacR that depends differentiably on a 
parameter w , which is defined as 

,vac

vac

RO
Rw

w
w

¶
=

¶
          (5.1) 

shows that vacR  rises with w  increasing when 0Ow > , but vacR  declines with increasing 
w when 0Ow < . 
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The normalized forward sensitivity index of vacR  with regard to , , , , ,bb a g qL  as follows: 

1O Ob L= = , ( )
( )1

d
O

dg

gq d
d q g

+
=-

++  -
, 

( )1
O

dq

gq
d q g

=-
++  -

, 

dO
d ba

a
a

=-
++

, b
bdO

d ba
=-

++
, 

( )1
O

dd

qgd
d q g

=
++  -

,

( )( ) ( )( ) ( )
( )( )

1 2
1d

d b d d d b
O

d
b q g a b g b g

b b q g

é ù+ - ++++++++       ë û=-
L ++  -

, 

these equations show that b ,L ,d  has a negative effect on vacR  , and when b  and L  increase, 

vacR  also increases. Conversely , , , ,b d a g q  have a positive effect on vacR , which shows that the 
number of individuals with secondary infections is lower, when , , , ,b d a g q  increase, which shows 
that vaccines are very successful in halting the propagation of diseases. 

6. Optimize control 

Optimal control theory is employed to identify method of to achieve the maximum performance 
at the minimum cost under different assumptions. In Section 5, we analyzed the sensitivity of vacR . 
Therefore, in conjunction with the actual situation of infectious diseases transmission, we formulate 
the optimal vaccination control strategy [23].  

In this section, to get as many people vaccinated as possible, the vaccination rate   is selected 
as the control variable  u t . Since the vaccines produce are limited, thus the vaccinated people also 
are limited, it is possible to get uS  , where   is the maximum vaccination number. 

Thus, the optimal vaccination control problem with inequality constraints is described as follows, 

( )

( )

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

2 2
10

0 0 0 0

max max

min ,

.t .
1 ,

,
1 ,
,

0 , 0 , 0 , 0 ,
0 ,0 ,

 

,

ft
Y PI u dt

s
V uS VI d V
S V SI u d S
I SI VI d b I
R bI dR
V V

Proble

S S I I R R
u S

m P

u S S u

o b b
b b

b o b a

ìïï = +ïïïïïïï ¢ = - - - +ïïïïï ¢ = L+ - - +íïï ¢ = + - - ++ ïïï ¢ = -ïïïï = = = =ïïï £ £ £ £ £Wïïî

ò

             (6.1) 

where ft  represents the final time and ft R , 1P  represents the weight coefficient, and 1P R .  

In Problem    P , there exists the inequality constraint ( max max0 ,0 ,u u S S uS     ), and it 

is translated into equality constraints by non-negative parameters  1,2,3,4i i  , that is, 
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1

max 2

max 3

4

0,
0,
0,
0.

u
u u
S S
uS

h
h
h
h

ì - + =ïïïï - + =ïïíï - + =ïïï -W+ =ïïî

                                 (6.2) 

Thus, the Hamiltonian function of   Problem P  is expressed as follows [42,43]: 

   2 2
1 1VH PI u uS VI d V             

     1S IV SI u d S SI VI d b I                         

         1 1 2 max 2 3 max 3 4 4R bI dR u u u S S uS                     , 

where  , , , T
V S I R      is the cost variable, and  1 2 3 4, , , T     is non-negative.  

In order to prove the existence of the optimal vaccination strategy *u , we apply Theorem 2.2 in [44] 
and Theorem 5.1 in [45]. We need to check the following assumptions: 
(1) The set of controls and corresponding state variables is nonempty. 
(2) The admissible set is convex and closed. 
(3) The right hand side of (6.1) is bounded by a linear function in the state and control variables. 
(4) The integrand of the objective functional is convex. 
(5) There exist constants 1 0C  , 2 0C  , and 1  such that the integrand of the objective 

functional satisfies 1 2Y C u C
  . 

It is obvious that assumption 1 holds. Note that the solutions are bounded, so assumption 2 
holds. To simplify the notation, we define  , ,L t u : 

 

   
 

   

1

, ,
1t

V uS VI d V
S V SI u d S

L t u
SI VI d b II

bI dRR

 


 
  

        
                      
        

, 

For assumption 3, there exist 1( )t , 2 ( )t , it follows that 

   

       
   

        
 

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2
1 2

1 1 1 1 1 2 2 2 2 2

1 1 2 2

1 ( 1 )
( )

, , , , ,1 1

uS V I d V uS V I d V
V S I u d S V S I u d S

L t u L t u S I V I d b I S I V I d b I

bI dR bI dR

    
  

 
      

         
                       


   
 

            
        

              
   

1 2 1 1 2 2 1 2 2 1

2 1 1 1 2 2 1 2 2 1

1 1 2 2 1 2 1 1 2 2 1 2 2 1

1 2 2 1

1 1

1 1

u S S V I I I V V d V V
V V S I I I S S u d S S

S I I I S S V I I I V V d b I I
b I I d R R

   
 

     

          
                       
    
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     1 2 1 1 2 2 1 2 1 2 1 21 1u S S V I I I V V d V V V V                   

 1 1 2 2 1 2 1 2 1 1 2 2 1 2S I I I S S u d S S S I I I S S                

     1 1 2 2 1 2 1 2 1 2 1 21 1V I I I V V d b I I b I I d R R                  , 

1 1 2 2 1 2 3 1 2 4 1 2M S S M I I M V V M R R        , 

 1 2 1 2 1 2 1 2M S S I I V V R R        , 

where 1 22 2M u d I   ,    2 1 1 22 1 2 2M V S I b d             , 4M d , 

 3 22 1 2M I d      ,  1 2 3 4max , , ,M M M M M . The assumption 3 holds. 

For assumption 4, there exists the constant  0,1k   and 1u , 2u , then it obtains 

        1 2 1 21 1Y k u ku k Y u kY u      

                   
2 22 2

1 2 1 2 1 21 1 1 0k u ku k u ku k k u u          . 

Hence,         1 2 1 21 1Y k u ku k Y u kY u     , it proves that assumption 4 holds. 

For assumption 5, it is obviously that  

2 2 2
1 1 2PI u u C u C    , 

and 1 1C  , 2  , 2 0C  . The assumption 5 is satisfied. The existence of *u  is proved. In the 

next context, denote the optimal control of   Problem P  as *u  and the trajectory of the 

corresponding optimal control state as * * * *, , ,x V S I R     . In [44], it shows that base on a set of 

necessary conditions that the optimal control and state must satisfy, which is the optimality 
conditions, the adjoint equations and the transversality conditions, solving the optimal control 
problems. Here is the specific solution step to find the necessary conditions. 

The first-order necessary conditions can derive by utilizing the Pontryagin maximum principle [44]. 
Based on the conditions of optimality, co-state, and parametric variables, the two-point boundary 
value problems and nonlinear complementarity problems can formulated as follows [24]: 

,Hx
l

¶
=

¶



                                  (6.3) 

H
x

l
¶

=-
¶



(the adjoint equation),                       (6.4) 

where 0 , 0 , 0T  . 

The optimal conditions for the control variables  u t  are given by: 

0.H
u

¶
=

¶
                                  (6.5) 
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Combining Eqs (6.3) and (6.4), bringing the optimal solution, and , , ,V S I R  
   

 are as follows: 

( ) ( ) ( )

( )

( ) ( ) ( )

* *

* *
* 3 * 4

* * * * *

1 1

u ,

1 1 2 ,

,

V V S I

S S V I

I V S I I I R

R R

I d I

I u d I u

V S d b V S b AI

d

l l q b b l b l q b

l l b l l b m m

l l q b l b l a l q b l b l

l l

ìï é ùï = - ++  - - -ê úï ë ûïïïï é ù= ++  - - - -ï ê úï ë ûíïïï = - ++++    - - - - -ïïïï =ïïî









  (6.6) 

where the transversality conditions are determined as  

( ) ( ) ( ) ( ) 0.V f S f I f R ft t t tl l l l= = = =                     (6.7) 

For a particular optimal control problem, Eqs (6.4), (6.5) and (6.7) form a set of necessary 
conditions that an optimal control and state must satisfy.  

By the Section 3.1 in [44], if our goals depend on the state at the terminal time, the objective 
function is  

( )( ) ( ) ( )( )
1

0

1 max , , dt,
t

u
t

x t f t x t u td + ò  

where   1x t  represents the payoff term, which is a goal with respect to the final position or 

population level,  1x t . Then, compute the necessary conditions, where the transversality conditions 
have changed. The transversality conditions are as 

( ) ( )( )1 1t x tl f¢= . 

In the optimal vaccination control problem of this paper, the objective functional did not explicitly 
depend on the state at the terminal time. Thus, let the transversality conditions be stated as: 

        0.V f S f I f R ft t t t        

Let the control variable u  meet max0 u u   and u
S


 , and then max0 min ,u u
S

        
is 

received. Set maxu  is equal to unity and maxS , and thus, it can be obtained that maxu
S


 . 

By solving Eq (6.5), the optimal vaccination control *u  can be solved  

* * *
1 2 4

* .
2

S VS S Su l m l m m+ - - -
=                      (6.8) 

In the following discussion, consider maxu
S

 , under the case with * *u

S


 , where 4 0  . 

In order to determine the explicit expression without 1 , 2 , consider the following three cases: 

(1) when * max0 u u  , 1 2 0   , hence 
  *

* 2
S V S

u
 

 ; 
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(2) when * 0u  , 2 0  , hence 
  *

1
*0

2
S V S

u
  

  , and when 1 0  , there is 

  * 0S V S   ; 

(3) when * maxu u , 1 0  , hence 
  *

2
max * 2

S V S
u u

  
  , and when 2 0  , there is 

  *
maxS V S u   . 

Summarize the three conclusions when maxu
S

  , the optimal vaccination control solution *u  

is as follows, 

( ) *

* maxmax 0,min , .
2

S V S
u u

l lì üì üï ïï ï-ï ïï ï= í í ýýï ï ïïï ï ïïî þî þ
                  (6.9) 

When maxu
S
W

£ , the optimal vaccination control solution *u  is as follows 

( ) *

*
*

max 0,min , .
2

S V S
u

S
l lì üì üï ïï ï- Wï ïï ï= í í ýýï ï ïïï ï ïïî þî þ

                  (6.10) 

Thus, the analytical formula for optimal control is：  

( ) *

* max*max 0,min , , .
2

S V S
u u

S
l lì üì üï ïï ï- Wï ïï ï= í í ýýï ï ïïï ï ïïî þî þ

                (6.11) 

7. Numerical simulation 

In this section, numerical simulations will be performed to demonstrate the results of the above 
theory using MATLAB. 

For the parameter values: 0.008b  , 0.0518d  , 0.8125 , 0.0563  , 0.111  , 
1 , 0.35 , 0.99  , and 0.8016<1vacR   which satisfied the condition of the Theorem 

3.2. It can be seen from Figure 2, which proved the validity of the Theorem 3.2.  

 

Figure 2. Global stability of 0.E  
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The parameter values are as follows: 0.0085b  , 0.005d  , 0.6 , 0.29  , 0.005  , 
10 , 0.0099 , 0.2  , we can obtain 4=2.4716 10vacR  , in Figure 3, it can observe that 

for any given different initial values, these initial points can eventually tend to be endemic 
equilibrium, that is, which proves the Theorem 3.6 numerically. 

 

Figure 3. Global stability of the endemic equilibrium. 

The bifurcation diagram is shown in Figure 4, with bifurcation parameter ( )0.15 0.85b Î ， , and 
other parameter values are =0.11a , =0.85g , =0.005d , =0.95q , 0.943b = , 0.0718d = , 2L= . 
In Figure 4, it can be seen that the system generates a forward bifurcation at 1vacR = . When 1vacR < , 

0E  is stability, when 1vacR > , there exists a stable 1E and an unstable 0E . 

 

Figure 4. Forward bifurcation. 

In Section 4, we have shown that the system generates Hopf bifurcation when the parameter   
crosses the threshold * . By choosing the appropriate parameters, the result of the Theorem 4.1 is 
proved numerically. In Figure 5(a),(b) we show the stability of the system (2). In Figure 5(a) 0.85b  , 

0.001d  , 0.3 , 0.0006  , 0.009  , 100 , 0.95 , 0.065  , and 
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0 23.4129R  , which shows there exists the unique endemic equilibrium. In Figure 5(b) 0.45   
and all other parameters are the same.  

  

Figure 5. Phase diagram: (a) the limit cycle and (b) the system (2.2) is stable. 

With given parameter values, the normalized forward sensitivity index is obtained as shown in 
Table 1. 

Table 1. Normalized forward sensitivity index. 
Parameter b  L  b  d  a  d  g  q  
Sensitivity 
Index 1 1 -0.0602 -0.0036 -0.0070 0.0338 -0.5198 -6.7687 

In Table 1, we choose the proper parameters, obtain the value of the sensitivity index. The index of 
b , L , d  is positive, where when b , L  increase 10%, vacR  will increase 10%. Similarly, when d  
increases 10%, vacR  will increase 0.338%. Inversely, the index of , , , ,b d a g q  is negative, which 
means that , , , ,b d a g q  are all negative effect on the basic regeneration number, that is, vacR  decreases 
with the increase of , , , ,b d a g q . For example, if g  increases 10%, vacR  will decrease 5.198%. These 
results show that when changing the vaccination rate, vaccine effective rate values and the rate of 
vaccine-induced immunity, vacR  also changes dramatically. Thus, to control the transmission of 
disease, people are encouraged to be active in vaccinations, and biologists should increase the 
vaccine effectiveness rate. 

In Section 6, the vaccination rate  was selected as the control parameter, and the expression 
for the optimal solution was obtained. Set the parameter values as 0.002A , max 1u  , 

max 1100R  , and the final time is 100ft  . From Figure 6, it can be identified that the infected is 
apparently lower after adding control measures (red curve) than when no control measures were 
added, which indicates that the addition of control measures is beneficial to restrain the transmission 
of the disease, and the prevention and control strategy is effective. 
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Figure 6. Changes in the vaccinated and infectious population over time before and after controlling. 

8. Conclusions 

In this paper, an epidemic dynamical model of vaccination is developed. It includes vaccine 
effectiveness, vaccination rate, and the vaccine-induced immune decline rate. The qualitative 
theoretical analysis of the model leads us to the following conclusions.  

Through the next-generation method, we calculated vacR  and confirm the stability of 0E . 
When 1vacR < , 0E  is GAS. A high vaccine effectiveness and vaccination rate and a low 
vaccine-induced immune decline were found to drive the elimination of the disease. When 1vacR > , 

1E  is GAS, that is, when certain threshold conditions for vacR  are achieved, the propagation of the 
disease can be contained by employing vaccination, increased vaccine effectiveness, and similar factors. 

Using the center manifold theory, we showed that the system will generate the forward 
bifurcation at 1vacR = . As the bifurcation parameter *b  increases, the system will undergo the 
forward bifurcation, and with it, reflecting that the disease will not become extinct. Therefore, when 
controlling the transmission of the disease, it is possible to reduce the patient’s contact with the 
external community by taking preventive measures such as wearing masks, lengthening social 
distance, and isolation. We chose the vaccination rate g  as the bifurcation parameter, providing 
theoretical demonstrations of the existence of the Hopf bifurcation under certain parameter conditions. 

Next, sensitivity analysis of vacR  shows that the vaccination rates and vaccine effectiveness are 
fundamental to vacR .Vaccine-induced immune decline rate also plays an essential role in disease 
containment. Thus, we can show that vaccinations are a vital component in containing the 
transmission of disease. Community policymakers use the outcomes of sensitivity analyses to 
develop strategies to limit the transmission of diseases, which encourages people to be vaccinated 
while investing more in vaccine research to improve vaccine effectiveness rate. 

To find the most cost-effective strategy for controlling infectious diseases, we selected the 
vaccination rate g  as the control parameter, and the optimal control function with respect to 
vaccination is obtained, which was solved using the Pontryagin maximum principle. Results showed 
that vaccination is effective in decreasing the number of infected individuals, and vaccination is an 
essential way to slow down the number of infected people. 
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