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Abstract: A geometric invariant or preserver is essentially a geometric property of the unit sphere
of a real Banach space that remains invariant under the action of a surjective isometry onto the unit
sphere of another real Banach space. A new geometric invariant of the unit ball of a real Banach
space was introduced and analyzed in this manuscript: The core of the unit sphere. This geometric
invariant consists of all points in the unit sphere of a real Banach space, which are contained in a
unique maximal face. It is, in a geometrical sense, the opposite of fractal-like sets such as starlike sets.
Classical geometric properties, such as smoothness and strict convexity, were employed to characterize
the core of the unit sphere. Also, the core was related to a recently introduced new index: the index of
strong rotundity. A characterization of the core in terms of the index of strong rotundity was provided.
Finally, applications to longstanding open problems, such as Tingley’s problem, were provided by
presenting a new notion: Mazur-Ulam classes of Banach spaces.
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1. Introduction

Geometric invariants of the unit ball of a real Banach space have recently played an important role
in longstanding open problems such as the Banach-Mazur conjecture for rotations (is every transitive
and separable Banach space a Hilbert space?) [1, 6, 22, 28, 36] and Tingley’s problem (is it always
possible to extend a surjective isometry defined between the unit spheres of two real Banach spaces
to a surjective linear isometry between the whole spaces?) [12, 20, 23, 32, 39–47]. Special cases of
geometric invariants are the so-called indices or moduli, such as the classical modulus of convexity [13]
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and modulus of smoothness [33], as well as the recently new introduced index of rotundity [26] and
index of strong rotundity [29]. More geometric invariants, such as maximal faces, facets, and the
frame of the unit ball, can be found in the literature of Tingley’s problem [10, 43]. Nevertheless, the
Banach-Mazur conjecture for rotations usually produces geometric preservers under surjective linear
isometries because transitivity involves the action on the unit sphere of the group of surjective linear
isometries of a Banach space [22, 28].

Since the appearance of remarkable results such as the Mazur-Ulam theorem [37] and Mankiewicz
theorem [35], the employment of linear and nonlinear isometries and their corresponding geometric
invariants have been an extremely prolific topic. For instance, fractal-like sets such as starlike sets have
gained severe importance in approaching both the Banach-Mazur conjecture for rotations and Tingley’s
problem. The behavior of fractals contained in the unit sphere of infinite-dimensional Banach spaces is
clear under the action of surjective linear isometries, but it is not so clear under the action of surjective
isometries between unit spheres. This manuscript pushes forward the edge of this research field by
finding a new geometric invariant that serves to characterize and better understand the geometry of the
unit ball of a real Banach space.

2. Methodology

Only nonzero real vector spaces will be considered throughout this manuscript by default (many of
the results of this work can be easily readapted to complex spaces). For a normed space X, BX,UX,SX

stand for the (closed) unit ball, the open unit ball, and the unit sphere, respectively. For x ∈ X and r > 0,
BX(x, r),UX(x, r),SX(x, r) denote the (closed) ball of center x and radius r, the open ball of center x and
radius r, and the sphere of center x and radius r. Now, let X denote a topological space and A ⊆ X, then
int(A), cl(A), bd(A) stand for the interior of A, the closure of A, and the boundary of A, respectively.
If B ⊆ A, then intA(B), clA(B), bdA(B) stand for the relative interior of B with respect to A, the relative
closure of B with respect to A, and the relative boundary of B with respect to A, respectively.

The upcoming definitions are very well known among the Banach space geometers and belong to
the folklore of the classic literature of Banach space theory. For further reading on these topics, we
refer the reader to the classical texts [17, 18, 38].

Let X be a vector space. Let E ⊆ F ⊆ X. We say that E satisfies the extremal condition with respect
to F provided that the following property is satisfied: ∀x, y ∈ F ∀t ∈ (0, 1) tx+(1−t)y ∈ E ⇒ x, y ∈ E.
Under this situation, we say that E is extremal in F. When an extremal subset E = {e} is a singleton,
then e is called an extremal point of F. The set of extremal points of F is denoted by ext(F). If both E
and F are convex, then E is called a face of F if it is extremal in F. Extremal points of convex sets are
called extreme points and denoted also by ext(F).

If X is a Banach space, then the set of maximal (proper) faces of the unit ball BX will be denoted
by CX. If F is any convex subset of the unit sphere SX, then CF := {C ∈ CX : F ⊆ C}. A point
x ∈ SX is said to be an exposed point of BX if there exists x∗ in the unit sphere SX∗ of the dual space
X∗ in such a way that (x∗)−1 ({1}) ∩ BX = {x} (the functional x∗ is called a supporting functional that
exposes x on BX). On the other hand, x ∈ SX is said to be a strongly exposed point of BX if there exists
x∗ ∈ SX∗ verifying the following property: If (xn)n∈N ⊆ BX is such that (x∗(xn))n∈N converges to 1, then
(xn)n∈N converges to x (the functional x∗ is said to strongly expose x on BX). Special attention will be
paid to the sets ΠX := {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}, Πe

X :=
{
(x, x∗) ∈ SX × SX∗ : x∗ exposes x on BX

}
,
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and Πse
X := {(x, x∗) ∈ SX × SX∗ : x∗ strongly exposes x on BX}. Notice that Πse

X ⊆ Πe
X ⊆ ΠX. The set

of rotund points of BX is defined as rot(BX) = {x ∈ SX : {x} is a maximal face of BX} . In view of the
Hahn-Banach separation theorem, the set of rotund points can be described as rot(BX) = {x ∈ SX :
if x∗ ∈ SX∗ is so that (x, x∗) ∈ ΠX, then (x, x∗) ∈ Πe

X}. We refer the reader to [4, 5] for a wider
perspective on the above concepts and some other geometrical properties related with renormings.
The duality mapping [7, 8] of a Banach space X is the set-valued map J : X → P(X∗) defined as
J(x) := {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖ and x∗(x) = ‖x∗‖‖x‖} for every x ∈ X. If x ∈ SX, then J(x) is often
denoted by ν(x) and called the spherical image of x. In this sense, ν := J|SX is the spherical image map.
A point x in the unit sphere SX of X is said to be a smooth point [14] of the unit ball BX of X provided
that ν(x) is a singleton. The subset of smooth points of BX is typically denoted by smo(BX). Rotund
points and smooth points are somehow dual notions.

Let X be a vector space. Let M be a convex subset of X with at least two points. We define the set
of inner points of M by

inn(M) := {x ∈ X : ∀m ∈ M \ {x} ∃n ∈ M \ {m, x} such that x ∈ (m, n)}

as in [24, 25, 30, 31]. The set of inner points of a convex set is the infinite dimensional version of
what Tingley calls the “relative interior” of convex subsets of Rn in [46]. In fact, in [31, Theorem
5.1], it is proved that every nonsingleton convex subset of any finite dimensional vector space has
inner points. However, in [31, Corollary 5.3], it was shown that every infinite dimensional vector
space possesses a nonsingleton convex subset free of inner points. In fact, the positive face of B`1 ,
C := {(xn)n∈N ∈ S`1 : xn ≥ 0}, is a closed convex subset satisfying that inn(C) = ∅ [31, Theorem
5.4]. The idea behind this pathological result is consistent with other properties of `1 as dual of the
nonbarrelled space c00. For instance, there can be found unbounded sequences in `1 which are w∗-
convergent to 0 as dual of c00. Indeed, let X := (c00, ‖ · ‖∞), so X∗ is linearly isometric to (`1, ‖ · ‖1). For
each n ∈ N, let

x∗n :=
1
n

n∑
k=1

1
2k ek +

n∑∞
k=n+1

1
2k

∞∑
k=n+1

1
2k ek.

For each k ∈ N,
(
x∗n(ek)

)
n∈N converges to 0 because if n > k, then x∗n(ek) =

1/n
2k . As a consequence,(

x∗n(x)
)

n∈N converges to 0 for all x ∈ c00 due to the fact that c00 = span{en : n ∈ N}. In other words,

(x∗n)n∈N
w∗
→ 0. However, notice that

∥∥∥x∗n
∥∥∥

1
=

1
n

n∑
k=1

1
2k +

n∑∞
k=n+1

1
2k

∞∑
k=n+1

1
2k

=
1
n

n∑
k=1

1
2k + n ≥ n.

3. Results

As we will see later on, the new geometric invariant introduced in this work (the core of the unit
sphere) is intimately linked to the convexity and extremal structures of the unit sphere. In this sense,
certain properties that might seem intuitively true might not hold even in finite dimensions. For
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instance, a subset C of the unit sphere of a Banach space X is said to be flat if its convex hull is
entirely contained in the unit sphere, that is, co(C) ⊆ SX. On the other hand, C is called almost flat
provided that [c, d] ⊆ SX for all c, d ∈ C. It is not intuitively trivial to think of an almost flat set that is
not flat. In [10, Example 3], a novel 3-dimensional unit ball was presented containing an example of
an almost flat set (of four vertices), which is not flat. This example can be simplified to three vertices
within three adjacent facets. More specifically, it is enough to consider the set
E := {(1, 1, 1), (−1, 1,−1), (−1,−1, 1)} in S`3

∞
, which is clearly almost flat but not flat in the unit sphere

of `3
∞ :=

(
R3, ‖ · ‖∞

)
. Observe that E is not connected; however, if we now take

D := [(1, 1, 1), (−1, 1, 1)] ∪ [(1, 1, 1), (1,−1, 1)] ∪ [(1, 1, 1), (1, 1,−1)], then D is a path-connected,
almost-flat set that is not flat (see also [11, Theorem 2.1]).

A very famous result of Tingley [46, Lemmas 12 and 13] asserts that surjective isometries between
finite-dimensional Banach spaces preserve antipodal points. This result has been recently transported,
in any dimension, to rotund points [10, Theorem 14] and to maximal faces with inner points [10,
Theorem 15]. Our first result in this manuscript goes one step further in this direction by relying
on the P-property (a Banach space has the P-property whenever every proper face of the unit ball is
the intersection of all maximal faces containing it). The P-property was originally introduced in [10,
Definition 7], but it was motivated by [44, Definition 3.2].

Theorem 3.1. Let X and Y be Banach spaces such that X has the P-property. Let T : SX → SY be a
surjective isometry and F ⊆ SX a proper face satisfying inn(F) , ∅, then T (−F) = −T (F).

Proof. Since X satisfies the P-property, F =
⋂

C∈CF
C, hence, by bearing in mind [10, Theorem 15]

together with the fact that T is a homeomorphism, we have that

T (−F) = T

− ⋂
C∈CF

C

 = T

 ⋂
C∈CF

−C

 =
⋂

C∈CF

T (−C) =
⋂

C∈CF

−T (C)

= −
⋂

C∈CF

T (C) = −T

 ⋂
C∈CF

C

 = −T (F).

�

As mentioned above, the search for geometric invariants is a hot topic now in the theory of Banach
space geometry. Here, we present a new geometric invariant.

Definition 3.2 (Core). Let X be a Banach space. The core of the unit sphere of X is defined as
core(SX) := {x ∈ SX : ∃!C ∈ CX x ∈ C} .

Notice that rot(BX) ∪ smo(BX) ⊆ core(SX). Our next result characterizes the core. Recall that UX

stands for the open unit ball of X and UX(x, r) stands for the open ball of center x and radius r.

Theorem 3.3. Let X be a Banach space, then core(SX) = {x ∈ SX : BX \ UX(x, 2) is convex} .

Proof.

⊆ If x ∈ core(BX) and C is the only maximal proper face of BX containing x, then BX\UX(x, 2) = −C.
Indeed, if y ∈ C, then [y, x] ⊆ SX; hence, ‖y + x‖ = 2, so −y ∈ BX \ UX(x, 2). This shows that
−C ⊆ BX \ UX(x, 2). Next, if y ∈ BX \ UX(x, 2), then ‖y − x‖ = 2, so ‖ − y + x‖ = 2; hence,
[−y, x] ⊆ SX, so −y ∈ C, that is, y ∈ −C. This proves that −C ⊇ BX \ UX(x, 2).
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⊇ Conversely, assume that D := BX \ UX(x, 2) is convex. Let C := −D. We will show that C is the
only maximal proper face of BX containing x. Indeed, notice that D ⊆ SX. Fix an arbitrary y ∈ SX

so that [y, x] ⊆ SX, then ‖y + x‖ = 2, so −y ∈ BX \ UX(x, 2) = D = −C, that is, y ∈ C. This
concludes the proof.

�

In [29], for every (x, x∗) ∈ ΠX, the following indices are introduced:

υX (·, (x, x∗)) : [0, 2] → [0, 2]
ε 7→ υX (ε, (x, x∗)) := inf{1 − x∗(y) : ‖y‖ ≤ 1, ‖x − y‖ ≥ ε}

and
ηX (·, (x, x∗)) : [0, 2] → [0, 2]

ε 7→ ηX (ε, (x, x∗)) := d
(
(x∗)−1({1}),BX \ UX(x, ε)

)
The latter one, ηX (·, (x, x∗)), is denominated as index of strong rotundity [29]. It is noticed that

0 ≤ υX (ε, (x, x∗)) ≤ ηX (ε, (x, x∗)) ≤ 2 for all ε ∈ [0, 2], and the index of strong rotundity characterizes
whether a Banach space is strongly rotund since Πse

X = {(x, x∗) ∈ ΠX : ∀ε ∈ (0, 2] ηX (ε, (x, x∗)) > 0}.
On the other hand, the index of rotundity [26] is defined as ζX := sup{diam(C) : C ⊆ SX is convex}.
The next results relate the previous indices.

Theorem 3.4. Let X be a Banach space. For every ε ∈
[
0, ζX), there exists (x, x∗) ∈ ΠX such that

υX (ε, (x, x∗)) = ηX(ε(x, x∗)) = 0.

Proof. In first place, by [29, Theorem 2.4], 0 ≤ υX (ε, (x, x∗)) ≤ ηX (ε, (x, x∗)) ≤ 2 for all ε ∈ [0, 2] and
all (x, x∗) ∈ ΠX; thus, it only suffices to show that, for every ε ∈

[
0, ζX), there exists (x, x∗) ∈ ΠX such

that ηX(ε(x, x∗)) = 0. Fix an arbitrary ε ∈
[
0, ζX). There exists C ∈ CX such that ε < diam(C) ≤ ζX.

There exists x∗ ∈ SX∗ such that C = (x∗)−1 ({1}) ∩ BX. We can find x, y ∈ C satisfying that ‖x − y‖ ≥ ε.
Note that y ∈ (x∗)−1 ({1})∩(BX \ UX(x, ε)), meaning that ηX (ε, (x, x∗)) = d

(
(x∗)−1 ({1}),BX \ UX(x, ε)

)
=

0. �

Previous indices may be used to characterize the core of the unit sphere.

Theorem 3.5. Let X be a Banach space, then

core(SX) = {x ∈ SX : ∃x∗ ∈ ν(x) υX (2, (x, x∗)) = ηX (2, (x, x∗)) = 2}.

Proof.

⊆ Fix an arbitrary x ∈ core(SX). Let C be the only maximal proper face of BX containing x. Take
x∗ ∈ ν(x) such that C = (x∗)−1 ({1}) ∩ BX. We already know from [29, Theorem 2.4] that
0 ≤ υX (ε, (x, x∗)) ≤ ηX (ε, (x, x∗)) ≤ 2 for all ε ∈ [0, 2]. Thus, it only suffices to prove that
υX (2, (x, x∗)) = 2. In accordance with Theorem 3.3, we have that BX \ UX(x, 2) = −C; therefore,
υX (2, (x, x∗)) = inf{1 − x∗(y) : y ∈ BX \ UX(x, 2)} = inf{1 − x∗(y) : y ∈ −C} = 2.

⊇ Conversely, take any x ∈ SX for which there exists x∗ ∈ ν(x) with υX (2, (x, x∗)) = ηX (2, (x, x∗)) =

2. Since −1 ≤ x∗(y) ≤ 1 for all y ∈ BX \ UX(x, 2), we have that 2 = υX (2, (x, x∗)) ≤ 1 − x∗(y) ≤ 2
for each y ∈ BX \ UX(x, 2). Therefore, x∗(y) = −1 for each y ∈ BX \ UX(x, 2), meaning that
BX \ UX(x, 2) ⊆ (−x∗)−1({1}) ∩ BX. Let us show next that (x∗)−1({1}) ∩ BX is the only maximal
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proper face of BX containing x. Indeed, fix any arbitrary z ∈ SX such that [z, x] ⊆ SX, then
‖z + x‖ = 2, so ‖ − z − x‖ = 2. Hence, −z ∈ BX \ UX(x, 2) ⊆ (−x∗)−1({1}) ∩ BX, that is, x∗(z) = 1,
meaning that z ∈ (x∗)−1({1}) ∩ BX.

�

In the literature of Tingley’s problem and more generally in the literature of Banach space geometry,
the notion of the starlike set is very much employed. Let X be a normed space. The starlike set of a point
x ∈ SX is defined as st(x,BX) := {y ∈ BX : ‖x + y‖ = 2}. Notice that st(x,BX) ⊆ SX. Also, st(x,BX) =

{y ∈ SX : [y, x] ⊆ SX} =
⋃
{C ⊆ SX : C is a maximal face of BX containing x} = BX \ UX(−x, 2).

According to [10, Theorem 9], st(x,BX) satisfies the extremal condition with respect to BX for each
x ∈ SX. The following lemma improves [10, Theorem 9].

Lemma 3.6. Let X be a Banach space. Let x ∈ SX. If st(x,BX) is flat, then st(x,BX) is convex; hence,
it is the only maximal face of BX containing x.

Proof. If st(x,BX) is flat, then co(st(x,BX)) ⊆ SX; therefore, there exists x∗ ∈ SX∗ satisfying that
st(x,BX) ⊆ (x∗)−1({1}) ∩ BX. Take any arbitrary z ∈ (x∗)−1({1}) ∩ BX. The convexity of (x∗)−1({1}) ∩ BX

allows that ‖z + x‖ = 2, so z ∈ st(x,BX). As a consequence, st(x,BX) = (x∗)−1({1}) ∩ BX, so st(x,BX) is
the only maximal face of BX containing x. �

A direct consequence of Lemma 3.6 is the following dichotomy theorem.

Theorem 3.7. Let X be a Banach space. For every x ∈ SX, only one of the following two (disjoint)
possibilities can happen:

1) st(x,BX) is not convex.
2) st(x,BX) is a maximal face of BX.

Previous dichotomy theorem has the following consequence on Tingley’s problem.

Theorem 3.8. Let X and Y be Banach spaces. If T : SX → SY is a surjective isometry, then T maps
non-convex starlike sets of BX to non-convex starlike sets of BY , and maximal-face starlike sets of BX

to maximal-face starlike sets of BY .

Proof. Fix an arbitrary x ∈ SX. By [10, Theorem 3], T (st(x, BX)) = st(T (x), BY ). Suppose first that st(x, 
BX) is not convex. If so is st(T (x), BY ), then it is a maximal face of BY by the dichotomy theorem, 
reaching the contradiction that st(x, BX) is a maximal face of BX by relying on T −1 and on [10, Theorem 
1]. As a consequence, st(T (x), BY ) is not convex. Finally, if st(x, BX) is a maximal face of BX, then so 
is st(T (x), BY ) by bearing in mind [10, Theorem 1]. �

In [11, Definition 5], a new geometrical type of maximal face was introduced in the literature:
strongly maximal faces. Given a Banach space X, we say that a convex subset F ⊆ SX is a strongly
maximal face of BX provided that

⋃
f∈F st ( f ,BX) = F. Trivial examples of strongly maximal faces are

rotund points. In [11, Lemma 5.6], it was shown that every strongly maximal face is a maximal face.

Theorem 3.9. Let X be a Banach space. If F ⊆ SX is a strongly maximal face of BX, then F = st( f ,BX)
for all f ∈ F.
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Proof. Fix an arbitrary f ∈ F. By definition, st( f ,BX) ⊆ F and F is convex; therefore, st( f ,BX)
is flat. By applying Lemma 3.6, we conclude that st( f ,BX) is the only maximal face containing f .
Finally, [11, Lemma 5.6] assures that F is a maximal face, thus F = st( f ,BX). �

The converse to Theorem 3.9 does not hold in the sense described in the following example.

Example 3.10. Let X := `2
∞. Fix x := (1, 0), then st(x,BX) is flat. Hence, it is the only maximal face

of BX containing x. However, st(x,BX) is not a strongly maximal face of BX because st(x,BX) does not
contain st(y,BX), where y := (1, 1) ∈ st(x,BX).

The following corollary may be understood as a reformulation of Theorem 3.3.

Corollary 3.11. Let X be a Banach space, then core(SX) = {x ∈ SX : st(x,BX) is flat}.

Proof.

⊆ If x ∈ core(SX), then Theorem 3.3 assures that BX \ UX(x, 2) is convex, meaning that st(x,BX) is
convex as well.

⊇ Conversely, if st(x,BX) is flat, then st(x,BX) is convex by Lemma 3.6. Therefore, it is the only
maximal face of BX containing x.

�

The following corollary highlights the core as a geometric invariant.

Corollary 3.12. Let X and Y be Banach spaces. If T : SX → SY is a surjective isometry, then
T (core(SX)) = core(SY).

Proof. Since T−1 : SY → SX is a surjective isometry as well, it only suffices to show that T (core(SX)) ⊆
core(SY). Indeed, pick any x ∈ core(SX). Notice that −x ∈ core(SX). By relying on Corollary 3.11,
st(−x,BX) is flat. Next, flatness is a geometric invariant [10, Theorem 12(4)], that is, T (st(−x,BX)) is
flat in SY . Next, by bearing in mind [10, Remark 4], T (st(−x,BX)) = st(−T (x), BY). As a consequence,
by applying Corollary 3.11 once more, −T (x) ∈ core(SY), meaning that T (x) ∈ core(SY). �

The frame of the unit ball is another important geometric invariant involved in Tingley’s problem
[42, 43]. If X is a Banach space, then the frame of BX is characterized [10, Theorem 7] as frm(BX) =⋃
{bdSX ((x∗)−1({1}) ∩ BX) : x∗ ∈

⋃
x∈SX

ν(x)}. In particular, frm(BX) = SX if, and only if, for every
proper face C ⊆ SX, then intSX (C) = ∅.

Lemma 3.13. Let X be a Banach space, then

1)
⋃

C∈CX
inn(C) ⊆ core(SX).

2) If C ∈ CX is separable and (cn)n∈N is dense in C, then c :=
∞∑

n=1

cn

2n ∈ core(SX).

3) core(SX) ⊇ SX \ frm(BX).

Proof.

1) Fix an arbitrary C ∈ CX and an arbitrary c ∈ inn(C). Let D ∈ CX such that c ∈ D. Since
inn(C) ∩ D , ∅, in virtue of [25, Lemma 2.1], we have that C ⊆ D. By maximality, C = D. This
shows that c ∈ core(SX).
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2) Let D ∈ CX such that c ∈ D. There exists a functional x∗ ∈ SX∗ such that D = (x∗)−1({1}) ∩ BX.
Since c ∈ D, we have that x∗(c) = 1, which implies that x∗(cn) = 1 for all n ∈ N. The density of
(cn)n∈N in C assures that x∗(C) = {1}; in other words, C ⊆ (x∗)−1({1}) ∩ BX = D. By maximality,
C = D. As a consequence, c ∈ core(SX).

3) If x ∈ SX \ frm(BX), then there exists a facet C ∈ CX satisfying that x ∈ intSX (C). In accordance
with [10, Lemma 5(5)] and Proposition 3.13(1), intSX (C) = inn(C) ⊆ core(SX).

�

Notice that there are examples of Banach spaces for which core(SX) , SX \ frm(BX). Indeed, if X is
strictly convex and dim(X) ≥ 2, then SX = core(SX) = frm(BX).

A variation of Tingley’s problem was introduced in [12] and it is known as the Mazur-Ulam
property. A Banach space X satisfies the Mazur-Ulam property if for an arbitrary Banach space Y , any
surjective isometry between the unit spheres of X and Y is the restriction of a surjective linear
isometry between the whole spaces. There are plenty of examples of Banach spaces satisfying the
Mazur-Ulam property [2, 3, 9, 15, 16, 19–21, 32, 34]. The Mazur-Ulam property motivates the
upcoming definition.

We will denote by B to the class of all real Banach spaces. A subclass C ⊆ B is said to be
isometric (isomorphic) if C is invariant under surjective linear isometries (isomorphisms), that is, if
X ∈ C , Y ∈ B, and T : X → Y is a surjective linear isometry (isomorphism), then Y ∈ C .

Definition 3.14 (Mazur-Ulam class). A subclass C ⊆ B is said to be a Mazur-Ulam class if C is
invariant under surjective isometries between unit spheres; that is, if X ∈ C , Y ∈ B, and T : SX → SY

is a surjective isometry, then Y ∈ C .

Notice that every Mazur-Ulam class is an isometric class. By bearing in mind [10, Corollary 6], the
class of all strictly convex Banach spaces is a Mazur-Ulam. We will identify more Mazur-Ulam classes
of Banach spaces.

Theorem 3.15. The class of Banach spaces whose unit sphere contains a dense amount of rotund
points is a Mazur-Ulam class.

Proof. Let C denote the class of Banach spaces whose unit sphere contains a dense amount of rotund
points. Let X ∈ C , Y ∈ B, and T : SX → SY be a surjective isometry. We will show that Y ∈ C .
Indeed, in virtue of [10, Theorem 14], T (rot(BX)) = rot(BY); thus, since T is a homeomorphism, rot(BY)
is dense in SY . �

In [27], a three-dimensional Banach space is constructed in such a way that its unit sphere consists
of extreme points, except for two nontrivial maximal segments (opposite to each other).

Theorem 3.16. The class of Banach spaces whose unit sphere consists of extreme points, except for
two nontrivial maximal segments (opposite to each other), is a Mazur-Ulam class.

Proof. Let C denote the class of Banach spaces whose unit sphere consists of extreme points, except
for two nontrivial maximal segments (opposite to each other). Let X ∈ C , Y ∈ B, and T : SX → SY be
a surjective isometry. We will show that Y ∈ C . In the first place, note that every extreme point of BX is
indeed a rotund point of BX, except for the four extremes of the two opposite segments. So, essentially,
if S and −S denote the opposite nontrivial maximal segments, then SX = rot(BX)∪S ∪−S . Also, notice
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that both S and −S must be maximal faces of BX. Therefore, by applying [10, Theorem 14], we have
that T (rot(BX)) = rot(BY). In view of [10, Corollary 8], T (S ) is both a segment of SY and a maximal
face of BY , and the same goes for T (−S ). Next, inn(S ) , ∅ because S is a nontrivial segment; thus,
according to [10, Theorem 15(1)], T (−S ) = −S . Finally, we conclude that SY = rot(BY)∪T (S )∪−T (S ),
meaning that Y ∈ C . �

4. Discussion

By looking at the proof of Theorem 3.16, it is noticeable that the class of Banach spaces with
a dimension greater than or equal to 3 whose unit sphere consists of extreme points, except for two
nontrivial maximal segments (opposite to each other), is contained in the class of Banach spaces whose
unit sphere contains a dense amount of rotund points. These two classes, even though they have been
proved to be Mazur-Ulam classes in Theorems 3.15 and 3.16, might seem to be small classes; in other
words, one could think that there are not many examples of Banach spaces that belong to the previous
classes. On the contrary, we will discuss how to possibly construct many examples of Banach spaces
whose unit sphere consists of extreme points, except for two nontrivial maximal segments (opposite to
each other). We will begin by relying on the following two technical lemmas, which are well known
in the literature of Banach space geometry, but whose proof we include for the sake of completeness.

Lemma 4.1. Let α1, α2, β1, β2 be positive numbers such that (α1, β1), (α2, β2) ∈ S1 = S`2
2

and
(α1α2, β1β2) ∈ S`2

1
, then α1 = α2 and β1 = β2.

Proof. Since 1 = α1α2+β1β2, we have that (α1+α2)2+(β1+β2)2 = 4; in other words,
(
α1+α2

2 , β1+β2
2

)
∈ S1.

Since S1 is strictly convex, we conclude the result. �

Lemma 4.2. Let X and Y be normed spaces. If (x1, y1), (x2, y2),
(

x1+x2
2 , y1+y2

2

)
∈ SX⊕2Y , then ‖x1 + x2‖ =

‖x1‖ + ‖x2‖, ‖x1‖ = ‖x2‖, ‖y1 + y2‖ = ‖y1‖ + ‖y2‖, ‖y1‖ = ‖y2‖. In particular,
[

x1
‖x1‖

, x2
‖x2‖

]
⊆ SX and[

y1
‖y1‖
, y2
‖y2‖

]
⊆ SY .

Proof. By Hölder’s inequality,

4 = ‖x1 + x2‖
2 + ‖y1 + y2‖

2

≤ ‖x1‖
2 + ‖x2‖

2 + 2‖x1‖‖x2‖ + ‖y1‖
2 + ‖y2‖

2 + 2‖y1‖‖y2‖

= 2 + 2 (‖x1‖‖x2‖ + ‖y1‖‖y2‖)

≤ 2 + 2
√
‖x1‖

2 + ‖y1‖
2
√
‖x2‖

2 + ‖y2‖
2

= 4

which forces that ‖x1 + x2‖ = ‖x1‖ + ‖x2‖, ‖y1 + y2‖ = ‖y1‖ + ‖y2‖ and ‖x1‖‖x2‖ + ‖y1‖‖y2‖ = 1. In view
of Lemma 4.1, we have that ‖x1‖ = ‖x2‖ and ‖y1‖ = ‖y2‖. Finally,∥∥∥∥∥ ‖x1‖

‖x1‖ + ‖x2‖

x1

‖x1‖
+

‖x2‖

‖x1‖ + ‖x2‖

x2

‖x2‖

∥∥∥∥∥ = 1,

so
[

x1
‖x1‖

, x2
‖x2‖

]
⊆ SX. In a similar way, it can be shown that

[
y1
‖y1‖
, y2
‖y2‖

]
⊆ SY . �

AIMS Mathematics Volume 9, Issue 2, 3440–3452.



3449

A direct consequence of Lemma 4.2 is that, under the settings of that lemma, if x ∈ ext(BX) and
y ∈ ext(BY), then (x,y)

√
2
∈ ext

(
BX⊕2Y

)
. Let C denote the class of Banach spaces whose unit sphere

consists of extreme points, except for two nontrivial maximal segments (opposite to each other). If
X ∈ C and Y is a strictly convex Banach space, then we will show that X⊕2 Y < C . Notice that if S and
−S denote the opposite nontrivial maximal segments of SX, then we already know from Theorem 3.16
that SX = rot(BX) ∪ S ∪ −S . Observe that, in view of Lemma 4.2, S × {0} and −S × {0} are opposite
nontrivial maximal segments of SX⊕2Y . Nevertheless, for every y ∈ SY , by relying on Lemma 4.2 again,

S
√

2
×

{
y
√

2

}
and −S

√
2
×

{
y
√

2

}
are also opposite nontrivial maximal segments of SX⊕2Y . As a consequence,

X ⊕2 Y < C .

5. Conclusions

The core of the unit sphere is a geometric invariant, which is a key factor in understanding the
geometry of the unit ball of a real Banach space. It is invariant under surjective isometries of unit
spheres and it has strong connections to strict convexity and smoothness in real Banach spaces. It can
also be characterized through the index of strong rotundity.
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10. A. Campos-Jiménez, F. J. Garcı́a-Pacheco, Geometric invariants of surjective isometries between
unit spheres, Mathematics, 9 (2021), 2346. https://doi.org/10.3390/math9182346
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