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1. Introduction

A crucial part of Riemannian geometry is determining the bound of the eigenvalue of the Laplacian
on a particular manifold. The study of eigenvalues, that show up as solutions to the Dirichlet or
Neumann boundary value problems for curvature functions, is a key goal of this purpose. Due to the
diversity of boundary conditions on a manifold, and from the perspective of the Dirichlet boundary
condition, one can consider determining the upper bound of the eigenvalue as a method of locating the
proper bound of the Laplacian on the particular manifold. Finding the eigenvalues of the β-Laplace
and Laplace operators has attracted more attention in recent years. Now, if the first eigenvalue of
the Dirichlet boundary condition is denoted by υ1(Σ) > 0 on a complete noncompact Riemannian
manifold Vp with the compact domain Σ in Vp, then we have

∆σ + υσ = 0 on Σ and σ = 0 on ∂Σ, (1.1)
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where ∆ is the Laplacian on Vp and σ is a nonzero function defined on Vp, then, υ1(Vp) expressed
as in f Συ1(Σ). The Dirichlet eigenvalues are the eigenvalues of the Laplace operator on a domain
with Dirichlet boundary conditions. They have many important consequences in various areas of
mathematics, including differential geometry, number theory, and mathematical physics. The Dirichlet
eigenvalues determine the geometry of a domain. For example, the first Dirichlet eigenvalue of a
domain is related to the diameter of the domain. The higher eigenvalues are related to the curvature of
the domain and the way it is embedded in Euclidean space. In this sequel, the Dirichlet eigenvalues
appear in the solution of the heat equation on a domain. The eigenvalues and the corresponding
eigenfunctions determine the solution’s decay rate. Also, the Dirichlet eigenvalues are an important
tool in spectral theory, which deals with studying the spectrum of operators. The spectrum of
the Laplace operator with Dirichlet boundary conditions contains the Dirichlet eigenvalues, and the
behavior of the eigenvalues can reveal information about the underlying geometry of the domain.
Therefore, it has been studied on a large scale [1–3].

The Reilly formula only applies to the manifold’s inherent geometry and most definitely to the
particular PDE being examined in the next equation. One can easily comprehend this by the following
example: Let (Vp, g) be a compact p-dimensional Riemannian manifold and υ1 , 0 is the first
eigenvalue of the Neumann boundary condition on Vp, and we have

∆σ + υ1σ = 0 on Vp and
∂σ

∂N
= 0 on ∂Vp, (1.2)

where N is the outward normal on ∂Vp. The Neumann eigenvalue problem is a classical
mathematical physics problem with a wide range of applications in various fields, including acoustics,
electromagnetics, quantum mechanics and fluid dynamics. Also, the Neumann eigenvalues of the
Laplacian operator correspond to the energy levels of a quantum mechanical system. This is used,
for example, in the study of the Schrödinger equation and the calculation of the electronic structure
of molecules. Furthermore, the Neumann eigenvalues of the Laplacian operator correspond to the
frequencies of small oscillations of a fluid in a closed container. This is used in the study of fluid
dynamics, where the resonant frequencies determine the stability of the fluid flow.

In [4], a result of Reilly proved the following famous upper bound inequality of the Laplacian
associated with the first nonzero eigenvalue υ∇1 :

υ∇1 ≤
p

Vol(Vp)

∫
Vp
|H|2dV, (1.3)

for a Riemannian submanifold Vp isometrically embedded in the Euclidean space R2m included the
mean curvatureH with dimension denoted by p of Vp. In this case, the submanifold Vp is connected,
closed, and oriented and the boundary satisfies ∂Vp = 0.

The inequality (1.3) leads to the great inspiration for several authors in this field, as they have
created such problems for various ambient settings. For example, on Minkowski spaces [3], on
closed Riemannian manifolds [5] of the β-Laplacian under integral curvature conditions and on the
hyperbolic spaces [6] with some integral conditions imposed on the mean curvature. Also, it was
studied on product manifolds [7] of the Hodge Laplacian, on projective spaces [8] for the β-Laplacian
that generalized (1.3), on Kaehler manifolds in [9] and for the Wentzel-Laplace operator in Euclidean
space [10]. Motivated by literature, the upper bound of the first eigenvalue υ∇1 > 0 of the Laplacian is
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established in [4,11] for connected space form Vp(ϵ) with constant curvature ϵ and is given as follows:

υ∇1 ≤
p

Vol(V)

∫
Vp

(
|H|2 + ϵ

)
dV, (1.4)

where Vp is a closed orientable submanifold of dimension p in Vp(ϵ). It is easy to study that the
inequality (1.4) generalized for the Euclidean space R2m with ϵ = 0, the unit sphere S2m(1) with ϵ = 1,
and the hyperbolic space H2m(−1) ϵ = −1, respectively. The equality case holds in (1.4) if, and only
if, Vp is minimal in a geodesic sphere of radius rϵ of Ṽm(ϵ) with r0 = (p/υ∆1 )1/2, r1 = arcsin r0, and
r−1 = arcsinh r0. Next, inequality (1.4) was extended for the β-Laplacian in [12,13] as given the results
in [4] that assumed expanded applications. Similar results can be found in [1–3, 14–22] through the
work of [4]. Now, we are defining the β-Laplacian operator for β > 1 which satisfies the following
differential equation:

∆βσ = div(|∇σ|β−2∇σ). (1.5)

If we substitute β = 2 in (1.5), then it becomes the usual Laplacian. Similarly, the eigenvalue Λ of ∆β
is as follows:

∆βσ = −υ|σ|
β−2σ, (1.6)

for the Dirichlet boundary condition (1.1) (or Neumann boundary condition (1.2)).
The first nonzero eigenvalue υ1,β of∆β on a Riemannian manifold Vp with no boundary demonstrates

the variational characteristic of the Rayleigh type [23]:

υ1,β = inf


∫

V |∇σ|
β∫

V ∥σ∥
β
|σ ∈ W1,β(Vp) {0},

∫
V
|σ|β−2σ = 0

 . (1.7)

The elliptical β-Laplacian is a nonlinear generalization of the standard Laplace operator that arises
in various areas of mathematics and physics. It is a partial differential operator that appears in the
study of nonlinear elliptic equations. It is used to model various physical phenomena, such as the
behavior of fluids, electromagnetism, and elasticity. Moreover, the standard Laplace operator is linear,
and the elliptical β-Laplace operator is nonlinear. It exhibits a wide range of interesting and complex
behavior. It is given the name β-Laplacian operator because it involves the βth power of the gradient of
a function. Therefore, the study of the elliptical β-Laplacian operator is an active area of research in
both pure and applied mathematics. It has important applications in fields such as engineering, physics,
and biology. Hence, influenced by the studies in [10, 12, 13], we provide a sharp estimate to the first
nonzero eigenvalue of the β-Laplacian on a slant submanifold Vp of a complex space form Ṽ2m(4ϵ).
Now, we announce our first result:

Theorem 1.1. Let Vp be a (p ≥ 2)-dimensional closed orientated slant submanifold of an m-
dimensional complex space form Ṽ2m(4ϵ). The first nonzero eigenvalue υ1,β of the β-Laplacian satisfies

υ1,β ≤
(2m + 1)(1− β2 ) p

β
2

(Vol(V))β/2

{∫
V

(
ϵ +

3ϵ cos2 θ

(p − 1)
+ |H|2

)
dV

}β/2
, f or 1 < β ≤ 2, (1.8)

and υ1,β ≤
(2m + 1)( β2−1) p

β
2

Vol(V)

∫
V

(
ϵ +

3ϵ cos2 θ

(p − 1)
+ |H|2

)β/2
dV, f or 2 < β ≤

p
2
+ 1, (1.9)
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whereH is the mean curvature vector of Vp in V2m(4ϵ) and Vol(V) is the volume of Vp. Moreover, the
equality holds if, and only if, β = 2 and Vp is minimally immersed in a geodesic sphere of radius rϵ of
Ṽ2m(4ϵ), with r0 = (p/υ∆1 )1/2, r1 = arcsin r0, and r−1 = arcsinh r0.

An immediate application of Theorem 1.1 for ϵ = 0 is the complex Euclidean space; that is, for the
scalar flat case, then:

Corollary 1.1. Let Vp be a (p ≥ 2)-dimensional closed orientated slant submanifold of an m-
dimensional complex Euclidean space R2m, then the first nonzero eigenvalue υ1,β of the β-Laplacian
satisfies

υ1,β ≤
(2m + 1)(1− β2 ) p

β
2

(Vol(V))β/2

(∫
V
|H|2dV

) β
2

f or 1 < β ≤ 2, (1.10)

and υ1,β ≤
(2m + 1)( β2−1) p

β
2

Vol(V)

∫
V
|H|βdV for 2 < β ≤

p
2
+ 1. (1.11)

Remark 1.1. Inequalities (1.10) and (1.11) characterized by β = 2 generalize the Reilly-type
inequality (1.3). In other words, the estimates of Reilly-type for the first eigenvalue of the Laplacian
in [4] are defined to be cases of the results in Theorem 1.1 for ϵ = 0 and β = 2.

The next result we will state as a particular version of Theorem 1.1. The following result is obtained
precisely by substituting ϵ = 1 in (1.8) and (1.9).

Corollary 1.2. Let Vp be a (p ≥ 2)-dimensional closed orientated slant submanifold in an m-
dimensional complex projective space CP2m(4), then, the first nonzero eigenvalue υ1,β of the β-
Laplacian satisfies

υ1,β ≤
(2m + 1)(1− β2 ) p

β
2

(Vol(V))β/2

( ∫
V

(
1 +

3 cos2 θ

(p − 1)
+ |H|2

)
dV

) β
2

, for 1 < β ≤ 2, (1.12)

and υ1,β ≤
(2m + 1)( β2−1) p

β
2

Vol(V)

∫
V

(
1 +

3 cos2 θ

(p − 1)
+ |H|2

) β
2

dV, for 2 < β ≤
p
2
+ 1. (1.13)

This paper is organized as follows. In Section 2, we recall the structure equations of a slant
submanifold Vp in V2m(4ϵ). Also, we show the consequences of change on some geometric quantities
due to changing the metric on V2m(4ϵ) under the conformal transformation. In Section 3, we prove
Theorem 1.1. Furthermore, as the method in [8] does not work for ϵ = −1, we find suitable test
functions to estimate the upper bound of υ1,β by conformal transformation to a unit sphere.

2. Preliminaries

Let Ṽ2m(4ϵ) be a complex space form of constant holomorphic sectional curvature 4ϵ endowed bt
the Kaehler manifold, then, the curvature tensor R̃ of Ṽ2m(4ϵ) can be expressed as

R̃(U1,U2,U3,U4) =ϵ
{
g(U1,U3)g(U2,U4) − g(U2,U3)g(U1,U4) + g(U1,JU3)g(JU2,U4)

− g(U2,JU3)g(JU1,U4) + 2g(U1,JU2)g(JU3,U4)
}
, (2.1)
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for anyU1,U2,U3,U4 ∈ Γ(T Ṽ2m). A p-dimensional Riemannian submanifold Vp of Ṽ2m(4ϵ) is called
totally real if the standard complex structure J of Ṽ2m(4ϵ) maps any tangent space of Vp into the
corresponding normal space [24].

Definition 2.1. Let Vp be a Riemannian submanifold of a Kähler manifold Ṽ2m, then Vp is a real
submanifold if J(TV) ⊂ TV and Vp is a complex submanifold if J(TV) ⊂ TV⊥.

Slant submanifolds are a class of submanifolds in Riemannian geometry that satisfy a certain
condition related to the angle between their tangent spaces and a fixed complex structure. A slant
submanifold Vp of a complex space form Ṽ2m is a submanifold Vp of Ṽ2m, such that the angle between
the tangent space TVp and the complex structure J of Vp satisfies the equation cos2 θ + sin2 θ = κ,
where κ is a constant between zero and one. Here, θ is the angle between the tangent space TVp and
the complex structure J . There are several ways to classify slant submanifolds according to their
geometry. One common classification is based on the shape of the mean curvature vector. In particular,
slant submanifolds can be classified as follows. The classification of slant submanifolds is an active
area of research in differential geometry, with many open questions and directions for further study.
Let U ∈ Γ(TV), and we have

JU = PU + FU, (2.2)

where PU and FU are tangential and normal components of JU. It is known that Vp is a slant
submanifold of Ṽ if, and only if,

P2 = κI (2.3)

for some λ ∈ [−1, 0] (see [25]), where I denotes the identity transformation of TV. Moreover, if Vp

is a slant submanifold and θ is the slant angle of Vp, then κ = − cos2 θ. Thus, we obtain the following
characterization theorem.

Lemma 2.1. Let Vp be a slant submanifold of a Kaehler manifold Ṽ2m,

g(PU1,PU2) = cos2 θg(U1,U2), (2.4)

g(FU1,FU2) = sin2 θg(U1,U2), (2.5)

forU1,U2 ∈ Γ(Dθ).

Using the moving frame method, we recall some well-known facts about submanifold geometry
and conformal geometry. On indices other than special declarations, we use convection as follows:

1 ≤ i, j, k, · · · ≤ p, p + 1 ≤ α, q, γ, · · · ≤ 2m, 1 ≤ a, b, c, · · · ≤ 2m.

2.1. Structure equations for slant submanifolds

Following the same method as appeared in [26], by submitting U1 = U3 = vi and U2 = U4 = v j

in (2.1), and taking the trace of Riemannian metric with vi, we have

R̃(vi, v j, vi, v j) = ϵ
{

g(vi, vi)g(v j, v j) − g(vi, v j)g(vi, v j) + g(vi,Jv j)g(Jv j, vi)

− g(vi,Jvi)g(v j,Jv j) + 2g2(Jv j, vi)
}
. (2.6)
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Taking the summation in (2.6) over the basis vector fields of TVp such that 1 ≤ i , j ≤ p, one
shows that

2̃τ(TVp) = ϵ
{

p(p − 1) + 3
∑

1≤i, j≤p

g2(Jvi, v j)
}
. (2.7)

Thus, it is easily seen that for a slant submanifold Vp

p∑
i, j=1

g2(Pvi, v j) = p cos2 θ. (2.8)

From (2.7) and (2.8), it follows that

2̃τ(TVp) = ϵ
{

p(p − 1) + 3p cos2 θ
}
. (2.9)

Take a trace of the above equation. Implementing Eqs (2.2) to (2.5) and by the Gauss equation for a
slant submanifold in a complex space form Ṽ2m(4ϵ) that is defined in detail [26], we get

R = ϵ
{

p(p − 1) + 3p cos2 θ
}
+ p2|H|2 − S , (2.10)

where R is the scalar curvature of Vp, S =
∑
α,i, j

(σα
i j)

2 is the squared norm of the second fundamental

form, andH =
∑
α
Hαvα =

1
p

∑
α

(
∑
i
σα

ii)vα is the mean curvature vector of Vp.

2.2. Conformal relations

Although these relations are well-known (cf. [26–28]), we will use directly all related equations
from [26] for the curvature and the second fundamental form change under conformal transformations.
We have

e2λR̃i jkl =Ri jkl −
(
λikδ jl + λ jlδik − λilδ jk − λ jkδil

)
+

(
λiλkδ jl + λ jλlδik − λ jλkδil − λiλlδ jk

)
− |∇α|

2
(
δikδ jl − δilδ jk

)
, (2.11)

where λα is the covariant derivative of λ with respect to vα and |∇α|2 stands for the norm of Levi-Civita
with respect to indices α. By pulling back to Vp by x, we have

σ̃α
i j = e−λ(σα

i j − λαδ jl), and H̃α = e−α(H̃α − λα). (2.12)

From this, it is easy to obtain the useful relation

e2λ(S̃ − p|H̃ |2) = S − p|H|2. (2.13)
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3. Proof of Theorem 1.1

Here, we demonstrate the proof of Theorem 1.1, which is stated in part one of this paper. We
begin by outlining some fundamental formulas, and we offer a key lemma that is relevant to the study
and is motivated by [1, 12, 13, 26].

Lemma 3.1. Let x : Vp → Ṽ2m(4ϵ) be the immersion from a p-dimensional closed-oriented slant
submanifold to a complex space form Ṽ2m(4ϵ), then, for β > 1, there exists a regular conformal map
Γ : Ṽ2m(4ϵ)→ CP2m(4) such that the immersion φ = Γ ◦ x = (φ1, · · ·φ2m+1) satisfies∫

Vp
|φa|β−2φadVM = 0, a = 1, · · · 2m + 1, (3.1)

where the manifold CP2m(4) carries a natural metric by the Hopf fibration π : S(2m−1) ⊂ R(2m−1)+1 −→

CP2m(4).

Proof. The main idea of Lemma 3.1 originates from β = 2 in (cf. [12, 13, 26, 29, 30]). The detailed
proof from above is given in [13]. □

The test function in Lemma 3.1 [1] provides an upper bound on υ1,β based on the conformal
function.

Lemma 3.2. Let Vp be a (p ≥ 2)-dimensional closed orientated slant submanifold of a Vp-dimensional
complex space form Ṽ2m(4ϵ). Let Υε denote he standard metric on Ṽ2m(4ϵ) and Γ∗Υ1 = e2λΥε, where Γ
is the conformal map in Lemma 3.1. We have for all β > 1,

υ1,βVol(Vp) ≤ (2m + 1)|1−
β
2 |p

β
2

∫
V

(e2λ)
β
2 dV. (3.2)

Proof. With Lemma 3.1 in mind and φa as the test function, then

υ1,β

∫
Vp
|φa|β ≤ |∇φa|βdV, 1 ≤ a ≤ 2m + 1. (3.3)

Note that
2m+1∑
a=1
|φa|2 = 1, then |φa| ≤ 1. Thus, we arrive at

2m+1∑
a=1

|∇φa|2 =

p∑
i=1

|∇viφ|
2 = pe2λ. (3.4)

Considering 1 < β ≤ 2, then we derive

|φa|2 ≤ |φa|β. (3.5)

Using (3.3)–(3.5) and the Hölder inequality, we find

υ1,βVol(M) = υ1,β

2m+1∑
a=1

∫
V
|φa|2dV ≤ υ1,β

2m+1∑
a=1

∫
V
|φa|βdV
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≤ υ1,β

∫
V

2m+1∑
a=1

|∇φa|βdV ≤ (2m + 1)1−β/2
∫

V

( p∑
a=1

|∇φa|2
) β

2 dV

= (2m + 1)1− β2

∫
V

(
pe2λ

) β
2 dV.

It implies that (3.2) must be true. However, if we choose β ≥ 2, it implies that the Holder equality can
be proved.

1 =
2m+1∑
a=1

|φa|2 ≤ (2m + 1)1− 2
β

2m+1∑
a=1

|φa|β


2
β

, (3.6)

from which we obtain

υ1,βVol(Vp) ≤ (2m + 1)
β
2−1

( 2m+1∑
a=1

υ1,β

∫
Vp
|φa|βdV

)
. (3.7)

Also, by Minkowski’s inequality, we have

2m+1∑
a=1

|∇φa|β ≤

2m+1∑
a=1

|∇φa|2


β
2

=
(
pe2λ

) β
2
. (3.8)

Hence (3.2) follows from (3.3), (3.7) and (3.8). This completes the proof of the lemma. □

Now, we can demonstrate the proof of Theorem 1.1.

3.1. Proof of Theorem 1.1

We begin with the case 1 < β ≤ 2. By using Lemma 3.2 and the Hölder inequality, we have

υ1,βVol(Vp) ≤(2m + 1)1− β2 p
β
2

∫
V

(
e2λ

) β
2 dV

≤(2m + 1)1− β2 |p
β
2 (Vol(V))1− β2

(∫
V

e2λdV
) β

2

.

Note that we can compute e2λ using the conformal relations and the Gauss equation as follows:
We assume that Ṽ2m = Ṽ2m(4ε), g̃ = Υϵ , ˜̄g = Γ∗Υ1 in previous. From (2.10), the Gauss equations

for the immersion x and the slant immersion φ = Γ ◦ x, respectively, are:

R = ϵ
{

p(p − 1) + 3p cos2 θ
}
+ p(p − 1)|H|2 + (p|H|2 − S ), (3.9)

R̃ =

{
p(p − 1) + 3p cos2 θ

}
+ p(p − 1)|H̃ |2 + (p|H̃ |2 − S̃ ). (3.10)

Tracing (2.11), it can be found that

e2λR̃ = R − (p − 2)(p − 1)|∇λ|2 − 2(p − 1)∆λ, (3.11)
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which substituted jointly with (3.9) and (3.10) into (3.11) gives

e2λ
{

p(p − 1) + 3p cos2 θ + p(p − 1)|H̃ |2 + (p|H̃ |2 − S̃ )
}

=ϵ
{

p(p − 1) + 3p cos2 θ
}
+ p(p − 1)|H|2 + (p|H|2 − S ) − (p − 2)(p − 1)|∇λ|2 − 2(p − 1)∆λ.

From this, it follows that

p(p − 1)
{(

e2λ − ϵ
{
1 +

3 cos2 θ

p − 1

})
+

(
e2λ|H̃ |2 − |H|2

)}
=p

(
|H|2 − e2λ|H̃ |2

)
+ e2λS̃ − S − (p − 2)(p − 1)|∇λ|2 − 2(p − 1)∆λ. (3.12)

Now, from (2.12) and (2.13), we derive

p(p − 1)
(
e2λ − ϵ

{
1 +

3 cos2 θ

p − 1

})
+ p(p − 1)

∑
α

(Hα − λα)2 − p(p − 1)|H|2

= − (p − 2)(p − 1)|∇λ|2 − 2(p − 1)∆λ.

Multiplying with 1
p(p−1) in the proceeding equation, we imply that

e2λ =
(
ϵ
{
1 +

3 cos2 θ

p − 1

}
+ |H|2

)
−

2∆λ
ϵ
{
1 + 3 cos2 θ

p−1

} − p − 2
p
|∆λ|

2 − |(∇̄λ)⊥ −H|2. (3.13)

By integration, it is not difficult to check that

υ1,β Vol(Vp) ≤ (2m + 1)1− β2 |p
β
2 (Vol(Vp))1− β2

(∫
V

e2λdV
) β

2

≤
(2m + 1)1− β2 |p

β
2

(Vol(V))
β
2−1

{∫
V

(
ϵ
{
1 +

3 cos2 θ

p − 1

}
+ |H|2

)
dV

} β
2

.

This is equivalent to (1.8), as we wanted to prove.
For the cas β > 2, we cannot use

∫
V(e2λ) to govern

∫
V(e2λ)

β
2 by applying the Hölder inequality

directly. Instead by multiplying e(β−2)λ on both sides of (3.13), and then integrating on Vp (cf. [31]),
we obtain∫

V
eβλdV ≤

∫
V

(
ϵ
{
1 +

3 cos2 θ

p − 1

}
+ |H|2

)
e(β−2)λdV −

∫
V

( p − 2 − 2β + 4
p

)
e(β−2)|∆λ|

2dV

≤

∫
V

(
ϵ
{
1 +

3 cos2 θ

p − 1

}
+ |H|2

)
e(β−2)λdV. (3.14)

Next, following from the assumption that β ≥ 2β − 2, we apply Young’s inequality, then∫
V

(
ϵ
{
1 +

3 cos2 θ

p − 1

}
+ |H|2

)
e(β−2)λdV ≤

2
β

∫
V

(∣∣∣∣∣ϵ{1 + 3 cos2 θ

p − 1

}
+ |H|2

∣∣∣∣∣) β2 dV +
(β − 2)
β

∫
V

e
β
λ dV. (3.15)
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From this, we deduce that ∫
V

eβλdV ≤
∫

V

(∣∣∣∣∣ϵ{1 + 3 cos2 θ

p − 1

}
+ |H|2

∣∣∣∣∣) β2 dV, (3.16)

and from (3.14) and (3.15) and by using (3.16) in (3.2), we obtain (1.9).
Now, suppose the equality holds in (1.8), then by considering the cases in (3.3) and (3.5), we get

|φa|2 =|φa|β,

∆βφ
a = − υ1,β|φ

a|β−2φa,

for each a = 1, · · · , 2m + 1. If 1 < β < 2, then |φa| = 0 or 1. However,
2m+1∑
a=1
|φa|2 = 1, so there is exactly

one a such that |φa| = 1, then υ1,β = 0, which is a contradiction. Hence, β = 2, and it reduces to the
Laplacian case, then, we are in a position to use the theorem in [4, 8].

Suppose that the equality holds in (1.9) and β > 2, then (3.7) and (3.8) must become equalities,
which means that

|φ1|β = · · · = |φ2m+1|β,

and so, there exists some a such that |∇φa| = 0. This means that φa is constant and υ1,β = 0, which
leads to a contradiction that υ1,β is a nonzero eigenvalue. As a result, the theorem has been proved.

The Reilly inequality (1.3) is generalized now to all β-Laplacian expressions.

Remark 3.1. In the case of β = 2, the corollary is recovered.

Corollary 3.1. Let Vp be a (p ≥ 2)-dimensional closed orientated slant submanifold of an m-
dimensional complex space form Ṽ2m(4ϵ), then, the first nonzero eigenvalue υ∆1 of the Laplacian
satisfies

υ∆1 ≤
p

Vol(V)

∫
V

(
ϵ +

3ϵ cos2 θ

(p − 1)
+ |H|2

)
dV. (3.17)

Moreover, the equality holds in (3.17) if, and only if, Vp is minimally immersed in a geodesic sphere of
radius rϵ of Ṽ2m(4ϵ) with r0 = (p/υ∆1 )1/2, r1 = arcsin r0 and r−1 = arcsinh r0.

Remark 3.2. By assuming that 1 < β ≤ 2, we have β

2(β−1) ≥ 1, then, the by Hölder inequality, we have∫
V

(
ϵ +

3ϵ cos2 θ

(p − 1)
+ |H|2

)
dV

≤(Vol(V))1− 2(β−1)
β

∫
M

(
ϵ +

3ϵ cos2 θ

(p − 1)
+ |H|2

) β
2(β−1)

dV


2(β−1)
β

. (3.18)

The upper bound in (1.8) is better than the upper bound given in Theorem 1.5 in [8] for ϵ = 1.

Inspired by Remark 3.2, we provide the following result.
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Corollary 3.2. Let Vp be a (p ≥ 2)-dimensional closed orientated slant submanifold of an m-
dimensional complex space form Ṽ2m(4ϵ). The first nonzero eigenvalue υ1,β of the β-Laplacian satisfies

υ1,β ≤
(2m + 1)(1− β2 ) p

β
2

(Vol(V))(β−1)

( ∫
V

(
ϵ
{
1 +

3 cos2 θ

β − 1

}
+ |H|2

) β
2(β−1)

dV
)(β−1)

(3.19)

for 1 < β ≤ 2.

Proof. From (1.8) and (3.18), we get the required result. □

4. Conclusions

The eigenvalues of elliptic Laplace operators, also known as the Laplace-Beltrami operator, have
many applications in mathematics and physics. Provided are a few examples in the main three areas.
Geometrically, the eigenvalues of the Laplace-Beltrami operator on a Riemannian manifold are closely
related to the geometry of the manifold. In particular, the first eigenvalue is related to the size and
curvature of the manifold. In the spectral theory, the eigenvalues of the Laplace-Beltrami operator can
be used to study the spectrum of other differential operators on the same manifold. For example, the
eigenvalues of the Laplace-Beltrami operator on a surface can be used to study the spectrum of the
Dirac operator on the same surface. Lastly, in physics, the Laplace-Beltrami operator appears in many
physical problems, such as the study of heat flow, electrostatics, and quantum mechanics. In particular,
the eigenvalues of the Laplace-Beltrami operator on a bounded domain are important in the study of the
eigenfunctions of the Schrödinger equation [23,32]. The Dirichlet eigenvalues have connections to the
distribution of prime numbers. The Riemann hypothesis, one of the most famous unsolved problems in
mathematics, is closely related to the eigenvalues of a certain operator, called the Riemann zeta function
operator, which is related to the Dirichlet eigenvalues. It also can be used to solve inverse problems,
such as determining the shape of a domain from its Dirichlet-to-Neumann map. This has applications,
for example, in medical imaging, where the shape of an organ can be determined from measurements of
the electromagnetic fields it produces. Next, the Neumann eigenvalues encode important geometric and
analytic information about the underlying manifold and domain. For example, they are related to the
isoperimetric inequality, the spectrum of the Laplace-Beltrami operator on the entire manifold, and the
asymptotic behavior of heat kernels. It is a well-studied topic in spectral geometry, and there are many
results concerning the existence, uniqueness, and asymptotic behavior of Neumann eigenfunctions and
eigenvalues. In particular, the Courant-Friedrichs-Lewy (CFL) inequality implies that the Neumann
eigenvalues grow at least linearly concerning the index, and Weyl’s law gives an asymptotic estimate
for the counting function of the Neumann eigenvalue. Overall, the Dirichlet, Neumann, and Laplace-
Beltrami operator eigenvalue problems have many important applications in mathematical physics and
provide a powerful tool for understanding the behavior of physical systems [33–36].
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