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Table 1. Nomenclature tabular column.

Name Symbole

Space of fuzzy numbers RF

LC-spaces with non-symmetric BF-number A Rn
F(A)

LC-spaces with symmetric BF-number A Rs
F(A)

Length or diameter of Fuzzy number µ len(B)
LC-fuzzy numbers of Non-symmetric A ΨA(p, r)
LC-fuzzy numbers of symmetric A Ψ̃A([(p, s)]≡A)
Metric on LC-space of non-symmetric A dΨA

Metric on LC-space of symmetric A dΨ̃A

Addition operator of F-numbers ⊕A

Operator of scalar multiplication ⊙A

LC-Fuzzy difference operator ⊟A

Equivalence relation ≡A

Equivalence class [(p, s)]≡A

Quotient in R2 R2/≡A

1. Introduction

Fuzzy numbers (F-numbers) and fuzzy operations were introduced by Zadeh [1] and Zadeh’s
extension principle respectively. Fuzzy set theory is a strong mathematical tool to deal with the
complexity generally arising from uncertainty in real-life scenarios. The fuzzy concept is important
for the optimization of problems, like the robot routing problem, to optimize path length and energy
consumption [2]. Fuzzy numbers are also important in the banking industry in data envelopment
analysis [3] and linear programming problems. The fuzzy concept is also used in medical resource
allocation [4] and medical health resource allocation evaluation in public health emergencies [5].
Hesitant fuzzy linguistic entropy [6] and probabilistic double hierarchy linguistic term set [7] are
important in decision making. The decision making model for operating systems and human-computer
interaction are studied by [8] and [9] respectively. The arithmetic operations of F-numbers indicate they
are non-interactive due to the operation of random variables. Therefore, Carlsson et al. [10] introduce
interactive F-numbers. The interactivities were based on some fuzzy joint distribution functions. The
operations of interactive F-numbers were obtained by the generalized extension principle. To relax the
need of a joint distribution function, linear correlated fuzzy numbers (LCF-numbers) were introduced
by Barros and Pedro [11]. Esmi et al. [12] define an operator from a two dimension Euclidean space
to the space of LCF-numbers. This operator is a bijection if the basic fuzzy numbers (BF-numbers)
of LCF-numbers are non-symmetric and therefore operations in LCF-numbers are defined from the
linear isomorphism. But, the operator is not bijection in the case of symmetric BF-number, therefore
operations in LCF-numbers are not possible to be defined by this process. Therefore, Shen [13] define
an equivalence relation in R2 if the BF-number is symmetric and uses canonical representation to define
the bijection from an equivalent class to the space of LCF-numbers. The operations in the LC-space of
symmetric BF-number was obtained by linear isomorphism. Just like the modification in F-numbers
and operations, fuzzy differentiability has also been a focus for researchers. Consequently some
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fuzzy differentiations were introduced in the fuzzy calculus. The most prominent fuzzy differentiations
are H-differentiability [14], generalized differentiability [15], gH-differentiability [16], interactive
differentiability [11], Fŕechet differentiability [12] and LC-differentiability [13]. To discuss linear
correlated fuzzy differential equations (LCFDEs) in the LC-spaces of both non-symmetric and
symmetric BF-numbers, Shen [17] discussed the calculus of LCF-numbers and [18] studied first
order FDEs with LC-differentiability. The main importance of FDEs is to dealt the uncertainty in
the solutions of problems. A problem is dealt with in a model if the solution is unique. But, a unique
solution of any differential equation, and especially fore LCFDEs with symmetric BF-numbers, is not
possible. The results of [19] ensure a unique solution of the problem discussed in [18] by reducing
the solution region to the nearest extension point. Moreover, in the existing literature, the solutions
methods of LCFDEs have some difficulties. These drawbacks reduce the usability of LCFDEs to deal
with such types of problems.

In the current work, we will study the existence and uniqueness results of LCFDEs to ensure a
unique solution in the LC-spaces of non-symmetric and symmetric BF-numbers. This study will point
out the cause due to which the LCFDEs do not have a unique solution and the solution extended to a
new system at the nodal points. In the existing literature of LCFDEs in the LC-spaces of symmetric
basic fuzzy number Rs

F(A) the LCFDEs are taken with the canonical form but the solution is not in the
canonical form, therefore in this study we will discuss the canonical form of solution of LCFDEs in
the space Rs

F(A).Moreover, in this study we will discuss the importance of the conical form of solution.
The main cause of the extension of LCFDEs and the non-availability of a unique canonical form of
solution is the form of LCFDEs. If first order LCFDEs have the following form then solution does not
extend, therefore one of the basic difficulties of existence of a unique solution is solvedz

′

(t) = g(t, z(t)), t ∈ I,

z(0) = z0,
(1.1)

where g : I × RF(A) → RF(A) is a continuous LC fuzzy number valued function. The first order LCFDE
discussed in [18] do not have a unique solution due to the extension of the solution to a new system at
the nodal points, but the solution of Eq (1.1) does not extend to new system at the nodal points even
when the extension conditions holds. At the nodal points of solution of Eq (1.1) alternately the non-
increasing and non-decreasing diameter will change and no new solution of extend system will exist.
In this study we will discuss the concept of the solution of the canonical form having a pair of solutions
with non-increasing and non-decreasing diameter in the LC-spaces of symmetric BF-numbers. These
are the main contribution of this work. Moreover, Eq (1.1) will produce a form similar to the first order
FDEs discussed in [18], which have unique solution. To show the validity of this manuscript, examples
and their 2D and 3D fuzzy plots of solutions are also provided.

2. Preliminaries

Now, we provide the mathematical background used in the current work.

2.1. The space of fuzzy numbers

The upper semi continuous and fuzzy convex mapping B : R→ [0, 1] is an F-number if B is normal
at some t0 ∈ R and the closure of {t ∈ R, B(t) > 0} is compact. The set RF of all F-numbers is called
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the space of fuzzy numbers [20].
Let B ∈ RF be a fuzzy number. Then, the set {t ∈ R | B(t) ≥ α} with α ∈ [0, 1] is called the

α−level set of the F-number. If B(t) and B(t) are the lower and upper bound of the α-level set, then
B = [B(t), B(t)], see [21]. In particular, the triple B1 = (t1; t2; t3) and quadruple B2 = (t1; t2; t3; t4),
represent triangular and trapezoidal F-numbers, respectively, where t1 ≤ t2 ≤ t3 ≤ t4. Their respective
α−level sets are given by

[B1]α = [t1 + (t2 − t1)α, t3 − (t3 − t2)α],

[B2]α = [t1 + (t2 − t1)α, t4 − (t4 − t3)α].

The set B0 = {t ∈ R | B(t) ≥ 0} is the support of F-number B.Meanwhile len(B) = B0 − B0 is the length
of the support, known as the diameter of B.

The fuzzy number B is a symmetric F-number with respect to t0, if for unique t0 ∈ R, B(t + t0) =
B(t0 − t) for all t ∈ R; otherwise, B is non-symmetric.

2.2. The space of linear correlated fuzzy numbers

Let ΨA : R2 → RF be an operator such that, for all A ∈ RF , each pair (p, s) is associated with an F-
number ΨA(p, s). If there exist (p, s) ∈ R2 such that B = ΨA(p, s) = pA+ s, then B is called an A−linear
correlated fuzzy number(LCF-number). The set {ΨA(p, s) | ∀ (p, s) ∈ R2}which consists of all A−linear
correlated fuzzy numbers is called the space of A-linear correlated fuzzy numbers RF(A). If the basic F-
number A is non-symmetric, then the LC-space is denoted by Rn

F(A), but in the case of symmetric basic
F-number A the LC-space is denoted by Rs

F(A).Moreover, [ΨA(p, s)]α = {pt+s ∈ R | t ∈ [A]α} = p[A]α+s
is the α-level set. Clearly, if A is a non-symmetric F-number then ΨA is one-to-one and onto, therefore
(Rn

F(A),⊕A,⊙A) is a linear space where ⊕A and ⊙A are defined as B1 ⊕A B2 = ΨA(ΨA
−1(B1) + ΨA

−1(B2))
and β ⊙A B = ΨA(βΨA

−1(B)). But, if A ∈ RF\R is symmetric, then ΨA : R2 → RF(A) is not one-to-
one because ΨA(p, s) = ΨA(−p, 2py + s), where y is a symmetric point. Now, we need to define an
equivalence relation. Let, for any (p, s), (q, r) ∈ R2, the equivalence relation be defined as (p, s)≡A(q, r)
if and only if (p, s) = (q, r) or (p, s) = (−q, 2qy+ r).With equivalence relation ≡A, the quotient in R2 is
defined as R2/≡A = {[(p, s)]≡A | (p, s) ∈ R2}, where [(p, s)]≡A = {(p, s), (−p, 2py+ s)} is the equivalence
class. The operations ⊕A and ⊙A in R2/≡A are defined as [(p, s)]≡A⊕A[(q, r)]≡A = [(p + q, s + r)]≡A and

β⊙A[(p, s)]≡A =

[(βp, βs)]≡A , β ≥ 0
[(−βp, 2βpy + βs)]≡A , β < 0.

If Ψ̃A([(p, s)]≡A) = p̃A + s̃, then Ψ̃A is a bijection from R2/≡A to R̃F(A). The difference ⊖A is defined as
from the operation of ⊕A and ⊙A in R2/≡A A1 ⊖A A2 = A1⊕A(−1)⊙AA2. From Proposition 3.5 in [17],
C ⊖A C , 0 if ∈ RF\R is symmetric. To remove the above drawback, the linear correlated fuzzy
difference was introduced in [13].

2.3. Linear correlated fuzzy difference

The LC-difference in the spaces of non-symmetric and symmetric basic fuzzy numbers Rn
F(A) and

Rs
F(A), respectively, is defined as follows:

A1 ⊟A A2 = ΨA(p1, s1)⊟AΨA(p2, s2) = ΨA(p1 − p2, s1 − s2) = (p1 − p2)A+ s1 − s2 for all A1, A2 ∈ Rn
F(A).

AIMS Mathematics Volume 9, Issue 2, 2695–2721.



2699

A1 ⊟A A2 = Ψ̃A([(p1, s1)]≡A) ⊟A Ψ̃A([(p2, s2)]≡A) = Ψ̃A([(p1, s1)]≡A⊟A[(p2, s2)]≡A) for all A1, A2 ∈ Rs
F(A)

where, Ψ̃A([(p1, s1)]≡A⊟A[(p2, s2)]≡A) =

(p1 − p2)A + s1 − s2, p1 ≥ p2,

(p2 − p1)A + 2(p1 − p2)y + s1 − s2, p1 < p2.

2.4. The metric in the space of linear correlated fuzzy numbers

The metric dΨA in the space Rn
F(A) and dΨ̃A

in Rs
F(A) with LC-difference is defined as follows:

dΨA(A1, A2) = ||A1 ⊟A A2||ΨA for all A1, A2 ∈ Rn
F(A) where the norm is defined as ||C||ΨA = ||ΨA

−1(C)||∞.
dΨ̃A

(A1, A2) = ||A1 ⊟A A2||Ψ̃A
= ||[(p1, s1)]≡A ⊟A [(p2, s2)]≡A ||∞ for all A1, A2 ∈ Rs

F(A), and
[(p1, s1)]≡A , [(p2, s2)]≡A ∈ R2/≡A,

where the norm is defined as ||C||Ψ̃A
= ||Ψ̃−1

A (C)||∞ = ||[(p, s)]≡A ||∞ = max{||(p, s)||∞, (−p, 2py + s)||∞}.

2.5. Differentiability of linear correlated fuzzy functions

Let A ∈ RF and the differentiable function g : I → RF(A) be continuous. Then, g is left (right)
LC-differentiable on t0 ∈ I if, in the sense of metrics dΨA or dΨ̃A

, the following limit exists [13]:

lim
t→t0−(t→t0+)

1
t − t0

⊙A (g(t) ⊟A g(t0),

if g is left and right differentiable on t0 ∈ I, denoted by g
′

−, g
′

+ respectively, where g
′

+ = g
′

−. Then, g
is LC-differentiable on t0 ∈ I.

Moreover, if A ∈ RF is non-symmetric and g(t) = p(t)A + s(t) such that p(t), s(t) are differentiable
g is LC-differentiable and g

′

(t) = p
′

(t)A + s
′

(t).
But, if A ∈ RF\R is symmetric with a symmetric point y, and the canonical form of g(t) = p̃(t)A +

s̃(t), then g(t) is LC-differentiable if p̃′−(t) = p̃′+(t), s̃′−(t) = s̃′+(t) or p̃′−(t) = − p̃′+(t), s̃′−(t) =
2p̃′+(t)y + s̃′+(t), where p̃′+, s̃′+ and p̃′−, s̃′− denote the right and left derivative of p̃, s̃, respectively.

Definition 2.1. Let problem (1.1) have a solution z(t) in the space of continuous fuzzy functions,
C(I,RF). Then, there exists a vector (p, s) such that z(t) = p(t)A + s(t) and z(t) satisfies Eq (1.1).
Also, for z0 ∈ C(I,RF) there exist s0, p0 such that z0 = p0A + s0.

3. LCFDEs of non-symmetric basic fuzzy numbers

Real problems with uncertainty are dealt with fuzzy models. A fuzzy model in the spaces Rn
F(A)

of non-symmetric basic fuzzy numbers deal with the problem in a simple and easy way. A model
deals a problem properly if it has a unique solution. Therefore, the current study is concerned with
the existence and uniqueness of solutions of fuzzy models of LCFDEs. Moreover, we will discuss the
solutions of fuzzy models of LCFDEs in the LC-spaces Rn

F(A).

In this work, we will discuss the existence result and solution of Eq (1.1) in the LC-space Rn
F(A). If

g(t, z(t)) = a(t)z(t) + b(t), where a, b : I → R are continuous functions, then problem (1.1) will have
the form z′(t) = a(t)z(t) + b(t),

z(t0) = p0A + s0.
(3.1)
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Eq (3.1) can be easily expressed in the following equivalent systems of equations
p′(t) = a(t)p(t),

s′(t) = a(t)s(t) + b(t),
p(t0) = p0, s(t0) = s0.

From this, the following solutions were obtained easily.
p(t) = p0e

∫ t
t0

a(w)dw
,

s(t) = e
∫ t

t0
a(w)dw

{
s0 +

∫ t

t0
b(w)e−

∫ t
t0

a(w)dwdw
}
.

(3.2)

Hence,

z(t) = p0e
∫ t

t0
a(w)dwA + e

∫ t
t0

a(w)dw
{
s0 +

∫ t

t0
b(w)e−

∫ t
t0

a(w)dwdw
}
. (3.3)

Now, we have to state and prove the existence and uniqueness result of problem (1.1) if BF-numbers
are non-symmetric.

Theorem 3.1. Let g : [t0, t0 + δ] × UF(A) → RF(A) with δ > 0 be continuous a LCF-number valued
function, where UF(A) = {z ∈ RF(A) | ∥z(t)⊟z0∥ΨA ≤ ρ} and M = sup{∥ g(t, z(t)) ∥ΨA | t ∈ [t0, t0+δ] and z ∈
UF(A)}. If for z1, z2 ∈ UF(A) and t ∈ [t0, t0 + δ], the following Lipschitz condition holds,

∥g(t, z1(t) ⊟A g(t, z2(t))∥ΨA ≤ k∥z1(t) ⊟A z2(t)∥ΨA

then Eq (1.1) has a unique solution z(t) in the LC-space defined on t ∈ [t0, t0 + τ] and τ = min{δ, ρM ,
1
αk },

where α > 1.

Proof. Suppose D = {C([t0, t0 + τ],UF(A))} such that T : D→ D is defined byT (z(t)) = z0 ⊕A

∫ t

t0
g(s, z(w))dw

T (z0) = z0.

Since T is well defined on the complete metric space D, we also have

∥ T (z(t)) ⊟ z0 ∥ΨA ≤

∫ t

t0
∥ g(t, z(t)) ∥ΨA ,

≤ τM < ρ.

To complete the proof we need to show a contraction of T in D.

∥T (z1(t) ⊟A T (z2(t))∥ΨA ≤

∫ t

t0
∥g(y, z1(t)) ⊟A g(z2(t))∥ΨAdw ≤ kτ∥z1(t) ⊟A z2(t)∥ΨA .

If τ < 1
k , then T is contraction on D. Therefore, there exists a unique solution z(t) = p(t)A+ r(t) defined

on t ∈ [t0, t0 + τ] of problem Eq (1.1). □
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Example 3.2. For a non-symmetric BF-number A = (−1; 0; 2), consider the following FDEs

 z
′

(t) = −λz(t),
z(0) = A + 1.

(3.4)

In integral form, Eq (3.4) can be written as

z(t) = z0 ⊟A λ

∫ t

t0
z(w)dw,

z(0) = A + 1.
(3.5)

Now, one can easily show the following condition:

∥g(y, z1(t) ⊟A g(t, z1(t))∥ ≤ λk∥z1(t) ⊟A z1(t)∥
= λk∥z1(t) ⊟A z1(t)∥

=
0.693k

T 1
2

∥z1(t) ⊟A z1(t)∥.

Here, T 1
2

is the half life of a radioactive sample. Clearly, for k < 0.693
T 1

2

, the condition of Theorem 3.1

holds, therefore the FDEs (3.4) have a unique solution. One can easily find the solution

z(t) = z0e−λt = e−λtA + e−λt (3.6)

The Figure 1 shows 2D and 3D fuzzy plots of the solution (3.6) of Eq (3.4) with non-symmetric basic
fuzzy number A = (−1; 0; 2), and λ = 0.5.

Figure 1. 3D-fuzzy plot and 2D-fuzzy plot of Example 3.2 with λ = 0.5.
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Example 3.3. For a non-symmetric BF-number A = (−1; 0; 2), consider the FDEs

z
′

(t) =
1

t + 1
⊙A z(t) ⊟A t + 1,

z(0) = A + 1.
(3.7)

One can easily show the following condition:

∥g(t, z1(t) ⊟A g(t, z1(t))∥ ≤ sup |
1

t + 1
| ⊙A ∥z1(t) ⊟A z1(t)∥.

Hence, the condition of Theorem 3.1 holds for all t ∈ (0,∞), therefore the FDEs (3.7) have a unique
solution.

Now, for the solution of Eq (3.7), we need to solve the following equations
p′(t) =

1
t + 1

p(t),

s′(t) =
1

t + 1
s(t) − (t + 1).

One can get the solution
z(t) = (t + 1)A + 1 − t2. (3.8)

The Figure 2 shows 2D and 3D fuzzy plots of the solution (3.8) of Eq (3.7) with non-symmetric basic
fuzzy number A = (−1; 0; 2).

Figure 2. 3D-fuzzy plot and 2D-fuzzy plot of the solution of Example 3.3.

Example 3.4. For a non-symmetric BF-number A = (−1; 0; 2),

AIMS Mathematics Volume 9, Issue 2, 2695–2721.
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z
′

(t) = − cos(t) ⊙A z(t) ⊕A
sin(4t)

4
,

z(0) = A − 1.
(3.9)

Clearly, the conditions of Theorem 3.1 hold for all t ∈ (0,∞), therefore the FDEs (3.9) have a unique
solution. Now, for the solution of Eq (3.9), we need to solve the following equations:


p
′

(t) = − cos(t)p(t),

s
′

(t) = − cos(t)s(t) ⊕A
sin(4t)

4
,

p(0) = 1, s(0) = −1.

This produces the following solutions:
p(t) = e− sin t,

s(t) = −12e− sin t + 3 cos 2t −
sin(3t)

2
+

25 sin(t)
2

+ 14.
(3.10)

Hence, the required solution of FDE (3.9) is

z(t) = e− sin tA − 12e− sin t + 3 cos 2t −
sin(3t)

2
+

25 sin(t)
2

+ 14. (3.11)

The Figure 3 shows 2D and 3D fuzzy plots of the solution (3.11) of Eq (3.9) with non-symmetric basic
fuzzy number A = (−1; 0; 2).

Now, Problem (1.1) can also have the following form, similar to the main problem discussed in
paper [18]: z

′

(t) =
c(t)
p(t) − b(t)

a(t)
⊙A z(t) +

d(t)
a(t)
,

z(t0) = p0A + s0.a(t) ⊙A z
′

(t) ⊕A b(t) ⊙A z(t) =
c(t)
p(t)

A +
c(t)s(t)

p(t)
+ d(t),

z(t0) = p0A + s0.

(3.12)

Now, we discuss the solutions of Problem (3.12) and for this we rewrite (3.12) asz
′

(t) ⊕A
b(t)
a(t)
⊙A z(t) =

c(t)
a(t)p(t)

A +
c(t)s(t)
a(t)p(t)

+
d(t)
a(t)
,

z(t0) = p0A + s0.

(3.13)

Since Eq (3.13) can be easily expressed in the following equivalent systems of equations:
p(t)p′(t) +

b(t)
a(t)

p2(t) =
c(t)
a(t)
,

s′(t) +
b(t)
a(t)

s(t) =
c(t)s(t)
a(t)p(t)

+
d(t)
a(t)
.

(3.14)
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Let v = p2(t), v′
2 = p(t)p′(t) and, for the simplicity of this study, take the positive root of v so

p(t) ≥ 0. Therefore, Eq (4.27) produces
v′(t) +

2b(t)
a(t)

v(t) =
2c(t)
a(t)
, if v′ ≥ 0

s′(t) +
b(t)
a(t)

s(t) =
c(t)s(t)
a(t)p(t)

+
d(t)
a(t)
.

(3.15)

By solving Eq (3.15), the following solutions and obtained:
p(t) =

√
v(t) =

√
e−
∫ t

t0
2b(w)
a(w) dw
{
(p0)2 + 2

∫ t

t0

{c(w)
a(w)

e
∫ t

t0
2b(w)
a(w) dw
}
dw
}
,

s(t) = e−
∫ t

t0
( b(w)

a(w)−
c(w)

a(w)p(t) )dw
{
(s0) +

∫ t

t0

{d(w)
a(w)

e
∫ t

t0
( b(w)

a(w)−
c(w)

a(w)p(t) )dw
}
dw
}
.

(3.16)

Figure 3. 3D-fuzzy plot and 2D-fuzzy plot of the solution of Example 3.4.

Example 3.5. For a non-symmetric BF-number A = (−1; 0; 2),

z
′

(t) ⊕A
1
t
⊙A z(t) =

2t
p(t)

A +
2ts(t)
p(t)

− 2t,

z(1) = A + 1.
(3.17)

The conditions of Theorem 3.1 hold easily, therefore Eq (3.17) has a unique solution. Using Eq (3.16)
to obtain the solution of Eq (3.17) in the interval (0,∞),

z(t) = tA +
2t2 + 2t + 1 − 3e2(t−1)

2t
. (3.18)

The Figure 4 shows 2D and 3D fuzzy plots of the solution (3.18) of Eq (3.17) with non-symmetric
basic fuzzy number A = (−1; 0; 2).
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Figure 4. 3D-fuzzy plot and 2D-fuzzy plot of the solution of Example 3.5.

4. LCFDEs in the spaces of symmetric basic fuzzy numbers

Physical and biological models of linear correlated fuzzy differential equations (LCFDEs) easily
deal with problems with uncertainty. A model can deal a problem better if it has a unique solution, but
LCFDEs in the space Rs

F(A) do not have unique solutions. Therefore, this study is concerned with
the existence of unique solution of LCFDEs in the space Rs

F(A). Moreover, LCFDEs in the space
Rs

F(A) are based on the canonical form, but the solutions discussed in the existing literature are not
in the canonical form. Therefore, in the current work we will discuss the solution of LCFDEs in the
canonical form. Let A ∈ RF\R be a symmetric F-number. Then ΨA : R2 → RF(A) is not one-to-one
because ΨA(p, s) = ΨA(−p, 2px + s), where x is a symmetric point, but ΨA : R2/ ≡ A → Rs

F(A)

is a bijection and has the canonical form Ψ̃A([ p̃(t), s̃(t)]≡A) = p̃(t)A + s̃(t), where [p̃(t), s̃(t)]≡A =

{(p(t), s(t)), (−p(t), 2p(t)x + s(t))} and z′(t) = Ψ̃A([| p̃′|, s̃′(t)]≡A) = | p̃′(t)|A + s̃′(t) can be expressed
as

z′(t) = |p̃′(t)|A + s̃′(t) =

 p′(t)A + s′(t) if p′(t) ≥ 0,
−p′(t) + 2p′(t)x + s′(t), if p′(t) < 0.

z(t) = p̃(t)A + s̃(t) =

 p(t) + s(t) if p(t) ≥ 0,
−p(t) + 2p(t)x + s(t), if p(t) < 0.

Therefore, Problem (1.1) has the following form:

z′(t) = Ψ̃A([| p̃′|, s̃′(t)]≡A) =

g(t, Ψ̃A([ p̃(t), s̃(t)]≡A))
z(t0) = z0 = p̃0A + s̃.

(4.1)
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Let g(t, z(t)) = a(t)z(t) + b(t), where a, b : I → R are continuous functions. Then, Problem (1.1) has
the form: z′(t) = a(t)z(t) + b(t),

z(t0) = p̃0A + s̃0.
(4.2)

Equation (4.2) can be expressed in the canonical form as

Ψ̃A([ p̃′(t), s̃′(t)]≡A) = Ψ̃A([a(t) p̃(t), a(t)s̃(t)]≡A)) + b(t) if a(t) ≥ 0,

Ψ̃A([−p̃′(t), s̃′(t) + 2p̃′(t)x]≡A) = Ψ̃A([−a(t) p̃(t), a(t)s̃(t) + 2a(t) p̃(t)]≡A)) + b(t) if a(t) < 0.
(4.3)

Equation (4.3) produces the following systems of equations:
p′(t) = a(t)p(t), if a(t) ≥ 0,

s′(t) = a(t)s(t) + b(t)
−p′(t) = a(t)p(t), if a(t) ≥ 0,

s′(t) + 2p′(t)x = a(t)s(t) + b(t),

and


p′(t) = −a(t)p(t), if a(t) < 0,

s′(t) = a(t)s(t) + 2p(t)x + b(t)
−p′(t) = −a(t)p(t), if a(t) < 0,
s′(t) + 2p′(t)x = a(t)s(t) + 2p(t)x + b(t).

(4.4)

By solving Eq (4.4), the following solutions are obtained for t ∈ I.
Case (i). If p′(t) ≥ 0 and a(t) ≥ 0, the following solution is obtained for t ∈ I0 ⊆ I.

p(t) = p0e
∫ t

t0
a(w)dw

,

s(t) = e
∫ t

t0
a(w)dw

{
s0 +

∫ t

t0

{
b(w)e−

∫ t
t0

a(w)dw}dw
}
.

z(t) = p0e
∫ t

t0
a(w)dwA ⊕A e

∫ t
t0

a(w)dw{s0 +

∫ t

t0

{
b(w)e−

∫ t
t0

a(w)dw}dw
}
. (4.5)

Case (ii). If p′(t) < 0 and a(t) ≥ 0, the following solution is obtained for t ∈ I0 ⊆ I.
p(t) = p0e−

∫ t
t0

a(w)dw
,

s(t) = e
∫ t

t0
a(w)dw

{
s0 +

∫ t

t0

{
(b(w) − 2a(w)p′(w)x)e−

∫ t
t0

a(w)dw
}
dw
}
.

z(t) = p0e−
∫ t

t0
a(w)dwA ⊕A e

∫ t
t0

a(w)dw
{
s0 +

∫ t

t0

{
(b(w) − 2a(w)p′(w)x)e−

∫ t
t0

a(w)dw
}
dw
}
. (4.6)

Case (iii). If p′(t) ≥ 0 and a(t) < 0, the following solution is obtained for t ∈ I0 ⊆ I.
p(t) = p0e−

∫ t
t0

a(w)dw
,

s(t) = e
∫ t

t0
a(w)dw

{
s0 +

∫ t

t0

{
(2p(w)x + b(w))e−

∫ t
t0

a(w)dw
}
dw
}
.
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p(t) = p0e−

∫ t
t0

a(w)dw
,

s(t) = e
∫ t

t0
a(w)dw

{
s0 +

∫ t

t0

{
(2a(w)p(w)x + b(w))e−

∫ t
t0

a(w)dw
}
dw
}
.

z(t) = q0e−
∫ t

t0
a(w)dwA ⊕A e

∫ t
t0

a(w)dw
{
s0 +

∫ t

t0

{
(2a(w)p(w)x + b(w))e−

∫ t
t0

a(w)dw
}
dw
}
. (4.7)

Case (iv). If p′(t) < 0, and a(t) < 0, the following solution is obtained for t ∈ I0 ⊆ I.
p(t) = p0e

∫ t
t0

a(w)dw
,

s(t) = e
∫ t

t0
a(w)dw

{
s0 +

∫ t

t0

{
(2a(w)p(w)x − 2p̃′(w)x + b(w))e−

∫ t
t0

a(w)dw
}
dw
}
.


p(t) = p0e

∫ t
t0

a(w)dw
,

s(t) = e
∫ t

t0
a(w)dw

{
s0 +

∫ t

t0
b(w)e−

∫ t
t0

a(w)dwdw
}
.

z(t) = p0e
∫ t

t0
a(w)dwA ⊕A e

∫ t
t0

a(w)dw
{
s0 +

∫ t

t0
b(w)e−

∫ t
t0

a(w)dwdw
}
. (4.8)

Now, we discuss the existence and uniqueness results for first order linear correlated FDEs of
symmetric BF-number A ∈ RF\R in the space of LCF-numbers Rs

F(A).

Theorem 4.1. Let g : I × U s
F(A) → Rs

F(A) be a continuous LCF-number valued function, where I = {t ∈
R | |t − t0| ≤ δ} and U s

F(A) = {Ψ̃A([p(t), s(t)]≡A) = z(t) ∈ Rs
F(A) | ∥z(t) ⊟ z0∥Ψ̃A

≤ ρ}. If, for z1, z2 ∈ U s
F(A)

and t ∈ I the Lipschitz condition

∥g(t, z1(t)) ⊟A g(t, z2(t))∥Ψ̃A
≤ k∥z1(t) ⊟A z2(t)∥Ψ̃A

,

holds, then Eq (4.1) has a unique pair of LC-differentiable solutions representing the unique canonical
form of solutions in Rs

F(A) in the interval

I0 = {t ∈ R | |t − t0| ≤ τ},

where
τ = min{δ, ρM ,

1
αk }, with α > 1 and M = sup{∥ g(t, z(t)) ∥Ψ̃A

| t ∈ I and z ∈ U s
F(A)}.

Proof. If the BF-number A ∈ RF\R is symmetric with symmetric point x, then Eq (1.1) will have the
following form:

z′(t) =

 Ψ̃A([ p̃′(t), s̃′(t)]≡A)

Ψ̃A([−p̃′(t), s̃′(t) + 2p̃′(t)x]≡A)
=

g(t, Ψ̃A([ p̃(t), s̃(t)]≡A))
z(t0) = z0 = p̃0A + s̃.
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In the integral form, the above equation can be written as

z(t) ⊟ z0 =

∫ t

t0
g
(
s, z(t)

)
dw,

Suppose D = {C([t0, t0 + τ], ŨF(A))} such that T : D→ D is defined byT (z(t)) = z0 ⊕A

∫ t

t0
g(s, z(w))dw

T (z0) = z0.

(4.9)

Since T is well defined in the complete metric space D, we also have

∥ T (z(t)) ⊟ z0 ∥Ψ̃A
≤

∫ t

t0
∥ g(t, z(t)) ∥Ψ̃A

≤ τM < ρ.

To complete the proof we need to show the contraction of T in D.

∥T (z1(t)) ⊟A T (z2(t))∥Ψ̃A
≤

∫ t

t0
∥g(y, z1(t)) ⊟A g(z2(t))∥Ψ̃A

dw

≤ kτ∥z1(t) ⊟A z2(t)∥Ψ̃A
.

If τ < 1
k , then T is a contraction on D. Therefore, there exist a unique pair of LC-differentiable solutions

representing the unique canonical form of solution defined on t ∈ I0 of the Problem (4.1). □

Example 4.2. For a symmetric BF-number A = (−1; 0; 1), with symmetric point 0, consider the
following FDEs:

z
′

(t) =
1

1 − t
⊙A z(t) ⊕A 2t −

t2

1 − t
,

z(0) = A.
(4.10)

Clearly, the conditions of Theorem 4.1 hold, therefore a unique pair of solutions exist in the interval
I0 = (−∞, 1). If p′(t) ≥ 0, then the canonical form of s̃′(t) = s′(t). Therefore, z(t) = 1

1−t A + t2 for all t ∈
(−∞, 1) is a solution with non-decreasing diameter in I0 = (−∞, 1].

Moreover, if p′(t) < 0, the canonical form of s̃′(t) = 2p′(t)x + s′(t). Therefore, z(t) = (1 − t)A +
t2 for all t ∈ (−∞, 1) is a solution with non-increasing diameter I0 = (−∞, 1].

Hence, the following unique solution pair represents the unique solution in the canonical form:

z(t) = p̃(t)A + s̃(t) =


1

1 − t
A + t2, for all t ∈ (−∞, 1),

(1 − t)A + t2, for all t ∈ (−∞, 1).
(4.11)

The Figures 5 and 6 shows 2D and 3D fuzzy plots of the solution (4.11) of Eq (4.10) with non-
decreasing and non-increasing diameter respectively.
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Figure 5. 2D and 3D plots of the solution of Example 4.2 with non-decreasing diameter in
I0.

Figure 6. 2D and 3D plots of the solution of Example 4.2 with non-increasing diameter in
I0.
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Moreover, the solution z(t) = (1 − t)A + t2 is also the solution of the following FDEs discussed in
Example (3) of paper [18]: z

′

(t) = A + 2t,

z(0) = A.
(4.12)

But, Eq (4.12) has many solutions and Eq (4.10) has a unique solution in the canonical form. Therefore,
Eq (4.12) is not a proper form of first order FDE if the BF-number is symmetric. This shows the
importance of existence theory, and the form of Eq (1.1) to deal with the physical model of FDEs.

Moreover, Eq (4.10) is discontinuous at t = 1, therefore its solution lies in the interval (−∞, 1).
Also, Example (3) of paper [18] is extended in Example (4), but the conditions of Theorem 4.1 prevent
such type of extension of Eq (4.10), and it has a unique solutions in the canonical form.

Example 4.3. For a symmetric BF-number A = (0; 1; 2) with symmetric point 1, consider the
following FDEs:

z
′

(t) =
1
t
⊙A z(t) + t2,

z(1) = A.
(4.13)

Clearly, the conditions of Theorem 4.1 hold, therefore a unique pair of solutions in the canonical
form exist in the interval I0 = (0,∞). If p′(t) ≥ 0, then s̃′(t) = s′(t). Therefore, z(t) = tA+ t3−t

2 for all t ∈
(0,∞) is a solution with non-decreasing diameter (0,∞).

Moreover, if p′(t) < 0, then s̃′(t) = 2p′(t)x + s′(t). Therefore, z(t) = 1
t A + t4+t2−2

2t for all t ∈ [0,∞) is
a solution with non-increasing diameter in (0,∞). Hence, the following is the required unique solution
pair which represents the unique solution in the canonical form.

z(t) = p̃(t)A + s̃(t) =


tA +

t3 − t
2
, for all t ∈ (0,∞),

1
t

A +
t4 + t2 − 2

2t
, for all t ∈ (0,∞).

(4.14)

This example also shows that neither solutions with non-decreasing nor non-increasing diameter can
be extended. Therefore, Theorem 4.1 ensures the existence of unique solution in the canonical form.

The Figures 7 and 8 shows 2D and 3D fuzzy plots of the solution (4.14) of Eq (4.13) with non-
decreasing and non-increasing diameter respectively.

AIMS Mathematics Volume 9, Issue 2, 2695–2721.



2711

Figure 7. 2D and 3D plots of the solution of Example 4.3 with non-decreasing diameter in
I0.

Figure 8. 2D and 3D plots of the solution of Example 4.3 with non-increasing diameter in
I0.

Example 4.4. For a symmetric BF-number A = (0; 1; 2) with symmetric point 1, we consider the
following FDEs:
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z
′

(t) = (t3 − 3t2 + 2t) ⊙A z(t),
z(0) = A + 1.

(4.15)

Since a(t) < 0 in the interval (−∞, 0), then for p′(t) ≥ 0 the following solution with non-decreasing
diameter in (−∞, 0) is obtained:

z(t) = p̃(t)A + s̃(t) = Ae−( t4
4 −t3+t2) + 2e

t4
4 −t3+t2 − e−( t4

4 −t3+t2). (4.16)

Also, if a(t) < 0 in the interval (−∞, 0), then for p′(t) < 0 the following solution with non-increasing
diameter in (−∞, 0) is obtained:

z(t) = p̃(t)A + s̃(t) = Ae( t4
4 −t3+t2) + e

t4
4 −t3+t2 . (4.17)

Now, if a(t) ≥ 0 in the interval [0, 1], then for p′(t) ≥ 0 the following solution with non-decreasing
diameter in [0, 1] is obtained:

z(t) = p̃(t)A + s̃(t) = Ae( t4
4 −t3+t2) + e

t4
4 −t3+t2 . (4.18)

Also, if a(t) ≥ 0 in the interval [0, 1], then for p′(t) < 0 the following solution in [0, 1] is obtained:

z(t) = p̃(t)A + s̃(t) = Ae−( t4
4 −t3+t2) + 2e

t4
4 −t3+t2 − e−( t4

4 −t3+t2). (4.19)

Moreover, if a(t) < 0 in the interval (1, 2), then for p′(t) ≥ 0 the following solution in (1, 2) is obtained:

z(t) = p̃(t)A + s̃(t) = Ae−( t4
4 −t3+t2) + 2e

t4
4 −t3+t2 − e−( t4

4 −t3+t2). (4.20)

Also, if a(t) < 0 in the interval (1, 2), then for p′(t) < 0 the following solution in (1, 2) is obtained:

z(t) = p̃(t)A + s̃(t) = Ae( t4
4 −t3+t2) + e

t4
4 −t3+t2 . (4.21)

Now, if a(t) ≥ 0 in the interval [2,∞), then for p′(t) ≥ 0 the following solution with non-decreasing
diameter in [2,∞) is obtained:

z(t) = p̃(t)A + s̃(t) = Ae( t4
4 −t3+t2) + e

t4
4 −t3+t2 . (4.22)

Also, if a(t) ≥ 0 in the interval [2,∞), then for p′(t) < 0 the following solution with non-increasing
diameter in [2,∞) is obtained:

z(t) = p̃(t)A + s̃(t) = Ae−( t4
4 −t3+t2) + 2e

t4
4 −t3+t2 − e−( t4

4 −t3+t2). (4.23)

Thus, the following unique solution pair of Eq (4.15) exists in the subintervals (−∞, 0), [0, 1], (1, 2)
and [2,∞) of I = (−∞,∞) represents a unique canonical solution.

z(t) = p̃(t)A + s̃(t) =

Ae( t4
4 −t3+t2) + e( t4

4 −t3+t2),

Ae−( t4
4 −t3+t2) + 2e

t4
4 −t3+t2 − e−( t4

4 −t3+t2).
(4.24)
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Moreover, the solution z(t) alternately changes the non-increasing and non-decreasing diameter in the
subinterval with nodal points 0, 1, 2. Also, the solution pair is LC-differentiable on the nodal points
{0, 1, 2}.

The Figures 9 and 10 shows 2D and 3D fuzzy plots of the solution (4.24) of Eq (4.15) with non-
increasing and non-decreasing diameter respectively.

Figure 9. 2D and 3D plots of the solution of Example 4.4 with non-increasing diameter in I.

Figure 10. 2D and 3D plots of the solution of Example 4.4 with non-decreasing diameter in
I.
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Remark 4.5. Problem (1.1) can also have the following form with canonical representation in the case
of symmetric BF-number A:a(t) ⊙A z

′

(t) ⊕A b(t) ⊙A z(t) =
c(t)
p̃(t)

A +
c(t)s̃(t)

p̃(t)
+ d(t),

z(t0) = p̃0A + s̃0.

(4.25)

This form is similar to the main problem discussed in paper [18], but this can not be extended by
the extension procedure in Remark (7) of [18]. Because the solutions in the interval [t0, t1] and [t1, t2]
can be extended to [t0, t2] if p(t1) = 0, Problem (6.3) cannot be extended and may have a unique pair of
solutions representing the unique canonical solution if the condition of Theorem 4.1 holds. Note that
the extension produces many solutions of the problem for examples 4 to 8 in [18] do not have unique
canonical solutions.

Now, we discuss the solutions to Problem (6.3)and for this we rewrite (6.3) asz
′

(t) ⊕A
b(t)
a(t)
⊙A z(t) =

c(t)
a(t) p̃(t)

A +
c(t)s̃(t)
a(t) p̃(t)

+
d(t)
a(t)
,

z(t0) = p̃0A + s̃0.

(4.26)

Eq (4.26) can be easily expressed in the following equivalent systems of equations:
p̃(t) p̃′(t) +

b(t)
a(t)

p̃2(t) =
c(t)
a(t)
,

s̃′(t) +
b(t)
a(t)

s̃(t) =
c(t)s̃(t)
a(t) p̃(t)

+
d(t)
a(t)
,

(4.27)

Let ṽ = p̃2(t), p̃′

2 = p̃(t) p̃′(t) and, for the simplicity of this study, take the positive root of ṽ, so p̃(t) ≥ 0,
therefore Eq (4.27) produces

ṽ′(t) +
2b(t)
a(t)

ṽ(t) =
2c(t)
a(t)
, if ṽ′ ≥ 0

s̃′(t) +
b(t)
a(t)

s̃(t) =
c(t)s̃(t)
a(t) p̃(t)

+
d(t)
a(t)


ṽ′(t) −

2b(t)
a(t)

ṽ(t) = −
2c(t)
a(t)
, if p̃′ < 0,

s̃′(t) + 2p̃′(t)x +
b(t)
a(t)

s̃(t) =
c(t)̃v(t)
a(t)p̃(t)

+
d(t)
a(t)

(4.28)

By solving Eq (4.28), the following solutions are obtained for t ∈ I.
Case (i). If p̃(t) p̃′(t) = ṽ′(t) ≥ 0, the non-decreasing solution is obtained for t ∈ I.

p̃(t) =
√

ṽ(t) =

√
e−
∫ t

t0
2b(w)
a(w) dw
{
( p̃0)2 + 2

∫ t

t0

{c(w)
a(w)

e
∫ t

t0
2b(w)
a(w) dw
}
dw
}
,

s̃(t) = e−
∫ t

t0

(
b(w)
a(w)−

c(w)
a(w) p̃(t)

)
dw
{
s̃0 +

∫ t

t0

{d(w)
a(w)

e
∫ t

t0

(
b(w)
a(w)−

c(w)
a(w) p̃(t)

)
dw
}
dw
}
.

(4.29)

Case (ii). If p̃(t) p̃′(t) = ṽ′(t) < 0, the non-increasing solution is obtained for t ∈ I.
p̃(t) =

√
ṽ(t) =

√
e
∫ t

t0
2b(w)
a(w) dw
{
( p̃0)2 − 2

∫ t

t0

{c(w)
a(w)

e−
∫ t

t0
2b(w)
a(w) dw
}
dw
}

s̃(t) = e−
∫ t

t0
( b(w)

a(w)−
c(w)

a(w) p̃(t) )dw
{
s̃0 +

∫ t

t0

{(d(w)
a(w)

− 2p̃(w)p̃′(w)x
)
e
∫ t

t0

(
b(w)
a(w)−

c(w)
a(w) p̃(w)

)
dw
}
dw
}
.

(4.30)
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The solutions of Problem (6.3) for both cases have the canonical form

z(t) = p̃(t)A + s̃(t).

Example 4.6. For a symmetric BF-number A = (−1; 0; 1) with symmetric point 0, consider the
following FDEs:

z
′

(t) ⊕A
1
2t
⊙A z(t) =

3t
2p̃(t)

A +
3ts̃(t)
2p̃(t)

,

z(1) = A + 1.
(4.31)

The conditions of Theorem 4.1 hold easily and Eq (4.15) has a unique pair of solutions representing
the unique canonical solution. Using Eqs (4.29) and (4.30) to obtain the canonical form of solutions of
Eq (4.15), the non-decreasing solution in the interval I = (0,∞) is z(t) = tA + 1

√
t
e

3
2 (t−1).

The non-increasing solution in the interval (0, 4
3 ]

z(t) =
√

4t − 3t2A +
1
√

t
earcsin( t−2

2 )−
√

4t−3t2
2 + π+3

6 . (4.32)

The Figure 11 shows 2D and 3D fuzzy plots of the solution (4.32) of Eq (4.31) with non-increasing
and non-decreasing diameter.

Figure 11. 2D and 3D plots of the solutions of Example 4.6 with non-decreasing and non-
increasing diameter in I.

5. Practical example

Example 5.1. The following is the discharging LCFDE of an electric capacitor of capacitance C
connected in series with an electric resistor of resistance R,
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Q
′

(t) = −
1

RC
Q(t),

Q(t0) = q̃0A + r̃0.
(5.1)

Eq (5.1) is equivalent to the following systems of equations
q
′

(t) = −
1

RC
q(t), for q′ ≥ 0,

r
′

(t) = −
1

RC
r(t).

And


q′(t) =

1
RC

q(t), for q′ < 0,

r′(t) = −
1

RC
r(t) − 2

1
RC

q(t)x.
(5.2)

The solution with non-decreasing diameter can be easily obtained as

Q(t) = q0e−
t

RC A + r0e−
t

RC (5.3)

The solution with non-increasing diameter can be obtained from case (vi) or from integration by parts
as

Q(t) = q0e
t

RC A + r0e−
t

RC + q0x
{
e−

t
RC − e

t
RC
}
. (5.4)

This solution pair of non-decreasing and non-increasing diameter represents the unique solution in the
canonical form.

Q(t) =

q0e−
t

RC A + r0e−
t

RC ,

q0e
t

RC A + r0e−
t

RC + q0x
{
e−

t
RC − e

t
RC
}
.

The uncertainty in the discharging process with non-increasing diameter of Eq (5.3) is commonly
used, but the non-decreasing diameter Eq (5.4) is new in the literature due to the symmetric behavior of
variation in the space Rs

F(A). The uncertainty in the discharging process with non-decreasing diameter is
more suitable because the rate of discharging of the capacitor gradually reduces, and fully discharging
of a capacitor takes infinite time, therefore the uncertainty is non-decreasing.
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Figure 12. 2D plots of non-decreasing and non-increasing diameter of solutions of Example
5.1 if C = 2F,R = 5℧ and the maximum charge stored by capacitor is 10C.
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6. Comparative analysis of this work with existing literature

The solutions of the linear correlated fuzzy differential equations in the space Rs
F(A discussed in

paper [18] see examples 4 to 8 are extended to new systems, due to which they have many solutions.
In this study, we point out the cause of the extension of a system to a new system. The main cause of
extension of a system to a new system is the form of LCFDEs discussed in paper [18]. If first order
LCFDEs are in the form of Eq (1.1), then the condition to extend a system given in paper [18] hold only
at the points where the function g(t, z(t)) is discontinuous or it is not included in the domain of solutions
or the solution of the extended system and the original problem are same. Lemma 6.1 illustrates the
first two possibilities, and Lemma 6.2 the last possibility.

Lemma 6.1. If g(t, z(t)) and a(t) of Problem (4.2) is not defined on η ∈ I, then

(i) p̃(η) = 0, if p̃′(t) is constant.
(ii) p̃(η) is undefined if p̃′(t) is not constant.

Proof. Eq (4.2) produces the following pair of equations: p̃′(t) = a(t) p̃(t), for p̃′ ≥ 0,

s̃′(t) = a(t)s̃(t) + b(t)
and

−p̃′(t) = a(t) p̃(t), for p̃′ < 0,

2p̃′(t)x + s̃′(t) = a(t)s̃(t) + b(t).
(6.1)

If p̃′(t) is constant for all t ∈ I (i.e., p̃′(t) = k)), then Eq (6.1) produces p̃(t) = k
a(t) . Now, a(η) is infinite

on η ∈ I, therefore p̃(η) = 0.
Also, if p̃′(t) is not constant and a(η) is infinite, then p̃′(η) also infinite. Now, Eq (6.1) produces

p̃(t) =
p̃′(t)
a(t)
,

therefore

p̃(η) =
p̃′(η)
a(η)

is undefined. □

In Example 4.2, functions g(1, z(1)) and a(1) are not defined at t = 1 and p̃′(t) is constant in the case
with p̃′(t) ≥ 0 and p̃(1) = 0. But, p̃′(t) is not constant in the case with p̃′(t) < 0 and p̃(1) is undefined.
Similarly, in Example 4.3, functions g(0, z(0)) and a(0) are not defined at t = 0 and p̃′(t) is constant in
the case with p̃′(t) ≥ 0 and p̃(0) = 0. But, p̃′(t) is not constant in the case with p̃′(t) < 0, and p̃(0) is
undefined.

Lemma 6.2. The canonical solutions of Problem (4.2) form nodes on all solutions of a(t) = 0.
Moreover, each solution z(t) of the canonical solution is LC-differentiable on these nodal points.

Proof. Let η ∈ I be a solution of a(t) = 0. Then, each solution from the canonical solution of
Problem (4.2) form nodes on the η ∈ I, because if Problem (4.2) has a solution with p̃′(t) ≥ 0 in
the interval I0 = [t0, t0 + η] ⊂ I, then in the interval I1 = (t0 + η, s) ⊂ I the solution has p̃′(t) < 0
therefore a node forms on the η ∈ I. Similarly, if Problem (4.2) has a solution with p̃′(t) < 0 in the
interval I0 = [t0, t0 + η] ⊂ I, then in the interval I1 = (t0 + η, s) ⊂ I, the solution has p̃′(t) ≥ 0 and node
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forms on the η ∈ I.Moreover, p̃(η) = p̃0 and s̃(η) = s̃0. Similarly, on all the solutions η ∈ I of a(t) = 0,
the solution pair of Problem (4.2) form nodes in the subintervals of I.

Now, we show that both solutions of the canonical solution z(t) are LC-differentiable on the nodal
points. Each solution of the canonical solution has non-decreasing diameter on the one side of nodal
points η ∈ I, but have a non-increasing diameter on the opposite side. Therefore, for each η ∈ I, the
following condition holds:  p̃′−(η) = p̃′+(η),

s̃′−(η) = s̃′+(η) + 2p̃′+(η)x.
(6.2)

Hence, both solutions of the canonical solution z(t) are LC-differentiable on the nodal points η ∈ I. □

In Example 4.4, the system can be extended to a new system by taking the initial value at points 1
and 2, but the extended system has solutions similar to the solutions of Eq (4.15). Therefore, it has a
unique solution of canonical form and these extensions are meaningless.

Moreover, the existence and uniqueness results ensure the existence of a unique solution, but
according to Theorem 4.1, first order FDEs in the LC-space Rs

F(A), produce a unique pair of solutions
representing a unique solution of canonical form because the space is symmetric therefore two types
of symmetric variations are produced simultaneously. One solution has a non-decreasing diameter, but
the second solution of the pair has a non-increasing diameter, and this pair of solutions representing
the unique solution of canonical form. Therefore, the solutions of LCFDEs in the space Rs

F(A) are in
the canonical form.

In this study we discuss the LCFDEs (1.1) due to previously discussed difficulties. Moreover,
the following form of LCFDEs (1.1) is similar to the main problem discussed in paper [18], but this
problem can not be extended by the extension procedure in Remark (7) of [18]. Because the solutions
in the interval [t0, t1] and [t1, t2] can be extended to [t0, t2] if p(t1) = 0, the following form can not be
extended and may have a unique solution of the conical form if the condition of Theorem 4.1 holds.a(t) ⊙A z

′

(t) ⊕A b(t) ⊙A z(t) =
c(t)
p̃(t)

A +
c(t)s̃(t)

p̃(t)
+ d(t),

z(t0) = p̃0A + s̃0.

(6.3)

This study shows that both solutions of the unique canonical form of solution changed alternately
the non-decreasing and non-increasing diameter at the nodal points in the overall domain of the
solution.

7. Advantages and limitations of this study

Physical problems, optimization problems, linear programming problems etc. with uncertainty can
be easily dealt with using LCFDEs, but LCFDEs often have many solutions and sometimes do not
have solutions as in Examples 4 to 8 of [18]. A problem is modeled correctly if it has a unique
solution. Therefore, this study is concerned with the existence and uniqueness of solutions of first
order LCFDEs. LCFDEs satisfying the conditions of Theorems 3.1 or 4.1 must have a unique solution.
In the existing literature of LCFDEs in the space Rs

F(A), LCFDEs are taken in the canonical form of
initial value and function, but the solution is not in the canonical form, therefore the question arises
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of why the solution does not have canonical form. Therefore, this study provides the concept of the
canonical form of the solution of LCFDEs in the space Rs

F(A). This achievement of solution in the
canonical form is not only response to the said question, but it is a useful concept to have a solution
with both non-decreasing and non-increasing diameter. The uncertainty in the discharging process
discussed in the Example 5.1 elaborates the importance of the said concept. This work removes the
difficulties in the solution process due to the sign of the coefficient function and extend the domain of
the solution.

This work has two main limitations: the uncertainty of real life problems exists in the space of linear
correlated fuzzy numbers, and fuzzy differential equations must be in the form of Eq (1.1).

8. Conclusion and future direction

In this work, we have discussed the existence and uniqueness conditions of solutions of linear
correlated fuzzy differential equations (LCFDEs) in the LC-spaces of both symmetric and non-
symmetric BF-numbers. In the existing literature [18], first order LCFDEs in LC-spaces of symmetric
BF-numbers mostly extend to new systems and produce many continuous and differentiable solutions.
From Example 3 to 7 of [18], all have many solutions due to extensions. In this work, we point out
the causes of extensions of first order LCFDEs. If first order LCFDEs are in the form of Eq (1.1), they
does not extend, or they do extend but the extended system and initial system have the same solutions.
To support this work, we provide Examples 4.2 and 4.3 of non-extend systems, and Example 4.4
of the system which extends but the extended system and initial system have the same solutions.
Moreover, Eq (1.1) can also produce first order LCFDEs like [18] which do not extend and have
the unique solution discussed in Examples 3.5 and 4.6. The second problem in first order LCFDEs
is the existence of solutions such as the Example 8 of [18], do not have any solution. Therefore, we
obtained the conditions for the existence and uniqueness of the solutions in Theorems 3.1 and 4.1.
First order LCFDEs satisfying these conditions must have unique solutions. We provide examples of
the usability and authenticity of the established results. This work is applicable to all real life problems
where uncertainty lies in the spaces of linear correlated fuzzy numbers, because R ⊆ RF(A) ⊂ RF .

The existence of solutions of second order LCFDEs in LC-spaces and stability like [22] etc. are also
interesting topics of future study. The LCFDEs with fractional order like [23–25] are also interesting.
This study can also extend to the work of [26].
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