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Abstract: Complex spherical fuzzy sets (CSFSs) are a theory that addresses confusing and unreliable 

information in real-life decision-making contexts by integrating elements of two theories: spherical 

fuzzy sets (SFSs) and complex fuzzy sets (CFSs). CSFSs are classified into three categories, 

represented by polar coordinates: membership, nonmember, and abstention. These grades are located 

on a complex plane within a unit disc. It is necessary for the total squares representing the real 

components of the grades for abstinence, membership, and non-membership to not surpass a certain 

interval. Several aspects of CSFS and the corresponding operational laws were examined in this work. 

The key components of this article were based on CSFs, including complex spherical fuzzy Schweizer-

Sklar prioritized aggregation (CSFSSPA), complex spherical fuzzy Schweizer-Sklar weighted prioritized 

aggregation (CSFSSWPA), complex spherical fuzzy Schweizer-Sklar prioritized geometry (CSFSSPG), 

and complex spherical fuzzy Schweizer-Sklar prioritized weighted geometry (CSFSSWPG). 

Additionally, the suggested operators' specific instances were examined. The main outcome of this 

work includes new aggregation techniques for CSFS information, based on t-conorm and t-norm from 

Schweizer-Sklar (SS). The basic characteristics of the operators were established by this study. We 

looked at a numerical example centered on efficient mobile e-tourism selection to show the 
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effectiveness and viability of the recommended approaches. Additionally, we carried out a thorough 

comparative analysis to assess the outcomes of the suggested aggregation approaches in comparison 

to the current methods. Last, we offer an overview of the planned study and talk about potential 

directions for the future. 

Keywords: prioritized aggregation operators; Schweizer-Sklar; multi-attribute decision-making; 

complex spherical fuzzy information; mobile e-tourism applications 

Mathematics Subject Classification: 05C72, 68R10 

 

 

Abbreviations  

CSFSSPA complex spherical fuzzy Schweizer-Sklar prioritized aggregation 

CSFSSWPA the complex spherical fuzzy Schweizer-Sklar weighted prioritized aggregation 

CSFSSPG complex spherical fuzzy Schweizer-Sklar prioritized geometry 

CSFSSWPG complex spherical fuzzy Schweizer-Sklar weighted prioritized geometry 

SSPA Schweizer-Sklar prioritized aggregation 

CSFSs complex spherical fuzzy sets 

SFSs spherical fuzzy sets 

CFSs complex fuzzy sets 

PAOs prioritized aggregation operators 

SS Schweizer-Sklar 

MADM multi-attribute decision-making 

MG membership great 

 AG abstinence great 

NMG non-membership great 

dhskfkn  DMs decision-makers 

 

 1. Introduction 

By providing consumers with an easy way to access travel-related information and services 

straight from their mobile devices, mobile e-tourism applications have revolutionized the travel and 

tourism sector. These apps improve users’ overall travel experiences by offering features like location-

based recommendations, virtual tours, real-time booking, and customized itineraries. The prioritized 

aggregation operators (PAOs) combined with complex spherical fuzzy information improve the 

accuracy and efficiency of decision-making in these applications. This method makes it possible to 

handle user preference ambiguity and uncertainty more effectively, which results in more 
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individualized recommendations and higher user satisfaction. These apps can also help travel agencies 

better understand consumers’ trends and needs, and that will help them modify their products and 

services and stay competitive. 

Zadeh [1] clarified the uncertainty and imprecision that occur throughout the evaluation process 

using fuzzy sets (FSs) as an example. For instance, researchers looked at intuitionistic FSs (IFSs) with 

supporting and non-supporting grades with the restriction that the total of the two cannot be greater 

than a unit interval Atanassov [2]. However, in terms of choosing the total of supporting and non-

supporting grades that do not surpass a unit interval, the standards of an IFS for a decision-maker are 

too strict. Yager [3] looked into the Pythagorean fuzzy set (PyFS) to solve these issues, with the caveat 

that the sum of the squares of both must not exceed a unit interval. The picture fuzzy sets (PFSs) were later 

introduced by Cuong and Kreinovich [4]. PFSs are grades for membership, abstention, and non-

membership; all grades cannot exceed a set unit interval. Mahmood et al.'s theory of SFS [5] was 

applied to resolve these problems; however, a unit interval must be maintained in the sum of squares 

for all classes. Ullah et al. developed T-spherical fuzzy sets (T-SFSs) [6] by extending squares with q-

powers. These sets, which have several applications in diverse disciplines [7–11], contain the sum of 

the q-powers of positive, abstinence, and negative grades, corresponding to [0, 𝟣]. Consequently, the 

complex FS (CFS) was invented by Ramot et al. [12] and has been applied in various ways [13–15]. 

1.1. Literature review 

Furthermore, the notion of complex IFSs (CIFSs) was established by Alkouri and Salleh [16] to 

provide a decision-maker with many possibilities. A unit disc in a complex plane's complex numbers 

representing the supporting and non-supporting grades make up CIFSs. Adding the real and imaginary 

parts of two classes that are more than one unit apart is a limitation of CIFSs. 

The grades of imaginary and real components, whose sum surpasses a unit interval, may be provided by 

a decision maker, nevertheless. Yin et al. [17] introduced the concept of the MADM with Pythagorean fuzzy 

information. To address this type of problem Ullah et al. [18] proposed the theory of complex PFSs (CPFSs). 

PFS concept was based on the SS aggregation operator by Hussain et al. [19]. Rahman et al. [20–22] 

used the concept of a complex polytypic fuzzy model. The SS operator concept was developed by 

Wei et al. using an entropy-combined solution approach. Liu et al. [23] used the q-rung orthopair as the 

basis for the SS aggregation operator’s notion based on MADM. Considering the idea of a complicated 

spherical fuzzy Aczel-Alsina aggregation operator, Hussain et al. [24] and Sarfraz et al. [25], in light of 

the Aczel-Alsina aggregation operator-based MAGDM approach, developed and gave an application 

to authenticate the developed method. A prioritized aggregation operator is a concept introduced by 

Ullah et al. [26] for complex IFS. The idea of MAGDM based on SS TN and TCM, Hussain et al. [27] 

and Sarfraz et al. [28–30] introduced the concepts of SSPAOs with the application of recycled water 

and different parameters. Hussain et al. [31] introduced the theory of spherical fuzzy Sugeno-weber 

aggregation operator and Asif et al. [32] used the concept of the Pythagorean fuzzy set and its 

application in terms of MADM. 

The flowchart in Figure 1 shows how to apply prioritized aggregation operators for multi-attribute 

decision-making in mobile e-tourism applications using Schweizer-Sklar t-norms and t-conorms with 

an optional feedback loop to fine-tune user preferences, it delineates crucial phases, ranging from data 

collection to decision-making. 
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Figure 1. Depiction of a flowchart of the methodology of the application. 

Worndl et al. [33] used the MADM to extend the use of mobile e-tourism on a spherical basis. 

Considering the idea of e-tourism for a system utilizing data management, Hamid et al. [34], and 

Mohammed and others [35], worked on it and developed different methodologies. The decision-

making strategy for e-tourism based on a spherical rough notion. Leung et al. [36] extended the theory 

based on the idea of e-tourism to smart tourism using communication and information advancements. 

By considering the idea of e-tourism, Utomo et al. [37] implemented the business intelligent topics. 

According to Krishnan et al. [38], the interval type 2 fuzzy with zero weights is applied for e-tourism. E-

tourism services are expanded by Vdovenko et al. [39] through the improvement of the smart room 

system. E-tourism was developed by Alamoodi et al. [40,41] using a neutrosophic fuzzy environment as 

its foundation. Qurashi et al. [42] introduced the concept of rough substructures with relations of fuzzy 

overlaps. Wang et al. [43] used the Fermatean cubic fuzzy method in the energy sector. 

1.2. Identifying the research gap 

• Limited research has been done on applying Schweizer-Sklar aggregation operators (SSAOs) 

to complex spherical fuzzy information in decision-making scenarios, despite the fact that many 

studies have been conducted on MADM techniques using conventional fuzzy sets. 
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• The uncertainty and complexity present in real-world applications, like mobile e-tourism, 

where user preferences are highly variable and data is frequently ambiguous, are frequently too 

much for current approaches to handle. 

• Furthermore, prioritizing criteria is crucial when different factors have differing degrees of 

importance in decision-making, but most researchers concentrate on standard aggregation 

without taking this into account. 

1.3. Motivation for studying 

The CSFS environment system has many benefits, but it can occasionally be unable to handle 

unpredictable data about human opinions. For example, if data is membership grade (MG), abstinence 

grade (AG), and non-membership grade (NMG), among the other three components, the environments, 

IFS, PyFSs, and PFS that are discussed cannot handle such nature of the data. The decision-maker 

takes into account robust environments such as SFS and CSFS to get past this circumstance. The 

method that has been developed offers the benefit of handling incomplete data without compromising 

the degree of weight. Creating a class of mathematical techniques under the CSFS information system 

is our main objective. The following list includes some important benefits of the derived theory: 

a) Our suggested research methodologies enable us to more accurately express uncertainty and 

complexity under the CSFS information system during the MADM problem (see Figures 1 and 2). 

b) We can also assess any object's given information without the need for any external weight 

vectors, which the decision-maker assigns to the attributes or characteristics. 

 

Figure 2. Flowchart illustrating applications for mobile e-tourism. 

1.4. Contribution 

The previously mentioned study suggests that the real world is complex when it comes to PAOs 

used in MADM. To discover the best alternative in MADM, the information needs to be handled more 

conveniently. Moreover, CSFSs manage environment ambiguity better than IFSs, PyFSs, q-ROFSs, 
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and PFSs. The T-conorm and the SS T-norm have not yet been applied to CSFSs. These considerations 

motivate us to investigate the uses of SSPAOs in MADM, having first formalized their concept in the 

construction of CSFSs. This article is organized as follows. We derive the prioritized aggregation 

operator, often known as the SS theory, for CSFSs. 

(1) For derived work, we deduce qualities of idempotency, monotonicity, and boundedness. 

(2) Drawing from the ideas put forward, we introduce a MADM method. 

(3) We present some valuable characteristics of the above-present operators and pioneer a MADM 

tool to handle the unreliable and vague type of information with the help of CSFSSPA, 

CSFSSWPA, CSFSSPG, and CSF. 

(4) We provide a numerical example of a travel app that compares the suggested effort to certain 

previous research. 

(5) Compared to more conventional approaches like technique for order of preference by similarity 

to ideal solution (TOPSIS) or VIseKriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR), the suggested method gives decision-makers the ability to rank criteria, offering a 

more accurate and flexible assessment of e-tourism options. 

1.5. Organization of the study 

The following profile was used to compute this paper: In Section 2, we looked at the specific 

historical statistics on CSFS and its SS functioning laws. Furthermore, we used optimistic data to 

develop the PAO idea. In Section 3, we discussed the creation, beneficial traits, and results of 

CSFSSPA, CSFSSWPA, CSFSSPG, and CSFSSWPG operators. We cover several important 

characteristics of the previously described operators in Section 4. We are the first to use the CSFSSPA, 

CSFSSWPA, CSFSSPG, and CSFSSWPG operators to handle unclear and untrustworthy sorts of 

information. In Section 5, we demonstrate that the effort generated is obviously better than the other 

workers by contrasting novel and tested methods to raise the value and capacity of the evaluated 

operators. We conclude in Section 6 with a few insightful remarks. A geometric depiction of the 

obtained theory is provided. 

2. Preliminaries 

To create some ideal and useful theories, we must update some knowledge about CSFSs and their 

SS operational regulations. Additionally, we update the theory of positive integer-based PAOs, and the 

universal set is denoted by  ℧̿. 

Definition 2.1. [44] It is found that a CSFS ∅̿ in a universal set ℧̿: 

∅̿ = {(�̿�(𝒳)𝑒𝑥𝑝𝟤𝜋𝑖(�̿�(𝒳)), 𝒻̿(𝒳)𝑒𝑥𝑝𝟤𝜋𝑖(�̿�(𝒳)), ℓ̿(𝒳)𝑒𝑥𝑝𝟤𝜋𝑖(�̿�
(𝒳))) :𝒳 ∈ ℧̿}. 

In the following cases:  �̿�(𝒳): ∅̿ → [0, 𝟣],  𝒻̿(𝒳): ∅̿ → [0, 𝟣],  ℓ̿(𝒳): ∅̿ → [0, 𝟣]  encompassing 

the requirement: for the element 𝒳  in  ∅̿′ , 0 ≤ �̿�𝟤(𝒳) + 𝒻̿𝟤(𝒳) + ℓ̿𝟤(𝒳) ≤ 𝟣 . The membership 

great (MG), abstinence great (AG), and non-membership great (NMG) of the element X in the set ∅̿ 

are represented by the numbers  �̿�𝟤(𝒳)′ , 𝒻̿𝟤(𝒳)  and  ℓ̿𝟤(𝒳) , respectively. Additionally, the 

following is how we explained the importance of refusal information  𝛿𝜇̿̿ ̿(𝒳) = 𝟣 − (�̿�𝟤(𝒳) +
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𝒻̿𝟤(𝒳) + ℓ̿𝟤(𝒳)) . Last, the mention of the CSF number's representation (CSFs) is made by  ∅̿ =

(𝔄𝜏̿̿̿̿ , 𝒻�̿�, ℓ�̿�), 𝜏 = 𝟣, 𝟤, … , 𝛼. 

Definition 2.2. [45] Based on defined CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) ,

𝜏 = 𝟣, 𝟤, … , 𝛼. The accuracy function and score are derived, as follows: 

⋀𝑠∅𝜏̿̿ ̿ =
(𝟤+𝔄𝜏

𝟤̿̿ ̿̿ −𝒻𝜏
𝟤̿̿̿̿ −ℓ𝜏

𝟤̿̿ ̿)

3
, 

⋀𝑎∅𝜏̿̿ ̿ =
(𝟤+𝔄𝜏

𝟤̿̿ ̿̿ +𝒻𝜏
𝟤̿̿̿̿ +ℓ𝜏

𝟤̿̿ ̿)

3
. 

See that ⋀𝑠∅𝜏̿̿ ̿ ∈ [−𝟣, 𝟣] and ⋀𝑎∅𝜏̿̿ ̿ ∈ [0, 𝟣] for all CSFVs  ∅𝜏̿̿ ̿. 

To further justify the information, we have derived some limitations such as when we consider 

∅𝟣̿̿ ̿ > ∅𝟤̿̿ ̿ , we get  ⋀𝑠∅𝟣 ̿̿ ̿̿ > ⋀𝑠∅𝟤̿̿ ̿; if we consider ∅𝟣̿̿ ̿ < ∅𝟤̿̿ ̿, then we get  ⋀𝑠∅𝟣 ̿̿ ̿̿ < ⋀𝑠∅𝟤̿̿ ̿; but if we get 

⋀𝑠∅𝟣 ̿̿ ̿̿ = ⋀𝑠∅𝟤̿̿ ̿ , then we will follow the idea such as if we consider ∅𝟣̿̿ ̿ > ∅𝟤̿̿ ̿ , then we get 

 ⋀𝑎∅𝟣 ̿̿ ̿̿ > ⋀𝑎∅𝟤̿̿ ̿; we will consider ∅𝟣̿̿ ̿ < ∅𝟤̿̿ ̿ when we get  ⋀𝑎∅𝟣̿̿ ̿ < ⋀𝑎∅𝟤̿̿ ̿ and which is the property 

of CSFVs. 

Definition 2.3. [45] We obtain the concept of PAOS based on the positive integers ∅𝜏̿̿ ̿ = 𝜏 = 𝟣, 𝟤, … , 𝛼 

such as 

𝑃𝐴 = (∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿̿̿ ) = 𝛽𝟣∅𝟣̿̿ ̿ ⊕ 𝛽𝟤∅𝟤̿̿ ̿ ⊕ … .⊕ 𝛽𝛼∅𝛼̿̿̿̿ =⊕𝜏=𝟣
𝛼 𝛽𝜏∅𝜏̿̿ ̿. 

Noticed that  𝛽𝜏 =
𝛽𝜏

∑ 𝛽𝜏
𝛼
𝜏=𝟣

, where 𝛽𝟣 = 𝟣 and 𝛽𝜏 =⊕𝜅
𝜏−𝟣 ⋀𝑠(∅𝜅̿̿̿̿ ), 𝜅 = 𝟣, 𝟤, … , 𝛼. 

Definition 2.4. [44] For any CSFV  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 =

𝟣, 𝟤, … , 𝛼, some necessary operations of the Schweizer-Sklar tools are expressed as 

∅𝟣̿̿ ̿ ⊕ ∅𝟤̿̿ ̿ =

(

 
 
 
 
 
 
 
 
 
 
 

√(𝟣 − ((𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�

+ (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�

) − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(𝟣−((𝟣−𝓊𝟣
𝟤̿̿ ̿̿ )
�̿�
+(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
)−𝟣)

𝟣

�̿�
𝟤

)

 
 

√((𝒻𝟣
𝟤̿̿ ̿)

�̿�

+ (𝒻𝟤
𝟤̿̿ ̿)

�̿�

− 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

((𝓋𝟣
𝟤̿̿ ̿̿ )
�̿�
+(𝓋𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝟣)

𝟣

�̿�
𝟤

)

 
 

√((ℓ𝟣
𝟤̿̿̿)

�̿�

+ (ℓ𝟤
𝟤̿̿̿)

�̿�

− 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

((𝓀𝟣
𝟤̿̿ ̿̿ )
�̿�
+(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

, 
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∅𝟣̿̿ ̿ ⊗ ∅𝟤̿̿ ̿ =

(

 
 
 
 
 
 
 
 
 
 
 

√((𝒻𝟣
𝟤̿̿ ̿)

�̿�

+ (𝒻𝟤
𝟤̿̿ ̿)

�̿�

− 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

((𝓊𝟣
𝟤̿̿ ̿̿ )
�̿�
+(𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝟣)

𝟣

�̿�
𝟤

)

 
 

√(𝟣 − ((𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�

+ (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�

) − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(𝟣−((𝟣−𝓋𝟣
𝟤̿̿ ̿̿ )
�̿�
+(𝟣−𝓋𝟤

𝟤̿̿ ̿̿ )
�̿�
)−𝟣)

𝟣

�̿�
𝟤

)

 
 

√(𝟣 − ((𝟣 − ℓ𝟣
𝟤̿̿̿)

�̿�

+ (𝟣 − ℓ𝟤
𝟤̿̿̿)

�̿�

) − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(𝟣−((𝟣−𝓀𝟣
𝟤̿̿ ̿̿ )
�̿�
+(𝟣−𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
)−𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

, 

Ψ∅𝟣̿̿ ̿ =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

√(𝟣 − (Ψ(𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�

− (Ψ − 𝟣)))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝟣−(Ψ(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(Ψ−𝟣)))

𝟣

�̿�𝟤

)

 
 
 

√(Ψ(𝟣 − 𝒻𝟣
𝟤̿̿ ̿)

�̿�

− (Ψ − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(Ψ(𝟣−𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−(Ψ−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(Ψ(𝟣 − ℓ𝟣
𝟤̿̿̿)

�̿�

− (Ψ − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(Ψ(𝟣−𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−(Ψ−𝟣))

𝟣

�̿�𝟤

)

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

∅𝟣̿̿ ̿
Ψ
=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√(Ψ(𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�
− (Ψ − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(Ψ(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(Ψ−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√𝟣 − (Ψ(𝟣 − 𝒻𝟣
𝟤̿̿ ̿)

�̿�
− (Ψ − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√𝟣−(Ψ(𝟣−𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−(Ψ−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝟣 − (Ψ(𝟣 − ℓ𝟣
𝟤̿̿ ̿)

�̿�
− (Ψ − 𝟣)))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝟣−(Ψ(𝟣−𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−(Ψ−𝟣)))

𝟣

�̿�𝟤

)

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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3. Schweizer-Sklar PAOs for data on CSF 

The main contribution of this section is the derivation of the operators CSFSSPA, CSFSSWPA, 

CSFSSPG, and CSFSSWPG, along with the identification of their practical properties and results. 

Definition 3.1. For any CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟤, 3, … , 𝛼, 

the notion CSFSSPA operator is expressed as follows: 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) = 𝛽𝟣∅𝟣̿̿ ̿ ⊕ 𝛽𝟤∅𝟤̿̿ ̿ ⊕ …⊕ 𝛽𝛼∅𝛼̿̿̿̿ =⊕𝜏=𝟣
𝛼 𝛽𝜏∅𝜏̿̿ ̿.   (2.1) 

Noticed that  𝛽𝜏 =
𝛽𝜏

∑ 𝛽𝜏
𝛼
𝜏=𝟣

, where 𝛽𝟣 = 𝟣 and 𝛽𝜏 =⊕𝜅
𝜏−𝟣 ⋀𝑠(∅𝜅̿̿̿̿ ), 𝜅 = 𝟤, 3, … , 𝛼. 

Theorem 3.𝟣. For any CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼, 

the integrated values of the CSFSSPA operator are CSFV such as 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) 

=

(

 
 
 
 
 
 
 
 
 
 
 
√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝜏

𝟤̿̿̿̿ )
�̿�

−∑ 𝛽𝜏
𝛼
𝜏=𝟣 + 𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √𝟣−(∑ 𝛽𝜏(𝟣−𝓊𝜏

𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼
𝜏=𝟣 +𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝑗 (𝒻𝜏
𝟤̿̿ ̿)

�̿�

−𝛼
𝜏=𝟣 ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝑗(𝓋𝜏

𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝑗 (ℓ𝜏
𝟤̿̿̿)

�̿�

−𝛼
𝜏=𝟣 ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝑗(𝓀𝜏

𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

.    (2.2) 

Proof. Deriving Eq (2.2) is a very challenging task for scholars; to overcome this challenge, we use a 

popular and effective method of calculation known as “induction method”. Therefore, we consider 

𝛼 = 𝟤 to properly evidence Eq (2.2) for this, as in 

𝛽𝟣∅𝟣̿̿ ̿ =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (𝛽𝟣 (𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√𝟣−(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟣 (𝒻𝟣
𝟤̿̿ ̿)

�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟣(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟣 (ℓ𝟣
𝟤̿̿̿)

�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 
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𝛽𝟤∅𝟤̿̿ ̿ =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (𝛽𝟤 (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�

− (𝛽𝟤 − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√𝟣−(𝛽𝟤(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟤 (𝒻𝟤
𝟤̿̿ ̿)

�̿�
− (𝛽𝟤 − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟤(𝓋𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟤 (ℓ𝟤
𝟤̿̿ ̿)

�̿�
− (𝛽𝟤 − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�𝟤

)

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

To further justify Eq (2.2), we consider 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿) = 𝛽𝟣∅𝟣̿̿ ̿ ⊕ 𝛽𝟤∅𝟤̿̿ ̿ 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (𝛽𝟣 (𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√𝟣−(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟣 (𝒻𝟣
𝟤̿̿ ̿)

�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟣(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟣 (ℓ𝟣
𝟤̿̿̿)

�̿�
− (𝛽𝟣 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

⨁

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (𝛽𝟤 (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�
− (𝛽𝟤 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√𝟣−(𝛽𝟤(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟤 (𝒻𝟤
𝟤̿̿ ̿)

�̿�
− (𝛽𝟤 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟤(𝓋𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟤 (ℓ𝟤
𝟤̿̿̿)

�̿�

− (𝛽𝟤 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�𝟤

)

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 
 
 

𝟣 −

(

 
 
 
 
 
 
 
 

(

 
 
𝟣 − (𝟣 − (𝛽𝟣 (𝟣 − 𝔄𝟣

𝟤̿̿̿̿ )
�̿�
− (𝛽𝟣 − 𝟣))

𝟣

�̿�

)

)

 
 

�̿�

+

(

 
 
𝟣 − (𝟣 − (𝛽𝟤 (𝟣 − 𝔄𝟤

𝟤̿̿̿̿ )
�̿�
− (𝛽𝟤 − 𝟣))

𝟣

�̿�

)

)

 
 

�̿�

)

 
 
 
 
 
 
 
 

− 𝟣

)

 
 
 
 
 
 
 
 

𝟣

�̿�

𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
 
  
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 
 
 
 

𝟣−

(

 
 
 
 
 
 
 
 
 

(

  
 
𝟣−

(

 
 
𝟣−(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�

)

 
 

)

  
 

�̿�

+

(

  
 
𝟣−

(

 
 
𝟣−(𝛽𝟤(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�

)

 
 

)

  
 

�̿�

)

 
 
 
 
 
 
 
 
 

−𝟣

)

 
 
 
 
 
 
 
 
 

𝟣

�̿�

𝟤

)

 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  

(

  
 
((𝛽𝟣 (𝒻𝟣

𝟤̿̿ ̿)
�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�

)

�̿�

+

(

 
 
(𝛽𝟤 ((𝒻𝟣

𝟤̿̿ ̿)
𝟤

)
�̿�

− (𝛽𝟤 − 𝟣))

𝟣

�̿�

)

 
 

�̿�

− 𝟣

)

  
 

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 
 
 

(

 
 
(𝛽𝟣(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�

)

 
 

�̿�

+

(

 
 
(𝛽𝟤((𝓋𝟣

𝟤̿̿ ̿̿ )
𝟤
)
�̿�

−(𝛽𝟤−𝟣))

𝟣

�̿�

)

 
 

�̿�

−𝟣

)

 
 
 
 
 
 
 
 

𝟣

�̿�

𝟤

)

 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
 

(

 
 
((𝛽𝟣 (ℓ𝟣

𝟤̿̿̿)
�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�

)

�̿�

+ ((𝛽𝟤 (ℓ𝟤
𝟤̿̿̿)

�̿�

− (𝛽𝟤 − 𝟣))

𝟣

�̿�

)

�̿�

− 𝟣

)

 
 

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 
 
 

(

 
 
(𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�

)

 
 

�̿�

+

(

 
 
(𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�

)

 
 

�̿�

−𝟣

)

 
 
 
 
 
 
 
 

𝟣

�̿�

𝟤

)

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
 

(

 
 
𝟣 −

(

 
 
(𝟣− 𝟣 + (𝛽𝟣 (𝟣 − 𝔄𝟣

𝟤̿̿̿̿ )
�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�

)

�̿�

+(𝟣 − 𝟣 + (𝛽𝟤 (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�

− (𝛽𝟤 − 𝟣))

𝟣

�̿�

)

�̿�

)

 
 
− 𝟣

)

 
 

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 
 
 

𝟣−

(

 
 
 
 
 
 
 
 

(

 
 
𝟣−𝟣+(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�

)

 
 

�̿�

+

(

 
 
𝟣−𝟣+(𝛽𝟤(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�

)

 
 

�̿�

)

 
 
 
 
 
 
 
 

−𝟣

)

 
 
 
 
 
 
 
 

𝟣

�̿�

𝟤

)

 
 
 
 
 
 
 
 
 
 

 √((𝛽𝟣 (𝒻𝟣
𝟤̿̿ ̿)

�̿�

− (𝛽𝟣 − 𝟣)) + (𝛽𝟤 (𝒻𝟤
𝟤̿̿ ̿)

�̿�

− (𝛽𝟤 − 𝟣)) − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
 √((𝛽𝟣(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))+(𝛽𝟤(𝓋𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))−𝟣)

𝟣

�̿�𝟤

)

 
 
 

√((𝛽𝟣 (ℓ𝟣
𝟤̿̿̿)

�̿�

− (𝛽𝟣 − 𝟣)) + (𝛽𝟤 (ℓ𝟤
𝟤̿̿̿)

�̿�

− (𝛽𝟤 − 𝟣)) − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√((𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))+(𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))−𝟣)

𝟣

�̿�𝟤

)

 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 

𝟣 −

(

 
 
 
 
 
 ((𝛽𝟣 (𝟣 − 𝔄𝟣

𝟤̿̿̿̿ )
�̿�

− (𝛽𝟣 − 𝟣))

𝟣

�̿�

)

�̿�

+

((𝛽𝟤 (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�

− (𝛽𝟤 − 𝟣))

𝟣

�̿�

)

�̿�

)

 
 
 
 
 
 

− 𝟣

)

 
 
 
 
 
 

𝟣

�̿�

𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 
 
 

𝟣−

(

 
 
 
 
 
 
 
 

(

 
 
(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))

𝟣

�̿�

)

 
 

�̿�

+

(

 
 
(𝛽𝟤(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

𝟣

�̿�

)

 
 

�̿�

)

 
 
 
 
 
 
 
 

−𝟣

)

 
 
 
 
 
 
 
 

𝟣

�̿�

𝟤

)

 
 
 
 
 
 
 
 
 
 

 √(𝛽𝟣 ((𝒻𝟣
𝟤̿̿ ̿))

�̿�

− 𝛽𝟣 + 𝟣 + 𝛽𝟤 ((𝒻𝟤
𝟤̿̿ ̿))

�̿�

− 𝛽𝟤 + 𝟣 − 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝟣((𝓋𝟣

𝟤̿̿ ̿̿ ))

�̿�

−𝛽𝟣+𝟣+𝛽𝟤((𝓋𝟤
𝟤̿̿ ̿̿ ))

�̿�

−𝛽𝟤+𝟣−𝟣)

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟣 (ℓ𝟣
𝟤̿̿̿)

�̿�

− 𝛽𝟣 + 𝟣 + 𝛽𝟤 (ℓ𝟤
𝟤̿̿̿)

�̿�

− 𝛽𝟤 + 𝟣 − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣+𝟣+𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟤+𝟣−𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  

(

  
 
𝟣 −

(

  
 
(𝛽𝟣 (𝟣 − 𝔄𝟣

𝟤̿̿̿̿ )
�̿�

− (𝛽𝟣 − 𝟣)) +

(𝛽𝟤 (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�

− (𝛽𝟤 − 𝟣))
)

  
 
− 𝟣

)

  
 

𝟣

�̿�

𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
 
 
 

√
  
  
  
  
  
  
  
  

(

 
 
 
 

𝟣−

(

 
 
 
 (𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣))+

(𝛽𝟤(𝟣−𝓊𝟤
𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟤−𝟣))

)

 
 
 
 

−𝟣

)

 
 
 
 

𝟣

�̿�

𝟤

)

 
 
 
 
 
 

 

√(𝛽𝟣 (𝒻𝟣
𝟤̿̿ ̿)

�̿�

− 𝛽𝟣 + 𝟣 + 𝛽𝟤 (𝒻𝟤
𝟤̿̿ ̿)

�̿�

− 𝛽𝟤 + 𝟣 − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝛽𝟣(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣+𝟣+𝛽𝟤(𝓋𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟤+𝟣−𝟣)

𝟣

�̿�
𝟤

)

 
 

√(𝛽𝟣 (ℓ𝟣
𝟤̿̿̿)

�̿�

− 𝛽𝟣 + 𝟣 + 𝛽𝟤 (ℓ𝟤
𝟤̿̿̿)

�̿�

− 𝛽𝟤 + 𝟣 − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣+𝟣+𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟤+𝟣−𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√(𝟣 − (𝛽𝟣 (𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�
+ 𝛽𝟤 (𝟣 − 𝔄𝟤

𝟤̿̿̿̿ )
�̿�
− (𝛽𝟣 − 𝟣) − (𝛽𝟤 − 𝟣)) − 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝟣−(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−(𝛽𝟣−𝟣)−(𝛽𝟤−𝟣))−𝟣)

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟣 (𝒻𝟣
𝟤̿̿ ̿)

�̿�
+ 𝛽𝟤 (𝒻𝟤

𝟤̿̿ ̿)
�̿�
− 𝛽𝟣 − 𝛽𝟤 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝛽𝟣(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝓋𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣−𝛽𝟤+𝟣)

𝟣

�̿�
𝟤

)

 
 

√(𝛽𝟣 (ℓ𝟣
𝟤̿̿̿)

�̿�

+ 𝛽𝟤 (ℓ𝟤
𝟤̿̿̿)

�̿�

− 𝛽𝟣 − 𝛽𝟤 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣−𝛽𝟤+𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 



34765 
 

AIMS Mathematics  Volume 9, Issue 12, 34753–34784. 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
√(𝟣 − (𝛽𝟣 (𝟣 − 𝔄𝟣

𝟤̿̿̿̿ )
�̿�

+ 𝛽𝟤 (𝟣 − 𝔄𝟤
𝟤̿̿̿̿ )

�̿�

− 𝛽𝟣 + 𝟣 − 𝛽𝟤 + 𝟣) − 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝟣−(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝟣−𝔄𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣+𝟣−𝛽𝟤+𝟣)−𝟣)

𝟣

�̿�
𝟤

)

 
 

√(𝛽𝟣 (𝒻𝟣
𝟤̿̿ ̿)

�̿�

+ 𝛽𝟤 (𝒻𝟣
𝟤̿̿ ̿)

�̿�

− 𝛽𝟣 − 𝛽𝟤 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝛽𝟣(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣−𝛽𝟤+𝟣)

𝟣

�̿�
𝟤

)

 
 

√(𝛽𝟣 (ℓ𝟣
𝟤̿̿̿)

�̿�

+ 𝛽𝟤 (ℓ𝟤
𝟤̿̿̿)

�̿�

− 𝛽𝟣 − 𝛽𝟤 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(𝛽𝟣(𝓀𝟣

𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣−𝛽𝟤+𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√(𝟣 − (𝛽𝟣 (𝟣 − 𝔄𝟣
𝟤̿̿̿̿ )

�̿�
+ 𝛽𝟤 (𝟣 − 𝔄𝟤

𝟤̿̿̿̿ )
�̿�
− 𝛽𝟣 − 𝛽𝟤 + 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝟣−(𝛽𝟣(𝟣−𝓊𝟣

𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝟣−𝓊𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣−𝛽𝟤+𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝟣 (𝒻𝟣
𝟤̿̿ ̿)

�̿�
+ 𝛽𝟤 (𝒻𝟣

𝟤̿̿ ̿)
�̿�
− 𝛽𝟣 − 𝛽𝟤 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(𝛽𝟣(𝓋𝟣
𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝓋𝟣

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣−𝛽𝟤+𝟣)

𝟣

�̿�
𝟤

)

 
 

√(𝛽𝟣 (ℓ𝟣
𝟤̿̿ ̿)

�̿�
+ 𝛽𝟤 (ℓ𝟤

𝟤̿̿ ̿)
�̿�
− 𝛽𝟣 − 𝛽𝟤 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(𝛽𝟣(𝓀𝟣
𝟤̿̿ ̿̿ )
�̿�
+𝛽𝟤(𝓀𝟤

𝟤̿̿ ̿̿ )
�̿�
−𝛽𝟣−𝛽𝟤+𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝜏
𝟤̿̿̿̿ )

�̿�
− ∑ 𝛽𝜏

𝟤
𝜏=𝟣 + 𝟣𝟤

𝜏=𝟣 )

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

𝟣−(∑ 𝛽𝜏(𝟣−𝓊𝜏
𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝟤
𝜏=𝟣 +𝟣𝟤

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (𝒻𝜏
𝟤̿̿ ̿)

�̿�
−𝟤

𝜏=𝟣 ∑ 𝛽𝜏
𝟤
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝜏(𝓋𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝟤

𝜏=𝟣 ∑ 𝛽𝜏
𝟤
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (ℓ𝜏
𝟤̿̿̿)

�̿�
−𝟤

𝜏=𝟣 ∑ 𝛽𝜏
𝟤
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝜏(𝓀𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝟤

𝜏=𝟣 ∑ 𝛽𝜏
𝟤
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

. 

We found that it holds for 𝛼 = 𝟤, and further investigation, we found that it also holds for  𝛼 =

𝜅 as follows: 
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𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) 

=

(

 
 
 
 
 
 
 
 
 
 
 
√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝜏

𝟤̿̿̿̿ )
�̿�

−∑ 𝛽𝜏
𝜅
𝜏=𝟣 + 𝟣𝜅

𝜏=𝟣 )

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √𝟣−(∑ 𝛽𝜏(𝟣−𝓊𝜏

𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝜅
𝜏=𝟣 +𝟣𝜅

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (𝒻𝜏
𝟤̿̿ ̿)

�̿�

−𝜅
𝜏=𝟣 ∑ 𝛽𝜏

𝜅
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝜏(𝓋𝜏

𝟤̿̿ ̿̿ )
�̿�
−𝜅

𝜏=𝟣 ∑ 𝛽𝜏
𝜅
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (ℓ𝜏
𝟤̿̿̿)

�̿�

−𝜅
𝜏=𝟣 ∑ 𝛽𝜏

𝜅
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝜏(𝓀𝜏

𝟤̿̿ ̿̿ )
�̿�
−𝜅

𝜏=𝟣 ∑ 𝛽𝜏
𝜅
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

.  

Then, we prove it for 𝛼 = 𝜅 + 𝟣 such as 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿ ̿̿ ) 

= 𝛽𝟣∅𝟣̿̿ ̿ ⊕ 𝛽𝟤∅𝟤̿̿ ̿ ⊕ …⊕ 𝛽𝜅∅𝜅̿̿̿̿ ⊕ 𝛽𝜅+𝟣∅𝜅+𝟣̿̿ ̿̿ ̿̿  

=⊕𝜏=𝟣
𝜅 𝛽𝜏∅𝜏 ̿̿ ̿̿ ⊕ 𝛽𝜅+𝟣∅𝜅+𝟣̿̿ ̿̿ ̿̿  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝜏

𝟤̿̿̿̿ )
�̿�
−∑ 𝛽𝜏

𝐾

𝜏=𝟣
+ 𝟣

𝜅

𝜏=𝟣
)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √𝟣−(∑ 𝛽𝜏(𝟣−𝓊𝜏

𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝐾
𝜏=𝟣 +𝟣𝜅

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (𝒻𝜏
𝟤̿̿ ̿)

�̿�
−

𝐾

𝜏=𝟣
∑ 𝛽𝜏

𝐾

𝜏=𝟣
+ 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝜏(𝓋𝜏

𝟤̿̿ ̿̿ )
�̿�
−𝐾

𝜏=𝟣 ∑ 𝛽𝜏
𝐾
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (ℓ𝜏
𝟤̿̿̿)

�̿�
−

𝐾

𝜏=𝟣
∑ 𝛽𝜏

𝐾

𝜏=𝟣
+ 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝜏(𝓀𝜏

𝟤̿̿ ̿̿ )
�̿�
−𝐾

𝜏=𝟣 ∑ 𝛽𝜏
𝐾
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (𝛽𝐾+𝟣 (𝟣 − 𝔄𝑘+𝟣
𝟤̿̿ ̿̿ ̿̿ ̿)

�̿�

− (𝛽𝐾+𝟣 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√𝟣−(𝛽𝐾+𝟣(𝟣−𝓊𝑘+𝟣

𝟤̿̿ ̿̿ ̿̿ ̿)
�̿�
−(𝛽𝐾+𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝐾+𝟣 (𝒻𝐾+𝟣
𝟤̿̿ ̿̿ ̿̿ )

�̿�
− (𝛽𝐾+𝟣 − 𝟣))

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝐾+𝟣(𝓋𝐾+𝟣

𝟤̿̿ ̿̿ ̿̿ ̿)
�̿�
−(𝛽𝐾+𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

√(𝛽𝐾+𝟣 (ℓ𝐾+𝟣
𝟤̿̿ ̿̿ ̿̿ )

�̿�
− (𝛽𝐾+𝟣 − 𝟣))

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 
 
√(𝛽𝐾+𝟣(𝓀𝐾+𝟣

𝟤̿̿ ̿̿ ̿̿ ̿)
�̿�
−(𝛽𝐾+𝟣−𝟣))

𝟣

�̿�𝟤

)

 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝜏
𝟤̿̿̿̿ )

�̿�
− ∑ 𝛽𝜏

𝜅+𝟣
𝜏=𝟣 + 𝟣𝜅+𝟣

𝜏=𝟣 )

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

𝟣−(∑ 𝛽𝜏(𝟣−𝓊𝜏
𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝜅+𝟣
𝜏=𝟣 +𝟣𝜅+𝟣

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (𝒻𝜏
𝟤̿̿ ̿)

�̿�
−𝜅+𝟣

𝜏=𝟣 ∑ 𝛽𝜏
𝜅+𝟣
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝜏(𝓋𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝜅+𝟣

𝜏=𝟣 ∑ 𝛽𝜏
𝜅+𝟣
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (ℓ𝜏
𝟤̿̿̿)

�̿�
−𝜅+𝟣

𝜏=𝟣 ∑ 𝛽𝜏
𝜅+𝟣
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝜏(𝓀𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝜅+𝟣

𝜏=𝟣 ∑ 𝛽𝜏
𝜅+𝟣
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

. 

Here, we were successful in our evaluation of the targeted data. 

We also assessed the information in Eq (2.2) for idempotency, monotonicity, and boundedness. 

Theorem 3.2. The following properties are found to hold successfully based on defined CSFVs ∅𝜏̿̿ ̿ =

(𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ ))
′

, 𝜏 = 𝟣, 𝟤, … , 𝛼. 

For any CSFVs ∅̿ = ∅𝜏 ̿̿ ̿̿ , that is 

∅𝜏 ̿̿ ̿̿ = 𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝜏𝟣
̿̿ ̿̿ , ∅𝜏𝟤

̿̿ ̿̿ , … , ∅𝜏𝛼
̿̿ ̿̿̿) = ∅̿. 

Proof. If   ∅̿ = ∅𝜏 ̿̿ ̿̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )), then using Eq (2.2), we have 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝜏𝟣
̿̿ ̿̿ , ∅𝜏𝟤

̿̿ ̿̿ , … , ∅𝜏𝛼
̿̿ ̿̿̿) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝟤̿̿̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣

𝛼

𝜏=𝟣
)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √𝟣−(∑ 𝛽𝜏(𝟣−𝓊

𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼
𝜏=𝟣 +𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (𝒻
𝟤̿̿ ̿)

�̿�
−

𝛼

𝜏=𝟣
∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝜏(𝓋

𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝜏 (ℓ
𝟤̿̿ ̿)

�̿�
−

𝛼

𝜏=𝟣
∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √(∑ 𝛽𝜏(𝓀

𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 



34768 
 

AIMS Mathematics  Volume 9, Issue 12, 34753–34784. 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
√𝟣 − ((𝟣 − 𝔄𝟤̿̿̿̿ )

�̿�
− 𝟣 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √𝟣−((𝟣−𝓊𝟤̿̿ ̿̿ )

�̿�
−𝟣+𝟣)

𝟣

�̿�
𝟤

)

 
 

√((𝒻𝟤̿̿ ̿)
�̿�
− 𝟣 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √((𝓋𝟤̿̿ ̿̿ )

�̿�
−𝟣+𝟣)

𝟣

�̿�
𝟤

)

 
 

√((ℓ𝟤̿̿̿)
�̿�
− 𝟣 + 𝟣)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √((𝓀𝟤̿̿ ̿̿ )

�̿�
−𝟣+𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

, ∑ 𝛽𝜏 = 𝟣
𝛼

𝜏=𝟣
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
√𝟣 − ((𝟣 − 𝔄𝟤̿̿̿̿ )

�̿�
)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √𝟣−((𝟣−𝓊𝟤̿̿ ̿̿ )

�̿�
)

𝟣

�̿�
𝟤

)

 
 

√((𝒻𝟤̿̿ ̿)
�̿�
)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √((𝓋𝟤̿̿ ̿̿ )

�̿�
)

𝟣

�̿�
𝟤

)

 
 

√((ℓ𝟤̿̿̿)
�̿�
)

𝟣

�̿�
𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √((𝓀𝟤̿̿ ̿̿ )

�̿�
)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
√𝟣 − (𝟣 − 𝔄𝟤̿̿̿̿ )
𝟤

𝑒𝑥𝑝
𝟤𝜋𝑖( √𝟣−(𝟣−𝓊𝟤̿̿ ̿̿ )

𝟤
)

√(𝒻𝟤̿̿ ̿)
𝟤

𝑒𝑥𝑝
𝟤𝜋𝑖( √(𝓋𝟤̿̿ ̿̿ )

𝟤
)

√(ℓ𝟤̿̿̿)
𝟤

𝑒𝑥𝑝
𝟤𝜋𝑖( √(𝓀𝟤̿̿ ̿̿ )

𝟤
)

)

 
 
 
 
 

= (𝔄𝜏̿̿̿̿ , 𝒻�̿�, ℓ�̿�) = ∅̿. 

If ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ , 𝒻𝜏

𝟤̿̿ ̿, ℓ𝜏
𝟤̿̿̿) ≤ ∅𝜏

′̿̿ ̿ = ((𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, (𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿, (ℓ𝜏
𝟤)′̿̿ ̿̿ ̿̿ ), that is 𝔄𝜏

𝟤̿̿̿̿ ≤ (𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, 𝒻𝜏

𝟤̿̿ ̿ ≥ (𝒻𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿ and  ℓ𝜏

𝟤̿̿̿ ≥

(ℓ𝜏
𝟤)′̿̿ ̿̿ ̿̿ , then 

𝔄𝜏
𝟤̿̿̿̿ ≤ (𝔄𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿ ⟹ 𝟣 − 𝔄𝜏
𝟤̿̿̿̿ ≤ 𝟣 − (𝔄𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿ ⟹ (𝟣 − 𝔄𝜏
𝟤̿̿̿̿ )

�̿�
≥ (𝟣 − (𝔄𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿)
�̿�
 

⟹∑ 𝛽𝜏
𝛼

𝜏=𝟣
(𝟣 − 𝔄𝜏

𝟤̿̿̿̿ )
�̿�
≥∑ 𝛽𝜏

𝛼

𝜏=𝟣
(𝟣 − (𝔄𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿)
�̿�
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=∑ 𝛽𝜏
𝛼

𝜏=𝟣
(𝟣 − 𝔄𝜏

𝟤̿̿̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣 ≥∑ 𝛽𝜏

𝛼

𝜏=𝟣
(𝟣 − (𝔄𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿)
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣 

= (∑ 𝛽𝜏
𝛼

𝜏=𝟣
(𝟣 − 𝔄𝜏

𝟤̿̿̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣)

𝟣

�̿�
≥ (∑ 𝛽𝜏

𝛼

𝜏=𝟣
(𝟣 − (𝔄𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿)
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣)

𝟣

�̿�
 

= (∑ 𝛽𝜏
𝛼
𝜏=𝟣 (𝟣 − 𝔄𝜏

𝟤̿̿̿̿ )
�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�

≤ (∑ 𝛽𝜏
𝛼
𝜏=𝟣 (𝟣 − (𝔄𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿)
�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�

. 

Theorem 3.3. For any two CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏̿̿̿̿ , 𝒻�̿�, ℓ�̿�) ≤ ∅𝜏
′̿̿ ̿ = (𝔄𝜏

′̿̿̿̿ , 𝒻𝜏
′̿, ℓ𝜏

′̿ ), that is 𝔄𝜏̿̿̿̿ ≤ 𝔄𝜏
′̿̿̿̿ , 𝒻�̿� ≥ 𝒻𝜏

′̿ 

and  ℓ�̿� ≥ ℓ𝜏
′̿ , then 𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿′∅𝟤̿̿ ̿′ … ′∅𝛼̿̿̿̿ ) ≤ 𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣

′̿̿ ̿, ∅𝟤
′̿̿ ̿, … , ∅𝛼

′̿̿̿̿ ). 

Proof. If   𝒻𝜏̿̿̿̿ ≥ 𝒻𝜏
′̿, then 

𝒻𝜏
𝟤̿̿ ̿ ≥ (𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿ ⟹ 𝒻𝜏
𝟤̿̿ ̿
�̿�
≥ (𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿
�̿�
⟹∑ 𝛽𝜏

𝛼

𝜏=𝟣
𝒻𝜏
𝟤̿̿ ̿
�̿�
≥∑ 𝛽𝜏

𝛼

𝜏=𝟣
(𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿
�̿�
 

⟹∑ 𝛽𝜏
𝛼

𝜏=𝟣
𝒻𝜏
𝟤̿̿ ̿
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣 ≥∑ 𝛽𝜏

𝛼

𝜏=𝟣
(𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣 

⟹ (∑ 𝛽𝜏
𝛼
𝜏=𝟣 𝒻𝜏

𝟤̿̿ ̿
�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�

≥ (∑ 𝛽𝜏
𝛼
𝜏=𝟣  (𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿
�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�

. 

Further, if ℓ𝜏
𝟤̿̿̿ ≥ (ℓ𝜏

𝟤)′̿̿ ̿̿ ̿̿ , then 

ℓ𝜏
𝟤̿̿̿ ≥ (ℓ𝜏

𝟤)′̿̿ ̿̿ ̿̿ ⟹ ℓ𝜏
𝟤̿̿̿
�̿�
≥ (ℓ𝜏

𝟤)′̿̿ ̿̿ ̿̿
�̿�
⟹∑ 𝛽𝜏

𝛼

𝜏=𝟣
ℓ𝜏
𝟤̿̿̿
�̿�
≥∑ 𝛽𝜏

𝛼

𝜏=𝟣
(ℓ𝜏

𝟤)′̿̿ ̿̿ ̿̿
�̿�
 

⟹∑ 𝛽𝜏
𝛼

𝜏=𝟣
ℓ𝜏
𝟤̿̿̿
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣 ≥∑ 𝛽𝜏

𝛼

𝜏=𝟣
(ℓ𝜏

𝟤)′̿̿ ̿̿ ̿̿
�̿�
−∑ 𝛽𝜏

𝛼

𝜏=𝟣
+ 𝟣 

⟹ (∑ 𝛽𝜏
𝛼
𝜏=𝟣 ℓ𝜏

𝟤̿̿̿
�̿�
−∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�

≥ (∑ 𝛽𝜏
𝛼
𝜏=𝟣  (ℓ𝜏

𝟤)′̿̿ ̿̿ ̿̿
�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�

. 

Theorem 3.4. For any CSFVs ∅𝜏
− = {𝑚𝑖𝑛𝔄𝜏,̿̿ ̿̿ 𝑚𝑎𝑥𝒻�̿�, 𝑚𝑎𝑥ℓ�̿�} and ∅𝜏

+ = {𝑚𝑎𝑥𝔄𝜏,̿̿ ̿̿ 𝑚𝑖𝑛𝒻�̿�, 𝑚𝑖𝑛ℓ�̿�}, 

then we have  ∅𝜏
− = 𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝜏𝟣

̿̿ ̿̿ , ∅𝜏𝟤
̿̿ ̿̿ , … , ∅𝜏𝛼

̿̿ ̿̿̿) = ∅𝜏
+. 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝜏𝟣
̿̿ ̿̿ ′∅𝜏𝟤

̿̿ ̿̿ ′ … ′∅𝜏𝛼
̿̿ ̿̿̿) ≤ 𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝜏𝟣

′̿̿ ̿̿ ′∅𝜏𝟤
′̿̿ ̿̿ ′ … ′∅𝜏𝛼

′̿̿ ̿̿̿). 

Proof. Since the theory in ideas Theorems 3.2 and 3.3, we have 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) ≥ 𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣
−̿̿ ̿̿ , ∅𝟤

−̿̿ ̿̿ , … , ∅𝛼
−̿̿ ̿̿ ) = ∅𝜏

−̿̿ ̿̿ , 

𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) ≤ 𝐶𝑆𝐹𝑆𝑆𝑃𝐴 (∅𝟣
+̿̿ ̿̿ , ∅𝟤

+̿̿ ̿̿ , … , ∅𝛼
+̿̿ ̿̿ ) = ∅𝜏

+̿̿ ̿̿ . 
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Then, 

∅𝜏
−̿̿ ̿̿ ≤ 𝐶𝑆𝐹𝑆𝑆𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) ≤ ∅𝜏

+̿̿ ̿̿ . 

Definition 3.2. For any CSFVs ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼, 

the following is how the CSFSSWPA operator is expressed as 

𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿̿̿ ) = 𝛽𝟣∅𝟣̿̿ ̿ ⊕ 𝛽𝟤∅𝟤̿̿ ̿ ⊕ …⊕ 𝛽𝛼∅𝛼̿̿̿̿ =⊕𝜏=𝟣
𝛼 𝛽𝜏∅𝜏̿̿ ̿. 

Noticed that  𝛽𝜏 =
𝜛𝜏𝛽𝜏

∑ 𝜛𝜏𝛽𝜏
𝛼
𝜏=𝟣

 , where 𝛽𝟣 = 𝟣  and 𝛽𝜏 =⊕𝜅
𝜏−𝟣 ⋀𝑠(∅𝜅̿̿̿̿ ),  when  𝜅 = 𝟤, 3, … , 𝛼. 

Additionally, the weight vector's representation is expressed as follows: 𝜛𝜏 ∈ [0, 𝟣]  with 

  ∑ 𝜛𝜏
𝛼
𝜏=𝟣 = 𝟣. 

Theorem 3.5. For any CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼 , 

then the integrated values of the CSFSSWPA operator are CSFV such as 

𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿̿̿ ) 

=

(

 
 
 
 
 
 
 
 
 
 
 

√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝜏
𝟤̿̿̿̿ )

�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

𝟣−(∑ 𝛽𝜏(𝟣−𝓊𝜏
𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼
𝜏=𝟣 +𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝑗 (𝒻𝜏
𝟤̿̿ ̿)

�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝑗(𝓋𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√(∑ 𝛽𝑗 (ℓ𝜏
𝟤̿̿̿)

�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝑗(𝓀𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

.  (3.1) 

 

Theorem 3.1’s proof and Eq (3.1)’s proof are equivalent universally. We also measured the 

evidence in Eq (3.1) for idempotency, monotonicity, and boundedness. 

Theorem 3.6. The following properties hold successfully based on defined CSFVs   ∅𝜏̿̿ ̿ =

(𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼. For any CSFVs ∅̿ = ∅𝜏 ̿̿ ̿̿ , that is 

∅𝜏̿̿ ̿ = 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐴(∅𝜏𝟣
̿̿ ̿̿ , ∅𝜏𝟤

̿̿ ̿̿ , … , ∅𝜏𝛼
̿̿ ̿̿̿) = ∅̿. 

Proof. Theorem 3.6’s proof is like the proof of Theorem 3.2. 
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Theorem 3.7. For any two CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ , 𝒻𝜏

𝟤̿̿ ̿, ℓ𝜏
𝟤̿̿̿) ≤ ∅𝜏

′̿̿ ̿ = ((𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, (𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿, (ℓ𝜏
𝟤)′̿̿ ̿̿ ̿̿ ) , that is 𝔄𝜏

𝟤̿̿̿̿ ≤

(𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, 𝒻𝜏

𝟤̿̿ ̿ ≥ (𝒻𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿ and ℓ𝜏

𝟤̿̿̿̿̿̿ ≥ (ℓ𝜏
𝟤)′̿̿ ̿̿ ̿̿ , then 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐴(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) ≤ 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐴(∅𝟣

′̿̿ ̿, ∅𝟤
′̿̿ ̿, … , ∅𝛼

′̿̿̿̿ ). 

Proof. Theorem 3.7’s proof is like the proof of Theorem 3.3. 

Theorem 3.8. For any CSFVs ∅𝜏
− = {𝑚𝑖𝑛𝔄𝜏

𝟤,̿̿ ̿̿ 𝑚𝑎𝑥𝒻𝜏
𝟤̿̿ ̿,𝑚𝑎𝑥ℓ𝜏

𝟤̿̿̿} and ∅𝜏
+ = {𝑚𝑎𝑥𝔄𝜏

𝟤,̿̿ ̿̿ 𝑚𝑖𝑛𝒻𝜏
𝟤̿̿ ̿,𝑚𝑖𝑛ℓ𝜏

𝟤̿̿̿}, 

then we have 

∅𝜏
− = 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐴(∅𝜏𝟣

̿̿ ̿̿ , ∅𝜏𝟤
̿̿ ̿̿ , … , ∅𝜏𝛼

̿̿ ̿̿̿) = ∅𝜏
+. 

Proof. Theorem 3.8’s proof is like the proof of Theorem 3.4. 

Definition 3.3. For any CSFVs ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟤, 3, … , 𝛼, 

then the notion of the CSFSSPG operator is expressed as follows: 

𝐶𝑆𝐹𝑆𝑆𝑃𝐺(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿̿̿ ) = ∅𝟣
𝛽𝟣̿̿ ̿̿̿
⨂∅𝟤

𝛽𝟤̿̿ ̿̿̿
. . . ∅𝛼

𝛽𝛼̿̿ ̿̿ ̿̿ ̿
=⊕𝜏=𝟣

𝛼 ∅𝜏
𝛽𝜏̿̿ ̿̿̿

.     (3.4) 

Noticed that  𝛽𝜏 =
𝛽𝜏

∑ 𝛽𝜏
𝛼
𝜏=𝟣

, where 𝛽𝟣 = 𝟣 and 𝛽𝜏 =⊕𝜅
𝜏−𝟣 ⋀𝑠(∅𝜅̿̿̿̿ ), 𝜅 = 𝟣, 𝟤, … , 𝛼. 

Theorem 3.9. For any CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼, 

then the integrated values of the CSFSSPG operator still a CSFV such as 

𝐶𝑆𝐹𝑆𝑆𝑃𝐺(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿̿̿ ) 

=

(

 
 
 
 
 
 
 
 
 
 
 

√(∑ 𝛽𝑗 (𝒻𝜏
𝟤̿̿ ̿)

�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝑗(𝓊𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√𝟣 − (∑ 𝛽𝑗 (𝟣 − ℓ𝜏
𝟤̿̿̿)

�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

𝟣−(∑ 𝛽𝑗(𝟣−𝓋𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√𝟣 − (∑ 𝛽𝜏 (𝟣 − 𝔄𝜏
𝟤̿̿̿̿ )

�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

𝟣−(∑ 𝛽𝜏(𝟣−𝓀𝜏
𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼
𝜏=𝟣 +𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

.  (3.5) 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.1. 

Theorem 3.10. The following properties are found to hold successfully based on defined CSFVs ∅𝜏̿̿ ̿ =

(𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼,  for any CSFVs ∅̿ = ∅𝜏 ̿̿ ̿̿  , that is 
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 𝐶𝑆𝐹𝑆𝑆𝑃𝐺(∅𝜏𝟣
̿̿ ̿̿ , ∅𝜏𝟤

̿̿ ̿̿ , … , ∅𝜏𝛼
̿̿ ̿̿̿) = ∅̿. 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.2. 

Theorem 3.11. For any two CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ , 𝒻𝜏

𝟤̿̿ ̿, ℓ𝜏
𝟤̿̿̿) ≤ ∅𝜏

′̿̿ ̿ = ((𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, (𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿, (ℓ𝜏
𝟤)′̿̿ ̿̿ ̿̿ ), that is 𝔄𝜏

𝟤̿̿̿̿ ≤

(𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, 𝒻𝜏

𝟤̿̿ ̿ ≥ (𝒻𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿ and ℓ𝜏

𝟤̿̿̿ ≥ (ℓ𝜏
𝟤)′̿̿ ̿̿ ̿̿ , then 𝐶𝑆𝐹𝑆𝑆𝑃𝐺(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) ≤ 𝐶𝑆𝐹𝑆𝑆𝑃𝐺(∅𝟣

′̿̿ ̿, ∅𝟤
′̿̿ ̿, … , ∅𝛼

′̿̿̿̿ ). 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.2. 

Theorem 3.12. For any CSFVs ∅𝜏
− = {𝑚𝑖𝑛𝔄𝜏

𝟤,̿̿ ̿̿ 𝑚𝑎𝑥𝒻𝜏
𝟤̿̿ ̿,𝑚𝑎𝑥ℓ𝜏

𝟤̿̿̿}  and ∅𝜏
+ =

{𝑚𝑎𝑥𝔄𝜏
𝟤,̿̿ ̿̿ 𝑚𝑖𝑛𝒻𝜏

𝟤̿̿ ̿, 𝑚𝑖𝑛ℓ𝜏
𝟤̿̿̿}, then 

 ∅𝜏
− = 𝐶𝑆𝐹𝑆𝑆𝑃𝐺(∅𝜏𝟣

̿̿ ̿̿ , ∅𝜏𝟤
̿̿ ̿̿ , … , ∅𝜏𝛼

̿̿ ̿̿̿) = ∅𝜏
+. 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.4. 

Definition 3.3. For any CSFVs ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼, 

then the notion of the CSFSSWPG operator is expressed as follows:  

𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐺(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿̿̿ ) = ∅𝟣
𝛽𝟣̿̿ ̿̿̿
⨂∅𝟤

𝛽𝟤   
̿̿ ̿̿ ̿̿

⊗. . .⨂ ∅𝛼
𝛽𝛼̿̿ ̿̿ ̿̿
= ⨂𝜏=𝟣

𝛼 ∅𝜏
𝛽𝜏̿̿ ̿̿̿

. 

Noticed that  𝛽𝜏 =
𝜛𝜏𝛽𝜏

∑ 𝜛𝜏𝛽𝜏
𝛼
𝜏=𝟣

 , where 𝛽𝟣 = 𝟣  and 𝛽𝜏 =⊕𝜅
𝜏−𝟣 ⋀𝑠(∅𝜅̿̿̿̿ ), 𝜅 = 𝟤, 3, … , 𝛼.  Additionally, 

the illustration of the weight vector is measured by 𝜛𝜏 ∈ [0, 𝟣] through   ∑ 𝜛𝜏
𝛼
𝜏=𝟣 = 𝟣. 

Theorem 3.13. For CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 = 𝟣, 𝟤, … , 𝛼, then 

the integrated values of the CSFSSWPA operator still a CSFV such as 

𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐺(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿ , … , ∅𝛼̿̿̿̿ ) 

=

(

 
 
 
 
 
 
 
 
 
 
 

√(∑ 𝛽𝑗 (𝔄𝜏
𝟤̿̿̿̿ )

�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

(∑ 𝛽𝑗(𝓊𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√𝟣 − (∑ 𝛽𝑗 (𝟣 − 𝒻𝜏
𝟤̿̿ ̿)

�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 + 𝟣)

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

𝟣−(∑ 𝛽𝑗(𝟣−𝓋𝜏
𝟤̿̿ ̿̿ )
�̿�
−𝛼

𝜏=𝟣 ∑ 𝛽𝜏
𝛼
𝜏=𝟣 +𝟣)

𝟣

�̿�
𝟤

)

 
 

√𝟣 − (∑ 𝛽𝜏 (𝟣 − ℓ𝜏
𝟤̿̿̿)

�̿�
− ∑ 𝛽𝜏

𝛼
𝜏=𝟣 + 𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�𝟤

𝑒𝑥𝑝

𝟤𝜋𝑖

(

 
 √

𝟣−(∑ 𝛽𝜏(𝟣−𝓀𝜏
𝟤̿̿ ̿̿ )
�̿�
−∑ 𝛽𝜏

𝛼
𝜏=𝟣 +𝟣𝛼

𝜏=𝟣 )

𝟣

�̿�
𝟤

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

.  (3.6) 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.1. 
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Theorem 3.14. Based on defined CSFVs ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) , 𝜏 =

𝟣, 𝟤, … , 𝛼, we determine that the resulting properties hold efficaciously. 

For any CSFVs ∅̿ = ∅𝜏 ̿̿ ̿̿ , that is 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐺(∅𝜏𝟣
̿̿ ̿̿ , ∅𝜏𝟤

̿̿ ̿̿ , … , ∅𝜏𝛼
̿̿ ̿̿̿) = ∅̿. 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.2. 

Theorem 3.15. For any two CSFVs  ∅𝜏̿̿ ̿ = (𝔄𝜏
𝟤̿̿̿̿ , 𝒻𝜏

𝟤̿̿ ̿, ℓ𝜏
𝟤̿̿̿) ≤ ∅𝜏

′̿̿ ̿ = ((𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, (𝒻𝜏

𝟤)′̿̿ ̿̿ ̿̿ ̿, (ℓ𝜏
𝟤)′̿̿ ̿̿ ̿̿ ) , that is 𝔄𝜏

𝟤̿̿̿̿ ≤

(𝔄𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿, 𝒻𝜏

𝟤̿̿ ̿ ≥ (𝒻𝜏
𝟤)′̿̿ ̿̿ ̿̿ ̿̿̿ ̿̿ ̿̿ ̿

 and  ℓ𝜏
𝟤̿̿̿ ≥ (ℓ𝜏

𝟤)′̿̿ ̿̿ ̿̿̿̿ ̿̿ ̿̿
, then 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐺(∅𝟣̿̿ ̿, ∅𝟤̿̿ ̿, … , ∅𝛼̿̿̿̿ ) ≤ 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐺(∅𝟣

′̿̿ ̿, ∅𝟤
′̿̿ ̿, … , ∅𝛼

′̿̿̿̿ ). 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.2. 

Theorem 3.16. For any CSFVs ∅𝜏
− = {𝑚𝑖𝑛𝔄𝜏

𝟤,̿̿ ̿̿ 𝑚𝑎𝑥𝒻𝜏
𝟤̿̿ ̿,𝑚𝑎𝑥ℓ𝜏

𝟤̿̿̿}  and ∅𝜏
+ =

{𝑚𝑎𝑥𝔄𝜏
𝟤,̿̿ ̿̿ 𝑚𝑖𝑛𝒻𝜏

𝟤̿̿ ̿, 𝑚𝑖𝑛ℓ𝜏
𝟤̿̿̿}, then we have  ∅𝜏

− = 𝐶𝑆𝐹𝑆𝑆𝑊𝑃𝐺(∅𝜏𝟣
̿̿ ̿̿ ′∅𝜏𝟤

̿̿ ̿̿ ′ … ′∅𝜏𝛼
̿̿ ̿̿̿) = ∅𝜏

+. 

Proof. The proof can be done on the similar steps of the proof of Theorem 3.4. 

4. MADM Techniques for CSF data 

The CSFSSWPA and CSFSSWPG operators are to be used in this situation to help us construct a 

MADM problem using CSF data. By calculating a decision matrix with their values as CSF numbers, 

we can accomplish this. A set of data is described as a personal of alternatives {ℒ𝟣, ℒ𝟤, … , ℒ𝑚} and a 

personal of attributes {𝛬𝟣̿̿ ̿, 𝛬𝟤̿̿ ̿, … , 𝛬𝛼̿̿̿̿ }. To unceasingly explain the process, we describe a weight vector 

𝜛𝜏 ∈ [0, 𝟣] through  ∑ 𝜛𝜏
𝛼
𝜏=𝟣 = 𝟣. We also allocate an SF quantity to every attribute in each option 

and effort to represent it in a locked medium M=[∅𝑖𝜏 ̿̿ ̿̿ ̿] 𝑚×𝛼. The CSF quantity can be expressed in the 

following form: ∅𝜏̿̿ ̿ = 𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ ), 𝜏 = 𝟣, 𝟤, … , 𝛼.  In this case, the 

symbols �̿�𝟤(𝒳)  MG , 𝒻̿𝟤(𝒳)   AG and NMG convey the information MG with the age-old and 

valuable properties: 0 ≤ (�̿�𝟤(𝒳) + 𝒻̿𝟤(𝒳) + ℓ̿𝟤(𝒳)) ≤ 𝟣  and  0 ≤ (𝓊𝜏
𝟤̿̿̿̿ (𝒳) + 𝓋𝜏

𝟤̿̿ ̿̿ (𝒳) +

𝓀𝜏
𝟤̿̿̿̿ (𝒳)) ≤ 𝟣 . Additionally, we have discussed the importance of rejection information, that is 

expressed as   𝛿𝜇̿̿ ̿(𝒳) = (𝟣 − (�̿�𝟤(𝒳) + 𝒻̿𝟤(𝒳) + ℓ̿𝟤(𝒳))) 𝑒𝑥𝑝
𝑖𝟤𝜋(𝟣−(𝓊𝜏

𝟤̿̿ ̿̿ (𝒳)+ 𝓋𝜏
𝟤̿̿ ̿̿ (𝒳)+𝓀𝜏

𝟤̿̿ ̿̿ (𝒳)))

  . We 

have demonstrated a technique whose highest assessment technique is lower: 

Step 1. After collecting the CSF data, we have tried to evaluate it. Normalization is necessary if 

cost-type values are present in the data. The ideas listed below can assist this: 

Decision Matrix = {
(𝔄𝜏

𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏
𝟤̿̿ ̿̿ ), 𝒻𝜏

𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏
𝟤̿̿ ̿̿ ), ℓ𝜏

𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏
𝟤̿̿ ̿̿ )) , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑘𝑖𝑛𝑑𝑠,

(𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) ,               𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑘𝑖𝑛𝑑𝑠.
 

When assistance forms are included in the attention data, there is no need to normalize the 

environment. 

Step 2. We object to calculate the assessment of   𝛽𝜏 =
𝛽𝜏

∑ 𝛽𝜏
𝛼
𝜏=𝟣

 , where 𝛽𝟣 = 𝟣  and 𝛽𝜏 =
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⊕𝜅=𝟣
𝜏−𝟣 ⋀𝑘(∅𝜅̿̿̿̿ )

′
,   𝜅 = 𝟤, 3, … , 𝛼. 

Step 3. To gather all the data, we want to calculate the CSF numbers using the operators 

CSFSSWPA and CSFSSWPG. 

Step 4. We use information to look at the data's accuracy and score. 

Step 5. We eventually outgrew each preference and attempted to identify the most advantageous 

ideal among the preferences. 

Additionally, by offering a real-world example to back up the previously described process, we 

hope to increase the value of the derived information. 

4.1. Example 

In this section, we select mobile applications to play a crucial role in enhancing the e-tourism 

experience by providing users with convenient access to information, bookings, and personalized 

recommendations. In this example, we provide some features of mobile applications for e-tourism. 

Some features of mobile applications 

Destination discovery: Interactive map with points of interest, landmarks, and attractions. 

Detailed information about each destination, including historical background, cultural significance, 

and local tips. 

Trip planning: Itinerary for users to plan their trips by selecting attractions, activities, and 

accommodations. Real-time availability and pricing for hotels, flights, and activities. 

Augmented reality (AR) navigation: AR feature for easy navigation in unfamiliar locations. 

Point-and-view functionality to identify landmarks and get information in real-time through the 

phone’s camera. 

Personalized recommendations: AI-driven recommendations based on user preferences, 

previous travel history, and ratings. Suggestions for local restaurants, events, and hidden gems. 

Booking integration: Seamless integration with popular booking platforms for flights, hotels, 

and activities. Exclusive discounts and offers for in-app bookings. 

Language translation: Built-in language translator for overcoming language barriers. Translate 

text and spoken words for better communication with locals. 

Offline access: Downloadable maps, itineraries, and essential information for offline access 

during travel. Access to emergency information, including local emergency numbers and embassy 

contacts. 

Social integration: Shareable itineraries and experiences on social media. Connect with friends 

and fellow travelers for collaborative trip planning. 

User reviews and ratings: In-app reviews and ratings for destinations, accommodations, and 

activities. User-generated content to help others make informed decisions. 

Safety alerts: Real-time safety alerts and notifications for potential risks or emergencies in the 

chosen destination. Emergency contact information and guidance on local safety protocols. 

Feedback and support: User feedback feature for continuous improvement. 24/7 customer 

support for any issues or queries. 

Mobile application for tourism aims to provide a comprehensive and user-friendly platform for travelers, 

making their e-tourism experience enjoyable, stress-free, and tailored to their preferences. 

Now, we consist of alternatives  𝛬𝜏 (𝜏 = 𝟣, 𝟤, … ,4):   𝛬𝟣̿̿ ̿̿    Travel traverse, 𝛬𝟤̿̿ ̿  Wander wave, 
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 𝛬3̿̿ ̿̿  Roam rover and 𝛬4̿̿ ̿ Explore express. The processes have four attributes  ℒ𝜏 (𝜏 = 𝟣, 𝟤…4): ℒ𝟣̿̿ ̿ 

Swift voyage; ℒ𝟤̿̿ ̿  Adventura ease;  ℒ3̿̿ ̿  Discover ease and ℒ4̿̿ ̿  Guided globe and 𝜛𝜏 =

(0.30, 0.35, 0. 𝟣0, 0. 𝟤5) are the weight vector and  𝜁 ̿ = 2. 

These names blend alliteration for a catchy sound and attributes that convey the essence of mobile 

applications in the e-tourism sector. 

Step 1. We attempt to evaluate the CSF decision matrix by gathering examples, such as those in 

Table 1. If the data included cost-type values, then normalization is required. The following concepts 

can help with this: 

𝐷𝑀 = {
(𝔄𝜏

𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏
𝟤̿̿ ̿̿ ), 𝒻𝜏

𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏
𝟤̿̿ ̿̿ ), ℓ𝜏

𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏
𝟤̿̿ ̿̿ )) , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑘𝑖𝑛𝑑𝑠,

(𝔄𝜏
𝟤̿̿̿̿ 𝑒𝑥𝑝𝟤𝜋𝑖(𝓊𝜏

𝟤̿̿ ̿̿ ), 𝒻𝜏
𝟤̿̿ ̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓋𝜏

𝟤̿̿ ̿̿ ), ℓ𝜏
𝟤̿̿̿𝑒𝑥𝑝𝟤𝜋𝑖(𝓀𝜏

𝟤̿̿ ̿̿ )) ,              𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑘𝑖𝑛𝑑𝑠.
 

Table 1. Alternative and attribute. 

 
𝜦𝟏̿̿̿̿  𝜦𝟐̿̿̿̿  

𝓛𝟏 (0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.𝟤), 0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.7)) (0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.3), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.7)) 

𝓛𝟐 (0. 𝟤𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.5)) (0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.6𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.5)) 

𝓛𝟑 (0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.6), 0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.3)) (0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.3), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.4)) 

𝓛𝟒 (0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.6), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.4)) (0.6𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.4)) 

 𝛬3̿̿ ̿ 𝛬4̿̿ ̿ 

𝓛𝟏 (0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.𝟤)) (0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.3), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.6), 0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.5)) 

𝓛𝟐 (0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.3), 0.6𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.4)) (0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.6𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.3)) 

𝓛𝟑 (0.7𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0. 𝟣𝑒𝑥𝑝𝑖𝟤𝜋(0.6), 0.3𝑒𝑥𝑝𝑖𝟤𝜋(0.5)) (0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.6), 0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0. 𝟣𝑒𝑥𝑝𝑖𝟤𝜋(0.𝟤)) 

𝓛𝟒 (0.5𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0. 𝟤𝑒𝑥𝑝𝑖𝟤𝜋(0.5), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.3)) (0.6𝑒𝑥𝑝𝑖𝟤𝜋(0.4), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.6), 0.4𝑒𝑥𝑝𝑖𝟤𝜋(0.4)) 

Step 2. Our goal is to assess the worth of  𝛽𝜏 =
𝛽𝜏

∑ 𝛽𝜏
𝛼
𝜏=𝟣

, where 𝛽𝟣 = 𝟣 and  𝛽𝜏 =⊕𝜅=𝟣
𝜏−𝟣 ⋀𝑠(∅𝜅̿̿̿̿ ),

𝜅 = 𝟤, 3, … , 𝛼. The score values are presented in Table 2. 
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Table 2. Score matrix. 

 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑨 𝒂𝒏𝒅 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑮 

𝓛𝟏 (0.5833𝑒𝑥𝑝𝑖𝟤𝜋(0.4633), 0.5833𝑒𝑥𝑝𝑖𝟤𝜋(0.5𝟤67), ,0.5600𝑒𝑥𝑝𝑖𝟤𝜋(0.6𝟤33), 0.6067𝑒𝑥𝑝𝑖𝟤𝜋(0.4933)) 

𝓛𝟐 (0.5433𝑒𝑥𝑝𝑖𝟤𝜋(0.5833), 0.5𝟤33𝑒𝑥𝑝𝑖𝟤𝜋(0.6𝟣33), 0.5700𝑒𝑥𝑝𝑖𝟤𝜋(0.5900), 0.5467𝑒𝑥𝑝𝑖𝟤𝜋(0.6667)) 

𝓛𝟑 (0.667𝑒𝑥𝑝𝑖𝟤𝜋(0.6000), 0.5600𝑒𝑥𝑝𝑖𝟤𝜋(0.5600), 0.7967𝑒𝑥𝑝𝑖𝟤𝜋(0.5467), 0.6633𝑒𝑥𝑝𝑖𝟤𝜋(0.7𝟤00)) 

𝓛𝟒 (0.5533𝑒𝑥𝑝𝑖𝟤𝜋(0.6500), 0.6733𝑒𝑥𝑝𝑖𝟤𝜋(0.6433), 0.6833𝑒𝑥𝑝𝑖𝟤𝜋(0.6067), 0.6800𝑒𝑥𝑝𝑖𝟤𝜋(0.5467)) 

Step 3. Our goal is to determine the CSF numbers using the operators CSFSSWPA and 

CSFSSWPG to compile the collective information in Table 3. 

Table 3. Weight matrix. 

 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑨 𝒂𝒏𝒅 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑮 

𝓛𝟏 (0.5𝟣𝟤𝟣𝑒𝑥𝑝𝑖𝟤𝜋(0.57𝟣9), 0.3485𝑒𝑥𝑝𝑖𝟤𝜋(0.309𝟣), ,0.058𝟣𝑒𝑥𝑝𝑖𝟤𝜋(0.0465), 0.08𝟣3𝑒𝑥𝑝𝑖𝟤𝜋(0.07𝟤5)) 

𝓛𝟐 (0.5366𝑒𝑥𝑝𝑖𝟤𝜋(0.506𝟣), 0.340𝟣𝑒𝑥𝑝𝑖𝟤𝜋(0.3445), 0.0509𝑒𝑥𝑝𝑖𝟤𝜋(0.0604), 0.07𝟤5𝑒𝑥𝑝𝑖𝟤𝜋(0.0890)) 

𝓛𝟑 (0.465𝟣𝑒𝑥𝑝𝑖𝟤𝜋(0.5089), 0.36𝟣7𝑒𝑥𝑝𝑖𝟤𝜋(0.356𝟤), 0.0579𝑒𝑥𝑝𝑖𝟤𝜋(0.0570), 0. 𝟣𝟣53𝑒𝑥𝑝𝑖𝟤𝜋(0.0779)) 

𝓛𝟒 (0.5046𝑒𝑥𝑝𝑖𝟤𝜋(0.474𝟣), 0.3𝟤57𝑒𝑥𝑝𝑖𝟤𝜋(0.3595), 0.06𝟤7𝑒𝑥𝑝𝑖𝟤𝜋(0.066𝟣), 0. 𝟣070𝑒𝑥𝑝𝑖𝟤𝜋(0.𝟣00𝟤)) 

Step 4. We use information to look at the data’s accuracy and score in Table 4. 

Table 4. Aggregated information matrix. 

 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑨 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑮 

𝓛𝟏 (0.3456𝑒𝑥𝑝𝑖𝟤𝜋(0.𝟤908), 0.3744𝑒𝑥𝑝𝑖𝟤𝜋(0.4𝟣4𝟤), 0.4909𝑒𝑥𝑝𝑖𝟤𝜋(0.68𝟣8)) (0.3535𝑒𝑥𝑝𝑖𝟤𝜋(0.3𝟤09), 0.3607𝑒𝑥𝑝𝑖𝟤𝜋(0.39𝟤7), 0.4855𝑒𝑥𝑝𝑖𝟤𝜋(0.6639)) 

𝓛𝟐 (0. 𝟤663𝑒𝑥𝑝𝑖𝟤𝜋(0.4395), 0.553𝟣𝑒𝑥𝑝𝑖𝟤𝜋(0.4000), 0.3965𝑒𝑥𝑝𝑖𝟤𝜋(0.485𝟤)) (0. 𝟤869𝑒𝑥𝑝𝑖𝟤𝜋(0.4487), 0.5467𝑒𝑥𝑝𝑖𝟤𝜋(0.4000), 0.3953𝑒𝑥𝑝𝑖𝟤𝜋(0.4783)) 

𝓛𝟑 (0.4465𝑒𝑥𝑝𝑖𝟤𝜋(0.4436), 0.4𝟣04𝑒𝑥𝑝𝑖𝟤𝜋(0.5589), 0.4048𝑒𝑥𝑝𝑖𝟤𝜋(0.3607)) (0.4800𝑒𝑥𝑝𝑖𝟤𝜋(0.4689), 0.4005𝑒𝑥𝑝𝑖𝟤𝜋(0.5496), 0.3664𝑒𝑥𝑝𝑖𝟤𝜋(0.3446)) 

𝓛𝟒 (0.4960𝑒𝑥𝑝𝑖𝟤𝜋(0.53𝟤𝟤), 0.4386𝑒𝑥𝑝𝑖𝟤𝜋(0.4864), 0.4870𝑒𝑥𝑝𝑖𝟤𝜋(0.3954)) (0.5𝟣97𝑒𝑥𝑝𝑖𝟤𝜋(0.5449), 0.4𝟣38𝑒𝑥𝑝𝑖𝟤𝜋(0.4757), 0.4837𝑒𝑥𝑝𝑖𝟤𝜋(0.3939)) 

Step 5. Finally, we outgrew each preference and tried to determine which of the favorites the 

most advantageous ideal was in Table 5. 
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Table 5. Final result. 

 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑨 𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑮 

𝓛𝟏 0.3955 0.4𝟤𝟤4 

𝓛𝟐 0.4685 0.4799 

𝓛𝟑 0.5404 0.5783 

𝓛𝟒 0.5689 0.5934 

Considering score values, the best solution for a mobile application for tourism is explore express  ℒ4. 

ℒ4 is the high score value in Table 6, and Figure 3 represents the graphical result of CSFSSWPA and 

CSFSSWPG. 

Table 6. Ranking order representation. 

Aggregation operators Ranking and ordering 

         𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑨           ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

         𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑮           ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 

 

Figure 3. Sensitivity analysis of CSFSSWPA and CSFSSWPG operator. 

4.2. Influence study 

Since the value of parameters 𝜌 ̿ = −5 is fixed in Table 6, we change the value of 𝜌 ̿ in this part 

and compare the result in different parametric. We found that the result of CSFSSPWA in Table 6 has 

the same result with different parameters in Table 7. 

The CSFSSPWA result in Table 7 has the same result with different parameters. 
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Table 7. Different parametric of CSFSSPWA. 

Parametric values Ranking and ordering 

 𝝆 = −𝟏 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟓 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟐𝟎 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟑𝟓 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟕𝟎 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟏𝟎𝟎 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 

Figure 4 gives the same result with different parameters. 

 

Figure 4. Sensitivity analysis of CSFSSPWA operator. 

In Table 8, CSFSSPWG results have same different parameters give the same result. 

Table 8. Different parametric of CSFSSPWG. 

Parametric values Ranking and ordering 

 𝝆 = −𝟏 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟓 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟐𝟎 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟑𝟓 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟕𝟎 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

 𝝆 = −𝟏𝟎𝟎 ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

Figure 5 provides the same result with different parameters. In a similar manner, we vary the SS 

triangular norm’s parametric values to see the results of the CSFSSPWA and CSFSSPWG operators. 

When we raise the SS triangular norms’ parametric value in the CSFSSPWA and CSFSSPWG 

operators, the results of the investigation start to get same, and the score value ranking stays the same: 
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ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣. Tables 7 and 8 contain a list of all the examined outcomes for the CSFSSPWA 

and CSFSSPWG operators. 

 

Figure 5. Sensitivity analysis of CSFSSPWG operator. 

4.3. Comparative study 

The suggested operators, CSFSSPWA and CSFSSWPG, are compared to several well-known 

aggregation techniques in this section. We assess how well they handle complex spherical fuzzy 

information, which is essential for decision-making in mobile e-tourism applications, using the data 

shown in Table 1. The purpose of the comparison is to evaluate each operator's precision and efficacy 

in handling ambiguous and uncertain data. We determine which operator is best suited to provide 

dependable decision support in mobile e-tourism scenarios by comparing their outcomes with other 

approaches. This analysis demonstrates how the suggested operators outperform earlier techniques, 

providing increased robustness and precision in multi-attribute decision-making: Worndl et al. [33] 

developed the application for E-tourism, Hamid et al. [34] aggregated an operator based data 

management system using smart tourism, Sarfraz et al. [33] aggregation operators based on prioritized 

Aczel-Alsina aggregation operator for (IF) and Ullah et al. [35] aggregated operators based on a 

complex IF and its application in decision-making problem and tried to contrast with operators that 

have been diagnosed. Table 9 presents the comparative analysis based on the data presented in Table 1. 

Table 9. Comparison information. 

Method Ranking information 

𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑨  ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

𝑪𝑺𝑭𝑺𝑺𝑾𝑷𝑮           ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

𝑾𝒐𝒓𝒏𝒅𝒍 𝒆𝒕 𝒂𝒍. [37]           ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

𝑯𝒂𝒎𝒊𝒅 𝒆𝒕 𝒂𝒍. [38]           ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

𝑺𝒂𝒓𝒇𝒓𝒂𝒛 𝒆𝒕 𝒂𝒍. [33]           ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 

𝑼𝒍𝒍𝒂𝒉 𝒆𝒕 𝒂𝒍. [35]           ℒ4 > ℒ3 > ℒ𝟤 > ℒ𝟣 
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Upon closer inspection, we found that the prevailing operators and the derived operators both 

produce the same advantageous ideal  ℒ4 . Thus, our deduced operators from the CSFS theory 

represent a novel and validated concept for handling difficult and inconsistent data in real-world 

applications. 

5. Conclusions 

For the arrangement with uncertain information in real-world decision-making situations, CSFSs 

typically combine elements of CFSs and SFSs. We study the operational laws of CSFSs with certain 

features in this research. In addition, we construct four aggregation operators, which we refer to as the 

complex spherical fuzzy Schweizer-Sklar prioritized aggregation (CSFSSPA), the complex spherical 

fuzzy Schweizer-Sklar weighted prioritized aggregation (CSFSSWPA), the complex spherical fuzzy 

Schweizer-Sklar prioritized geometry (CSFSSPG), and the complex spherical fuzzy Schweizer-Sklar 

weighted prioritized geometry (CSFSSWPG). These operators are based on CSFSs and Schweizer-

Sklar prioritized aggregation (SSPA) operators. Additionally, we provide the idempotent, monotonicity, 

and boundedness features for the operators CSFSSPA, CSFSSWPA, CSFSSPG, and CSFWBM. We 

examine these operators' behavior in more detail by varying the value of the relevant parameter, ζ ̿. 

The CSFSSWPA and CSFSSWPG operators were taken into consideration to address a MADM 

problem. 

5.1. Future directions 

The suggested methodology may be expanded in future studies to include other decision-making 

frameworks, such as group decision-making scenarios, in which several experts participate in the 

evaluation of alternatives. Furthermore, investigating hybrid models that combine the Schweizer-Sklar 

technique with additional fuzzy or non-fuzzy techniques may enhance decision accuracy even more. 

5.2. Study limitations 

Dependency on expert input: To define criteria and prioritization levels, the suggested model 

mainly depends on the opinions and input of experts. These experts' subjective biases may affect how 

accurate the results are. 

Computational complexity: The handling of complex spherical fuzzy information and the nature 

of Schweizer-Sklar operators can make computations time-consuming, particularly when working with 

large datasets or numerous options. 

Restricted application scope: Although the study concentrates on mobile e-tourism applications, 

the results may need to be modified for use in other sectors with distinct data structures or decision-

making standards. 

Sensitivity to parameter selection: Depending on how the parameters (such as prioritization 

weights and Schweizer-Sklar parameters) are chosen, the prioritized aggregation process's efficacy 

may change. Inaccurate parameter values may result in less-than-ideal choices. 

Comparative analysis with limited methods: While TOPSIS, VIKOR, and Multi-MOORA are 

compared with the suggested method in the study, other new MADM approaches might not have been 

considered, which could have limited the evaluation of its effectiveness. 
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