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Abstract: This study introduced a novel exact-scheme analysis of variance to tackle the challenge of 

incomplete data within the Greco-Latin square experimental design (GLSED), specifically for 

scenarios with a single missing observation across any treatment and block level, thus eliminating the 

need for conventional data imputation methods. This approach innovatively addresses and mitigates 

the bias in the treatment sum of squares, a significant drawback of traditional missing plot techniques, 

by providing a precise, exact-scheme-based formula for calculating the treatment sum of squares in 

fixed-effect GLSED contexts with unrecorded values. Moreover, it offers a method for correcting 

biased treatment sum of squares values, presenting an adjustment mechanism for instances where the 

least squares method was previously employed to estimate missing values. This comprehensive 

strategy not only enhances the methodological accuracy and integrity of GLSED studies but also 

contributes significantly to the field by offering a solution to navigate the complexities of incomplete 

datasets without resorting to data imputation, thus improving the rigor and validity of experimental 

designs in the face of missing data challenges. 
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1. Introduction 

In business, the design of experiments (DOE) emerges as a focal scientific methodology that 

significantly enhances profitability through strategic manipulation of potential factors by management. 

This technique is instrumental in refining and optimizing both the design and the advancement of 

manufacturing processes. It achieves this by minimizing variation in the response variable, thereby 

facilitating the development of products and processes that are both reliable and efficient. Central to 

Fisher's approach to DOE is the employment of an analysis of variance (ANOVA), which relies on the 

F-test to assess the statistical significance among group means. The foundations of Fisher's DOE are 

bolstered by three critical principles: blocking, randomization, and replication, each serving to ensure 

the integrity and validity of experimental results [1]. In the context of DOE, experiments that allow for 

the investigation of a single potential factor under conditions where every observation is equally likely 

to participate in the trial are categorized as completely randomized designs. In contrast, designs that 

do not fully randomize the assignment of observations but still focus on a single potential factor—such 

as the randomized complete block design (RCBD), Latin square experimental design (LSED), and 

Greco-Latin square experimental design (GLSED)—are recognized for their structured approach to 

managing variability within experimental settings. 

The Greco-Latin square experimental design (GLSED) is a structured methodology that assigns 

treatments within a two-dimensional matrix, with the stipulation that each treatment is represented 

exactly once in every row and column, thereby facilitating the control of three nuisance factors 

efficiently within the confines of limited resources and time constraints [2,3]. This design framework 

is especially advantageous in the fields of agriculture, medicine, and industry, where it is imperative to 

systematically test multiple variables to elevate the precision and reliability of research outcomes [4]. An 

exemplary case further elucidates the efficacy of GLSED, demonstrating its capacity to address 

complex experimental demands by ensuring comprehensive coverage and balanced representation of 

treatments across the experimental matrix, thus exemplifying its critical role in optimizing 

experimental strategies across diverse scientific disciplines. 

According to Diawara et al. [5], the employment of a Greco-Latin square significantly streamlines 

the experimental process by reducing both the labor and costs associated with conducting experimental 

runs, thereby enabling a thorough and systematic investigation of all relevant factors. An illustrative 

analysis utilizing a square of order 3 accentuated the profound impact of variables such as flow rate, 

insulin type, pump type, and vibration on the quantity of insulin delivered, a finding of paramount 

importance for achieving precise dosing and averting long-term complications in diabetes patients. 

Further, Mahamud and Gomes [6] investigated the enzymatic saccharification of sugar cane bagasse 

using the Greco-Latin square design. They found optimal conditions at 2.5% substrates, 5.5 ml enzyme, 

pH 4.5, and 45°C, differing from previous conditions of 2.0% substrates, 5 ml enzyme, pH 5, and 50°C. 

This enhanced saccharification yields more fermentable sugar, improving the competitiveness of fuel 

ethanol production. In another application, Woodside and Pearce [7] examined the efficacy of 

shotblasting—a novel furnace tube cleaning technology—analyzing factors such as price, cleaning 

time, energy efficiency, and tube damage. Using a Greco-Latin square, the study adeptly condensed 

the experimental design from an unwieldy 81 scenarios in a full factorial setup to a more manageable 

nine-product design, revealing that all factors, except for cleaning time, exert a significant influence 

on market share. This insight offers strategic value to marketers seeking to enhance the industrial 

market penetration of shotblasting technology. Meanwhile, Tovar-Aguilar et al. [8] applied the Greco-
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Latin square design to evaluate the effectiveness of safety eyewear among citrus harvest workers in 

Florida, addressing concerns over lens fogging and dew. The study distinguished one type of safety 

glasses as exhibiting superior fog resistance, demonstrating the design's utility in minimizing biases 

and enhancing the reliability of results across various research contexts. 

In the domain of design of experiments (DOE), both completely and incompletely randomized 

frameworks can encounter unrecorded observations, leading to an incomplete-data design. This 

phenomenon may arise from two primary causes: (1) the intentional exclusion of observation data at 

the outset, necessitated by the scarcity of experimental units [9], or (2) the emergence of unexpected 

circumstances or the presence of outliers. In the former case, the arrangement of observation data often 

adheres to a balanced DOE approach, benefiting from established formulas for computing treatment 

and error sums of squares, with exemplars of such designs including the Youden square design [10], 

the balanced incomplete block design (BIBD) [11], and the balanced incomplete Latin square design 

(BILSD) [12]. Conversely, in scenarios marked by the latter cause, outliers are pinpointed and excised, 

resulting in an unbalanced DOE. Distinguished from its balanced counterpart by the absence of pre-

existing ANOVA formulas to directly address the unbalanced nature of the data, unbalanced DOEs 

employ the missing plot technique to estimate the unrecorded observations. Subsequently, the 

treatment and error sums of squares are computed utilizing tailor-made ANOVA formulas specifically 

devised for these more complex and irregular datasets [13,14], reflecting the comprehensive and 

adaptive methodologies required to maintain the integrity and validity of experimental research under 

such conditions. 

Table 1 presents a systematic compilation of scholarly literature focused on the estimation of 

missing observations within the context of unbalanced designs, utilizing the traditional missing plot 

technique. This methodological approach, crucial for addressing data gaps in experimental designs, 

undergoes a thorough examination across different instances of unbalanced designs of experiments 

(DOEs) in the comprehensive reviews detailed in references [15] and [16]. These sources collectively 

offer an in-depth exploration of the conventional missing plot technique, shedding light on its 

application, efficacy, and limitations within the framework of unbalanced DOEs, by this means 

contributing to the broader academic discourse on experimental design and data estimation strategies. 

Table 1. Literature on the estimation of missing observations (unbalanced DOE) using the 

conventional missing plot technique. 

Design strategy Reference 

RCBD [17,18] 

LSED [17,18] 

Greco-Latin square experimental design (GLSED) [19] 

BIBD [20,21] 

Youden design [10] 

Split plot design [13] 

Moreover, the analysis of covariance (ANCOVA) [22] has been employed as a statistical 

technique for estimating missing observations within unbalanced designs, with notable contributions 

from scholars such as Coons [23], Cochran [24], and Wilkinson [25]. This approach enhances the 

precision of data analysis by incorporating covariates that may influence the dependent variable, thus 

providing a more nuanced understanding of experimental results. In a specific advancement within 
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this domain, Ogbonnaya and Uzochukwu [26] developed specialized formulas aimed at estimating 

missing observations in scenarios involving one-factor ANCOVA with a single covariate. Furthermore, 

in the context of the Greco-Latin square experimental design (GLSED), where the challenge of a single 

missing data value arises, Kupolusi and Ojo [19] introduced a formula that utilizes minimizing the 

error sum of squares to estimate this missing value. Subsequently, the analysis of variance is conducted 

as though the dataset were complete, maintaining the integrity of the experimental design and allowing 

for the comprehensive interpretation of results. This methodological innovation signifies a critical step 

forward in addressing the complexities associated with missing data in experimental research, ensuring 

robust and reliable analysis despite the challenges posed by unbalanced designs. 

The reliance on the conventional missing plot technique and ANCOVA for the estimation of 

missing observations, as opposed to utilizing actual experimental data, introduces a notable bias in the 

treatment sum of squares, as highlighted in studies [13,14]. This inherent bias necessitates a thorough 

estimation process to accurately identify and subsequently subtract it from the treatment sum of 

squares, which are initially derived from pre-existing, ready-made formulas. This corrective measure 

is crucial for ensuring the integrity and accuracy of statistical analyses within experimental research, 

addressing the challenges posed by incomplete datasets and preserving the validity of conclusions 

drawn from such studies. 

The exact-scheme analysis of variance emerges as a formidable resolution for handling designs 

plagued by incomplete data, obviating the necessity for the estimation of missing values, as 

substantiated by the literature [1,27,28]. Termed alternatively as the model comparison-based exact 

scheme, this methodology guarantees robustness in statistical analysis that traditional approaches 

might not offer. Specifically, Montgomery [1] delineates a precise methodology designed to tackle the 

issue of a single missing value within the domains of randomized complete block design (RCBD) and 

Latin square experimental design (LSED) through the application of exact-scheme analysis of variance. 

This approach strategically circumvented the conventional reliance on data imputation, thus presenting 

a more direct and potentially unbiased avenue for analyzing experimental data under conditions of 

incompleteness. This innovation not only enhances the accuracy of statistical analyses but also aligns 

with the broader goal of maintaining methodological integrity in the face of missing experimental data. 

Sirikasemsuk et al. [29] expanded Montgomery's [1] research to analyze RCBD with missing data, 

where the missing values could occur in any cell of the observation table. They developed 

mathematical formulas for fitted parameters and the regression sum of squares using the exact-scheme 

analysis of variance. Similarly, Sirikasemsuk and Leerojanaprapa [30] addressed incomplete 4 × 4 

Latin square designs with various patterns of two missing observations, simplifying parameter 

estimation and ANOVA calculations. Furthermore, Sirikasemsuk [31] and Sirikasemsuk and 

Leerojanaprapa [32] have shed light on the unbiased calculation of the treatment sum of squares within 

the context of LSED when confronted with a single missing value, utilizing the aforementioned method. 

To illustrate these concepts, let us revisit a real example of the Greco-Latin square experimental design 

(GLSED). Subramani [33] referenced a 5 × 5 GLSED with incomplete data from Montgomery [34] to 

study the effects of raw material batches, acid concentrations, standing times, and catalyst concentrations 

on the yield of a chemical process. In this study, Subramani [33] estimated several missing values using 

non-iterative least squares estimation. However, such approaches can lead to biased analyses of the 

sum of squares and mean squares, which may result in incorrect conclusions about the factors affecting 

the response variable. This bias has been demonstrated in several studies, including those by 

Rangaswamy [14], Little and Rubin [16], and Ott and Longnecker [35]. Recent research by AlAita 
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et al. [36] further emphasizes the significance of missing data as a critical challenge in analyzing 

Greco-Latin square designs, highlighting the risks of bias and reduced reliability in conclusions.  

Given these challenges, an improved method is essential to eliminate bias and enhance the 

reliability of experimental results in the presence of missing data. Their exploratory work in gap 

analysis accentuates a noticeable void in the existing literature, specifically the absence of definitive 

evidence concerning the unbiased treatment sum of squares in GLSED. This identified lacuna not only 

delineates the scope but also establishes the central focus of the current research, indicating a targeted 

investigation aimed at addressing this gap and contributing novel insights into the methodology for 

ensuring unbiased statistical analysis in GLSED settings. 

Nevertheless, in the conventional framework of the exact scheme, the estimation of fitted 

parameters—comprising the overall mean, treatment, and block effects—alongside the calculation of 

the regression sums of squares (RSS) for both full and reduced effect models, emerges as a notably 

time-intensive process. Addressing this efficiency concern, the present research introduces a novel, 

exact scheme-based formula for the instantaneous computation of RSS within the full model of a P × 

P-dimension fixed-effect GLSED with a single missing observation. This innovation circumvents the 

traditional necessity for estimating fitted parameters, where P represents the levels of treatment and 

blocks. Table 2 provides a visualization of the GLSED table, underscoring the practical application of 

this formula. This advancement not only streamlines the analytical process but also enhances the 

methodological rigor by enabling more rapid derivation of results without compromising on the 

accuracy and integrity of the statistical analysis. 

Table 2. Example of a 4 × 4 Greco-Latin square experimental design. 

Colum Row 
ψ𝟏 ψ𝟐 ψ𝟑 ψ𝟒 

yi⋅⋅⋅ 
1 2 3 4 

𝜃𝟏 1 𝐴 ∝= 𝑦1111 𝐵𝛽 = 𝑦1222 𝐶𝛾 = 𝑦1333 𝐷𝛿 = 𝑦1444 𝒚𝟏⋅⋅⋅ 

𝜃𝟐 2 𝐵𝛿 = 𝑦2241 𝐴𝛾 = 𝑦2132 𝐷𝛽 = 𝑦2423 𝐶 ∝ = 𝑦2314 𝒚𝟐⋅⋅⋅ 

𝜃𝟑 3 𝐶𝛽 = 𝑦3321 𝐷 ∝ = 𝑦3412 𝐴𝛿 = 𝑦3143 𝐵𝛾 = 𝑦3234 𝒚𝟑⋅⋅⋅ 

𝜃𝟒 4 𝐷𝛾 = 𝑦4421 𝐶𝛿 = 𝑦4342 𝐵 ∝ = 𝑦4213 𝐴𝛽 = 𝑦4124 𝒚𝟒⋅⋅⋅ 

𝑦⋅⋅⋅𝑙 𝒚⋅⋅⋅𝟏 𝒚⋅⋅⋅𝟐 𝒚⋅⋅⋅𝟑 𝒚⋅⋅⋅𝟒 𝒚⋅⋅⋅⋅ 

The structure of this research paper is organized as follows: Section 1 introduces the foundational 

concepts and the overarching aim of the study. Section 2 delineates the model comparison-based exact 

scheme, offering a detailed examination of its theoretical underpinnings. In Section 3, the focus shifts 

to linear algebra equations and the methodologies employed for estimating the fitted parameters, 

crucial for the analytical framework of the study. Section 4 explores the intricacies of the regression 

sum of squares, a key component in the evaluation of model efficacy. Section 5 proposes an innovative 

exact scheme-based instant formula for calculating the Latin letter treatment sum of squares, a 

significant contribution to the field of experimental design. Finally, Section 6 presents concluding 

remarks, encapsulating the findings and implications of the research. This logical progression through 

the sections ensures a coherent and comprehensive exploration of the subject matter, facilitating a 

deeper understanding of the proposed methodologies and their potential impact on experimental design 

analysis. 

The notations and definitions used in this research are as follows: 

𝑦𝑖𝑗𝑘𝑙 the observation of row i, Latin letter treatment j, Greek letter k, and column l; 
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P the levels or size of the Greco-Latin square experimental design; 

i row index (i = 1, 2, 3, …, P); 

j Latin letter treatment index (j = 1, 2, 3, …, P); 

k Greek letter index (k = 1, 2, 3, …, P); 

l column index (l = 1, 2, 3, …, P); 

𝜇 the overall mean; 

𝜃𝑖 the row effect of level i; 

𝜏𝑗 the Latin letter treatment effect of level j; 

𝜔𝑘 the Greek letter effect of level k; 

𝜓𝑙 the column effect of level l; 

𝜀𝑖𝑗𝑘𝑙 the statistical error due to other sources of variability; 

𝑦⋅⋅⋅⋅ the grand total; 

𝑦𝑖⋅⋅⋅ the ith row total; 

𝑦⋅𝑗⋅⋅ the jth Latin letter treatment total; 

𝑦⋅⋅𝑘⋅ the kth Greek letter total; 

𝑦⋅⋅⋅𝑙 the lth column total; 

𝑟 the row index of the missing observation; 

𝑛 the Latin letter treatment index of the missing observation; 

𝑚 the Greek letter index of the missing observation; 

𝑐 the column index of the missing observation; 

𝑆𝑆𝑅 the row sum of squares; 

𝑆𝑆𝑇𝑟 the Latin letter treatment sum of squares; 

𝑆𝑆𝐺  the Greek letter sum of squares; 

𝑆𝑆𝐶 the column sum of squares; 

𝑆𝑆𝑇 the total sum of squares; 

𝑆𝑆𝐸 the error sum of squares; 

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) the overall regression sum of squares (ORSS) for the full model; 

𝑅(𝜇, 𝜏, 𝜔, 𝜓) the regression sum of squares for the reduced model, omitting the row effect; 

𝑅(𝜇, 𝜃, 𝜔, 𝜓) the regression sum of squares for the reduced model, omitting the Latin letter 

treatment effect; 

𝑅(𝜇, 𝜃, 𝜏, 𝜓) the regression sum of squares for the reduced model, omitting the Greek letter effect; 

𝑅(𝜇, 𝜃, 𝜏, 𝜔) the regression sum of squares for the reduced model, omitting the column effect. 

2. The model comparison-based exact scheme 

The Latin letter treatment sum of squares (SSTr) for the complete-data GLSED can be calculated 

by 

𝑆𝑆𝑇𝑟 =
∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝑗=1

𝑃
−

𝑦⋅⋅⋅⋅
2

𝑃2 .        (2.1) 

However, Eq (2.1) is not applicable to the incomplete-data (unbalanced) design. Therefore, the 

model comparison-based exact scheme is used to solve the incomplete-data design. SSTr of the exact 

scheme is expressed as 

𝑆𝑆𝑇𝑟 = 𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) − 𝑅(𝜇, 𝜃, 𝜔, 𝜓).     (2.2) 
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It is noted that the Latin letter treatment sum of squares (SSTr) is calculated as the difference 

between the full-model regression sum of squares and the reduced-model regression sum of squares, 

omitting the treatment effect [1,9,14]. Likewise, the row, column, and Greek letter sums of squares are 

calculated as the discrepancies between the regression sums of squares of the full and reduced models, 

excluding the corresponding effects. Hence, the sums of squares for the GLSED are determined as 

𝑆𝑆𝑅 = 𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) − 𝑅(𝜇, 𝜏, 𝜔, 𝜓),       (2.3) 

𝑆𝑆𝐺 = 𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) − 𝑅(𝜇, 𝜃, 𝜏, 𝜓),       (2.4) 

𝑆𝑆𝐶 = 𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) − 𝑅(𝜇, 𝜃, 𝜏, 𝜔).       (2.5) 

3. Linear algebra equations and the fitted parameters 

The GLSED full-model linear equation for yijkl is 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝜃𝑖 + 𝜏𝑗 + 𝜔𝑘 + 𝜓𝑙 + 𝜀𝑖𝑗𝑘𝑙 {

𝑖 = 1,2, … , 𝑃
𝑗 = 1,2, … , 𝑃
𝑘 = 1,2, … , 𝑃
𝑙 = 1,2, … , 𝑃

.    (3.1) 

In the fixed-effect GLSED, representing constraints, the sums of the fitted parameters can be 

expressed as 

∑ 𝜃𝑖
𝑃
𝐴𝑙𝑙 𝑖 = 0,          (3.2) 

∑ �̂�𝑗
𝑃
𝐴𝑙𝑙 𝑗 = 0,          (3.3) 

∑ �̂�𝑘
𝑃
𝐴𝑙𝑙 𝑘 = 0,         (3.4) 

and 

∑ �̂�𝑙
𝑃
𝐴𝑙𝑙 𝑙 = 0.         (3.5) 

The regression sum of squares (RSS) for the full model of yijkl is expressed as [1], 

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) = �̂�𝑦⋅⋅⋅⋅ + ∑ 𝜃𝑖
𝑃
𝑖=1 𝑦𝑖⋅⋅⋅ + ∑ �̂�𝑗𝑦⋅𝑗⋅⋅

𝑃
𝑗=1 + ∑ �̂�𝑘𝑦⋅⋅𝑘⋅

𝑃
𝑘=1 + ∑ �̂�𝑙𝑦⋅⋅⋅𝑙

𝑃
𝑙=1  . (3.6) 

In estimating the parametric values of the full model (�̂� , 𝜃𝑖 , �̂�𝑗 , �̂�𝑘 , �̂�𝑙 ), a series of linear 

algebra equations for the P × P GLSED with one missing observation can be written as 

𝜇: 

(𝑃2 − 1)�̂� + 𝑃 ∑ 𝜃𝑖
𝑃
𝑖=1,𝑖≠𝑟 + (𝑃 − 1)𝜃𝑟 + 𝑃 ∑ �̂�𝑗

𝑃
𝑗=1,𝑗≠𝑛 + (𝑃 − 1)�̂�𝑛  

+𝑃 ∑ �̂�𝑘
𝑃
𝑘=1,𝑘≠𝑚 + (𝑃 − 1)�̂�𝑚 + 𝑃 ∑ �̂�𝑙

𝑃
𝑙=1,𝑙≠𝑐 + (𝑃 − 1)�̂�𝑐 = 𝑦⋅⋅⋅⋅, 

(3.7) 

𝜃𝑟: (𝑃 − 1)�̂� + (𝑃 − 1)𝜃𝑟 + ∑ �̂�𝑗
𝑃
𝑗=1,𝑗≠𝑛 + ∑ �̂�𝑘

𝑃
𝑘=1,𝑘≠𝑚 + ∑ �̂�𝑙

𝑃
𝑙=1,𝑙≠𝑐 = 𝑦𝑟⋅⋅⋅, (3.8) 

𝜏𝑛: (𝑃 − 1)�̂� + ∑ 𝜃𝑖
𝑃
𝑖=1,𝑖≠𝑟 + (𝑃 − 1)�̂�𝑛 + ∑ �̂�𝑘

𝑃
𝑘=1,𝑘≠𝑚 + ∑ �̂�𝑙

𝑃
𝑙=1,𝑙≠𝑐 = 𝑦⋅𝑛⋅⋅, (3.9) 

𝜔𝑚: (𝑃 − 1)�̂� + ∑ 𝜃𝑖
𝑃
𝑖=1,𝑖≠𝑟 + ∑ �̂�𝑗

𝑃
𝑗=1,𝑗≠𝑛 + (𝑃 − 1)�̂�𝑚 + ∑ �̂�𝑙

𝑃
𝑙=1,𝑙≠𝑐 = 𝑦⋅⋅𝑚⋅, (3.10) 
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𝜓𝑐: (𝑃 − 1)�̂� + ∑ 𝜃𝑖
𝑃

𝑖=1,𝑖≠𝑟
+ ∑ �̂�𝑗

𝑃
𝑗=1,𝑗≠𝑛 + ∑ �̂�𝑘

𝑃
𝑘=1,𝑘≠𝑚 + (𝑃 − 1)�̂�𝑐 = 𝑦⋅⋅⋅𝑐, (3.11) 

𝜃𝑖: 𝑃�̂� + 𝑃𝜃𝑖 + ∑ �̂�𝑗
𝑃
𝑗=1 + ∑ �̂�𝑘

𝑃
𝑘=1 + ∑ �̂�𝑐

𝑃
𝑙=1 = 𝑦𝑖⋅⋅⋅ when 𝑖 ≠ 𝑟, (3.12) 

𝜏𝑗: 𝑃�̂� + ∑ 𝜃𝑖
𝑃
𝑖=1 + 𝑃�̂�𝑗 + ∑ �̂�𝑘

𝑃
𝑘=1 + ∑ �̂�𝑐

𝑃
𝑙=1 = 𝑦⋅𝑗⋅⋅ when 𝑗 ≠ 𝑛, (3.13) 

𝜔𝑘: 𝑃�̂� + ∑ 𝜃𝑖
𝑃
𝑖=1 + ∑ �̂�𝑗

𝑃
𝑗=1 + 𝑃�̂�𝑘 + ∑ �̂�𝑐

𝑃
𝑙=1 = 𝑦⋅⋅𝑘⋅ when 𝑘 ≠ 𝑚, (3.14) 

𝜓𝑙: 𝑃�̂� + ∑ 𝜃𝑖
𝑃
𝑖=1 + ∑ �̂�𝑗

𝑃
𝑗=1 + ∑ �̂�𝑘

𝑃
𝑘=1 + 𝑃�̂�𝑙 = 𝑦⋅⋅⋅𝑙 when 𝑙 ≠ 𝑐. (3.15) 

Given Eqs (3.2)–(3.5) and the matrix form of Eqs (3.7)–(3.11), the fitted parameters for the P × 

P GLSED with one missing observation can be determined by 

�̂� =
(𝑃−4)𝑦⋅⋅⋅⋅+𝑦𝑟⋅⋅⋅+𝑦⋅𝑛⋅⋅+𝑦⋅⋅𝑚⋅+𝑦⋅⋅⋅𝑐

(𝑃−3)(𝑃−1)𝑃
,       (3.16) 

𝜃𝑟 =
𝑦𝑟⋅⋅⋅−𝑦⋅⋅⋅⋅

𝑃
+ (𝑃 − 1)�̂�,         (3.17) 

�̂�𝑛 =
𝑦⋅𝑛⋅⋅−𝑦⋅⋅⋅⋅

𝑃
+ (𝑃 − 1)�̂�,         (3.18) 

�̂�𝑚 =
𝑦⋅⋅𝑚⋅−𝑦⋅⋅⋅⋅

𝑃
+ (𝑃 − 1)�̂�,        (3.19) 

�̂�𝑐 =
𝑦⋅⋅⋅𝑐−𝑦⋅⋅⋅⋅

𝑃
+ (𝑃 − 1)�̂�.         (3.20) 

Likewise, the fitted parameters for 𝑖 ≠ 𝑟, 𝑗 ≠ 𝑛, 𝑘 ≠ 𝑚, and 𝑙 ≠ 𝑐 can be rewritten as 

𝜃𝑖 =
𝑦𝑖⋅⋅⋅

𝑃
− �̂�,        𝑓𝑜𝑟  𝑖 ≠ 𝑟,       (3.21) 

�̂�𝑗 =
𝑦⋅𝑗⋅⋅

𝑃
− �̂�,        𝑓𝑜𝑟  𝑗 ≠ 𝑛,       (3.22) 

�̂�𝑘 =
𝑦⋅⋅𝑘⋅

𝑃
− �̂�,       𝑓𝑜𝑟  𝑘 ≠ 𝑚,      (3.23) 

and 

�̂�𝑙 =
𝑦⋅⋅⋅𝑙

𝑃
− �̂�,       𝑓𝑜𝑟  𝑙 ≠ 𝑐.       (3.24) 

4. The regression sum of squares 

The full-model and reduced-model regression sums of squares (RSS) can be determined 

following Propositions 4.1 and 4.2, respectively. 

Proposition 4.1. Given the P × P GLSED with one missing observation, the full-model RSS of 𝑦𝑖𝑗𝑘𝑙 

can be calculated by 

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) =
(∑ 𝑦𝑖⋅⋅⋅

2
𝐴𝑙𝑙 𝑖 +∑ 𝑦⋅𝑗⋅⋅

2
𝐴𝑙𝑙 𝑗 +∑ 𝑦⋅⋅𝑘⋅

2
𝐴𝑙𝑙 𝑘 +∑ 𝑦⋅⋅⋅𝑙

2
𝐴𝑙𝑙 𝑙 )

𝑃
+

(1−𝑃)(3𝑦⋅⋅⋅⋅
2 −𝑦𝑆𝑈𝑀

2 )+(𝑦𝑆𝑈𝑀−3𝑦⋅⋅⋅⋅)
2

𝑃(𝑃−3)(𝑃−1)
, (4.1) 
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when 𝑦𝑆𝑈𝑀 = 𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐  . 

Proof. Substituting Eqs (3.17)–(3.24) in Eq (3.6), we have 

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) = �̂�𝑦⋅⋅⋅⋅ +
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝑖=1,𝑖≠𝑟 +∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝑗=1,𝑗≠𝑛 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝑘=1,𝑘≠𝑚 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝑙=1,𝑙≠𝑐 )

𝑃
        

− (
�̂� ∑ 𝑦𝑖⋅⋅⋅

𝑃
𝑖=1,𝑖≠𝑟 + �̂� ∑ 𝑦⋅𝑗⋅⋅

𝑃
𝑗=1,𝑗≠𝑛 +

�̂� ∑ 𝑦⋅⋅𝑘⋅ +𝑃
𝑘=1,𝑘≠𝑚 �̂� ∑ 𝑦⋅⋅⋅𝑙

𝑃
𝑙=1,𝑙≠𝑐

) + �̂�(𝑃 − 1)(𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐)   

+
(𝑦𝑟...

2 +𝑦.𝑛..
2 +𝑦..𝑚.

2 +𝑦...𝑐
2 )

𝑃
−

𝑦⋅⋅⋅⋅

𝑃
(𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐).        

Modifying all the summation terms to account for all indexes (i, j, k, l), 

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) =
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝑖=1 +∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝑗=1 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝑘=1 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝑙=1 )

𝑃
+ 𝑃�̂�(𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐)  

−
𝑦....

𝑃
(𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐) − 3�̂�𝑦⋅⋅⋅⋅ ,        

where ∑ 𝑦𝑖⋅⋅⋅
𝑃
𝑖=1 = ∑ 𝑦⋅𝑗⋅⋅

𝑃
𝑗=1 = ∑ 𝑦⋅⋅𝑘⋅ =𝑃

𝑘=1 ∑ 𝑦⋅⋅⋅𝑙
𝑃
𝑙=1 = 𝑦⋅⋅⋅⋅. 

For the sake of convenience, 

𝑦𝑆𝑈𝑀 = 𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐. 

The full-model RSS of 𝑦𝑖𝑗𝑘𝑙 can be rewritten as 

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) =
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝑖=1 +∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝑗=1 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝑘=1 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝑙=1 )

𝑃
+ 𝑃�̂�𝑦𝑆𝑈𝑀 −

𝑦⋅⋅⋅⋅

𝑃
𝑦𝑆𝑈𝑀 − 3�̂�𝑦⋅⋅⋅⋅. 

Substituting �̂� (Eq (3.16)) into the above equation and rearranging, the full-model RSS can be 

derived as Eq (4.1). 

This completes the proof. 

Proposition 4.2. In the presence of a single missing observation in the P × P GLSED, the reduced-

model regression sums of squares can be determined by 

𝑅(𝜇, 𝜏, 𝜔, 𝜓) =
∑ 𝑦⋅𝑗⋅⋅

2 +∑ 𝑦⋅⋅𝑘⋅
2 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝑙=1

𝑃
𝑘=1

𝑃
𝑗=1

𝑃
+

(1−𝑃)(2𝑦⋅⋅⋅⋅
2 −𝑦𝑆𝑈𝑀_𝑅

2 )+(𝑦𝑆𝑈𝑀_𝑅−2𝑦⋅⋅⋅⋅)
2

(𝑃−2)(𝑃−1)𝑃
,   (4.2) 

𝑅(𝜇, 𝜃, 𝜔, 𝜓) =
∑ 𝑦𝑖⋅⋅⋅

2 +∑ 𝑦⋅⋅𝑘⋅
2 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝑙=1

𝑃
𝑘=1

𝑃
𝑖=1

𝑃
+

(1−𝑃)(2𝑦⋅⋅⋅⋅
2 −𝑦𝑆𝑈𝑀_𝑁

2 )+(𝑦𝑆𝑈𝑀_𝑁−2𝑦⋅⋅⋅⋅)
2

(𝑃−2)(𝑃−1)𝑃
,   (4.3) 

𝑅(𝜇, 𝜃, 𝜏, 𝜓) =
∑ 𝑦𝑖⋅⋅⋅

2 +∑ 𝑦⋅𝑗⋅⋅
2 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝑙=1

𝑃
𝑗=1

𝑃
𝑖=1

𝑃
+

(1−𝑃)(2𝑦⋅⋅⋅⋅
2 −𝑦𝑆𝑈𝑀_𝑀

2 )+(𝑦𝑆𝑈𝑀_𝑀−2𝑦⋅⋅⋅⋅)
2

(𝑃−2)(𝑃−1)𝑃
,   (4.4) 

𝑅(𝜇, 𝜃, 𝜏, 𝜔) =
∑ 𝑦𝑖⋅⋅⋅

2 +∑ 𝑦⋅𝑗⋅⋅
2 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝑘=1

𝑃
𝑗=1

𝑃
𝑖=1

𝑃
+

(1−𝑃)(2𝑦⋅⋅⋅⋅
2 −𝑦𝑆𝑈𝑀_𝐶

2 )+(𝑦𝑆𝑈𝑀_𝐶−2𝑦⋅⋅⋅⋅)
2

(𝑃−2)(𝑃−1)𝑃
,   (4.5) 

when 𝑦𝑆𝑈𝑀_𝑅 = 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐 , 𝑦𝑆𝑈𝑀_𝑁 = 𝑦𝑟⋅⋅⋅ + 𝑦⋅⋅𝑚⋅ + 𝑦⋅⋅⋅𝑐 , 𝑦𝑆𝑈𝑀_𝑀 = 𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅⋅𝑐 , and 

𝑦𝑆𝑈𝑀_𝐶 = 𝑦𝑟⋅⋅⋅ + 𝑦⋅𝑛⋅⋅ + 𝑦⋅⋅𝑚⋅  . 

Proof. The determination of the reduced-model regression sums of squares can be conducted in an 

identical fashion to the case of 𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) as in Proposition 4.1. For example, let us consider a 

case of 𝑅(𝜇, 𝜃, 𝜔, 𝜓) (Eq (2.2)) omitting the Latin letter treatment effect, where the reduced-model 
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linear equation for 𝑦𝑖(𝑗)𝑘𝑙 is 

𝑦𝑖(𝑗)𝑘𝑙 = 𝜇𝑁𝑇 + 𝜃𝑖
𝑁𝑇 + 𝜔𝑘

𝑁𝑇 + 𝜓𝑙
𝑁𝑇 + 𝜀𝑖𝑗𝑘𝑙 {

𝑖 = 1,2, … , 𝑃
𝑗 = 1,2, … , 𝑃
𝑘 = 1,2, … , 𝑃
𝑙 = 1,2, … , 𝑃

 . 

It is presumed that Latin letter treatment effects (𝜏𝑗) are not accounted for across all values of j. 

Consequently, the estimated variables 𝜇, 𝜃𝑖, 𝜔𝑘, and 𝜓𝑙 in Eq (3.1) will be replaced with �̂�𝑁𝑇, 𝜃𝑖
𝑁𝑇, 

�̂�𝑘
𝑁𝑇, and �̂�𝑙

𝑁𝑇, respectively, as opposed to �̂�, 𝜃𝑖, �̂�𝑘, and �̂�𝑙. The expression for 𝑅(𝜇, 𝜃, 𝜔, 𝜓) can 

be formulated as follows: 

𝑅(𝜇, 𝜃, 𝜔, 𝜓) = �̂�𝑁𝑇𝑦⋅⋅⋅⋅ + ∑ 𝜃𝑖
𝑁𝑇𝑃

𝑖=1 𝑦𝑖⋅⋅⋅ + ∑ �̂�𝑘
𝑁𝑇𝑦⋅⋅𝑘⋅

𝑃
𝑘=1 + ∑ �̂�𝑙

𝑁𝑇𝑦⋅⋅⋅𝑙
𝑃
𝑙=1 . 

The subsequent estimated model parameters, namely �̂�𝑁𝑇, 𝜃𝑖
𝑁𝑇, �̂�𝑘

𝑁𝑇, and �̂�𝑙
𝑁𝑇, were obtained 

through a sequence of linear algebraic equations, as outlined below: 

�̂�𝑁𝑇 =
(𝑃−3)𝑦⋅⋅⋅⋅+𝑦𝑟⋅⋅⋅+𝑦⋅⋅𝑚⋅+𝑦⋅⋅⋅𝑐

(𝑃−2)(𝑃−1)𝑃
, 

𝜃𝑟
𝑁𝑇 =

𝑦𝑟⋅⋅⋅−𝑦⋅⋅⋅⋅

𝑃
+ (𝑃 − 1)�̂�𝑁𝑇, 

�̂�𝑚
𝑁𝑇 =

𝑦⋅⋅𝑚⋅−𝑦⋅⋅⋅⋅

𝑃
+ (𝑃 − 1)�̂�𝑁𝑇, 

�̂�𝑐
𝑁𝑇 =

𝑦⋅⋅⋅𝑐−𝑦⋅⋅⋅⋅

𝑃
+ (𝑃 − 1)�̂�𝑁𝑇, 

𝜃𝑖
𝑁𝑇 =

𝑦𝑖⋅⋅⋅

𝑃
− �̂�𝑁𝑇 𝑓𝑜𝑟   𝑖 ≠ 𝑟, 

�̂�𝑘
𝑁𝑇 =

𝑦⋅⋅𝑘⋅

𝑃
− �̂�𝑁𝑇 𝑓𝑜𝑟  𝑘 ≠ 𝑚, 

�̂�𝑙
𝑁𝑇 =

𝑦⋅⋅⋅𝑙

𝑃
− �̂�𝑁𝑇 𝑓𝑜𝑟   𝑙 ≠ 𝑐. 

Replacing these values in the expression for 𝑅(𝜇, 𝜃, 𝜔, 𝜓) and after some algebraic simplification, 

we have Eq (4.3). This completes the proof. 

5. The sum of squares and examples 

Proposition 5.1. In the P × P GLSED with one missing experimental data, the unbiased Latin letter 

treatment sum of squares can be determined as 

𝑆𝑆𝑇𝑟 =
∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝑗=1

𝑃
+

1

(𝑃−1)
[

(𝑦𝑆𝑈𝑀−𝑦⋅⋅⋅⋅)
2

(𝑃−3)
−

(𝑦𝑆𝑈𝑀_𝑁−𝑦⋅⋅⋅⋅)
2

(𝑃−2)
+

𝑦⋅⋅⋅⋅(2𝑦⋅𝑛⋅⋅−𝑦⋅⋅⋅⋅)

𝑃
].   (5.1) 

Additionally, the determination of unbiased sums of squares for the rows, Greek letters, and 

columns can be established as follows: 

𝑆𝑆𝑅 =
∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝑖=1

𝑃
+

1

(𝑃−1)
[

(𝑦𝑆𝑈𝑀−𝑦⋅⋅⋅⋅)
2

(𝑃−3)
−

(𝑦𝑆𝑈𝑀_𝑅−𝑦⋅⋅⋅⋅)
2

(𝑃−2)
+

𝑦⋅⋅⋅⋅(2𝑦𝑟⋅⋅⋅−𝑦⋅⋅⋅⋅)

𝑃
],   (5.2) 
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𝑆𝑆𝐺 =
∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝑘=1

𝑃
+

1

(𝑃−1)
[

(𝑦𝑆𝑈𝑀−𝑦⋅⋅⋅⋅)
2

(𝑃−3)
−

(𝑦𝑆𝑈𝑀_𝑀−𝑦⋅⋅⋅⋅)
2

(𝑃−2)
+

𝑦⋅⋅⋅⋅(2𝑦⋅⋅𝑚⋅−𝑦⋅⋅⋅⋅)

𝑃
],   (5.3) 

𝑆𝑆𝐶 =
∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝑙=1

𝑃
+

1

(𝑃−1)
[

(𝑦𝑆𝑈𝑀−𝑦⋅⋅⋅⋅)
2

(𝑃−3)
−

(𝑦𝑆𝑈𝑀_𝐶−𝑦⋅⋅⋅⋅)
2

(𝑃−2)
+

𝑦⋅⋅⋅⋅(2𝑦⋅⋅⋅𝑐−𝑦⋅⋅⋅⋅)

𝑃
] .    (5.4) 

Proof. Equation (4.1) in Proposition 4.1 can be rearranged as: 

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) =
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝐴𝑙𝑙 𝑖 +∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝐴𝑙𝑙 𝑗 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝐴𝑙𝑙 𝑘 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝐴𝑙𝑙 𝑙 )

𝑃
          

+
(3𝑦⋅⋅⋅⋅

2 −𝑦𝑆𝑈𝑀
2 −3𝑃𝑦⋅⋅⋅⋅

2 +𝑃𝑦𝑆𝑈𝑀
2 )+(𝑦𝑆𝑈𝑀

2 −6𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅+9𝑦⋅⋅⋅⋅
2 )

𝑃(𝑃−3)(𝑃−1)
       

=
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝐴𝑙𝑙 𝑖 +∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝐴𝑙𝑙 𝑗 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝐴𝑙𝑙 𝑘 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝐴𝑙𝑙 𝑙 )

𝑃
+

(𝑃𝑦𝑆𝑈𝑀
2 −2𝑃𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅+𝑃𝑦⋅⋅⋅⋅

2 )

𝑃(𝑃−3)(𝑃−1)
    

+
(2𝑃𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−4𝑃𝑦⋅⋅⋅⋅

2 −6𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅+12𝑦⋅⋅⋅⋅
2 )

𝑃(𝑃−3)(𝑃−1)
 ,          

𝑅(𝜇, 𝜃, 𝜏, 𝜔, 𝜓) =
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝐴𝑙𝑙 𝑖 +∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝐴𝑙𝑙 𝑗 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝐴𝑙𝑙 𝑘 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝐴𝑙𝑙 𝑙 )

𝑃
+ [

(𝑦𝑆𝑈𝑀−𝑦⋅⋅⋅⋅)
2

(𝑃−3)(𝑃−1)
] + [

(2𝑃𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−4𝑦⋅⋅⋅⋅
2 )

𝑃(𝑃−1)
]. (5.5) 

Equation (4.3) in Proposition 4.2 can be rearranged as: 

𝑅(𝜇, 𝜃, 𝜔, 𝜓) =
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝐴𝑙𝑙 𝑖 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝐴𝑙𝑙 𝑘 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝐴𝑙𝑙 𝑙 )

𝑃
+

(2𝑦⋅⋅⋅⋅
2 −𝑦𝑆𝑈𝑀_𝑁

2 −2𝑃𝑦⋅⋅⋅⋅
2 +𝑃𝑦𝑆𝑈𝑀_𝑁

2 )+(𝑦𝑆𝑈𝑀_𝑁
2 −4𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅+4𝑦⋅⋅⋅⋅

2 )

𝑃(𝑃−2)(𝑃−1)
  

=
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝐴𝑙𝑙 𝑖 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝐴𝑙𝑙 𝑘 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝐴𝑙𝑙 𝑙 )

𝑃
+

(𝑃𝑦𝑆𝑈𝑀𝑁
2 −2𝑃𝑦𝑆𝑈𝑀𝑁

𝑦….+𝑃𝑦….
2 )

𝑃(𝑃−2)(𝑃−1)
        

+
(2𝑃𝑦𝑆𝑈𝑀_𝑁𝑦⋅⋅⋅⋅−3𝑃𝑦⋅⋅⋅⋅

2 −4𝑦𝑆𝑈𝑀_𝑁𝑦⋅⋅⋅⋅+6𝑦⋅⋅⋅⋅
2 )

𝑃(𝑃−2)(𝑃−1)
,            

𝑅(𝜇, 𝜃, 𝜔, 𝜓) =
(∑ 𝑦𝑖⋅⋅⋅

2𝑃
𝐴𝑙𝑙 𝑖 +∑ 𝑦⋅⋅𝑘⋅

2𝑃
𝐴𝑙𝑙 𝑘 +∑ 𝑦⋅⋅⋅𝑙

2𝑃
𝐴𝑙𝑙 𝑙 )

𝑃
+

(𝑦𝑆𝑈𝑀_𝑁−𝑦⋅⋅⋅⋅)
2

(𝑃−2)(𝑃−1)
+

(2𝑃𝑦𝑆𝑈𝑀_𝑁𝑦⋅⋅⋅⋅−3𝑦⋅⋅⋅⋅
2 )

𝑃(𝑃−1)
.  (5.6) 

According to Eq (2.2), the Latin letter treatment sum of squares in Eq (5.1) can be deduced by 

subtracting Eq (5.5) from Eq (5.6). The calculations for the row, Greek letter, and column sums of 

squares are similarly performed for the Latin letter treatment sum of squares above. This completes 

the proof. 

The technique employed for estimating missing data through the least squares method constitutes 

one of various approaches to facilitate the derivation of the analysis of variance based on the original 

formula. Before proceeding with additional result analysis, it is essential to rectify the bias through 

subtraction, as detailed in Proposition 5.2. 

Proposition 5.2. In the P × P GLSED with a singular missing data point, the formula for bias 

adjustment concerning the sum of squares for the Latin letter treatment, applied subsequent to the 

estimation of missing data through the least squares method, is established as follows: 

𝐵𝑖𝑎𝑠 =
(𝑦⋅⋅⋅⋅−𝑦𝑆𝑈𝑀−(𝑝−3)𝑦⋅𝑛⋅⋅)

2

(𝑃−3)2(𝑃−2)(𝑃−1)
.        (5.7) 

Proof. We have 

𝐵𝑖𝑎𝑠 = 𝑆𝑆𝑇𝑟(𝑏𝑖𝑎𝑠) − 𝑆𝑆𝑇𝑟(𝑢𝑛𝑏𝑖𝑎𝑠)_𝑒𝑥𝑎𝑐𝑡  ,     (5.8) 
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where 𝑆𝑆𝑇𝑟(𝑢𝑛𝑏𝑖𝑎𝑠)_𝑒𝑥𝑎𝑐𝑡 represents the treatment sum of squares without bias, calculated from Eq (5.1) 

in Proposition 5.1 and 𝑆𝑆𝑇𝑟(𝑏𝑖𝑎𝑠)  denotes the treatment sum of squares with bias after estimating 

missing data via the least squares method, as outlined by Kupolusi and Ojo [19] in the following Eq (5.9) 

for the missing value (Z) estimate: 

𝑍 =
𝑃𝑦𝑆𝑈𝑀−3𝑦⋅⋅⋅⋅

(𝑃−3)(𝑃−1)
 .         (5.9) 

Hence, Eq (2.1) for the complete data can be rewritten as 

𝑆𝑆𝑇𝑟 =
∑ 𝑦⋅𝑗⋅⋅

2𝑃
𝑗=1,𝑗≠𝑛 +(𝑦⋅𝑛⋅⋅+𝑍)2

𝑃
−

(𝑦⋅⋅⋅⋅+𝑍)2

𝑃2 ,      (5.10) 

where the symbol 𝑦⋅⋅⋅⋅ represents the grand total, exclusive of the value represented by 𝑍. 

It is noted that the inaugural expression in Eq (5.1) is subtracted from the initial term in Eq (5.10), 

resulting in the value of 
2𝑍𝑦⋅𝑛⋅⋅+𝑍2

𝑃
. 

Substituting (5.1), (5.9), and (5.10) into (5.8), we obtain the following: 

𝐵𝑖𝑎𝑠 =
2𝑦⋅𝑛⋅⋅(

𝑃𝑦𝑆𝑈𝑀−3𝑦⋅⋅⋅⋅
(𝑃−3)(𝑃−1)

)

𝑃
+

(
𝑃𝑦𝑆𝑈𝑀−3𝑦⋅⋅⋅⋅

(𝑃−3)(𝑃−1)
)

2

𝑃
−

(𝑦⋅⋅⋅⋅+
𝑃𝑦𝑆𝑈𝑀−3𝑦⋅⋅⋅⋅

(𝑃−3)(𝑃−1)
)

2

𝑃2   

−
(𝑦𝑆𝑈𝑀−𝑦⋅⋅⋅⋅)

2

(𝑃−3)(𝑃−1)
+

(𝑦𝑆𝑈𝑀𝑁
−𝑦⋅⋅⋅⋅)

2

(𝑃−2)(𝑃−1)
−

𝑦⋅⋅⋅⋅(2𝑦⋅𝑛⋅⋅−𝑦⋅⋅⋅⋅)

(𝑃−1)𝑃
.        

The initial three terms may be reformulated as follows: 

2(𝑃−3)(𝑝𝑦𝑆𝑈𝑀−3𝑦⋅⋅⋅⋅)𝑦⋅𝑛⋅⋅+𝑝𝑦𝑆𝑈𝑀
2 −2𝑝𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−((𝑝−7)𝑝+9)𝑦⋅⋅⋅⋅

2  

(𝑃−3)2(𝑃−1)𝑃
         

=
2(𝑃−3)𝑦⋅𝑛⋅⋅𝑦𝑆𝑈𝑀+𝑦𝑆𝑈𝑀

2 −2𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−(𝑝−7)𝑦⋅⋅⋅⋅
2  

(𝑃−3)2(𝑃−1)
+

−6(𝑃−3)𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅−9𝑦⋅⋅⋅⋅
2  

(𝑃−3)2(𝑃−1)𝑃
       

= (𝑃 − 2) ∗ [
2(𝑃−3)𝑦⋅𝑛⋅⋅𝑦𝑆𝑈𝑀+𝑦𝑆𝑈𝑀

2 −2𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−(𝑝−7)𝑦⋅⋅⋅⋅
2  

(𝑃−3)2(𝑃−2)(𝑃−1)
+

−6(𝑃−3)𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅−9𝑦⋅⋅⋅⋅
2  

(𝑃−3)2(𝑃−2)(𝑃−1)𝑃
].     

The concluding trio of terms can be rephrased as follows: 

(𝑃−3)𝑃𝑦⋅𝑛⋅⋅
2 −2(𝑃−3)(𝑃𝑦𝑆𝑈𝑀−2𝑦⋅⋅⋅⋅)𝑦⋅𝑛⋅⋅+𝑃2𝑦⋅⋅⋅⋅

2 +𝑃(−𝑦𝑆𝑈𝑀
2 +2𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−6𝑦⋅⋅⋅⋅

2 )+6𝑦⋅⋅⋅⋅
2

(𝑃−3)(𝑃−2)(𝑃−1)𝑃
     

=
(𝑃−3)𝑦⋅𝑛⋅⋅

2 −2(𝑃−3)𝑦⋅𝑛⋅⋅𝑦𝑆𝑈𝑀+𝑃𝑦⋅⋅⋅⋅
2 +(−𝑦𝑆𝑈𝑀

2 +2𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−6𝑦⋅⋅⋅⋅
2 )

(𝑃−3)(𝑃−2)(𝑃−1)
+

4(𝑃−3)𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅+6𝑦⋅⋅⋅⋅
2

(𝑃−3)(𝑃−2)(𝑃−1)𝑃
    

= (𝑃 − 3) ∗ [
(𝑃−3)𝑦⋅𝑛⋅⋅

2 −2(𝑃−3)𝑦⋅𝑛⋅⋅𝑦𝑆𝑈𝑀+𝑃𝑦⋅⋅⋅⋅
2 +(−𝑦𝑆𝑈𝑀

2 +2𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅−6𝑦⋅⋅⋅⋅
2 )

(𝑃−3)2(𝑃−2)(𝑃−1)
+

4(𝑃−3)𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅+6𝑦⋅⋅⋅⋅
2

(𝑃−3)2(𝑃−2)(𝑃−1)𝑃
] . 

Finally, we have 

𝐵𝑖𝑎𝑠 =
𝑃2𝑦⋅𝑛⋅⋅

2 −6𝑃𝑦⋅𝑛⋅⋅
2 +9𝑦⋅𝑛⋅⋅

2 +2𝑃𝑦⋅𝑛⋅⋅𝑦𝑆𝑈𝑀−4𝑃𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅−6𝑦⋅𝑛⋅⋅𝑦𝑆𝑈𝑀+12𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅+𝑦𝑆𝑈𝑀
2 −2𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅+4𝑦⋅⋅⋅⋅

2

(𝑃−3)2(𝑃−2)(𝑃−1)
  

+
−3𝑦⋅⋅⋅⋅

2 +2(𝑝−3)𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅

(𝑃−3)2(𝑃−2)(𝑃−1)
                

=
(𝑦⋅⋅⋅⋅

2 −2𝑦𝑆𝑈𝑀𝑦⋅⋅⋅⋅+𝑦𝑆𝑈𝑀
2 )−2(𝑝−3)𝑦⋅𝑛⋅⋅𝑦⋅⋅⋅⋅+2(𝑝−3)𝑦⋅𝑛⋅⋅𝑦𝑆𝑈𝑀+(𝑃−3)2𝑦⋅𝑛⋅⋅

2

(𝑃−3)2(𝑃−2)(𝑃−1)
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=
(𝑦⋅⋅⋅⋅−𝑦𝑆𝑈𝑀)2−2(𝑦⋅⋅⋅⋅−𝑦𝑆𝑈𝑀)((𝑝−3)𝑦⋅𝑛⋅⋅)+((𝑝−3)𝑦⋅𝑛⋅⋅)

2

(𝑃−3)2(𝑃−2)(𝑃−1)
,          

𝐵𝑖𝑎𝑠 =
(𝑦⋅⋅⋅⋅−𝑦𝑆𝑈𝑀−(𝑝−3)𝑦⋅𝑛⋅⋅)

2

(𝑃−3)2(𝑃−2)(𝑃−1)
. 

This completes the proof. 

The following content presents a comparison of two methods for solving the incomplete data 

problem: Exact-scheme analysis of variance without data imputation and estimating missing data 

through the least squares method. This comparison is based on the three case study examples. 

Case Study 1: A 4 × 4 GLSED adapted from Subramani [33] examined the influence of four 

different television assembly methods on assembly time, as shown in Table 3. In this experiment, 

assembly methods were represented by Latin letter treatments, workstations by Greek letters, assembly 

order by rows, and workers by columns. 

Case Study 2: A 5 × 5 GLSED adapted from Montgomery [34] examined the influence of five 

different time intervals on the yield of various chemical processes, as shown in Table 4. In this study, 

the time intervals were represented as Latin letter treatments, catalyst concentrations as Greek letters, 

raw materials as rows, and acid concentrations as columns. 

Case Study 3: A 7 × 7 GLSED adapted from Hinkelmann and Kempthorne [37] examined the 

influence of seven different levels of lysine percentages in the diet on milk production in cows, as 

shown in Table 5. In this study, the percentage of lysine in the diet was represented by Latin letter 

treatments, the percentage of protein in the diet by Greek letters, cows by rows, and duration by 

columns. 

Table 3. Data for the Greco-Latin square design in Case Study 1. 

Column Row 
𝜓1 𝜓2 𝜓3 𝜓4 

1 2 3 4 

𝜃𝟏 1 𝐶𝛽 =11 𝐵𝛾 =10 𝐷𝛿 =14 𝐴 ∝=8 

𝜃𝟐 2 𝐵 ∝=8 𝐶𝛿 =12 𝐴𝛾 =10 𝐷𝛽 =12 

𝜃𝟑 3 𝐴𝛿 =9 𝐷 ∝=11 𝐵𝛽 =missing value 𝐶𝛾 =15 

𝜃𝟒 4 𝐷𝛾 =9 𝐴𝛽 =8 𝐶 ∝ = 18 𝐵𝛿 =6 

Table 4. Data for the Greco-Latin square design in Case Study 2. 

Column Row 
𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 

1 2 3 4 5 

𝜃𝟏 1 𝐴 ∝=missing value 𝐵𝛽 =16 𝐶𝛾 =19 𝐷𝛿 =16 𝐸𝜀 =13 

𝜃𝟐 2 𝐵𝛾 =18 𝐶𝛿 =21 𝐷𝜀 =18 𝐸 ∝=11 𝐴𝛽 =21 

𝜃𝟑 3 𝐶𝜀 =20 𝐷 ∝=12 𝐸𝛽 =16 𝐴𝛾 =25 𝐵𝛿 =13 

𝜃𝟒 4 𝐷𝛽 =15 𝐸𝛾 =15 𝐴𝛿 =22 𝐵𝜀 =14 𝐶 ∝=17 

𝜃𝟓 5 𝐸𝛿 =10 𝐴𝜀 =24 𝐵 ∝=17 𝐶𝛽 =17 𝐷𝛾 =14 
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Table 5. Data for the Greco-Latin square design in Case Study 3. 

Column 

Row 

𝜓𝟏 𝜓𝟐 𝜓𝟑 𝜓𝟒 𝜓𝟓 𝜓𝟔 𝜓𝟕 

1 2 3 4 5 6 7 

𝜃𝟏 1 𝐴 ∝=304 𝐵𝜀 =436 𝐶𝛽 =350 𝐷𝜙 =504 𝐸𝜒 =417 𝐹𝛾 =519 𝐺𝛿 =432 

𝜃𝟐 2 𝐵𝛽 =381 𝐶𝜙 =505 𝐷𝜒 =425 𝐸𝛾 =564 𝐹𝛿 =494 𝐺 ∝=350 𝐴𝜀 =413 

𝜃𝟑 3 𝐶𝜒 =432 𝐷𝛾 =566 𝐸𝛿 =479 𝐹 ∝=357 𝐺𝜀 =461 𝐴𝛽 =340 𝐵𝜙 =502 

𝜃𝟒 4 𝐷𝛿 =442 𝐸 ∝=372 𝐹𝜀 =536 𝐺𝛽 =366 𝐴𝜙 =495 𝐵𝜒 =425 𝐶𝛾 =507 

𝜃𝟓 5 𝐸𝜀 =496 𝐹𝛽 =449 𝐺𝜙 =493 𝐴𝜒 =345 𝐵𝛾 =509 𝐶𝛿 =481 𝐷 ∝=380 

𝜃𝟔 6 𝐹𝜙 =534 𝐺𝜒 =421 𝐴𝛾 =452 𝐵𝛿 =427 𝐶 ∝=346 𝐷𝜀 =478 𝐸𝛽 =397 

𝜃𝟕 7 𝐺𝛾 =543 𝐴𝛿 =386 𝐵 ∝=435 𝐶𝜀 =485 𝐷𝛽 =406 𝐸𝜙 =554 𝐹𝜒 =missing value 

Using Eq (5.9), the least squares method for estimating missing data yields values of 15, 21, 

and 474.38 for Case Studies 1, 2, and 3, respectively. The comparison of the Latin letter treatment 

sum of squares between the exact method and the least squares method is shown in Table 6. 

Table 6. Comparison of Latin letter treatment sum of squares for exact and least squares 

methods. 

Case Study Exact-scheme analysis 
Estimating missing data via least 

squares method 
Bias 

1 𝑆𝑆𝑇𝑟(𝑢𝑛𝑏𝑖𝑎𝑠)_𝑒𝑥𝑎𝑐𝑡 = 59.333 𝑆𝑆𝑇𝑟(𝑏𝑖𝑎𝑠) = 63.50 4.167 

2 𝑆𝑆𝑇𝑟(𝑢𝑛𝑏𝑖𝑎𝑠)_𝑒𝑥𝑎𝑐𝑡 = 217.467 𝑆𝑆𝑇𝑟(𝑏𝑖𝑎𝑠) = 282.80 65.333 

3 𝑆𝑆𝑇𝑟(𝑢𝑛𝑏𝑖𝑎𝑠)_𝑒𝑥𝑎𝑐𝑡 = 32,704 𝑆𝑆𝑇𝑟(𝑏𝑖𝑎𝑠) = 34,620 1916 

Table 6 shows that the Latin letter treatment sum of squares calculated using the least squares 

method is biased. However, this bias can be corrected using a bias adjustment formula (Eq (5.7)), or 

the exact method can be used for an unbiased estimate. 

From the three examples, the analysis of variance results can be demonstrated without bias, where 

the sums of squares are calculated from Proposition 5.1, as shown in Tables 7–9. 

Table 7. Unbiased analysis of variance for Case Study 1. 

Source of variation Sum of squares Degrees of freedom Mean square F0 

Latin letter treatment 59.333 3 19.778 2.55 

Greek letter 2.833 3 0.944  

Rows 6.500 3 2.167  

Columns 30.833 3 10.278  

Error 15.500 2 7.750  

Total 136.933 14   
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Table 8. Unbiased analysis of variance for Case Study 2. 

Source of variation Sum of squares 
Degrees of 

freedom 
Mean square F0 

Latin letter treatment 217.467 4 54.367 9.81 

Greek letter 17.917 4 4.479  

Rows 6.000 4 1.500  

Columns 22.317 4 5.579  

Error 38.800 7 5.543  

Total 355.333 23   

Table 9. Unbiased analysis of variance for Case Study 3. 

Source of variation Sum of squares 
Degrees of 

freedom 
Mean square F0 

Latin letter treatment 32,704 6 5,450.7 9.28 

Greek letter 155,215 6 25,869.1  

Rows 7,412 6 1,235.4  

Columns 1,270 6 211.7  

Error 13,515 23 587.6  

Total 213,217 47   

The exact method provides an unbiased estimate of both the Latin letter treatment sum of squares 

and the error sum of squares (Montgomery [1]). This method employs the general regression 

significance test, which is equivalent to the exact-scheme analysis of variance without data imputation. 

A more comprehensive validation of this approach was demonstrated through the following simulation 

studies. 

Missing values within plausible ranges, based on each case study, are assumed and generated to 

estimate the sums of squares for Latin letter treatment and error as shown in Figures 1 and 2 for Case 

Study 1, Figures 3 and 4 for Case Study 2, and Figures 5 and 6 for Case Study 3. In Case Study 1 

(Figure 1), the estimated missing value of 16.98, determined using simulation studies, results in the 

sum of squares for Latin letter treatment aligning with the exact-scheme method. However, the sum of 

squares for error is biased and does not match the exact-scheme results. For Figure 2, an estimated 

value of 15 (or derived using the least squares method) yields a sum of squares for error consistent 

with the exact-scheme analysis. Nonetheless, the sum of squares for Latin letter treatment remains 

biased and does not align with the exact-scheme results. 

In Case Studies 2 (Figures 3 and 4) and 3 (Figures 5 and 6), similar patterns are observed. There 

is a high probability that replacing a single missing data introduces bias either in the Latin letter 

treatment sum of squares or in the error sum of squares. 

Therefore, it remains challenging for various missing data estimation methods to consistently 

produce unbiased sums of squares for both Latin letter treatment and error that correspond to those 

calculated by the exact-scheme analysis of variance. 
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Figure 1. Trend of treatment sum of squares when simulating missing data for Case Study 1. 

 

Figure 2. Trend of error sum of squares when simulating missing data for Case Study 1. 

 

Figure 3. Trend of treatment sum of squares when simulating missing data for Case Study 2. 
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Figure 4. Trend of error sum of squares when simulating missing data for Case Study 2. 

 

Figure 5. Trend of treatment sum of squares when simulating missing data for Case Study 3. 

 

Figure 6. Trend of error sum of squares when simulating missing data for Case Study 3. 

Handling multiple missing values requires developing linear algebra equations for fitted 

parameters in both reduced and full models, as well as recalculating regression sums of squares. Each 
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scenario presents unique equations based on the number and pattern of missing data. We recommend 

this as an area for future research, as expanding the exact-scheme methodology to address multiple 

missing data points in GLSED necessitates comprehensive study. 

6. Conclusions 

In conclusion, the Greco-Latin square experimental design (GLSED) showcases substantial 

benefits across a variety of fields, including agriculture, medicine, and industry, affirming its 

effectiveness in conducting systematic tests on multiple variables within the confines of limited 

resources and time. Within the framework of Fisher’s design of experiments (DOE), the prevalent use 

of the missing plot technique for estimating missing observations is acknowledged, although it is noted 

to introduce a positive bias in the treatment sum of squares. Addressing this limitation, the present 

study introduces a novel model comparison-based exact scheme specifically designed for GLSED 

configurations encountering a single missing observation, a methodology that is applicable regardless 

of the levels of treatment and blocks. This advancement not only enhances the accuracy of 

experimental analyses but also broadens the utility of GLSED by mitigating the inherent bias 

associated with traditional estimation techniques, thereby contributing a significant methodological 

innovation to the field of experimental design. 

The introduction of the proposed exact scheme represents a significant advancement in the field 

of experimental design, specifically addressing the limitations inherent in GLSED with a single 

missing observation. This innovative approach effectively obviates the conventional necessity for 

estimating missing observations, thus significantly reducing the potential for bias in the treatment sum 

of squares. A critical gap in existing methodologies— the absence of a readily accessible exact-scheme 

formula tailored to GLSED scenarios with an unrecorded value—is bridged by this study through the 

development of an instant formula. This formula, grounded in the exact scheme, is adeptly designed 

for calculating the sums of squares in P × P fixed-effect GLSED configurations without necessitating 

the estimation of fitted parameters. Additionally, this research enriches the methodological arsenal 

available to researchers by providing formulas for both full-model and reduced-model regression sums 

of squares, facilitating the comprehensive development of sums of squares and ANOVA tables tailored 

to GLSED contexts with missing data. This methodological innovation not only enhances the precision 

of statistical analyses but also broadens the scope of experimental designs that can be accurately 

analyzed under conditions of incomplete data. 

This paper articulates and implements a formulated bias adjustment, specifically targeting the 

sum of squares, after the estimation of missing data via the least squares method. Through a thorough 

mathematical exposition, it lays out a systematic methodology for rectifying the bias induced by 

missing data within the ambit of the GLSED model. It emphasizes the critical necessity for researchers 

and practitioners within the domains of design of experiments, analysis of variance, and experimental 

design to be fully aware of the limitations inherent in prevailing methods. Moreover, it highlights the 

unique advantages offered by the model comparison-based exact scheme. This approach not only 

addresses the bias in a rigorous and structured manner but also signifies a paradigm shift in how 

missing data are treated, moving toward a more accurate and reliable analysis that fundamentally 

enhances the integrity of experimental outcomes. 

In random-effects models, the expected values of model parameters are zero; however, the sums 

of squares for random-effects models can be calculated in the same way as for fixed-effects models, 



33569 

AIMS Mathematics  Volume 9, Issue 12, 33551–33571. 

yielding the same final formula as shown in Proposition 5.1. Thus, the proposed method in this study 

is applicable not only to random-effects models but also to mixed-effects models, as the sums of 

squares remain valid under these conditions. Furthermore, the Greco-Latin square experimental design 

(GLSED) does not account for interactions between blocks or between blocks and treatment factors, 

which means that the mean square formulas for random-effects models are identical to those for fixed-

effects models (Freund et al. [38]). This simplifies the analysis, allowing the methodology to be applied 

consistently in both models without requiring further modifications. 

While encountering more than one missing value is possible in well-designed experiments, it is 

less frequent than single missing values, as researchers typically aim to complete their experiments 

successfully for accurate analysis. This study focuses on the case of a single missing value due to the 

complexity of deriving unbiased sums of squares in the exact-scheme analysis. Expanding this 

methodology to accommodate multiple missing data points is a promising direction for future research, 

requiring the development of mathematical frameworks to handle various missing data patterns. 

Previous work by Sirikasemsuk and Leerojanaprapa [29], which provided formulas for unbiased 

treatment sums of squares in Latin square designs with two missing values, lays a strong foundation 

for these extensions. 
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