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Abstract: Investment risk forecasting is challenging when the stock market is characterized by 
non-linearity and extremes. Under these conditions, VaR estimation based on the assumption of 
distribution normality becomes less accurate. Combining extreme value theory (EVT) with machine 
learning (ML) produces a model that detects and learns heavy tail patterns in data distributions 
containing extreme values while being effective in non-linear systems. We aimed to develop an 
investment risk forecasting model in the capital market with non-linear and extreme characteristics 
using the VaR method of the EVT approach combined with ML (VaRGPD-ML(α)). The combination of 
methods used is a multivariate time series forecasting model with RNN, LSTM, and GRU algorithms 
to obtain ML-based returns. The EVT method of the POT approach was used to model extremes. The 
VaR method was used for investment risk estimation. The backtesting method was used to validate 
the model. Our results showed that determining the threshold based on the normal distribution will 
identify extreme values with the ideal number, minimum bias, and distribution of extreme data 
following GPD. The VaRGPD-ML(α) model was valid in all samples based on backtesting at α = 0.95 
and α = 0.99. Generally, this model produces a greater estimated value of investment risk than the 
VaRGPD(α) model at the 95% confidence level. 

Keywords: backtesting; extreme value theory; GRU; LSTM; machine learning; multivariate; 
non-linear; RNN; VaR 
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1. Introduction  

In 2007–2008, the global financial crisis showed that the estimation of the value at risk (VaR) 
model using the assumption of distribution normality was considered less accurate [1]. After this 
crisis, the stock market continued to fluctuate along with events that caused the data distribution to 
become extreme. Over time, many extreme events have caused the stock market to fluctuate, such as 
the COVID-19 pandemic [2–4], geopolitical issues related to the Russia-Ukraine conflict [5,6], and 
the trade war between the United States and China [7,8]. These events cause high volatility in global 
stock markets. These conditions usually make it difficult to estimate investment risk because the data 
is not normally distributed, there are non-linear relationships between variables, and the data 
distribution contains extreme values. 

The most common method for estimating the level of investment risk is the VaR model [9]. This 
method is considered less effective in uncertainty conditions when the data has high volatility, and the 
measurement of the risk level with the assumption of distribution normality becomes less accurate [10]. 
Although the concept is simple, the estimation of investment risk with the VaR method is very complex, 
where the very high volatility in the stock market causes the data to be characterized by heteroscedasticity, 
non-linear, and heavy-tailed. This method also cannot accurately detect extreme values and often fails to 
provide an appropriate measure of risk during periods of extreme stock price fluctuations [11]. The VaR 
method with extreme value theory (EVT) can be used to estimate the risk of an investment against data 
containing heavy tail patterns in stock return data [12–14]. EVT is a model that analyzes data deviations 
from the mean value of the probability distribution to detect and study heavy tail patterns of the 
distribution with extreme values [15]. It is usually used to model extreme events. Extreme events are 
defined as events that rarely occur but have a very large influence, so the lack of available data in 
modeling causes it to be difficult to identify the possibility of extreme events [16]. 

The EVT method has been applied in various fields where extreme values may appear such as the 
industrial field [17], the meteorological field [18], and the financial field [19–21]. The EVT method 
provides a powerful framework for studying the behavior of extreme observations formally. It focuses 
directly on the tail of the sample distribution, potentially performing better than other approaches in 
terms of predicting unexpected extreme changes. Models using a combination of several methods 
generally perform better than the application of a single method [22]. The estimation of investment risk 
with the VaR method of the EVT and GARCH combination was conducted by Bali & Neftci [23] who 
proposed a conditional extreme value approach to calculate VaR by determining the location and scale 
parameters of GPD as a function of past information. In addition, McNeil & Frey [24] proposed a 
method for estimating VaR and related risk measures describing the tails of the conditional distribution 
of heteroskedastic financial return series by combining the pseudo-maximum-likelihood adjustment of 
the GARCH model to estimate volatility and EVT to estimate the tails of the innovation distribution of 
the GARCH model. Singh et al. [25] modeled extreme market risk for the ASX-All Ordinaries index 
(Australia) and the S&P-500 Index (USA). The results showed that EVT can be applied to financial 
market return series to predict static VaR, CVaR or expected shortfall, and expected return levels as 
well as daily VaR using a dynamic approach based on GARCH (1,1) and EVT. Karmakar & Paul [26] 
applied the CGARCH-EVT-Copula model to estimate intraday VaR and CVaR portfolios using 
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high-frequency data. The backtesting method shows that the CGARCH-EVT-Copula type model has 
relatively better performance than other competing models. 

However, research on investment risk forecasting by applying EVT combined with machine 
learning (ML) algorithms is very poorly explored. Several researchers have discussed the advantages 
of ML-based models in estimating risk have been conducted by Ren et al. [27] and this study presents 
an effective ML model for estimating extreme risks in the American stock market. Moreover, an 
enhanced AdaBoost algorithm, which combines class-weighted and time-weighted parameters 
designed to evaluate its performance in predicting extreme stock market crises, is proposed. The 
optimal model significantly improves the classification performance, especially for risk examples. 
Karim et al. [28] investigated the potential for extreme risk spillovers across advanced stock 
markets using a ML approach. A methodology that combines EVT with artificial neural networks 
to measure the likelihood and magnitude of risk spillovers among twenty-three major developed 
stock markets for the period covering January 1991 to July 2022 was used. The results revealed 
significant evidence of risk spillover across markets based on the level of trade integration between 
countries. The study offers important insights into the dynamics of risk spillover in the stock 
market and the benefits of incorporating ML techniques into risk management strategies. 
Furthermore, Blom et al. [29] aimed to improve methods for predicting the VaR of currency 
investments using ML by proposing a semiparametric and parsymonic model of risk value 
forecasting, based on quantitative regression and ML methods, combined with the generally 
available market price of options contracted from the foreign exchange rate interbank market. The 
proposed ensemble model achieves good estimation in all quantiles. 

The large number and complexity of non-linear relationships in the data patterns that drive the 
dynamics of stock price movements make forecasting financial market behavior a very difficult task. 
Artificial neural networks (ANNs) are one of the most popular methods used by researchers to solve 
non-linear problems in various fields [30]. This method is also useful in multivariate cases. 
ML-based time series forecasting models categorized as linear and non-linear models are recurrent 
neural networks (RNNs) [31]. RNNs, long short-term memory (LSTM), and gated recurrent units 
(GRUs) models are non-parametric models, modeling time series data with good accuracy that do not 
require assumptions of stationarity, normality, and heteroscedasticity in their application [32]. Several 
studies that confirm the superiority of these models, such as the research of Ahmed et al. [33] predict 
sales data in financial markets more accurately using time series prediction using a combination of 
poly-linear regression with LSTM. Ricchiuti & Sperlí [34] propose an advisory neural network 
framework using LSTM-based informative stock analysis for daily investment advice. Wang et al. [35] 
aimed to estimate the volatility of the Chinese stock market due to international crude oil shocks. 
Eight individual models, including ANNs, RNNs, LSTM, GRUs, multiple linear regression, support 
vector regression, bidirectional GRUs, and least absolute shrinkage and selection operator models, 
are constructed. Most of the combination models can effectively improve forecasting accuracy and 
conclude that most of the combination models are robust in volatility forecasting.  

Oil and gold are two of the most actively traded commodities worldwide, and their price 
movements have important implications for economies and financial markets. Fluctuations in global 
oil prices increase stock market volatility and uncertainty as stock markets are particularly vulnerable 
to oil price fluctuations [36]. The collapse of global stock and oil markets during the COVID-19 
pandemic caused investors to turn to safer assets to avoid losses, such as gold [37]. Currency 
exchange rates are one of the variables that affect fluctuations in the stock market. Such as the effect 
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of increased volatility of USD/CNY exchange rate uncertainty, resulting in increased volatility of 
uncertainty in the oil market to the Chinese stock market during bearish periods [38]. Exchange rate 
shocks can affect stock market returns when the market is sluggish; therefore, exchange rate 
flexibility has an important role in determining stock market returns [39,40]. 

The high volatility in the stock market makes it difficult to forecast investment risks because the 
data is not normally distributed, there is a non-linear relationship between variables, and the data 
distribution also contains extreme values. Based on the description above, the research gap identified 
is that there is no research on investment risk forecasting with the VaR method using EVT combined 
with ML. Motivated by this research gap, it is essential to build an investment risk forecasting model 
in the stock market that is non-linear and extreme using the VaR method of the EVT approach 
combined with ML. This is a model that can accommodate non-linear, extreme characters, and 
consider variables that affect stock fluctuations. The goal is to improve the accuracy of VaR 
predictions in extreme events. The model input is multivariate data. The data used in this study are 
historical data of closing prices of the Jakarta Stock Exchange (JKSE), the Kuala Lumpur Stock 
Exchange (KLSE), the Philippine Stock Exchange (PSEi), and the Stock Exchange of Thailand 
(SET). Variables that affect stock fluctuations are considered in this model, such as crude oil prices, 
world gold prices, and currency exchange rates against the US Dollar. Therefore, the model is more 
sensitive to stock market dynamics. The method used in this study involves using an ML-based 
multivariate time series forecasting model to forecast the closing price of the composite stock index, 
which is then used to derive ML-based returns. RNNs, LSTM, and GRUs algorithms are utilized due to 
the sequential nature of the time series data, a way to combine these sets of information was required. 
Of all the potential non-linear techniques, the most intuitive are RNNs, including LSTM and GRUs. 
These algorithms can capture historical trend patterns and predict future values with high accuracy [41]. 
These methods are highly sophisticated algorithms for time series and are the most widely applied 
artificial intelligence models in stock market prediction [42]. The EVT method with a peak-over 
threshold approach is used to model the extremes of the return data distribution. The threshold is 
determined based on the normal distribution. A VaRGPD-ML(α) model based on generalized Pareto 
distribution (GPD) is combined with ML for investment risk forecasting. Finally, the backtesting 
method is used to validate the proposed model. 

The novelty of this research is that the investment risk forecasting model with the EVT approach 
is useful in univariate cases and combines with ML, which is reliable in multivariate instances [43]. We 
determine the threshold based on the normal distribution results in the optimal value of u to identify the 
ideal number of extreme values, minimum bias, and the distribution of extreme values that exceed the 
threshold following the GPD. This research provides new insights into the application of ML for 
investment risk forecasting and risk management. This research benefits financial institutions, investors, 
brokers, financial companies, governments, academics, and researchers. 

2. Materials and methods 

2.1. Dataset 

We use multi-variable data. The dataset consists of historical closing price data of the JKSE, 
KLSE, PSEi, and SET composite stock indices. Variables that affect the price movement of the 
composite stock index are also needed, such as historical data on the closing price of crude oil, 
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currency exchange rates, and world gold prices. Daily historical stock data was downloaded from the 
www.finance.yahoo.com website for the period between January 7, 2019, and February 16, 2024. 

2.2. Methods 

Figure 1 shows the stages carried out in this study. 

 

Figure 1. Research methodology. 
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In this study, computational calculations are conducted using RStudio software. Building an 
ML-based multivariate time series forecasting model in this study involves high-level neural network 
APIs such as ‘Keras’ and ‘TensorFlow’. Keras and TensorFlow packages are available in RStudio 
software. The first step is data pre-processing, building a model architecture to be used to forecast 
historical prices. The best model is selected based on the learning curve (LC). The model output is 
used to calculate the return. Extreme values are those that are above the threshold. Parameter 
estimation is performed to obtain shape and scale parameters used for VaRGPD-ML(α). Backtesting is 
performed to validate the model. 

2.2.1. The concave function 

The data obtained tends to be incomplete because the stock market activities are closed on 
Saturdays, Sundays, and holidays. Missing values are estimated using a concave function. The 
missing value estimate is calculated using Eq (1) [44]: 

𝑥 ൌ ௫షభା௫శ

ଶ
, (1) 

where 𝑥 is the estimated value, 𝑥ିଵ is the value available in the previous period, 𝑥ା is the 
value available in the next period. 

2.2.2. Min-max normalization 

Data normalization is used to scale data in the interval 0 to 1. This is generally useful to ease the 
computation of ML algorithms. Each value is converted to the interval [0,1] based on the maximum 
and minimum values of the dataset using Eq (2) [45,46]: 

�̿� ൌ ௫ି ሺ௫ሻ

௫ሺ௫ሻି ሺ௫ሻ
. (2) 

Then, to reverse the value to its original integer form, the min-max renormalization is used, by 
reversing the role of Eq (2). The min-max renormalization is written as Eq (3): 

𝑥 ൌ �̿�. 𝑚𝑎𝑥ሺ𝑥ሻ െ �̿�. 𝑚𝑖 𝑛ሺ𝑥ሻ  𝑚𝑖 𝑛ሺ𝑥ሻ, (3) 

where 𝑥 is the original data value, 𝑚𝑖𝑛ሺ𝑥ሻ is the value of the minimum of the data set, 𝑚𝑎𝑥ሺ𝑥ሻ is 
the maximum value of the data set, and �̿� is the scaling result data. 

2.2.3. Artificial neural networks 

ANNs are methods that exploit the architecture of the human brain to perform tasks that 
conventional algorithms cannot. ANNs were first introduced by McCulloch & Pitts [47]. ANNs can 
learn and model non-linear relationships between variables. This is achieved by connecting neurons 
in various patterns, allowing the output of some neurons to become inputs for others, and applying an 
activation function before producing the output. Mathematically, the ANNs model is written as a 
triplet ሺ𝜑; 𝑥; 𝑤ሻ as in Figure 2 [48]. 
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Figure 2. ANNs concept. 

Figure 2 shows the concept of ANNs, where the dendrites of biological neural networks 
represent the input into the ANNs, the cell nucleus is the node, the synapse represents the weights, 
and the axon represents the output. Based on Figure 2, the ANNs are written as Eq (4): 

𝑌 ൌ 𝜑൫𝑏  ∑ 𝑤,𝑥

ୀଵ ൯, (4) 

where ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ሽ are the inputs, ሼ𝑤ଵ, 𝑤ଶ, 𝑤ଷ, … , 𝑤ሽ are the weight of neuron 𝑖, 𝑏 is 
the bias, 𝜑ሺ. ሻ is the activation function, and 𝑌 is the output. 

2.2.4. The recurrent neural networks (RNNs) 

One of the reliable time series forecasting methods in univariate and multivariate cases is 
recurrent neural networks. The RNNs are a type of artificial neural network designed to process 
sequential data or time series data. RNNs can store the memory of previous information in time 
series data. With this ability to remember, RNNs can recognize data patterns well, so they can make 
accurate predictions. They work similarly to the Jordan networks [49] and Elman networks [50]. 
Storing information from the past is used by repeating the architecture and performing mathematical 
calculations sequentially, where the output data is stored and reused as input data. Figure 3 shows 
compressed and unfolded basic RNNs [51]. 

 

Figure 3. Basic the recurrent neural networks. 
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In Figure 3, the left image is a circuit diagram of a recurrent connection labeled 𝑣, where the 
RNNs are in an unrolled position into the full network (compressed). The right image shows the 
RNNs that have been unfolded into the full network so that the sequence becomes complete. 
Mathematically the hidden state is calculated by Eq (5): 

ℎ௧ ൌ 𝜑ሺ𝑤𝑥௧  𝑈ℎ௧ିଵ  𝑏ሻ, (5) 

and the output value 𝑦௧ is obtained using Eq (6): 

𝑦௧ ൌ 𝜑௬൫𝑤௬ℎ௧  𝑏௬൯, (6) 

where 𝑥௧ is the input vector, ℎ௧ is the hidden state, 𝑦௧ is the output vector, 𝑏 is the bias, 𝜑 is the 
activation, and 𝑈, 𝑊 are the parameter matrices. 

2.2.5. The long short-term memory (LSTM) 

As the circuit size and complexity increase, issues such as gradient bursting, gradient missing, and 
computational inefficiency have added to the complexity of using the RNNs. To address these issues, 
several approaches have been proposed such as the neural network architecture proposed by Lang et al. 
[52] and LSTM. The LSTM was introduced by Hochreiter & Schmidhuber as a solution to the missing 
gradient problem [53,54]. The LSTM has memory cells that effectively act as long-term memory 
storage and can update information. Figure 4 shows the memory unit of the LSTM. 

 

Figure 4. The LSTM unit memory. 

The LSTM consists of three gates, namely the input gate, forget gate, and output gate. The LSTM 
performs four steps in performing its processes. First is a forget gate that decides whether the input and 
output will be passed to the cell state or not. These values are passed to a sigmoid function, outputting 
with values of 0 and 1. A value of 1 means the previous information is kept, otherwise, a value of 0 
means the previous information is deleted. This forget gate value is written as Eq (7) [55]: 

𝑓௧ ൌ 𝜎൫𝑤𝑥௧  𝑈ℎ௧ିଵ  𝑏൯. (7) 
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The second is the input gate, which serves to determine how important the current input is to the 
process of forming a new cell �̅�௧, as shown in the equation below [56]: 

𝑖௧ ൌ 𝜎ሺ𝑤𝑥௧  𝑈ℎ௧ିଵ  𝑏ሻ. (8) 

�̃�௧ ൌ 𝑡𝑎𝑛ℎሺ𝑤𝑥௧  𝑈ℎ௧ିଵ  𝑏ሻ, (9) 

and this new cell state is now a long-term memory state and will be used in subsequent processes.  
Third is the cell state gate to update the old cell state 𝐶௧ିଵ with the new cell state �̃�௧, which is 

mathematically written as the equation below: 

𝐶௧ ൌ 𝑓௧ ⊙ 𝐶௧ିଵ  𝑖௧ ⊙ �̃�௧. (10) 

The multiplication of 𝑓௧ with 𝐶௧ିଵ aims to remove the information that has been determined 
at the forget gate stage, and then a new value 𝑖௧ is added and multiplied by �̃�௧. 

Fourth is the output gate that decides which cell state to generate. This output will be based on the 
cell state, with two activation functions sigmoid and tanh. The sigmoid activation function decides 
what information can go through the output gate and then the cell state is multiplied after being 
activated by the tanh activation function. It is mathematically written as the following equation: 

𝑜௧ ൌ 𝜎ሺ𝑤𝑥௧  𝑈ℎ௧ିଵ  𝑏ሻ, (11) 

and 

ℎ௧ ൌ 𝑜௧ ⊙ 𝑡𝑎𝑛ℎሺ𝐶௧ሻ, (12) 

where 𝑖௧ is input gate time 𝑡, 𝐶௧ is new cell state time 𝑡, �̅�௧ is new cell state time 𝑡, 𝑜௧ is output 
gate, 𝑓௧ is forget gate, ℎ௧ is hidden state time 𝑡, 𝑤 is input weight, 𝑤 is candidate layer weight, 
𝑤 is forget layer weight, 𝜎 is the activation of the sigmoid function, tanh is the activation of 
hyperbolic tangent function, and 𝑤 is output layer weight. 

2.2.6. The gated recurrent units (GRUs) 

The GRUs are a variation of LSTM and both have a similar design. The GRUs support hidden 
states, using an update gate and reset gate to solve the vanishing gradient problem. The GRUs have a 
special mechanism that determines that the hidden state ሺℎ௧ሻ must be updated and ℎ௧ must be reset. 
The cell diagram of GRUs with reset gate and update gate is shown in Figure 5 [57]. 
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Figure 5. The diagram of the GRUs cell. 

The GRUs have only one ℎ௧ ; therefore, the GRUs architecture is simpler than LSTM. 
Illustrating the GRUs process shown in Figure 5, mathematically the reset gate is written as the 
following equation [58]: 

𝑟௧ ൌ 𝜎ሺ𝑤𝑥௧  𝑈ℎ௧ିଵ  𝑏ሻ, (13) 

and the update gate equation is as follows: 

𝑧௧ ൌ 𝜎ሺ𝑤௭𝑥௧  𝑈௭ℎ௧ିଵ  𝑏௭ሻ, (14) 

the hidden state candidate equation is as follows: 

ℎ෨௧ ൌ 𝑡𝑎𝑛ℎሺ𝑊𝑥௧  𝑈ሾ𝑟௧ ⊙ ℎ௧ିଵሿ  𝑏ሻ, (15) 

the hidden state equation is as follows: 

ℎ௧ ൌ ሺ1 െ 𝑧௧ሻ ⊙ ℎ௧ିଵ  𝑧௧ ⊙ ℎ෨௧ሻ, (16) 

where 𝑟௧ is the reset gate, 𝑧௧ is the update gate, 𝑥௧ is the input vector, ℎ෨௧ is the candidate hidden 
state, ℎ௧ and 𝑦௧ are the output vector, 𝑏 is the bias, 𝜎 is a logistic activation functions, 𝑡𝑎𝑛ℎ is 
hyperbolic tangent activation functions, 𝑊, 𝑊௭, and 𝑊 are weight parameters, and Operator ⊙ 
is the Hadamard product. 

2.2.7. Model accuracy 

The accuracy of the model used must be evaluated to determine how good the model output is. 
The model accuracy evaluation used is the mean absolute error (MAE), root mean squared error 
(RMSE), and the mean absolute percentage error (MAPE) [59]. Residual or forecasting error is the 
difference between the actual value and the forecasting value, written as Eq (17) [60]: 

𝑒 ൌ 𝑌 െ 𝑌. (17) 

MAE is commonly used to measure prediction error in time series analysis. MAE is the average 
of the absolute difference between the actual value and the forecast value. MAE is written as the 
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following equation: 

𝑀𝐴𝐸 ൌ ଵ


∑ |𝑒|

ୀଵ . (18) 

RMSE calculates the average of the squared difference between the actual and predicted values, 
and then the square root is taken. The smaller the RMSE value, the better the performance of the 
model. RMSE is written as Eq (19) [61]: 

𝑅𝑀𝑆𝐸 ൌ ටଵ


∑ 𝑒

ଶ
ୀଵ . (19) 

A measure of forecasting accuracy used in addition to MAE and RMSE is MAPE, where MAPE 
calculates the average prediction error as a percentage of the actual value (20): 

𝑀𝐴𝑃𝐸 ൌ ଵ


∑ ቚ


ቚ

ୀଵ , (20) 

where 𝑒 is the prediction error, n is the amount of data, 𝑌 is the actual value, and 𝑌 is the 
forecast value. 

The judgment of forecasting accuracy is, 𝑀𝐴𝑃𝐸  0.1 judgment: Highly accurate, 0.1 
𝑀𝐴𝑃𝐸  0.2  assessment: Good forecast, 0.2 ൏ 𝑀𝐴𝑃𝐸  0.5  assessment: Reasonable forecast, 
and 𝑀𝐴𝑃𝐸  0.5 assessment: Inaccurate forecast [62]. 

2.2.8. Return 

Return is the rate of profit or loss obtained by investors from investment. Return is calculated 
by Eq (21): 

𝑋 ൌ 

షభ
െ 1, (21) 

where 𝑋 is the return at time 𝑖, 𝑃 is the price at time 𝑖, and 𝑃ିଵ is the price at the previous period. 

2.2.9. Extreme value theory 

The EVT method is used to identify, detect, and study heavy tail patterns in data distributions. 
The basis of the EVT approach focuses on statistical behavior [63]. 
Theorem 1. 𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … , 𝑋  are a sequence of independent random variables with common 
distribution function 𝐹, and let: 

𝑀 ൌ 𝑚𝑎𝑥ሼ𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … 𝑋ሽ, (22) 

where 𝑛 is the number of observations, 𝑀 is the maximum value over n observations. 
Theorem 2. If there exists a constant sequence ሼ𝑎  0ሽ and ሼ𝑏ሽ such that: 

𝑃 ൌ ቄெି 


 𝑍ቅ → 𝐺ሺ𝑧ሻ    𝑎𝑠 𝑛 → ∞, (23) 

where 𝐺 is a non-degenerate distribution function, then 𝐺 belongs to the families: 
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𝑇𝑦𝑝𝑒 𝑜𝑓 𝐺𝑢𝑚𝑏𝑒𝑙 𝑓𝑎𝑚𝑖𝑙𝑦: 𝐺ሺ𝑧ሻ ൌ 𝑒𝑥𝑝 ቄെ𝑒𝑥𝑝 ቂെ ቀ௭ି


ቁቃቅ , െ∞ ൏ 𝑧 ൏ ∞; (24) 

𝑇𝑦𝑝𝑒 𝑜𝑓 𝐹𝑟é𝑐ℎ𝑒𝑡 𝑓𝑎𝑚𝑖𝑙𝑦: 𝐺ሺ𝑧ሻ ൌ ቐ
0,                                  𝑧  𝑏,

𝑒𝑥𝑝 ቊെ ൬
𝑧 െ 𝑏

𝑎
൰

ିఈ

ቋ , 𝑧  𝑏;
 (25) 

  𝑇𝑦𝑝𝑒 𝑜𝑓 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑓𝑎𝑚𝑖𝑙𝑦: 𝐺ሺ𝑧ሻ ൌ ቊ𝑒𝑥𝑝 ቄെ ቀ௭ି


ቁ

ఈ
ቅ , 𝑧 ൏ 𝑏,

1,                            𝑧  𝑏,
 (26)  

for parameters, 𝛼  0, 𝑏 and in the case of families Frechet and Weibull, 𝛼  0. 
Each family type has scale ሺ𝑎ሻ and location ሺ𝑏ሻ parameters. The Fréchet and Weibull families 

have the shape parameter 𝛼. These three families have different forms of behavior towards extreme 
value behavior, corresponding to different forms of tail behavior for the distribution function 𝐹 of 
𝑋. However, in practice, only one of them is chosen to be applied to estimate the most suitable 
distribution parameters. Therefore, an appropriate method is needed to select the type of one of these 
three family types that best fits the data at hand. Finally, a better analysis is offered to combine all 
three into one model that has another form of the distribution function. For a non-degenerate 
distribution function 𝐺 , then 𝐺  is the generalized extreme value (GEV) of the distribution. 
Applying the Fisher-Tippet theorem to the distribution of extreme value sample data based on the 
GEV distribution with cumulative distribution function [64,65]: 

𝐺ሺ𝑧ሻ ൌ

⎩
⎪
⎨

⎪
⎧𝑒𝑥𝑝 ൭െ 1  𝜉 ቂ

𝑧 െ 𝜇
𝛿

ቃ
ିଵ

క
൩ , 𝑖𝑓 𝜉 ് 0,

  

𝑒𝑥𝑝 െ𝑒𝑥𝑝 ቈെ ቂ
𝑧 െ 𝜇

𝛿
ቃ൩,     𝑖𝑓 𝜉 ൌ 0,

 (27) 

where 𝜇 is the location parameter, 𝛿 is the scale parameter, and 𝜉 is the shape parameter. Defined 

on the set 𝑧: ቄ1  𝜉 ቀ௭ି௨

ఋ
ቁ  0ቅ, its parameters fulfill the requirements െ∞ ൏ 𝜇 ൏ ∞, 𝛿  0, and 

െ∞ ൏ 𝜉 ൏ ∞. 
The location parameter ሺ𝜇ሻ, scale parameter ሺ𝛿ሻ, and shape parameter ሺ𝜉ሻ are estimated 

using the maximum likelihood estimation (MLE) method [66]. The result is an estimate of the of the 
𝜇 parameter, 𝛿 parameter, and 𝜉 parameter. GEV is divided into three types based on the value of 
𝜉, including the Gumbel distribution when 𝜉 ൌ 0, the Fréchet distribution at 𝜉  0, and the Weibull 
distribution at 𝜉 ൏ 0. The value of 𝜉 has an infinite limit, the larger the value of 𝜉, the greater the 
possibility of extreme values, usually leading to heavier distributions. The type with the heaviest tail 
is the Fréchet distribution. This is shown by the explanation that when 𝜉 ൏ 0, then the extreme 
values are finite, and if 𝜉  0 then the extreme values are infinite. 

There are two EVT methods, namely block maxima (BM) and peak over threshold (POT). The 
BM method identifies extreme values based on the maximum value of data grouped by specific 
blocks. This method produces only one extreme value in each block, ignoring the role of other data. 
Therefore, this method will require a large amount of data for the extreme value identification 
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process. This method tends to be considered inefficient. The fundamental difficulty in extreme value 
analysis is the limited amount of data for model estimation. The POT approach is considered to be 
more efficient in data utilization [67]. The POT method identifies extreme data behavior patterns 
based on values that exceed the threshold ሺ𝑢ሻ. Data that exceeds 𝑢 is an extreme value. The value 
of 𝑢 is estimated by the mean residual life plot (MRLP) method [68]. 

2.2.10. VaR GPD combined with machine learning 

VaR is the maximum expected loss value of investment in a certain period with a certain level 
of confidence from the concept of a normal curve. There are two types of VaR values, namely a 
positive value means that the investment activities carried out generate profits. Moreover, a negative 
VaR value indicates that the investment activities carried out experience a loss. 

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 denote the actual return sequence on time 1, 2, . . . , 𝑛.  Suppose also 
𝑋ᇱ

ଵ, 𝑋ᇱ
ଶ, … , 𝑋ᇱ

 is the sequence of returns predicted using the ML model on time 1, 2, . . . , 𝑛. The 
ML-based returns are the sum of the actual return and the predicted return: 

𝑋ത ൌ 𝑋  𝑋′,        𝑖 ൌ 1, 2, … , 𝑛. (28) 

Thus, the ML-based returns sequence can be denoted as 𝑋തଵ, 𝑋തଶ, … , 𝑋ത. Extreme value can be 
defined as the maximum of a random variable 𝑋തଵ, 𝑋തଶ, … , 𝑋ത, which are assumed to be independent and 
identically distributed (iid). By replacing the variable X with 𝑋ത, the POT model approach focuses on 
estimating the distribution function 𝐹௨ of the values of 𝑋ത that exceed 𝑢. For a random variable 𝑋ത with 
an unknown distribution function 𝐹, the conditional excess distribution function is defined as: 

𝐹௨ ሺ𝑦തሻ ൌ 𝑃ሺ𝑋ത െ 𝑢  𝑦ത | 𝑋ത  𝑢ሻ ൌ ிሺ௬തା௨ሻିிሺ௨ሻ

ଵିிሺ௨ሻ
ൌ ிሺ௫̅ሻିிሺ௨ሻ

ଵିிሺ௨ሻ
, (29) 

for 0  𝑦ത ൏ �̅�ி െ 𝑢, where �̅�ி   ∞ is the right endpoint of the underlying distribution 𝐹. 

Theorem 3. Balkema & Haan, (1974), and Pickands., (1975). For a large class of underlying 
distribution functions 𝐹 and large 𝑢, 𝐹௨ is well approximated by the GPD [69,70]: 

𝑙𝑖𝑚
௨→ఙ

𝑠𝑢𝑝ஸ௫̅ழ௫̅ಷି௨ห𝐹௨ሺ𝑦തሻ െ 𝐺క,ఋሺ𝑦തሻห ൌ 0, (30) 

where 𝑢 is threshold, 𝐹௨ is the distribution of the excess value over a 𝑢, and �̅�ி is the right 
endpoint of the underlying distribution 𝐹. 

The distribution function 𝐺క,ఋሺ𝑦തሻ is the GPD given by [71]: 

𝐺క,ఋሺ𝑦തሻ ൌ

⎩
⎪
⎨

⎪
⎧

1 െ 1  𝜉
ሺ�̅� െ 𝑢ሻ

𝛿
൨

ିଵ
క

, 𝑖𝑓 𝜉 ് 0,
  

1 െ 𝑒𝑥𝑝 
ሺ�̅� െ 𝑢ሻ

𝛿
൨,        𝑖𝑓 𝜉 ൌ 0,

 (31) 

where 𝛿 is the scale parameter, 𝜉 is the shape parameter, 𝛿  0, and ሺ�̅� െ 𝜇ሻ  0. 
In the POT method, parameter estimation using MLE to obtain the parameter 𝛿, and parameter 
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𝜉 required in the calculation of VaRGPD-ML(α). If n is the number of ML-based returns observations 
and 𝑁௨ is the number of observations that exceed 𝑢, then the empirical estimate of 𝐹ሺ𝑢ሻ is equal 

to 
ିேೠ

ேೠ
 [72]. Empirical distribution function to estimate 𝐹തሺ𝑢ሻ: 

𝐹തሺ𝑢ሻ ൌ ேೠ


ൌ 1 െ 𝐹ሺ𝑢ሻ, (32) 

by substituting Eq (30) into Eq (29), the approximation 𝐹ሺ�̅�ሻ, for �̅�  𝑢, can be obtained 

𝐹௨ ሺ𝑦തሻ ൌ ிሺ௫̅ሻିிሺ௨ሻ

ଵିிሺ௨ሻ
. (33) 

𝐹ሺ�̅�ሻ ൌ 𝐹ሺ𝑢ሻ  ሺ𝐺క,ఋሺ𝑦തሻሻ𝐹തሺ𝑢ሻ. (34) 

𝐹ሺ�̅�ሻ ൌ 1 െ 𝐹ሺ𝑢ሻ  ቀ𝐺క,ఋሺ𝑦തሻቁ 𝐹തሺ𝑢ሻ, (35) 

similar 

𝐹ሺ�̅�ሻ ൌ 1  𝐹തሺ𝑢ሻൣ𝐺క,ఋሺ𝑦തሻ െ 1൧. (36) 

𝐹ሺ�̅�ሻ ൌ 1  ேೠ


ቈ1 െ ቀ1  𝜉

ሺ௫̅ି௨ሻ

ఋ
ቁ

ିభ
 െ 1, (37) 

similar 

𝐹ሺ�̅�ሻ ൌ 1 െ ேೠ


ቈቂ1  𝜉 ሺ௫̅ି௨ሻ

ఋ
ቃ

ିభ
. (38) 

The high quantile estimator the VaR, for 𝛼  ିேೠ


 can be obtained by reversing the Eq (38): 

𝛼 ൌ 1 െ ேೠ


ቂ1  𝜉መ ഀሺிሻି௨

ఋ
ቃ

ିభ
. (39) 

ቂ1  𝜉መ ഀሺிሻି௨

ఋ
ቃ

ିభ
 ൌ 

ேೠ
ሺ1 െ 𝛼ሻ. (40) 

𝜉መ ഀሺிሻି௨

ఋ
ൌ ቂ 

ேೠ
ሺ1 െ 𝛼ሻቃ

ିక

െ 1. (41) 

Finally 
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𝑉𝑎𝑅ீିெሺఈሻ ൌ 𝑞ఈሺ𝐹ሻ ൌ 𝑢  ఋ

క
 ቈቂ 

ேೠ
ሺ1 െ 𝛼ሻቃ

ିక

െ 1, (42) 

where 𝑛 is the number of ML-based returns observations, 𝑁𝑢 is the observations that exceed the 
threshold, 𝛿መ is the scale parameter estimate, and 𝜉መ is the shape parameter estimate, 𝛼 is the 
confidence level of VaR. 

The simplest method for estimating investment risk is to use the empirical quant of the return 
distribution. This method is often called VaR historical simulation (VaRHS(α)) [73]. For the analysis, 
we use the VaRHS(α) method as a comparison method. 

2.2.11. Backtesting 

Backtesting is conducted to determine the validity of the VaR model, using the method 
developed by Kupiec [74] which is based on the failure rate with the log-likelihood ratio (𝐿𝑅) 
approach. The exact likelihood ratio statistic is written as Eq (43): 

𝐿𝑅 ൌ െ2𝑙𝑛ሾሺ1 െ 𝑝ሻି𝑝ሿ  2𝑙𝑛 ቀ1 െ 


ቁ

ି
ቀ


ቁ


, (43) 

where 𝑝 is the confidence level for VaR, 𝑛 is the number of data, and 𝑓 is the number of failures. 
The VaR estimation results will be retested with the actual return value if the 𝑋  𝑉𝑎𝑅 value 

is considered failed. A model is rejected if it produces too few or too many failures. 

3. Results 

To achieve the objectives of this research, the methodological stages are applied in detail. The 
dataset used includes the closing price of the composite stock index, crude oil price, currency 
exchange rate against the dollar, and world gold price. The first step is data pre-processing, followed 
by data analysis based on descriptive statistics. Stock returns are calculated based on the closing 
price data of the composite stock index, further forecasting the closing price of the combined stock 
index with variables that affect stock fluctuations using RNNs, LSTM, and GRUs. The results of 
forecasting the closing price of the composite stock index are used to obtain the ML-based 𝑋ത. QQ 
plots and histograms are used to observe heavy tails in the data distribution of 𝑋 and 𝑋ത. Extreme 
values are identified using the POT method. Parameter estimation is employed to calculate 
VaRGPD-ML(α). Furthermore, the model is validated using the backtesting method. Finally, the 
conclusion of this study is outlined based on the research results. 

3.1. Data pre-processing 

Data pre-processing is done because the dataset may contain noise, incomplete, inconsistent, or 
missing data. The aim is to produce a complete dataset and improve the quality of the dataset. Initial 
field studies show that the stock market operating time is a working day, meaning any day other than 
Saturday, Sunday, or public holidays. If missing data is found between Monday and Friday, the value 
of the data is estimated using Eq (1). Table 1 presents the pre-processing of the data. 
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Table 1. Data pre-processing. 

Variables Symbol Period Missing Observation 
X1 IDX Composite (JKSE) 1260 75 1335 

FTSE Bursa Malaysia (KLSE) 1253 82 1335 
PSEi Index (PSEi) 1247 83 1335 
SET Index (SET) 1239 96 1335 

X2 Crude oil 1289 46 1335 
X3 Gold 1289 46 1335 
X4 Exchange rate (USD/IDR) 1334 1 1335 
 Exchange rate (USD/MYR) 1333 2 1335 
 Exchange rate (USD/PHP) 1334 1 1335 
 Exchange rate (USD/BTH) 1334 1 1335 

Applying RNNs, LSTM, and GRUs algorithms to data with drastic ranges will produce less 
accurate output. The min-max normalization method changes the data set to a scale of [0,1], which is 
carried out using Eq (2). This process is carried out because some ML algorithm activation functions 
can only process normalized data. Apart from that, min-max normalization will reduce the 
complexity of the ML algorithm. 

3.2. Machine learning-based returns 

In this research, the calculation of 𝑋ത  begins with the formation of a new return data 
distribution. This data distribution was obtained from the results of forecasting return values from the 
best ML-based multivariate time series forecasting model. Therefore, Eq (21) is modified by 
considering the residual value of the ANNs and written as Eq (44): 

𝑋′ ൌ
ሺିሻ

ሺషభିషభሻ
െ 1, (44) 

if Eq (17) is substituted into Eq (44), the following is obtained: 

𝑋′ ൌ
ሺିሼିሽሻ

ሺషభିሼషభିషభሽሻ
െ 1, (45) 

because 𝑋 ൌ 𝑌, 𝑋ିଵ ൌ 𝑌ିଵ similar 

𝑋′ ൌ 

షభ
െ 1, (46) 

where 𝑋 is the actual return period 𝑖, 𝑋′ is the return forecasting value, 𝑋ିଵ is the actual return 
in the previous period, 𝑒 is the residual in period i, and 𝑒ିଵ is the residual in the previous period, 
and 𝑌 is the forecasting result in period i, 𝑌ିଵ is the forecasting result in the previous period. 

The ML-based 𝑋ത model is the 𝑋 value from Eq (21) plus the 𝑋′ value from Eq (46) which 
contains the non-linear elements of the ANNs output as shown in Eq (28). 
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3.3. Data analysis 

The dataset of this research is the historical closing price of the JKSE, KLSE, PSEi, and SET 
composite stock indices. In addition, we use historical data on the closing price of crude oil, the 
closing price of gold, and the closing price of each country's exchange rate. Figure 6 shows the close 
price fluctuations of JKSE, KLSE, PSEi, and SET. 

 

Figure 6. Composite stock index (CSI). 

Figure 6 is a graph of the closing price movements of the JKSE, KLSE, PSEi, and SET composite 
stock indices from four countries, namely Indonesia, Malaysia, the Philippines, and Thailand (adjusted 
for each country’s currency). This graph shows that there was a decline in closing prices on all stock 
exchanges in March 2020, when the COVID-19 pandemic was first announced by WHO. March 2020 
was the period of the highest volatility in 2020. This global pandemic triggered extreme changes in 
stock market performance, causing the composite stock index to drop dramatically, and fluctuate 
greatly in line with the development of the pandemic. This condition illustrates that the stock market is 
characterized by high volatility and non-linear characteristics. Table 2 below presents the descriptive 
statistics of the closing prices of the CSIs of the four countries. 

Table 2. Descriptive statistics of the main data. 

Symbol Min Median Mean Max SD TNNs test ADF test 
JKSE 3938 6445 6339 7360 688.892 0.05489 0.4456 
KLSE 1220 1531 1529 1731 85.022 0.03132 0.0391 
PSEi 4623 6721 6844 8365 689.973 0.20040 0.2668 
SET 1024 1580 1541 1741 133.114 0.00774 0.4637 

Table 2 shows that all standard deviation (SD) of the composite stock indices are smaller than 
the mean value, indicating that the data is homogeneous. The results of the min and max analysis, all 
of the composite stock indices fluctuate greatly, especially the KLSE has a large enough difference 
between min and max, which is 70.48%, while JKSE, PSEi, and SET have smaller min and max 
ranges, below 60%. 
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Terasvirta neural networks (TNNs) tests are conducted to characterize the data with the 
terasvirta.test function available in the RStudio application. The results show that KLSE and SET are 
non-linear in character, with a p-value < 0.05. In contrast, the JKSE and PSEi have linear data 
characteristics. These results illustrate that the dataset of close price fluctuations of the composite 
stock index used represents data with linear and non-linear characteristics. 

Stationary test using augmented Dickey-Fuller (ADF) Test. Only KLSE was identified as 
stationary with a p-value < 0.05. On the other hand, JKSE, PSE, and PSEi produced p-values > 0.05. 
This indicates that the time series data is not stationary. 

3.4. Time series forecasting model based on machine learning 

The most important thing to do when building an ML-based multivariate time series forecasting 
model is to organize the data in such a way that the model knows the order of the input variable data, 
as well as the target variable data during the learning and testing stages. In this study, the sliding 
window (SW) technique is used to obtain patterns in time series data. This technique allows data 
analysis to identify valuable patterns in time series data while reducing the complexity of the 
algorithms used. The SW technique generally makes the forecasting model produce much better 
accuracy because the model is retrained after shifting only one block of data [75]. Figure 7 shows the 
SW used in this study. 

 

Figure 7. The sliding window is multivariate. 

The window size ሺ𝑘ሻ is set according to the working days, which consist of five days a week, 
so 𝑘 ൌ 5. In the ML-based multivariate time series forecasting model, the value of 𝑘 ൌ  5 means 
that every five periods of data will obtain the input variable 𝑥௧

, and the next one period of data will 
obtain the output variable 𝑦௧

 or target data. Parameter 𝑛 is the number of variables used. This study 
uses four variables for model input, namely 𝑥௧

ଵ is the historical close of the composite stock index, 𝑥௧
ଶ 
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is the world crude oil price, 𝑥௧
ଷ is the gold price, and 𝑥௧

ସ is the exchange rate of each country against 
the US Dollar. This multivariate SW process runs continuously until the data period ends ሺ𝑡ሻ. 

Min-max normalization to produce the number ranging between 0 and 1 using Eq (2) is applied to 
the dataset. The dataset is divided by a ratio of 80:20, 80% learn data, and 20% test data. The training 
dataset functions to determine weights and biases when training the model, while the testing dataset is 
used as an evaluator of the model being built. The validation composition of each dataset is set at the 
time of the hyperparameter setting by providing a split validation value. In building the ML-based 
multivariate time series forecasting model, the input batch frame is formed in an array shape 
(sample-batch-size, window size, number of variables, target). Sample-batch-size is the number of r 
partitioned samples, where r = length(data) - 𝑘, the number of variables is 𝑛 ൌ 4, and the target is the 
value to be used as the output reference, in this case, target = 1. Based on the 80:20 data composition, the 
number of training data samples is 1068, i.e., period 1 to period 1068, and the number of test data is 267 
periods, starting from period 1069 to period 1335. The total partitions ሺ𝑟ሻ generated are 1063 for the 
learn data and 262 for the test data. So, the input frame for the training data is array shape (1063, 5, 4, 1) 
and the input frame for the test data is array shape (262, 5, 4, 1). 

Experiments were conducted to find the best model architecture by changing the values of 
hyperparameter variables. Hyperparameter settings are performed to obtain best-fitting model results 
when building the model architecture. The optimal number of hidden layers, the optimal number of units 
in each layer, the activation function, the appropriate lost validation function, and the best optimizer 
greatly affect the results of the learning process. Epoch is the number of iterations during model training. 
The loss function is used to measure the effectiveness of the model in making predictions at each epoch, 
seen from the error difference between prediction and actual, in this case, the mean squared error (MSE) 
is set as the loss function. Root mean square propagation (RMSprop) and “Adam’’ are used as 
optimization algorithms. The following Table 3 shows the hyperparameter settings. 

Table 3. Hyperparameter setting. 

Parameter Value Status 
Array shape (train) (1063, 5, 4, 1) Fixed 
Array shape (test) (262, 5, 4, 1) Fixed 
ANNs type RNNs, LSTM, and GRUs Experiment 
Hidden layers (HL) 1, 2  Experiment 
Neurons / Units 10, 50 Experiment 
Optimizer Adam, RMSprop  Experiment 
Batch-size 32, 64 Experiment 
Validation split 0.2 Fixed 
Max epochs 20, 30, 50 Experiment 

The LC is used to evaluate the model training process, if the best-fitting condition has not been 
achieved, the hyperparameter is reset until best-fitting is achieved. After repeated experiments with 
changing the hyperparameter settings, The parameter set used was HL = 2 with the number of 
neurons = 50 each HL, loss select MSE, batch size = 32, and max epochs = 20. Based on these 
settings, the LC diagnostics of all models resulted in best-fitting models. The following shows the 
consecutive LCs of the selected models based on the best accuracy value, as shown in Figure 8. 
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Figure 8. The learning curve of the selected model. 

Figure 8 shows that all models can quickly learn the training data pattern with 𝑒𝑝𝑜𝑐ℎ  20. 
Based on the observation and evaluation of the LC, it can be concluded that there are no under-fitting 
or over-fitting models on the training dataset. If under-fitting or over-fitting occurs, the 
hyperparameter is reset, until the model can capture the pattern of training data and validation data. 
Under-fitting occurs when the model is unable to get a low enough error value on the training set and 
validation set. Over-fitting occurs when the accuracy value on the training data is high while the 
accuracy value on validation is low. This usually occurs if the model is trained for too long so that 
the validation loss plot decreases to a certain point and starts to increase again. A best-fitting LC is 
the goal of the learning algorithm and falls between over-fitting and under-fitting models. Best-fitting 
is identified by the training and validation loss decreasing to a point of stability with minimal 
difference between the two final loss values. Based on the LC evaluation, the selected model showed 
indications that the training stage worked well. It is characterized by the training and validation data 
loss functions that decrease dramatically and achieve a good fit before the end of the epoch. 

Based on the LC evaluation, the best-fitting model architecture was finally selected. This model 
is chosen to forecast test data. Figure 9 shows the forecasting results of the RNNs, LSTM, and GRUs 
models using the JKSE dataset. 
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Figure 9. Forecasting graphs of RNNs, LSTM, and GRUs models using JKSE data. 

Figure 9 shows the forecasting graph using the JKSE data. All models can read the pattern of 
the training data. The GRUs model forecasting results are closer to the training data than the RNNs 
and LSTM models. Likewise, when the GRUs model forecasts the test data, it outperforms the 
RNNs and LSTM models. Figure 10 shows the output of the RNNs, LSTM, and GRUs models 
when using KLSE data. 

 

Figure 10. Forecasting graphs of RNNs, LSTM, and GRUs models using KLSE data. 

Figure 10 shows the output of the RNNs, LSTM, and GRUs models using the KLSE data. At 
the training stage, all models can capture the patterns of the training data. The RNNs model is 
superior to the LSTM on the KLSE data, while the GRUs model seems to remain the most optimal 
among the three. Figure 11 displays the forecasting results of the three models using PSEi data. 
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Figure 11. Forecasting graphs of RNNs, LSTM, and GRUs models using PSEi data. 

Figure 11 shows the output of the RNNs, LSTM, and GRUs models using the PSEi data. All 
models learned the training data well, so there is no dominant model among the three. Likewise, when 
these three models forecast test data, they produce forecasts very close to the test data. Figure 12 
displays the forecasting results of the three models using SET data. 

 

Figure 12. Forecasting graphs of RNNs, LSTM, and GRUs models using SET data. 

Figure 12 visually shows the output of the RNNs, LSTM, and GRUs models using the SET data. 
In the training stage, the graph of the GRUs model looks almost the same as the data graph. This 
indicates that the GRUs model is dominant in this dataset. Likewise, at the testing stage, the GRUs 
model has better accuracy than the RNNs and LSTM models. Figures 9–12 have displayed the 
training and testing result graphs. All models are best-fitting models based on the LC diagnostics. 
The model is initially trained using the learning data. Then, the model is controlled based on the LC 
observations by changing the hyperparameter settings until it produces the best-fitting. The 
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best-fitting model is used to forecast the test data. The results of this test data forecasting is used as a 
new dataset for the calculation of X'. In the training phase (left vertical line graph), it can be seen that 
the model managed to read the data pattern well. All model outputs produce values that are close to the 
target variable values and follow the pattern of the learning data distribution. Likewise, when the 
selected model is used to forecast the test data (right-hand vertical line graph), the model successfully 
follows the target data pattern. Furthermore, model performance is measured by the MAPE, RMSE, 
and MSE methods. Table 4 presents the accuracy of the RNNs, LSTM, and GRUs models. 

Table 4. Model accuracy. 

Symbol 
RNNs LSTM GRUs 

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE 
JKSE 0.0173 0.0087 0.0062 0.0163 0.0082 0.0061 0.0113 0.0056 0.00410 
KLSE 0.0139 0.0134 0.0100 0.0226 0.0208 0.0162 0.0109 0.0110 0.00789 
PSEi 0.0163 0.0188 0.0130 0.0175 0.0197 0.0137 0.0148 0.0165 0.01160 
SET 0.0122 0.0162 0.0121 0.0176 0.0166 0.0129 0.0107 0.0110 0.00760 

Table 4 shows the model accuracy values. Based on the MAPE, RMSE, and MAE values, the 
GRUs model whose architecture is simpler than LSTM has the best accuracy in all samples. All 
forecasting models produce highly accurate accuracy based on MAPE values. Furthermore, this 
GRUs model will be used to forecast with test data. The forecasting results will be min-max 
renormalized using Eq (3). Table 5 presents 𝑋, 𝑋′, and 𝑋ത. 

Table 5. Comparison 𝑋 and 𝑋ത. 

Symbol 
Period 

1075 1076 1077 1078 … 1335 
JKSE 𝑋 0.0000072 -0.0001446 -0.0030911 -0.0092293 … 0.0044178 

𝑋′ -0.0000118 -0.0001929 -0.0005698 -0.0015931 … 0.0006556 
𝑋ത -0.0000046 -0.0003375 -0.0036608 -0.0108224 … 0.0050733 

KLSE 𝑋 -0.0049587 -0.0023292 0.0003733 -0.0067910 … 0.0033827  
𝑋′ 0.0019965 0.0000160 -0.0008551 -0.0013014 … 0.0016659 

 𝑋ത -0.0029622 -0.0023133 -0.0004818 -0.0080924 … 0.0050486 
PSEi 𝑋 -0.0054124 -0.0051482 0.0084281 -0.0149582 … -0.0012961  

𝑋′ -0.0006959 -0.0019877 -0.0025911 -0.0001923 … 0.0018835 
 𝑋ത -0.0061082 -0.0071360 0.0058369 -0.0151505 … 0.0005874 
SET 𝑋 -0.0039921 0.0036447 0.0065996 -0.0054836 … -0.0007208  

𝑋′ -0.0013941 -0.0011770 -0.0006119 0.0017013 … 0.0002137 
 𝑋ത -0.0053862 0.0024678 0.0059877 -0.0037823 … -0.0005072 

Table 5 presents the values of 𝑋, 𝑋′, and 𝑋ത using test data. The model will produce output 
starting from period 1075 to period 1335. There are two models generated in this study. The first 
model is the VaRGPD(α) model using 𝑋 data. The second model is the VaRGPD-ML(α) model where this 
model will use 𝑋ത data. 
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4. Discussion 

4.1. Return characteristics 

Descriptive statistics analysis was carried out to add information and variable relationships from 
return data. Table 6 presents descriptive statistics of X and 𝑋ത. 

Table 6. Descriptive statistics of the return data. 

Symbol  Min Mean Max SD Skewness Kurtosis 

JKSE X -0.0213853 0.0002525 0.0171358 0.005581595 -0.2852144 4.309061 

X’ -0.0071181 0.0001813 0.0056336 0.002099109 -0.2461606 3.103821 

 𝑋ത -0.0223225 0.0004338 0.0145267 0.005801407 -0.5799707 4.399383 

KLSE X -0.0196929 0.0001350 0.0144654 0.004437276 0.0941133 4.678326 

X’ -0.0085410 0.0000763 0.0056590 0.001788984 -0.3954494 6.238534 

𝑋ത -0.0247946 0.0002112 0.0129547 0.004827826 -0.3090902 5.754314 

PSEi X -0.0230900 0.0000632 0.0247400 0.007899659 -0.1258554 3.113695 

X’ -0.0103700 -0.0000056 0.0111200 0.003295881 0.1769271 3.499875 

𝑋ത -0.0282700 0.0000576 0.0254700 0.008398925 -0.2010673 3.316509 

SET  X -0.0312637 -0.0006605 0.0269770 0.007185647 0.0663270 4.906188 

X’ -0.0118895 -0.0006341 0.0055026 0.003116718 -0.2612103 2.834681 

 𝑋ത -0.0359890 -0.0012950 0.0181410 0.007862045 -0.4426459 4.105686 

Table 6 presents the descriptive statistics of the return dataset. Comparing the SD values of X 
and 𝑋ത, all SD values of 𝑋ᇱ ൏ 𝑋 ൏ 𝑋ത. The SD values in all samples are greater than the mean, 
identifying that there is a lot of variation in the data and there may be extreme values in the data 
distribution. The JKSE X, JKSE 𝑋ത, KLSE 𝑋ത, PSEi X, PSEi 𝑋ത, and SET 𝑋ത data yield negative 
skewness values, indicating that the distribution is skewed to the left, whereas the KLSE X and SET 
X data yield positive skewness values. The kurtosis values are greater than three, indicating that the 
data distribution has more values in the tail compared to the normal distribution, identifying a heavy 
tail in the data distribution. 

4.2. Diagnostic plots 

Table 6 shows skewness values that vary between positive and negative. In addition to the 
skewness values, the identification of extreme values is visualized using the normal QQ plot and 
histogram. In the QQ plot and histogram graphs, 𝑋ത is symbolized by X-ML. Figure 13 displays the 
QQ plot X and X-ML of the JKSE, KLSE, PSEi, and SET data. 
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Figure 13. QQ plot of the JKSE, KLSE, PSEi, and SET data. 

Figure 13 visually shows that most of the data distribution looks abnormal, except for the PSEi 
X and PSEi X-ML model data. The data of these two models are identified as normal data 
distribution where the plot shows a pattern close to the diagonal line. In contrast to the other data, 
there is a heavy tail in the data distribution. Figure 14 displays a histogram with the normal curve of 
X and 𝑋ത values. 

 

Figure 14. Histograms of the JKSE, KLSE, PSEi, and SET data. 
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Figure 14 shows histograms with normal curves of JKSE, KLSE, PSEi, and SET based on X and 
𝑋ത values. Based on the visual observation, there is a heavy tail in the distribution of X and 𝑋ത, where it 
does not appear that the values are symmetrically distributed, with the distance between the right and 
left tails of the distribution being equal. Only the PSEi data for both X and 𝑋ത  appear to be 
symmetrically distributed, which identifies the data as normally distributed. 

4.3. Threshold and parameter estimates 

The POT method identifies extreme patterns of data behavior by determining the value of 𝑢. 
Data that exceeds u is an extreme value. The value of 𝑢 is determined as optimally as possible to 
produce a minimum error rate, to have a small bias, and to have an ideal variance value when 
estimating the model. To obtain reliable estimates, the number of exceedances required is at least 50 
to 150 to produce stable parameter estimates. This means that for the number of data 𝑛  1000, the 
threshold value is approximated by. 
Theorem 4. The threshold based on normal distribution 

Let 𝑋ଵ,  𝑋ଶ, 𝑋ଷ, … ,  𝑋 are iid random variables, with unknown distribution function 𝐹. The 
POT model approach identifies values exceeding 𝑢 as extreme values. The value of 𝑢 with minimal 
bias and a sufficient number of extreme samples for 𝑛 ൏  1000 is well approximated: 

𝑢 ൎ 𝜇  ටଵ

ே
∑ ሺ𝑋 െ 𝜇ሻଶ

 , (47) 

where 𝑢 is the threshold, 𝑛 is the number of data, ሼ𝑋ଵ,  𝑋ଶ, 𝑋ଷ, … ,  𝑋ሽ are the data values, and 𝜇 
is the mean of the data values. 
Proof. Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 be iid random variables with an unknown CDF 𝐹ሺ𝑥ሻ. In the POT model 
approach, The threshold should be chosen such that it identifies the extreme value with the ideal 
amount and minimum bias. Assuming a normal distribution, let the data 𝑋  follow a normal 
distribution, i.e., 𝑋 ~ 𝑁 ሺ𝜇, 𝜎ଶሻ, with a mean parameter 𝜇 and standard deviation 𝜎 within the 
range ሺ𝜇 െ 𝜎, 𝜇  𝜎ሻ. To analyze extreme values, the threshold is set as 𝑢 ൌ 𝜇  𝜎. Normalize the 
data using the 𝑍 െ 𝑠𝑐𝑜𝑟𝑒, defined as: 

𝑍 ൌ ିఓ

ఙ
, (48) 

since 𝑋 ~ 𝑁 ሺ𝜇, 𝜎ଶሻ, Z follows a standard normal distribution, i.e., 𝑍 ~ 𝑁 ሺ0,1ሻ. The threshold  
𝑢 ൌ 𝜇  𝜎 can be rewritten as: 

𝑍 ൌ
ሺఓାఙሻିఓ

ఙ
ൌ 1. (49) 

Therefore, the probability that 𝑋 exceeds the threshold 𝑢 ൌ 𝜇  𝜎  is the same as the 
probability that 𝑍  1: 

𝑃ሺ𝑋  𝜇  𝜎ሻ ൌ 𝑃ሺ𝑍  1ሻ, (50) 

using the CDF of the standard normal distribution: 

𝑃ሺ𝑍  1ሻ ൌ 1 െ 𝑃ሺ𝑍  1ሻ ൌ 1 െ 𝛷ሺ1ሻ, (51) 
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where Φሺ1ሻ is the CDF of the standard normal distribution at 𝑍 ൌ 1. From the standard normal 
distribution table: 

𝛷ሺ1ሻ ൌ 0.8413, (52) 

thus 

𝑃ሺ𝑍  1ሻ ൌ 1 െ 𝛷ሺ1ሻ ൌ 0.1587. (53) 

This means that the probability of a value 𝑋 being above the threshold ൌ 𝜇  𝜎 ൌ 0.1587, or 
approximately 15.87%. Therefore, it is proven that the threshold 𝜇  𝜎 minimizes bias with a 
sufficient number of samples, which is about 15.87% above the threshold. 

4.4. Threshold experiment 

Experiments were conducted to obtain the value of 𝑢 with minimal bias and a sufficient 
number of extreme samples. In this experiment, the setting of 𝑢 is made with four models. The 𝑢ଵ 
model states that the extreme value is the value above the mean value, therefore 𝑢ଵ ൌ 𝜇. The 𝑢ଶ 
model is the value of  𝑢 based on the observation of the MRLP. The 𝑢ଷ model is the extreme 
value is the value above the mean + SD; therefore, 𝑢ଷ ൌ 𝜇  𝜎. The 𝑢ସ model states that the 
extreme value is the value above mean + twice the SD; thus, 𝑢ସ ൌ 𝜇  2𝜎, where 𝑢 is the threshold, 
𝜇 is the mean, and 𝜎 is the standard deviation. 

Estimating the value of 𝑢 using the MRLP method by looking at the value of 𝑢 that is close to 
linear. Figure 15 displays the MRLP of the X and 𝑋ത data distributions. 
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 15. Mean residual life plot: (a) JKSE; (b) KLSE; (c) PSEi; and (d) SET. 
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Table 7 presents the results of the experiments conducted to obtain the ideal 𝑢 value, as well as 
the estimated 𝛿 and shape 𝜉. 

Table 7. The parameter estimation. 

Symbol 𝒖 model 𝒏 𝒖 𝑵𝒖 Percentage 𝜹 𝝃 Status 

JKSE X 𝑢ଵ 261 0.00025249 141 54.02% 0.00449056 -0.15128876 Too low 

 𝑢ଶ 261 0.005 41 15.71% 0.00277539 0.12457724 Ideal 

 𝑢ଷ 261 0.00583408 30 11.49% 0.00349917 -0.03960151 Ideal 

 𝑢ସ 261 0.01141568 8 3.07% 0.00595227 -1.04059067 Too high 

JKSE 𝑋ത 𝑢ଵ 261 0.00043378 136 52.11% 0.00569456 -0.33742725 Too low 

 𝑢ଶ 261 0.005 52 19.92% 0.00310365 -0.10562157 Ideal 

 𝑢ଷ 261 0.00623519 31 11.88% 0.00472750 -0.48832701 Ideal 

 𝑢ସ 261 0.01203660 5 1.92% 0.00250317 -1.00525948 Too high 

KLSE X 𝑢ଵ 261 0.00013498 121 46.36% 0.00421928 -0.17932436 Too low 

 𝑢ଶ 261 0.004 42 16.09% 0.00416035 -0.29147247 Ideal 

 𝑢ଷ 261 0.00457226 38 14.56% 0.00365306 -0.23417870 Ideal 

 𝑢ସ 261 0.00900953 8 3.07% 0.00668316 -1.22495709 Too high 

KLSE 𝑋ത 𝑢ଵ 261 0.00021124 121 46.36% 0.00496352 -0.28462496 Too low 

 𝑢ଶ 261 0.004 48 18.39% 0.00538449 -0.55239240 Ideal 

 𝑢ଷ 261 0.00503906 39 14.94% 0.00484277 -0.55778751 Ideal 

𝑢ସ 261 0.00986689 8 3.07% 0.00441038 -1.42832318 Too high 

PSEi X 𝑢ଵ 261 0.00006319 133 50.96% 0.00766454 -0.26180449 Too low 

 𝑢ଶ 261 0.007 49 18.77% 0.00476065 -0.14938315 Ideal 

 𝑢ଷ 261 0.00796285 41 15.71% 0.00445067 -0.13242676 Ideal 

 𝑢ସ 261 0.01586251 5 1.92% 0.00411562 -0.22284767 Too high 

PSEi 𝑋ത 𝑢ଵ 261 0.00005764 141 54.02% 0.00743901 -0.22313744 Too low 

 𝑢ଶ 261 0.008 35 13.41% 0.00531591 -0.12794773 Ideal 

 𝑢ଷ 261 0.00845656 31 11.88% 0.00566219 -0.17101014 Ideal 

 𝑢ସ 261 0.01685549 6 2.30% 0.00146834 0.73315525 Too high 

SET X 𝑢ଵ 261 -0.00066051 131 50.19% 0.00732443 -0.22988621 Too low 

 𝑢ଶ 261 0.007 25 9.58% 0.00762504 -0.27965514 Ideal 

 𝑢ଷ 261 0.00652514 27 10.34% 0.00754547 -0.26388436 Ideal 

 𝑢ସ 261 0.01371078 10 3.83% 0.00450188 -0.12583437 Too high 

SET 𝑋ത 𝑢ଵ 261 -0.00129463 134 51.34% 0.00902711 -0.43933976 Too low 

 𝑢ଶ 261 0.007 35 13.41% 0.00498006 -0.33897700 Ideal 

 𝑢ଷ 261 0.00656741 36 13.79% 0.00573323 -0.41704069 Ideal 

 𝑢ସ 261 0.01442946 5 1.92% 0.00724593 -1.95245071 Too high 

Table 7 shows that the 𝑢ଵ model produces too many extreme values, the average number of 
extreme values identified is 50.67% of the total data, this happens because the value of 𝑢 is too low. 
This value will potentially produce bias. The 𝑢ଶ  model determines the value of 𝑢 based on 
observations from the MRLP. Visually, the 𝑢 value obtained from MRLP observations is a value 
close to SD with two decimal places. This model produces an average number of extrinsic values of 
15.66% of the data. The 𝑢ଷ model determines the value of 𝑢 based on the mean + 𝜎 value. This 
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model identifies extreme values, including 13.07% on average, of the data. The 𝑢ଷ model produces 
𝑢 with better precision, values with eight decimal places compared to the 𝑢ଶ model. The 𝑢ସ model 
produced an average number of extreme values of 2.63% of the data. This is a very small gain when 
estimating the model. Based on the experiments conducted, two models produce the ideal number of 
extreme values, namely the 𝑢ଶ model and the 𝑢ଷ model. The 𝑢ଷ model is chosen for determining 
the value of the 𝑢 because it produces a larger value of the 𝑢, where the higher the 𝑢 value, the 
more extreme data follows the GPD. Extreme values that exceed the threshold based on the 𝑢ଷ 
model will be checked to determine whether the data exceedances follow the GPD using the 
Kolmogorov-Smirnov test. The hypothesis criteria are:  

H0: Data that exceeds the threshold is GPD.  
H1: Data that exceeds the threshold is not GPD.  
Table 8 shows the Kolmogorov-Smirnov test for data exceeding the threshold based on the 𝑢ଷ 

model. 

Table 8. Kolmogorov-Smirnov test of exceedances data based on 𝑢ଷ model. 

Symbol 𝒖𝟑  𝑵𝒖  p-value Hypothesis 
JKSE X 0.005834084 30 0.3672 H0 is accepted 
JKSE 𝑋ത 0.006235188 31 0.3593 H0 is accepted 
KLSE X 0.004572256 38 0.9986 H0 is accepted 
KLSE 𝑋ത 0.005039064 39 0.6716 H0 is accepted 
PSEi X 0.007962850 41 0.7741 H0 is accepted 
PSEi 𝑋ത 0.008456561 31 0.9778 H0 is accepted 
SET X 0.006525136 27 0.9980 H0 is accepted 
SET 𝑋ത 0.006567412 36 0.7747 H0 is accepted 

Based on Table 8, the Kolmogorov-Smirnov test obtained p-values > 0.05 for extreme data 
exceeding the threshold using the 𝑢ଷ model. This result indicates that there is not enough evidence 
to reject hypothesis H0, therefore the data that exceeds the threshold is GPD. 

4.5. VaR forecasting 

Table 7 shows the parameter estimates. The parameter estimate 𝛿 describes the diversity of 
extreme values. The parameter 𝜉 describes the tail behavior of the extreme data, and the greater the 
value of 𝜉, the greater the chance of extreme occurrence, and 𝜉  0 extremes are not limited, and 
𝜉 ൏ 0 extremes are limited distribution. VaRGPD-ML(α) is obtained based on Eq (42), using the value 
of u from the 𝑢ଷ model, the estimated value of parameter 𝛿, and parameter 𝜉. The calculation 
results of the VaRGPD(α) model and VaRGPD-ML(α) model are presented in Table 9. 
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Table 9. Approximate parameters and VaR forecasting. 

Symbol 𝒖𝟑 
Parameters 

Model 
VaR 

𝜹 𝝃 0.90 0.95 0.99 

JKSE 0.005834084 0.003499169 -0.039601513 VaRGPD(α) 0.006320044 0.008699339 0.013978394 

 0.006235188 0.004727499 -0.488327005 VaRGPD-ML(α) 0.007015331 0.009571204 0.013024818 

KLSE 0.004572256 0.003653063 -0.234178703 VaRGPD(α) 0.005885905 0.008026365 0.011840161 

 0.005039064 0.004842766 -0.557787506 VaRGPD-ML(α) 0.006781583 0.009006807 0.011800082 

PSEi 0.007962850 0.004450674 -0.132426763 VaRGPD(α) 0.009914008 0.012690503 0.018234225 

 0.008456561 0.005662193 -0.171010144 VaRGPD-ML(α) 0.009416560 0.013010300 0.019881080 

SET 0.006525136 0.007545473 -0.263884364 VaRGPD(α) 0.006779798 0.011516907 0.019684119 

 0.006567412 0.005733231 -0.417040690 VaRGPD-ML(α) 0.008292838 0.011310846 0.015712943 

Table 9 shows that the confidence level greatly affects the estimated value of VaR. The greater 
the confidence level, the greater the value of VaR. This describes the greater the risk that will be 
faced by investors. This level of risk describes the profits and losses experienced by investors. 
Table 10 presents the output of the investment risk forecasting model using the VaRHS(α), VaRGPD(α), 
and VaRGPD-ML(α) models. 

Table 10. VaR estimates. 

Symbol Model 
Confidence Level (α) 

0.90 0.95 0.99 
JKSE VaRHS(α) -0.006687400 -0.009120857 -0.015895400 
 VaRGPD(α) 0.006320044 0.008699339 0.013978394 
 VaRGPD-ML(α) 0.007015331 0.009571204 0.013024818 
KLSE VaRHS(α) -0.004881989 -0.006678174 -0.009514125 
 VaRGPD(α) 0.005885905 0.008026365 0.011840161 
 VaRGPD-ML(α) 0.006781583 0.009006807 0.011800082 
PSEi VaRHS(α) -0.010520770 -0.012701800 -0.019099420 
 VaRGPD(α) 0.009914008 0.012690503 0.018234225 
 VaRGPD-ML(α) 0.009416560 0.013010300 0.019881080 
SET VaRHS(α) -0.009766997 -0.011342440 -0.016628710 
 VaRGPD(α) 0.006779798 0.011516907 0.019684119 
 VaRGPD-ML(α) 0.008292838 0.011310846 0.015712943 

Table 10 shows the output of the investment risk forecasting model using normal distribution 
VaR, which produces a negative VaR value. A negative VaR value indicates a possible loss in the 
value of the investment at the level of confidence used. Historical VaR values produce negative 
values because the approach of this method focuses on the left tail of the distribution of the return 
data. The left tail of the distribution reflects the worst-case loss scenarios or extreme values on the 
downside. Therefore, the VaR value is usually negative because it indicates a potential loss. If using 
the normal distribution VaR method, at a confidence level of 90%, the maximum loss estimate value 
occurs in the country of the Philippines. The VaRHS(0.90) value for PSEi was -0.010520770. This 
means that in market conditions that are assumed to be normal with moderate volatility and no 
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extreme events, the maximum loss is estimated to be around 1.05% of the value of the investment 
made. At a 95% confidence level, the largest estimated loss occurred in the Philippines country with 
an estimated value of VaRHS(0.95) of -0.012701800. Likewise, at the 99% confidence level, the highest 
value is the estimated investment risk in the Philippines with VaRHS(0.99) being -0.012701800. The 
results of the normal distribution VaR estimate do not take into account extreme events that tend to 
occur in financial markets. This makes normal VaR results sometimes less reflective of true risk, 
especially when there is high volatility and stock fluctuations that are outside the normal distribution. 

In contrast to VaRHS(α), the VaR model with the EVT approach focuses on measuring risk for 
rare events that have a major impact on investment activities by modeling the tail of the distribution 
from the return data. Table 10 shows the results of the VaRGPD(α) method with the EVT approach and 
the VaRGPD-ML(α) model with the ML combination EVT approach. At the 90% confidence level, 
generally, the estimation of the VaRGPD-ML(0.90) model produces a larger estimate than the VaRGPD(0.90) 
model, except for the PSEi model. At the 95% confidence level, generally, the VaRGPD-ML(0.95) model 
also produces a greater estimate of investment risk than the VaRGPD(0.95) model, except for SET. In 
contrast, at the 99% confidence level, the VaRGPD(0.99) model generally produces higher risk estimates, 
except for the PSEi model. It can be concluded that at 90% and 95% confidence levels, the 
VaRGPD-ML(α) model is more sensitive to rare but high-impact events, such as market crises or high 
volatility, so this model provides more protection to investors in the event of more extreme 
conditions than the VaRGPD(α) model. 

At the 90% confidence level, the highest level of investment risk among these four countries 
occurs in the Philippines. The estimated value of VaR = 0.009914008 is obtained from the 
VaRGPD(0.90) model. This VaR value estimates that if an investor invests in the Philippines, it is likely 
that the investor will experience a maximum profit of 0.99% of the invested value. 

At the 95% confidence level, the highest level of investment risk occurs in the Philippines, with 
the VaRGPD-ML(0.95) model, the estimated VaR = 0.0130103 is obtained. This VaR value illustrates that 
if an investor invests in the Philippines, at a confidence level of 95%, it is likely to experience a 
maximum profit of 1.30% of its investment value. 

At the 99% confidence level, the highest estimated investment risk level among these four 
countries is the Philippines. The estimated value of VaR = 0.019881080 is obtained from the 
VaRGPD-ML(0.99) model, meaning that if investors invest in the Philippines, at a 99% confidence level 
will experience a maximum profit of 1.99% of the investment value. 

The VaR method of the EVT approach, focusing only on the tail part of the distribution, is 
considered better at representing extreme events. This method specifically estimates the risk by 
paying attention to the behavior of the data at the tail of the distribution. Therefore, this approach is 
more sensitive to rare events that have a major impact, such as market crises. The advantage of this 
method is that it can capture the risk of extreme events that are not reflected in the normal 
distribution and is more accurate in markets with high volatility or when there is a risk of extreme 
price spikes. The VaRGPD-ML(0.95) model tends to get a larger VaR value, as it estimates the potential 
loss from extreme events. The positive values produced by the VaRGPD(α) and VaRGPD-ML(α) models 
show that under extreme conditions, the estimated investment risk can exceed a higher limit than the 
normal distribution estimate. Therefore, when the data shows high volatility as shown in Figure 6, 
using the VaRGPD-ML(α) model is more recommended, as it better reflects the investment potential and 
risk of extreme events. 
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4.6. Backtesting 

Backtesting is conducted to validate the model using the Kupiec method. The estimated VaR 
value is compared with the actual return data, which in this study is the test data. If the actual return > 
VaR is found, it is considered a failure. The LR value is calculated by Eq (43), and then the LR value 
is compared with the chi-square degrees of freedom one for each VaR confidence level based on the 
chi-square table with a degree of freedom of one α = 90% is 2.70554, α = 95% is 3.84146, and α = 
99% is 6.6349. The model with VaR(α) at a 90% confidence level is valid, if the LR value < 2.70554, 
and vice versa the VaR(α) model at a 90% confidence level is invalid if LR > 2.70554. The VaR(α) 
model at the 95% confidence level is valid, if the LR value is < 3.84146, and otherwise the VaR(α) 
model is invalid if LR > 3.84146. The same calculation applies to the model with VaR(α) at the 99% 
confidence level declared valid if LR < 6.6349 otherwise the model is declared invalid if LR > 
6.6349. Table 11 shows the backtesting results. 

Table 11. The backtesting results. 

Symbol Model α VaR 𝒇 𝑳𝑹 Status 
JKSE VaRGPD(α) 0.90 0.006320044 28 0.1505 Valid 
  0.95 0.008699339 13 0.0002 Valid 
  0.99 0.013978394 5 1.7431 Valid 
 VaRGPD-ML(α) 0.90 0.007015331 18 3.9715 Invalid 
  0.95 0.009571204 12 0.0913 Valid 
  0.99 0.013024818 6 3.2536 Valid 
KLSE VaRGPD(α) 0.90 0.005885905 27 0.0341 Valid 
  0.95 0.008026365 11 0.3573 Valid 
  0.99 0.011840161 3 0.0562 Valid 
 VaRGPD-ML(α) 0.90 0.006781583 20 1.7089 Valid 
  0.95 0.009006807 8 2.3726 Valid 
  0.99 0.011800082 3 0.0562 Valid 
PSEi VaRGPD(α) 0.90 0.009914008 29 0.3467 Valid 
  0.95 0.012690503 12 0.0913 Valid 
  0.99 0.018234225 2 0.1566 Valid 
 VaRGPD-ML(α) 0.90 0.009416560 32 1.3927 Valid 
  0.95 0.013010300 11 0.3573 Valid 
  0.99 0.019881080 2 0.1566 Valid 
SET VaRGPD(α) 0.90 0.006779798 30 0.0522 Valid 
  0.95 0.011516907 14 0.0712 Valid 
  0.99 0.019684119 2 0.1566 Valid 
 VaRGPD-ML(α) 0.90 0.008292838 22 0.7519 Valid 
  0.95 0.011310846 14 0.0712 Valid 
  0.99 0.015712943 7 5.1069 Valid 

Backtesting with the Kupiec method is based on the failure ratio 𝑓 with a log-likelihood ratio 
approach. At a 90% confidence level, n = 261, this method produces a valid model if 19  𝑓  34. At 
the 95% confidence level, the model is valid if 7  𝑓  20. At a 99% confidence level, this method 
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produces a valid model if 𝑓  7, and beyond these conditions, the model is declared invalid. 
Table 11 shows the backtesting results, which state that the VaRGPD-ML(α) model is generally 

valid in all samples, except at the 90% confidence level the VaRGPD-ML(0.90) model produces too few 
𝑓 and causes this model to be invalid. At the 95% and 99% confidence levels, the VaRGPD-ML(α) 
model is valid in all data samples. At the 95% confidence level, this model generally produces a 
smaller 𝑓 value when compared to the VaRGPD(0.95) model. In general, the VaRGPD-ML(0.95) model is 
valid in all samples at the 95% confidence level, and generally, the 95% confidence level is used as a 
reference in most studies. 

5. Conclusions 

In the ML-based multivariate time series forecasting model, applying multivariate SW techniques 
will make it easier for the model to read the training data pattern so that the model is highly accurate 
based on the acquisition of MAPE in all samples in this study. Reviewing the LC of the model during 
training can be used to diagnose problems in learning, such as under-fitting models or over-fitting 
models so that the model can be controlled to obtain the best-fitting model. 

In this research, the results of historical forecasting of composite stock index closing price data 
using the RNNs, LSTM, and GRUs methods are used to find ML-based returns. The GRUs model 
significantly outperforms the RNNs and the LSTM models in all data samples based on the accuracy 
values obtained. 

The investment risk forecasting model uses the EVT approach, identifying extreme data 
behavior patterns by determining the 𝑢 value. In this study, the value of 𝑢 is determined based on 
the value of the threshold based on the normal distribution, so that the value of 𝑢 with the ideal 
number of extreme values can be obtained accurately and with precision. The threshold based on the 
normal distribution produces the 𝑢 value with better accuracy, i.e., 𝑢 values with five or more 
digits behind the comma while producing optimal 𝑢 values for identifying the ideal number of 
extreme values, and the extreme value distribution identified is GPD. 

Based on the backtesting results, the VaRGPD-ML(α) model produces a valid model in all samples 
at 95% and 99% confidence levels. The proposed model generally results in a greater estimate of the 
value of investment risk than the VaRGPD(α) model approach at a 95% confidence level. It can be 
concluded that at 90% and 95% confidence levels, the VaRGPD-ML(α) model is more accurate at 
capturing the risk of extreme events that are not reflected in the normal distribution when the market is 
non-linear with high volatility or when there is a risk of extreme price spikes; thus, this model provides 
more protection to investors in the event of more extreme conditions than the VaRGPD(α) model. 
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