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1. Introduction

Quantum calculus, or q-calculus, is of great interest to academics for its diverse applications in
scientific domains, especially in geometric function theory. In 1996, Ismail [1] was the first to define
and study the class of q-starlike functions and established many properties associated with the class.
The Russell operator, which is a generalization of the differential operator, plays a key role in
characterizing subclasses of analytic functions by examining their geometric properties, such as
starlikeness and convexity [2]. The Bernardi operator is similarly used to define classes of functions
with geometric constraints that are important in the study of conformal mappings and their
applications in complex analysis [3]. Later, in 2013, Mohammed and Darus [4] introduced the
q-derivative operator, which uses the convolution structure of normalized analytic functions and
q-hypergeometric functions. In 2014, Aldweby and Darus [5] introduced the q-analogue of the
Ruscheweyh differential operator. Over the years, there has been a growing exploration of the
connection between q-calculus and geometric function theory. The q-Salagean differential operator
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was introduced in [6]. Many authors successfully used these operators to investigate the properties of
both known and new classes of analytic functions [7, 8].

In [9], Selvakumaran et al. developed q-integral operators for analytic functions using fractional
q-calculus and examined the convex characteristics of these operators on specific classes of analytic
functions. In [10], the authors introduced the q-Bernardi integral operator and studied its integral-
preserving features. The q-analogue of the Noor integral operator was presented in [11]. In [12], the
q-Srivastava Attiya operator and q-multiplier transformation were presented in relation to a specific
q-Hurwitz-Lerch zeta function. By linking these q-operators with the idea of subordinations, several
subclasses of analytic functions have been identified and examined.

Many researchers contributed to the theory by obtaining coefficient estimates that contain the
initial coefficients of q-classes of biunivalent functions. The Fekete-Szego functional and Henkel
determinants were studied for these classes. Some recent studies have also focused on new families of
meromorphic functions [13].

The versatility and potential of q-calculus, as demonstrated by its ability to enhance our theoretical
understanding of analytic functions and its applicability in various scientific domains, have made it
an active area of research. The continued exploration and advancement of q-calculus in the field
of geometric function theory are expected to yield valuable contributions to both the theoretical and
practical aspects of this field.

This work explores new classes of analytic functions using the q-difference operator in the open unit
disk, inspired by recent developments in q-calculus and its applications to analytic functions. Previous
research has examined classical operator properties, but there is a gap in understanding q-operators,
particularly in terms of inclusion relations, integral preservation, and convolution identities. To fill this
gap, we examine the key characteristics of the new q-classes. In particular, we define inclusion relations
across q-classes, investigate integral-preserving characteristics of the q-integral operator, and deduce
convolution identities. These findings enhance the framework of q-calculus in geometric function
theory, offering new insights and tools for future research.

2. Materials and methods

This section provides some mathematical preliminaries that are utilized in this paper.
LetA denote the class of the functions expressed as follows:

f (z) = z +
∞∑

k=2

akzk,

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}.

Definition 2.1. ([14]) The convolution (Hadamard product) for two analytic functions f (z), g(z) ∈ A
is defined as

f (z) ∗ g(z) =

z + ∞∑
k=2

akzk

 ∗ z + ∞∑
k=2

bkzk

 , (z ∈ U).
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In the following definition, we will refer to a well-known function with two key conditions, called
a Schwarz function. These requirements are essential for applying various mathematical results and
theorems related to analytic functions, ensuring predictable and consistent behavior within the unit
disk.

Definition 2.2. ([14]) We say that two functions f (z) and g(z) are subordinate to one another and we
write f (z) ≺ g(z) if there is a Schwarz function w(z) with the conditions that

|w(z)| ≤ 1

and
f (z) = g(w(z)).

Additionally, in the case where the function g(z) is univalent in U, the subsequent equivalent
relationship is valid:

f (z) ≺ g(z)⇔ f (0) = g(0) and f (U) ⊂ g(U).

Definition 2.3. ([15]) For each non-negative integer k, the q-number, denoted by [k]q, is defined by

[k]q =
1 − qk

1 − q
= 1 + q + q2 + ... + qk−1,

where
[0]q = 0, [1]q = 1, [k]q! = [1]q[2]q...[k]q

and
limq→1−[k]q = k.

Example 2.4.
[1]0.3 = 1, [2]0.3 = 1.3, [3]0.5 = 1.75, [4]0.7 = 2.533

and
[3]0.8 = 2.44, [5]0.9 = 4.0951, [3]0.9! = [3]0.9[2]0.9[1]0.9 = 4.61.

Example 2.5. For non-negative integers r and s:

[r + s]q = [r]q + qr[s]q = qs[r]q + [s]q, [r − s]q = q−s[r]q − q−s[s]q.

In [16], Jackson defined the q-derivative and q-integral Dq: A → A as follows:

Definition 2.6. ([15]) The q-derivative operator of f (z) is defined by the formula

Dq f (z) =
f (z) − f (qz)

(1 − q)z
, q ∈ (0, 1), z ∈ U

and the q-integral is defined by the formula∫ z

0
f (t)dqt = z(1 − q)

∞∑
n=0

qn f (zqn),

provided that the series converges.
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Therefore, for f ∈ A, we conclude that:

Dq f (z) = 1 +
∞∑

k=2

[k]qakz[k−1]

and ∫ z

0
f (t)dqt =

∫ z

0

∞∑
k=1

aktkdqt =
z2

[2]q
+

∞∑
k=2

ak

[k + 1]q
zk+1.

Let P be the class of functions ϕ(z), which map the unit disk U analytically onto the right-half
plane. These functions play a major role in the field of geometric function theory. Many fundamental
results have been established in regard to this class of functions. Any function ϕ belonging to the class
P has the following representation form

ϕ(z) = 1 + p1z + p2z2 + ... + pkzk + ... = 1 +
∞∑

k=1

pkzk,

such that
ϕ(0) = 1

and
Re(ϕ(z)) > 0, z ∈ U.

These functions are usually called the Caratheodory functions or functions with a positive real part.
We shall utilize these kind of functions with the q-derivative using the subordination concept in the
following two definitions:

Definition 2.7. Let ϕ ∈ P, 0 ≤ γ < 1. A function f ∈ A is said to be in the class Sq(γ, ϕ), if and only if

1
1 − γ

(
zDq( f (z))

f (z)
− γ

)
≺ ϕ(z), (2.1)

where Dq is the q-derivative operator.

Definition 2.8. Let ϕ ∈ P, 0 ≤ γ < 1. A function f ∈ A is said to be in the class Cq(γ, ϕ), if and only if

1
1 − γ

1 + qz D2
q( f (z))

Dq( f (z))
− γ

 ≺ ϕ(z), (2.2)

where Dq is the q-derivative operator.

We note that for special values of the parameter γ and the function ϕ, with (q→ −1) , we obtain the
famous classes as follows:

(i)
lim

q→1−
Sq(0, ϕ) = S(ϕ)

and
lim

q→1−
Cq(0, ϕ) = C(ϕ),

then, (
z( f ‘(z))

f (z)

)
≺ ϕ(z),

(
z( f “(z))

f ‘(z)

)
≺ ϕ(z).
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(ii)
lim

q→1−
Sq(0,

1 + z
1 − z

) = S

and
lim

q→1−
Cq(0,

1 + z
1 − z

) = C,

then, (
z( f ‘(z))

f (z)

)
≺

1 + z
1 − z

, 1 +
(
z( f “(z))

f ‘(z)

)
≺

1 + z
1 − z

.

(iii)
lim

q→1−
Sq(γ,

1 + z
1 − z

) = S(γ)

and
lim

q→1−
Cq(γ,

1 + z
1 − z

) = C(γ),

then,
1

1 − γ

(
z f ‘(z)
f (z)

− γ

)
≺

1 + z
1 − z

,
1

1 − γ

(
1 +

z f “(z)
f ‘(z)

− γ

)
≺

1 + z
1 − z

.

We recall the q-differential operator Rλq, which was introduced in [5] and is also referred to as the
q-analogue of the Rusheweyh operator, defined as follows:

Rλq f (z) = z +
∞∑

k=2

[k + λ − 1]q!
[λ]q![k − 1]q!

akzk, (2.3)

where f ∈ A, λ > −1, and q ∈ (0, 1).
As q→ 1−1, we observe

lim
q→1
Rλq f (z) = z + lim

q→1

 ∞∑
k=2

[k + λ − 1]q!
[λ]q![k − 1]q!

akzk


= z +

∞∑
k=2

(k + λ − 1)!
(λ)!(k − 1)!

akzk

= Rλ f (z),

where Rλ is the most familiar Ruscheweyh differential operator.
It can also be shown that this q-operator is q-hypergeometric in nature as

Rλq f (z) = z 2Φ1(qλ+1, q, q, q; z) ∗ f (z),

where 2Φ1 is the Gauss q-hypergeometric function (see [17]).
The identity relation can be derived from Eq (2.3)

qλz
(
Dq(Rλq f (z))

)
= [λ + 1]qR

λ+1
q f (z) − [λ]qR

λ
q f (z). (2.4)

To discuss our main results, we state the following lemma:
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Lemma 2.9. [18] Let h(z) be convex in U with h(0) = 1, and let P: U → C with Re(P(z)) > 0 in U. If

p(z) = 1 + p1(z) + p2(z) + ...

is analytic in U, then
p(z) + P(z) ∗ zDq p(z) ≺ h(z)

implies that p(z) ≺ h(z).

3. Results

This section presents the main results, which include introducing two new classes of analytic
functions Sλq(γ; ϕ) and Cλq(γ; ϕ) along with their inclusion relation, integral preserving properties, and
convolution properties.

First, utilizing the q-operator Rλq, we define distinct classes of analytic functions for ϕ ∈ P and 0 ≤
γ < 1,

Sλq(γ; ϕ) =
{
f ∈ A : Rλq f ∈ Sq(γ; ϕ)

}
(3.1)

and
Cλq(γ; ϕ) =

{
f ∈ A : Rλq f ∈ Cq(γ; ϕ)

}
. (3.2)

Moreover, we observe that
f ∈ Cλq(γ; ϕ)⇔ zDq( f (z)) ∈ Sλq(γ; ϕ). (3.3)

Next, we prove the following lemma with the help of Lemma 2.9.

Lemma 3.1. Let β and η be complex numbers with β , 0 and let ψ(z) be convex in U with

ψ(0) = 1

and
ℜ(βψ(z) + η) > 0.

If
p(z) = 1 + p1(z) + p2(z) + . . .

is analytic in U, then

p(z) +
zDq(p(z))
βp(z) + η

≺ ψ(z)

implies that
p(z) ≺ ψ(z).

Proof. By setting

P(z) =
1

βp(z) + η
,

and we have
Re(ℜ(βψ(z) + η) > 0),

then
ℜ(P(z)) > 0.
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By Lemma 2.9, we get
p(z) ≺ ψ(z).

This completes the proof. □

3.1. Inclusion relations

Theorem 3.2. Let 0 ≤ γ < 1 and ϕ ∈ P with

ℜ(ϕ(z)) > max
{

0,−
[λ]q/qλ + γ

1 − γ

}
. (3.4)

Then
Sλ+1

q (γ; ϕ) ⊂ Sλq(γ; ϕ). (3.5)

Proof. Let f ∈ Sλ+1
q (γ; ϕ) and suppose that

ψ(z) =
1

1 − γ

zDq(Rλq f (z))

Rλq f (z)
− γ

 (z ∈ U). (3.6)

Then ψ is analytic in U with
ψ(0) = 1

and
ϕ(z) , 0

for all z ∈ U. Combining Eqs (2.4) and (3.6), we get

([λ + 1]q/qλ)
Rλ+1

q f (z)

Rλq f (z)
= (1 − γ)ψ(z) + ([λ]q/qλ) + γ. (3.7)

By employing logarithmic q-differentiation on both sides of Eqs (3.7) and (3.6), we obtain

log q
q − 1

[
1

1 − γ

zDq(Rλ+1
q f (z))

Rλ+1
q f (z)

− γ

 ] = log q
q − 1

[
ψ(z) +

zDq(ψ(z))
(1 − γ)ψ(z) + ([λ]q/qλ) + γ

]
≺ ϕ(z). (3.8)

Given the validity of Eq (3.4), applying Lemma 3.1 to Eq (3.8) results in

ψ(z) =
1

1 − γ

zDq(Rλq f (z))

Rλq f (z)
− γ

 ≺ ϕ(z),

that is f ∈ Sλq(γ; ϕ), which implies that the assertion (3.5) of Theorem 3.2 holds. □

Theorem 3.3. Let 0 ≤ γ < 1 and ϕ ∈ P. Then

Cλ+1
q (γ; ϕ) ⊂ Cλq(γ; ϕ). (3.9)
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Proof. Applying the relation (3.3) and Theorem 3.2, we have

f ∈ Cλ+1
q (γ; ϕ)⇔ Rλ+1

q f ∈ Cq(γ; ϕ)⇔ z(Dq(Rλ+1
q f )) ∈ Sq(γ; ϕ)

⇔ Rλ+1
q (zDq( f )) ∈ Sq(γ; ϕ)⇔ zDq( f ) ∈ Sλ+1

q (γ; ϕ)

⇒ zDq( f ) ∈ Sλq(γ; ϕ)⇔ Rλq(zDq( f )) ∈ Sq(γ; ϕ)

⇔ z(Dq(Rλq f )) ∈ Sq(γ; ϕ)⇔ Rλq f ∈ Cq(γ; ϕ)

⇔ f ∈ Cλq(γ; ϕ),

which evidently proves Theorem 3.3. □

In this place, if we set

ϕ(z) =
1 + z
1 − z

in Theorems 3.2 and 3.3, we have the following consequence:

Corollary 3.4. Let λ > −1, 0 ≤ γ < 1. Then

Sλ+1
q (γ;

1 + z
1 − z

) ⊂ Sλq(γ;
1 + z
1 − z

)

and
Cλ+1

q (γ;
1 + z
1 − z

) ⊂ Cλq(γ;
1 + z
1 − z

).

3.2. Integral preserving properties

In this section, we discuss some integral preserving properties for the q-integral operator defined
in [10].

Theorem 3.5. Let f ∈ Sλq(γ; ϕ) with

ℜ((1 − γ)ϕ(z) + [µ]q/qµ + γ) > 0 (z ∈ U).

Then F( f ) ∈ Sλq(γ; ϕ), where Fz is the q-Bernardi integral operator defined by

F( f )(z) =
[µ + 1]q

zµ

∫ z

0
tµ−1 f (t)dqt (z ∈ U; µ > −1). (3.10)

Proof. Let f ∈ Sλq(γ; ϕ). Then from Eq (3.10), we find that

z Dq(RλqF)(z) + [µ]qR
λ
qF(z) = [µ + 1]qR

λ
q f (z). (3.11)

By setting

p(z) =
1

1 − γ

z Dq(RλqF)(z)

RλqF(z)
− γ

 , (3.12)

we observe that p is analytic in U with
p(0) = 1
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and
p(z) , 0

for all z ∈ U. It follows from Eqs (3.11) and (3.12) that

γ + [µ]q/qµ + (1 − γ)p(z) = [µ + 1]q
Rλq f (z)

RλqF(z)
. (3.13)

Applying logarithmic q-differentiation on both sides of Eq (3.13), and using Eq (3.12), we obtain

log
q − 1

[
p(z) +

zDq(p(z))
γ + [µ]q/qµ + (1 − γ)p(z)

]
=

log
q − 1

[
1

1 − γ

z Dq(Rλq f )(z)

Rλq f (z)
− γ

 ] ≺ ϕ(z). (3.14)

Since
ℜ((1 − γ)ϕ(z) + [µ]q/qµ + γ) > 0 (z ∈ U),

an application of Lemma 3.1 to Eq (3.14) yields

1
1 − γ

z Dq(RλqF)(z)

RλqF(z)
− γ

 ≺ ϕ(z)

and we readily deduce that the assertion of Theorem 3.5 holds true, which means that Fz ∈ S
λ
q(γ; ϕ).

This completes the proof. □

In the same manner of Theorem 3.3, one can get the next result:

Corollary 3.6. Let f ∈ Cλq(γ; ϕ). Then Fz( f ) ∈ Cλq(γ; ϕ).

Theorem 3.7. Let F be defined by (3.10). If f ∈ Sλq(γ; ϕ), α > 0, and

ℜ[Dnq(Rλq f (z))] ≥ α|zDn+1
q (Rλq f (z))|, for all z ∈ U,

then ∣∣∣([µ]q + qµ[n]q)Dnq(RλqF(z)) + qµ+nzDn+1
q (RλqF(z))

∣∣∣
≥ α

∣∣∣([µ]q + qµ[n + 1]q)Dn+1
q (RλqF(z)) + qµ+n+2zDn+2

q (RλqF(z))
∣∣∣ .

Proof. By employing the operator Rλq , we get

zµ

[µ + 1]q
(RλqF(z)) =

∫ z

0
tµ−1(Rλq f (t))dqt.

By taking the q-derivative, we have

1
[1 + µ]q

[
qµzµDq(Rλq(F(z)) + [µ]qzµ−1(RλqF(z))

]
= zµ−1(Rλq f (z)).

This relation is equivalent to

[µ]q

[1 + µ]q
(RλqF(z)) +

qµ

[1 + µ]q
zDq(RλqF(z)) = (Rλq f (z)),
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which implies that

[µ]q

[1 + µ]q
Dq(RλqF(z)) +

qµ+1

[1 + µ]q
zD2

q(RλqF(z)) +
qµ

[1 + µ]q
Dq(RλqF(z)) = Dq(Rλq f (z)),

and this is equivalent to

Dq(F(z)) +
qµ+1

[1 + µ]q
zD2

q(F(z)) = Dq( f (z)).

We obtain that

[µ]q + qµ[2]q

[µ + 1]q
D2

q(RλqF(z)) +
qµ+2

[1 + µ]q
zD3

q(RλqF(z)) = D2
q(Rλq f (z))

[µ]q + qµ[n]q

[µ + 1]q
Dnq(RλqF(z)) +

qµ+n

[µ + 1]q
zDn+1

q (RλqF(z)) = Dnq(Rλq f (z))

and
[µ]q + qµ[n + 1]q

[µ + 1]q
Dn+1

q (RλqF(z)) +
qµ+n+1

[µ + 1]q
zDn+2

q (RλqF(z)) = Dn+1
q (Rλq f (z)).

If
ℜ(Dnq(Rλq f (z)) ≥ α|zDn+1

q (Rλq f (z))|

for all z ∈ U, then
|Dnq(Rλq f (z))| ≥ α|zDn+1

q (Rλq f (z))|.

We employ Dnq and Dn+1
q in the last inequality, we obtain

⇔
1

|[µ + 1]q|

∣∣∣∣∣∣([µ]q + qµ[n]q)Dnq(RλqF(z)) + qµ+nzGn+1
q (RλqF(z))

∣∣∣∣∣∣
≥

α

|[µ + 1]q|

∣∣∣∣∣∣([µ]q + qµ[n + 1]q)zDn+1
q (RλqF(z)) + qµ+n+2zDn+2

q (RλqF(z))

∣∣∣∣∣∣
Hence, the proof is complete. □

3.3. Convolution properties

In this section, we derive certain convolution properties for the class Sλq(γ; ϕ).

Theorem 3.8. Let f ∈ Sλq(γ; ϕ). Then

f (z) = e

(
−

q−1
log q

)
ze

(
(1−γ)

∫ z
0

ϕ(w(ζ))−1
ζ dqζ

)
∗
(
z +

∞∑
k=2

[λ]q![k − 1]q!
[k + λ − 1]q!

zk
)
, (3.15)

where w is analytic in U with
w(z) = 0

and
|w(z)| < 1.
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Proof. Suppose that f ∈ Sλq(γ; ϕ) and Eq (3.1) can be written as follows:

zDq(Rλq f (z))

Rλq f (z)
= (1 − γ)ϕ(w(z)) + γ, (3.16)

where w is analytic in U with
w(z) = 0

and
|w(z)| < 1 (z ∈ U).

We now find from Eq (3.16) that

Dq(Rλq f (z))

Rλq f (z)
=

(1 − γ)ϕ(w(z))
z

+
γ

z
−

1
z
+

1
z
, (3.17)

Dq(Rλq f (z))

Rλq f (z)
−

1
z
= (1 − γ)

ϕ(w(z)) − 1
z

, (3.18)

which, upon q-integration, yields∫ z

0

[Dq(Rλq f (ζ))

Rλq f (ζ)
−

1
ζ

]
dqζ = (1 − γ)

∫ z

0

ϕ(w(ζ)) − 1
ζ

dqζ, (3.19)

q − 1
log q

log
Rλq f (z)

z

 = (1 − γ)
∫ z

0

ϕ(w(ζ)) − 1
ζ

dqζ. (3.20)

It follows from Eq (3.20) that

Rλq f (z) = e

(
−

q−1
log q

)
ze

(
(1−γ)

∫ z
0

ϕ(w(ζ))−1
ζ dqζ.

)
. (3.21)

Now if we convolute both sides of Eq (3.21) by the expression
(
z+

∑∞
k=2

[λ]q![k−1]q!
[k+λ−1]q! zk

)
, the assertion (3.15)

of Theorem 3.8 is obtained. □

In the following, we derive a result related to functions in the class Sλq(γ; ϕ) by examining their
convolution with a special analytic function.

Theorem 3.9. Let f ∈ A and ϕ ∈ P . Then f ∈ Sλq(γ; ϕ) if and only if{
f ∗

z + ∞∑
k=2

[k]q
[k + λ − 1]q!
[λ]q![k − 1]q!

zk

 } − [
(1 − γ)ϕ(ei f ) + γ

] {
f ∗

z + ∞∑
k=2

[k + λ − 1]q!
[λ]q![k − 1]q!

zk

 } , 0. (3.22)

Proof. Suppose that f ∈ Sλq(γ; ϕ). Then Eq (3.1) is equivalent to

1
1 − γ

z Dq(Rλq f )(z)

Rλq f (z)
− γ

 , ϕ(ei f ) (z ∈ U; 0 ≤ f < 2π). (3.23)

The condition (3.23) can be written as follows:{
zDq(Rλq f )(z)) − [(1 − γ)ϕ(ei f ) + γ]Rλq f (z)

}
, 0 (z ∈ U; 0 ≤ f < 2π), (3.24)
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f ∗ zDq(Rλq)

}
− [(1 − γ)ϕ(ei f ) + γ]

{
f ∗ Rλq

}
, 0. (3.25)

On the other hand, we have

zDq(Rλq f )(z) = z +
∞∑

k=2

[k]q
[k + λ − 1]q!

[λ]q! [k − 1]q!
akzk, (3.26)

Rλq f (z) = z +
∞∑

k=2

[k + λ − 1]q!
[λ]q! [k − 1]q!

akzk. (3.27)

Substituting Eqs (3.26) and (3.27) in Eq (3.25), we readily get the convolution property (3.22)
asserted by Theorem 3.9.

The proof is complete. □

4. Conclusions

In this study, we discuss subclasses of starlike and convex functions associated with the
q-Ruschewehy differential operator and the q-Bernardi integral operator. To define these q-classes of
analytic functions, we use the concept of q-derivatives. For the newly defined classes, we investigate
inclusion relations and integral preservation properties. We highlight several intriguing properties of
convolution. In the future, this work will inspire other authors to make contributions in this area for
numerous generalized subclasses of the q-classes of starlike and convex functions. Furthermore,
extensions of the current work can be to consider higher-order q-derivatives or generalizations of the
operators discussed. Lastly, they can apply these findings to multivalent and meromorphic functions.
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