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Abstract: In the application of physics-informed neural networks (PINNs) for solutions of partial
differential equations, the optimizer may fall into a bad local optimal solution during the training of the
network. In this case, the shape of the desired solution may deviate from that of the real solution. To
address this problem, we have combined the priori information and knowledge transfer with PINNs.
The physics-informed neural networks with a priori information (pr-PINNs) were introduced here,
which allow the optimizer to converge to a better solution, improve the training accuracy, and reduce
the training time. For the experimental examples, different kinds of localized wave solutions for several
types of Korteweg-de Vries (KdV) equations were solved using pr-PINNs. Multi-soliton solutions
of the KdV equation, multi-soliton and lump solutions of the (2+1)-dimensional KdV equation, and
higher-order rational solutions of the combined KdV-mKdV equation have been solved by pr-PINNs.
By comparing the results of pr-PINNs with PINNs under the same configuration, pr-PINNs show
higher accuracy and lower cost in solving different solutions of nonlinear evolution equations due to
the combination of the priori information with PINNs, which enables the neural network to capture
the characteristics of the solution during training. The good performance of the proposed method will
have important potential application value for the solutions of real-world problems.
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1. Introduction

With the development of artificial intelligence, deep learning methods have been developed as a
powerful tool for solving partial differential equations (PDEs) [1, 2]. The physics-informed neural
networks (PINNs) approach proposed in 2019 has successfully demonstrated its capabilities for solving
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PDEs through several classical cases [3,4]. The PINNs incorporate PDE residuals into the loss function
to satisfy physical laws, requiring minimal labeled data by leveraging known equations. They can solve
forward problems and inverse problems without a mesh, using automatic differentiation to approximate
differential operators. However, in some practical applications of solving PDEs by PINNs, problems
arise such as the deviation of the simulated results from the real solution, poor solution accuracy, and
excessive training time, so researchers proposed different improved methods for specific problems.
Researchers utilized curriculum regularization and posed a sequence-to-sequence learning task to
avoid the network failing to learn relevant physical phenomena of the problems [5]. Combining
with the weighting strategy, generative adversarial PINNs were proposed to improve the training
efficiency of PINNs [6]. A conservative PINN [7] was introduced for models governed by conservation
laws. The conservative PINN enhanced the computational efficiency by dividing the solution domain
into multiple subdomains, each of which was embedded in the corresponding conservation law and
conducted parallelly by the respective neural network. Extended PINNs were proposed [8] selecting
neural networks based on the complexity of different domains. The complex subdomains employed
deep neural networks, while the simpler and smoother subdomains utilized shallow neural networks.
To improve the convergence rate and solution accuracy, the PINNs were combined with transfer
learning used in the field related to wavefield solutions solving [9–11]. Researchers used hash encoding
for better input representation in the network [12]. GaberPINN was proposed utilizing a Gabor
multiplicative activation function [13]. Gabor was also used as a basis function in PINN [14].

The PINNs and their variants have been applied in a wide range of fields [15]. Notably, PINNs have
been extensively utilized for solving nonlinear PDEs [16]. The KdV equation [17] and the mKdV
equation [18] are important nonlinear partial differential equations that are extensively utilized in
various physical systems. In certain scenarios, these equations can be extended to higher-dimensional
equations and combined to more accurately depict complex physical phenomena. Initially proposed in
the context of water wave theory, the (2+1)-dimensional KdV equation can describe the propagation
of solitary waves in shallow water in two-dimensional spaces. The combined KdV-mKdV equation
serves as a crucial model for describing nonlinear wave phenomena and finds broad applications across
multiple disciplines, including solid-state physics, plasma physics, fluid dynamics, and quantum field
theory. These KdV-type equations, which are the focus of this paper, have a variety of meaningful
localized wave solutions which can describe many nonlinear phenomena in nature. Different types
of localized wave solutions including soliton solutions [19, 20], lump solutions [21], and rational
solutions [22] for nonlinear evolution equations are current research hotspots in integrable system
theory. For the application of deep learning in integrable systems, PINNs were applied to integrable
systems to solve both second-order and third-order equations, see [23,24]. PINNs were combined with
Bäcklund transformations for solving nonlinear evolution equations [25]. The data-driven rogue waves
of the Hirota equation were investigated using the mix-training PINNs approach [26, 27]. The initial
value problem for the sine-Gordon equation and the Korteweg-de Vries (KdV) equation were studied
to verify the convergence conditions for neural tangent kernels [28]. These advancements highlight
wide applications of PINNs for solving nonlinear evolution equations.

In several real problems, a situation in which information is known only partially or fuzzily is
sometimes encountered. During the PINNs training process, the optimizer may fall into a bad local
optimal solution [29] and the PINNs method cannot achieve the desired simulation results. To address
this, an improved pr-PINNs method is proposed and applied to simulate solutions of various KdV-type
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equations. In the proposed method, two networks are used for training. The first network with prior
information is employed acting as a pre-trained model and the weights are transferred to the second
network. Through knowledge transfer, the second network of pr-PINNs has more suitable initialization
parameters for the corresponding problem. The pr-PINNs can capture certain features of the solution
more rapidly during the training process and reduce the likelihood of falling into bad local optimal
solutions. Incorporating a priori information and utilizing knowledge transfer, the proposed method
enables the network to better capture the characteristics of various localized wave solutions and thereby
training accuracy can be improved and training time can be shortened. Compared with the classical
PINNs method, pr-PINNs have enhanced training performance and achieved better training outcomes.
This information is called a priori information and is used for network training. The code used in
this paper is written based on PyTorch 2.1.2 and trained with GPU P100. As application experimental
examples, different kinds of localized wave solutions for the KdV equation, a higher-dimensional KdV
equation, and the combined KdV-mKdV equation are solved using pr-PINNs and PINNs, respectively.
By a comparison of the computation results, pr-PINNs show higher accuracy and less training time
than PINNs.

The structure of this paper is as follows: In Section 2, the structural description of pr-PINNs is
given. In Section 3, the simulated multi-soliton solutions of the KdV equation are derived by using
PINNs and pr-PINNs, and the results are analyzed. Section 4 gives the prediction of multi-soliton and
lump solutions for the (2+1)-dimensional KdV equation using PINNs and pr-PINNs, as well as an
analysis of the results. Section 5 shows the performance of pr-PINNs in solving higher-order rational
solutions of the combined KdV-mKdV equation. In Section 6, the conclusions and discussions are
presented.

2. The basic concepts of physics-informed neural networks with prior information

To better simulate various kinds of localized wave solutions such as the soliton soutions and rational
solutions for different KdV-type equations including the KdV equation, higher-dimensional KdV
equation, and KdV-mKdV equation with quadric and cubic nonlinear terms, the pr-PINNs method
is proposed with a two-part neural network. The nonlinear PDE in general form can be written as

ut + Nu(u, ux, uy, uxx, uxy, uyy, ...) = 0. (2.1)

The residual can be defined as

f := ut + Nu(u, ux, uy, uxx, uxy, uyy, ...). (2.2)

The PINNs are structured as multilayer perceptron networks, with the inputs given according to the
dimensionality of the problem. The number of layers and neurons in the intermediate network is
determined based on user requirements. PINNs leverage the embedding of physical laws into the
loss function of neural networks to learn complex relationships between inputs and outputs. During
the training process, the networks fit not only initial and boundary condition constraints but also the
physical laws of PDEs.

In the proposed pr-PINNs method, the first network is purely data-driven and the weights are
transferred to the second network, while the second network is both data-driven and physical-driven. In
order to obtain appropriate initial parameters including weights and the accelerate network convergence
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speed, a data-driven pre-training is conducted before PINNs training. In the pre-training, the discrete
values based on the solution after Gaussian blur are used as training data and are called prior
information. The introduction of prior information enables the network to capture the characteristics
of the solution more quickly, thereby providing appropriate initial weights and other parameters for the
training of the second network. For the pre-training in the first network, the mean squared error (MSE)
is selected as the loss function, which is defined as

MSE1 = MSEu �
1

Nu

Nu∑
i=1

∣∣∣∣u (
ti
u, x

i
u

)
− ui

∣∣∣∣2 . (2.3)

Here MSE1 represents the loss function of the first network in the gray box (seen in Figure 1) and MSEu

stands for the data-driven loss.
{
ti
u, x

i
u, u

i
}Nu

i=1
defines the corresponding training data points and values.

u(ti
u, x

i
u) is the discrete data points extracted from the analytical solution after Gaussian blurring. The

Gaussian blurring process is given by the convolution of the data set u(ti
u, x

i
u) with a Gaussian kernel

obtained by the normal distribution

G(r) =
1

√
2πσ2

N e−r2/(2σ2), (2.4)

where r is the blurring radius. For a two-dimensional case, r2 = x2 + y2 with x as the distance from
the origin in the horizontal axis and y as the distance from the origin in the vertical axis. The standard
deviation of the Gaussian distribution σ is set to 10 in this paper. The output of G(r) is the Gaussian
kernel [30]. The solution after Gaussian blurring becomes smoother and has some fuzzy features of
the original exact analytical solution. These datasets with fuzzy features are used for pre-training of
the first network. The weights obtained from pre-training are transferred to the second network, so that
the PINNs obtain more suitable initial parameters and converge faster.

For the second network in the green box (seen in Figure 1), the loss function MSE2 is defined as a
sum of two parts,

MSE2 = MSEibu + MSE f , (2.5)

MSEibu �
1

Nu

Nu∑
i=1

∣∣∣∣u (
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)
− ui

ibu

∣∣∣∣2 , (2.6)

MSE f �
1

N f

N f∑
i=1

∣∣∣∣ f (
ti

f , x
i
f

)∣∣∣∣2 , (2.7)

where MSEibu represents the loss of the data-driven part at the initial and boundary value points, and
MSE f represents the loss of the physical-driven part at the internal configuration points in the solution

domain.
{
ti
ibu, x

i
ibu, u

i
ibu

}Nu

i=1
denotes the initial and boundary training data and corresponding values.

{ti
f , x

i
f }

N f

i=1 represents the collocation points in the solution domain, while f (ti
f , x

i
f ) denotes the PDE

residuals. During training, the optimization objective is to minimize the initial and boundary loss
and the PDE loss. When the loss between the network predictions and the true values is close to
zero for the initial and boundary conditions, and the PDE loss is also close to zero for the internal
configuration points, the network is considered to have been successfully trained. Thus the predicted
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solution uNN(x, t) from the neural network can be used to approximate the true solution u(x, t) of
the problem. Hence, optimizing the loss function becomes the primary objective, which effectively
transforms the PDE solving problem into a loss minimization task.

The algorithmic flow of pr-PINNs is shown in Figure 1. The first step of the training process
includes a priori information and it is shown in the gray box, within which the yellow box shows the
structure of the fully connected neural network, and the expression of loss is given by MSE1. The dual-
driven model consisting of the physical constraint given by the PDE and the data constraint of initial
and boundary conditions is shown in the green box, where the yellow box is part of the fully connected
neural network, and the blue box is the PDE information obtained via automatic differentiation, i.e., the
physical constraint part. The loss in the green box is expressed by MSE2. In the networks, we sample
the training data using latin hypercube sampling (LHS), and initialize using Xavier initialization with
the activation function in both networks given by the Tanh function. After completing the first step of
network training in the gray box, the knowledge is transferred to the second network in the green box.

Figure 1. Network structure diagram of pr-PINNs.

3. Soliton solutions of the KdV equation

The KdV equation was originally derived in the study of nonviscous incompressible ideal fluids.
Its application is particularly prominent in the analysis of surface and internal waves in shallow water.
The KdV equation is an important model for the study of weakly nonlinear long waves, which arise
from the intricate interplay between nonlinear and dispersion effects [31]. The basic form of the KdV
equation can be expressed as

ut + 6uux + uxxx = 0. (3.1)

In this section, the one-, two-, and three-soliton solutions of the KdV equation are simulated using
pr-PINNs as well as PINNs where both have 5 layers and the number of neurons in each layer is 100.
To simulate the soliton solutions for the KdV equation, the data points reflecting the basic shape
characteristics of the soliton solution after Gaussian blurring [31] are considered as prior information
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and the training spatial-temporal region is (x, t) ∈ [−10, 10] × [−10, 10]. For both the PINNs and pr-
PINNs methods, the L-BFGS optimizer is used and the termination conditions of the optimizer are set
as follows: The maximum number of iterations is 50,000, the maximum number of function evaluations
is 50,000, the size of the history record is 50, and the gradient tolerance is 1 × 10−5. The randomly
sampled collocation points number for the initial and boundary values is 100 and the randomly sampled
collocation points number inside the solution domain is 20,000 for both PINNs and pr-PINNs methods.

The multi-soliton solution of the KdV equation has been derived using the Hirota bilinear
method [32]. To simulate the one-soliton solution for the KdV equation using pr-PINNs as well as
PINNs, the initial condition is taken as

u(x, 0) =
1
2

sech2 x
2
, x ∈ [−10, 10],

and boundary conditions are selected as follows:

u(−10, t) =
1
2

sech2(5 +
t
2

) , u(10, t) =
1
2

sech2(5 −
t
2

) , t ∈ [−10, 10].

It can be verified that the KdV equation has the followings two-soliton solution [32]:

u2ss(x, t) =
441

(
441η1 + 784η2 + 98η1η2 + 16η2η

2
1 + 9η2

2η1

)
50(49η1 + 49η2 + η1η2 + +49)2 , η1 = e

9x
10−

729t
1,000 , η2 = e

6x
5 −

216t
125 . (3.2)

To simulate a two-soliton solution of the KdV equation, the initial condition is given by

u(x, 0) = u2ss(x, 0) , x ∈ [−10, 10],

and boundary conditions are given as

u(−10, t) = u2ss(−10, t), u(10, t) = u2ss(10, t), t ∈ [−10, 10].

The three-soliton solution for the KdV equation is [32]

u3ss(x, t) = −
2
(
η2η1
55 +

37η2η3η1
2,450,250 +

η3η1
10 + η1 +

6η2
5 +

η2η3
30 +

3η3
2

)2(
η2η1
121 +

η2η3η1
245,025 +

η3η1
25 + η1 + η2 +

η2η3
81 + η3 + 1

)2

+
2
(
η2η1
25 +

1,369η2η3η1
24,502,500 +

η3η1
4 + η1 +

36η2
25 +

9η2η3
100 +

9η3
4

)
η2η1
121 +

η2η3η1
245,025 +

η3η1
25 + η1 + η2 +

η2η3
81 + η3 + 1

,

η1 = ex−t, η2 = e
6x
5 −

216t
125 , η3 = e

3x
2 −

27t
8 .

To simulate the three-soliton solution for KdV equation, the initial condition is given as

u(x, 0) = u3ss(x, 0) , x ∈ [−10, 10],

and boundary conditions are

u(−10, t) = u3ss(−10, t), u(10, t) = u3ss(10, t), t ∈ [−10, 10].
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The PINNs and pr-PINNs methods are used to train the one-soliton, two-soliton, and three-soliton
solutions of the KdV equation, respectively, under the same parameters of the network. The compared
simulated results using PINNs and pr-PINNs are shown in Figures 2–5 and Table 1. The corresponding
loss curve plots are shown in Figure 4. We can see that the pr-PINNs method achieves higher accuracy
and shorter time in solving the multi-soliton solution of the KdV equation compared with PINNs.

The better performance of pr-PINNs is attributed to the incorporation of a priori information, which
enables the network to capture some of the physical features in advance. Specially, from Figures 3
and 5, which illustrate the two-soliton and three-soliton solutions, the predicted solutions using the
PINNs method do not fit well with the desired solutions after network training due to the fact that they
fall into bad local optimal solutions during the solving process. On the contrary, due to the inclusion
of the priori information, pr-PINNs allow the network to capture some of the features of the solutions
and prevent the network from falling into bad local optimal solutions during the training process [33].
Therefore, compared with PINNs, the pr-PINNs method can obtain more accurate simulation results
under the same conditions.

Table 1. Comparison of training results for the KdV equation.

Solution type Method L2 norm error Pre-training time All training time

One-soliton
PINNs 3.023602e − 03 - 45.6 s
pr-PINNs 2.969873e − 03 5.54 s 32.7 s

Two-soliton
PINNs 1.270713e − 01 - 569 s
pr-PINNs 1.322320e − 02 88 s 283 s

Three-soliton
PINNs 3.251062e − 01 - 298 s
pr-PINNs 1.316734e − 02 50.8 s 122 s
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Figure 2. The density plots of the one-soliton solution for the KdV equation using PINNs
(a) and pr-PINNs (b), and corresponding cross-sectional plots at t = −4.98, t = 0.04, and
t = 5.06.
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Figure 3. The density plots of the two-soliton solution for the KdV equation using PINNs
(a) and pr-PINNs (b), and corresponding cross-sectional plots at t = −4.98, t = 0.04, and
t = 5.06.
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Figure 4. The corresponding loss curves of the one-soliton (a), two-soliton (b), and three-
soliton (c) solutions using PINNs and pr-PINNs.
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Figure 5. The density plots of the three-soliton solution for the KdV equation using PINNs
(a) and pr-PINNs (b), and corresponding cross-sectional plots at t = −4.98, t = 0.04, and
t = 5.06.
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4. Soliton and lump solutions of the (2+1)-dimensional KdV equation

In this section, the effectiveness of PINNs and pr-PINNs methods for solving different kinds of
localized wave solutions for a higher-dimensional equation are compared and the reasons why the two
methods produce the corresponding results are analyzed. The pr-PINNs method works with a priori
information, and the shape features of the soliton and lump solutions are captured by the network
before the weights are transferred to the PINNs.

The (2+1)-dimensional KdV equation is given as{
ut − uxxx + 3(uv)x = 0,
ux = vy.

(4.1)

In the following, the PINNs and pr-PINNs are employed to simulate the soliton and lump solutions for
the (2+1)-dimensional KdV equation. To simulate solutions, the training spatial-temporal region is set
as (x, y, t) ∈ [−5, 5]× [−5, 5]× [0, 1]. For both PINNs and pr-PINNs methods, the network has 5 layers
and the number of neurons in each layer is 120. The L-BFGS optimizer is utilized and termination
conditions of the optimizer are: The maximum number of iterations is set at 50,000, the maximum
number of function evaluations is set at 50,000, the size of the history record is 50, and the gradient
tolerance is 1 × 10−6. The randomly sampled collocation points number for the initial and boundary
area is 100 and the randomly sampled collocation points number inside the solution domain is 20,000
for both PINNs and pr-PINNs methods. The compared simulated results using PINNs and pr-PINNs
are shown in Figures 6–11 and Table 2. The corresponding loss curve plots are shown in Figure 12.

To solve the one-soliton solution for a (2+1)-dimensional KdV equation, the initial condition is
given as

u(x, y, 0) =
81

200
sech2(

9x
20

+
y
2

), x ∈ [−5, 5], y ∈ [−5, 5],

and boundary conditions are

u(x,−5, t) =
81

200
sech2(−5 −

729t
2, 000

+
9x
20

), u(x, 5, t) =
81

200
sech2(5 −

729t
2, 000

+
9x
20

),

y ∈ [−5, 5], t ∈ [0, 1],

u(−5, y, t) =
81
200

sech2(−
9
2
−

729t
2, 000

+
y
2

), u(5, y, t) =
81

200
sech2(−

9
2
−

729t
2, 000

+
y
2

),

y ∈ [−5, 5], t ∈ [0, 1].

The (2+1)-dimensional KdV equation can be calculated to have the following exact two-soliton
solution

u2ss(x, y, t) =
189

(
16η2η

2
1 + 9η2

2η1 + 91η2η1 + 378η1 + 672η2

)
25 (η2η1 + 42η1 + 42η2 + 42) 2 , (4.2)

η1 = e−
729t
1,000 + 9x

10 +y, η2 = e−
216t
125 + 6x

5 +
7y
5 .

To simulate the two-soliton solution of the KdV equation using PINNs and pr-PINNs methods, the
initial condition is given as

u(x, y, 0) = u2ss(x, y, 0), x ∈ [−5, 5], y ∈ [−5, 5],
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and boundary conditions are given as

u(−5, y, t) = u2ss(−5, y, t), u(5, y, t) = u2ss(5, y, t), y ∈ [−5, 5], t ∈ [0, 1], (4.3)
u(x,−5, t) = u2ss(x,−5, t), u(x, 5, t) = u2ss(x, 5, t), x ∈ [−5, 5], t ∈ [0, 1].

The (2+1)-dimensional KdV equation has the following three-soliton solution based on the
calculations:

u3ss(x, y, t) = −
2
(
η2η1
20 +

17η2η3η1
614,075 +

18η3η1
145 +

9η1
10 +

6η2
5 +

η2η3
66 +

13η3
10

)
2(

η2η1
42 +

η2η3η1
122,815 +

18η3η1
319 + η1 + η2 +

η2η3
165 + η3 + 1

)
2

(4.4)

+
2
(

21η2η1
200 +

289η2η3η1
3,070,375 +

198η3η1
725 +

81η1
100 +

36η2
25 +

5η2η3
132 +

169η3
100

)
η2η1
42 +

η2η3η1
122,815 +

18η3η1
319 + η1 + η2 +

η2η3
165 + η3 + 1

,

η1 = e−
729t
1,000 + 9x

10 +y, η2 = e−
216t
125 + 6x

5 +
7y
5 , η3 = e−

2,197t
1,000 + 13x

10 +
19y
10 .

To simulate the three-soliton solution of the KdV equation using PINNs and pr-PINNs methods, the
initial condition is taken as

u(x, y, 0) = u3ss(x, y, 0), x ∈ [−5, 5], y ∈ [−5, 5],

and boundary conditions are

u(−5, y, t) = u3ss(−5, y, t), u(5, y, t) = u3ss(5, y, t), y ∈ [−5, 5], t ∈ [0, 1], (4.5)
u(x,−5, t) = u3ss(x,−5, t), u(x, 5, t) = u3ss(x, 5, t), x ∈ [−5, 5], t ∈ [0, 1].

(a) (b) (c)

(d) (e) (f)
Figure 6. The predicted, exacted, and error plots of one-soliton solution for the (2+1)-
dimensional KdV equation using PINNs ((a), (b), (c)) and pr-PINNs ((d), (e), (f)) compared
with the exact solution at t = 0 and the corresponding error plots.
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(a) (b) (c)

(d) (e) (f)
Figure 7. The cross-sectional plots of simulated one-soliton solution for the (2+1)-
dimensional KdV equation using PINNs ((a), (b), (c)) and pr-PINNs ((d), (e), (f)) compared
with the exact solution at t = 0. The exact solutions are given by the blue curves while the
predicted solutions are given by the dashed curves. They practically overlap here.

(a) (b) (c)

(d) (e) (f)
Figure 8. The predicted, exacted, and error plots of two-soliton solution for the (2+1)-
dimensional KdV equation using PINNs ((a), (b), (c)) and pr-PINNs ((d), (e), (f)) compared
with the exact solution at t = 0 and the corresponding error plots.
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(a) (b) (c)

(d) (e) (f)
Figure 9. The cross-sectional plots of simulated two-soliton solution for the (2+1)-
dimensional KdV equation using PINNs ((a), (b), (c)) and pr-PINNs ((d), (e), (f)) compared
with the exact solution at t = 0. The exact solutions are given by the blue curves while the
predicted solutions are given by the dashed curves. They practically overlap here.

(a) (b) (c)

(d) (e) (f)
Figure 10. The predicted, exacted, and error plots of three-soliton solution for the (2+1)-
dimensional KdV equation using PINNs ((a), (b), (c)) and pr-PINNs ((d), (e), (f)) compared
with the exact solution at t = 0 and the corresponding error plots.
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(a) (b) (c)

(d) (e) (f)
Figure 11. The cross-sectional plots of simulated three-soliton solution for the (2+1)-
dimensional KdV equation using PINNs ((a), (b), (c)) and pr-PINNs ((d), (e), (f)) compared
with the exact solution at t = 0. The exact solutions are given by the blue curves while the
predicted solutions are given by the dashed curves.
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(a) (b) (c)
Figure 12. The corresponding loss curves of the one-soliton (a), two-soliton (b), and three-
soliton (c) solutions using PINNs and pr-PINNs.

The lump solution is a special structure of localized wave solutions for high-dimensional nonlinear
PDEs which decay exponentially in the spatial dimensions. This kind of solution holds significant
potential applications in nonlinear wave theory, including water wave propagation, optics, and plasma
physics. Thus, we test the accuracy and efficiency of pr-PINNs for simulating the lump solution of
the (2+1)-dimensional KdV equation. For the simulated lump solution, the expression for the initial
conditions is given in the following form:

u(x, y, 0) = −
1
2
−

8
(
−5 + 4x2 + 20xy + 5y2

)
(
5 + 4x2 + 4xy + 5y2)2 , x ∈ [−5, 5], y ∈ [−5, 5],
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and boundary conditions are given in the following form:

u(−5, y, t) = −
1
2

+
8
(
−9, 875 − 600t + 711t2 + 5, 000y − 1, 050ty − 125y2

)
(
2, 025 − 840t + 117t2 − 200y − 6ty + 25y2)2 ,

y ∈ [−5, 5], t ∈ [0, 1],

u(5, y, t) = −
1
2

+
8
(
−9, 875 + 600t + 711t2 − 5, 000y − 1, 050ty − 125y2

)
(
2, 025 + 840t + 117t2 + 200y − 6ty + 25y2)2 ,

y ∈ [−5, 5], t ∈ [0, 1],

u(x,−5, t) = −
1
2

+
8
(
−1, 2375 + 10, 500t + 711t2 + 5, 000x + 60tx − 100x2

)
(
2, 525 + 60t + 117t2 − 200x + 84tx + 20x2)2 ,

x ∈ [−5, 5], t ∈ [0, 1],

u(x, 5, t) = −
1
2

+
8
(
−12, 375 − 10, 500t + 711t2 − 5, 000x + 60tx − 100x2

)
(
2, 525 − 60t + 117t2 + 200x + 84tx + 20x2)2 ,

x ∈ [−5, 5], t ∈ [0, 1].

(4.6)

The lump solution is simulated for the (2+1)-dimensional KdV equation using the PINNs and pr-
PINNs methods, respectively, and the error associated with PINNs is 5.566199 × 10−2 while the error
obtained using the pr-PINNs method is 6.365303 × 10−3 as seen in Table 2. The compared results
between the two methods are shown in Figures 13, 14, and 15. This demonstrates that the pr-PINNs
method gets an order of magnitude improvement in solving lump solutions compared with the PINNs
method. A comparison of the difference at the peaks circled in red shows the significant advantages
and recognizes validity of the pr-PINNs method for solving the lump solution of the (2+1)-dimensional
KdV equation.

Table 2. Comparison of training results for the (2+1)-dimensional KdV equation.

Solution type Method L2 norm error Pre-training time All training time

One-soliton
PINNs 6.019869e − 03 - 41.8 s
pr-PINNs 4.588799e − 03 4.73 s 31.6 s

Two-soliton
PINNs 7.795944e − 03 - 104.94 s
pr-PINNs 6.412547e − 03 7.21 s 73.45 s

Three-soliton
PINNs 8.637403e − 02 - 732 s
pr-PINNs 3.985691e − 02 129 s 724 s

Lump
PINNs 5.566199e − 02 - 922 s
pr-PINNs 6.365303e − 03 16.2 s 451.2 s
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(a) (b) (c)

(d) (e) (f)
Figure 13. The predicted, exacted, and error plots of lump solution for the (2+1)-dimensional
KdV equation using PINNs ((a),(b),(c)) and pr-PINNs ((d),(e),(f)) compared with the exact
solution at t = 0 and the corresponding error plots.

(a) (b) (c)

(d) (e) (f)
Figure 14. The cross-sectional plots of simulated lump solutions for the (2+1)-dimensional
KdV equation using PINNs ((a), (b), (c)) and pr-PINNs ((d), (e), (f)) compared with the
exact solution at t = 0. The exact solutions are given by the blue curves while the predicted
solutions are given by the dashed curves. They practically overlap here.
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Figure 15. The corresponding loss curves of lump solutions using PINNs and pr-PINNs.

5. The rational solution of the combined KdV-mKdV equation

The combined KdV-mKdV equation given by [22]

ut + 6uux + 6u2ux + uxxx = 0, (5.1)

can describe nonlinear phenomena in various fields such as fluid dynamics, plasma physics, and so
on [29]. The combined KdV-mKdV equation contains quadratic and cubic nonlinear terms. In the
following, rational solutions of the combined KdV-mKdV equation are simulated using the PINNs and
pr-PINNs methods, respectively. The initial and boundary conditions for the second-order rational
solution are given by [22],

u(x, 0) =

12,987
40 + 1431x

10 − 405x2 − 108x3 − 54x4(
48
5 −

27x
4 + 9x2

2 + 3x3
)2

+

(
9 +

(
3
2 + 3x

)2
)2 , x ∈ [−10, 10],

u(−10, t) =
−

18,944,253
40 − 12312t

10,791,225
16 +

(
−

24,729
10 + 36t

)2 , t ∈ [−10, 10],

u(10, t) =
−

27,469,773
40 + 13, 608t

16,040,025
16 +

(
33,921

10 + 36t
)2 , t ∈ [−10, 10]. (5.2)

The initial and boundary conditions for the third-order rational solution are given by [34],

u(x, 0) =
72

(
x10 + 90x8 + 7, 560x6 − 97, 200x4 − 874, 800x2 + 5, 248, 800

)
x12 + 36x10 + 4, 860x8 + 505, 440x6 + 4, 374, 000x4 + 94, 478, 400x2 + 94, 478, 400

− 1,

x ∈ [−10, 10],

u(−10, t) = −
324t4 + 63, 720t3 + 212, 274t2 − 72, 322, 140t + 355, 191, 853

324t4 + 44, 280t3 + 2, 394, 414t2 − 65, 595, 900t + 1, 502, 951, 449
,

t ∈ [−10, 10],
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u(10, t) = −
324t4 − 63, 720t3 + 212, 274t2 + 72, 322, 140t + 355, 191, 853

324t4 − 44, 280t3 + 2, 394, 414t2 + 65, 595, 900t + 1, 502, 951, 449
,

t ∈ [−10, 10]. (5.3)

The training spatial-temporal region is (x, t) ∈ [−10, 10]× [−10, 10]. For both PINNs and pr-PINNs
methods, the network has 7 layers and the number of neurons in each layer is 100. The L-BFGS
optimizer is selected and termination conditions of the optimizer are set as follows: The maximum
number of iterations is 50,000, the maximum number of function evaluations is 50,000, the size of the
history record is 50, and the gradient tolerance is 1 × 10−6. The randomly sampled collocation points
number for the initial and boundary area is 100 and the randomly sampled collocation points number
inside the solution domain is 25, 000.

The second-order and third-order rational solutions for the combined KdV-mKdV equation trained
by PINNs and pr-PINNs are shown in Figures 16 and 18. The cross-sectional Figures 17 and 19 show
that the pr-PINNs method gets higher accuracy results while the solutions simulated by the PINNs
method deviate from the true solutions more. The simulated results of the solutions solved by the
PINNs and pr-PINNs methods, respectively, are displayed in Figures 17 and 19. From the compared
results of the loss and error between the two methods shown in Figure 20 and Table 3, it can be seen
that pr-PINNs method performs better than the PINNs method with better accuracy and shorter training
time in simulating the high-order rational solutions for the combined KdV-mKdV equation.

Table 3. Comparison of training results for the combined KdV-mKdV equation.

Solution type Method L2 norm error Pre-training time All training time

second-order rational
PINNs 8.160418e − 01 - 522 s
pr-PINNs 4.816645e − 02 66 s 392 s

third-order rational
PINNs 8.379468e − 01 - 292 s
pr-PINNs 6.392167e − 02 132 s 272 s

(a) (b) (c)
Figure 16. The 3D plots of the simulated second-order rational solutions for the combined
KdV-mKdV equation using PINNs (a) and pr-PINNs (b) as well as the exact solution (c).
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(a) (b) (c)

(d) (e) (f)
Figure 17. Cross-sectional plots of the second-order rational solutions corresponding to
Figure 16 at t = −4.98, t = 0.04, and t = 5.06 using PINNs ((a), (b), (c)) and pr-PINNs ((d),
(e), (f)). The exact solutions are given by the blue curves while the predicted solutions are
given by the dashed curves.

(a) (b) (c)
Figure 18. The 3D plots of the simulated third-order rational solutions for the combined
KdV-mKdV equation using PINNs (a) and pr-PINNs (b) as well as the exact solution (c).
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(a) (b) (c)

(d) (e) (f)
Figure 19. Cross-sectional plots of the third-order rational solutions corresponding to
Figure 16 at t = −4.98, t = 0.04, and t = 5.06 using PINNs ((a), (b), (c)) and pr-PINNs
((d), (e), (f)). The exact solutions are given by the blue curves while the predicted solutions
are given by the dashed curves.
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Figure 20. The corresponding loss curves of the second-order and third-order rational
solutions using PINNs and pr-PINNs.

6. Conclusions

The pr-PINNs method with inclusion of a prior information in the PINNs method is proposed in
this paper. We used the proposed method to simulate several localized wave solutions of KdV-type
equations including one-soliton, two-soliton, and three-soliton solutions, lump solutions, and second-
and third-order rational solutions. The solution results of the pr-PINNs method showed higher accuracy
and better convergence than that of the PINNs method, since the pr-PINNs method can better capture
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the characteristics of the solutions and prevent the trained results from drastically deviating from the
real results.

To better illustrate the performance of the networks, more numerical experiments on the second-
order rational solutions of the combined KdV-mKdV equation are carried out for different data and
different numbers of network layers. The solution errors of the PINNs and pr-PINNs methods are
given in Tables 4 and 5. In Table 4, a six-layer network is set with 100 neurons per layer, and other
parameters in the network are set the same as the conditions in section 5. In Table 5, N f is taken to
be 25,000, the number of neurons in each layer is 100, and other parameters are set the same as the
conditions in section 5. We can see in both tables that the pr-PINNs method exhibits higher accuracy
compared to the PINNs method under different N f and different layers. For better performance of the
pr-PINNs method for simulating solutions of PDEs, it is hoped that the pr-PINNs method could be
applied to more practical problems with some ambiguous information.

Table 4. Comparison of results with different data.

N f 10000 15000 20000 25000
PINNs 9.036961e − 01 6.510653e − 01 7.293564e − 01 7.248199e − 01
pr-PINNs 3.264207e − 02 3.748243e − 02 9.471193e − 02 3.663322e − 02

Table 5. Comparison of results with different layers.

Layers 4 layers 5 layers 6 layers 7 layers
PINNs 8.120882e − 01 7.2276331e − 01 7.248199e − 01 7.970699e − 01
pr-PINNs 5.326740e − 02 7.882531e − 02 3.663322e − 02 1.669831e − 03
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