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1. Introduction

Subdivision schemes (SS) can precisely characterize smooth curves and surfaces from the given
set of control points through iterative refinement. The most significant, influential, and extensively
used technique of Computer Aided Geometric Design is the SS. The popularity of SSs is due to their
effectiveness and simplicity. They play an important role in computer graphics due to their wide range
of applications in several fields, including computer animation and the design of curves or surfaces.
They are also essential for preserving the shape of data, geometric objects, and images in image
processing. Recently, Liu et al. [1] reviewed the theory and applications of refinement schemes,
which shows that refinement curves and surfaces are widely used in geometric modeling.

SSs can be broadly classified into two primary categories: approximating and interpolating.
Approximating schemes generate new control points during the refinement process, collectively
shaping the limit curve without necessarily passing through the original control points. This approach
often yields smoother curves with higher continuity orders. Interpolating schemes, on the other hand,
ensure that the limit curve passes through the original control points. This provides more precise
shape control and is commonly employed in engineering applications. One can achieve higher
smoothness by using approximating schemes with smaller support, but interpolating schemes do not
meet the requirement for smoothness [2]. The arity of an SS is the number of points inserted at a
refinement level, say k + 1, between two consecutive points from level k. The arity of a scheme
directly affects the smoothness of the limit curves or surfaces. Higher arity schemes generally offer
higher smoothness compared to lower arity schemes, making them essential for applications requiring
fine geometric detailing. In [3], it has been proved that the large support and higher arity schemes
may outperform the small support and lower arity schemes. Consequent to this, the research
communities are interested in introducing higher arity schemes (i.e., quaternary) which give better
results and less computational cost.

Initial work on the subdivision was started by De Rham [4] when he presented a corner-cutting
algorithm for curve modeling. Chaikin [5] was the second one who presented another corner cutting
SS. They [6] defined a symmetric iterative interpolation process. Dyn [7] provides a foundational
perspective on how Laurent polynomials can be applied to analyze subdivision schemes. The work by
Dyn and Levin [8] on subdivision schemes has been highly influential in both theoretical research and
practical applications in computer graphics and geometric design. The interpolating 4-point C2 ternary
stationary subdivision scheme developed by Hassan et al. [9] and represents a significant advancement
in subdivision methods, particularly for applications that demand high smoothness and accuracy in
curve interpolation.

The paper by Hongchan et al. [10] contributes a powerful tool to the field of geometric modeling,
particularly in Computer Aided Design/Computer Aided Manufacturing applications. By combining
the flexibility of ternary subdivision with adjustable control parameters, the authors provide a
subdivision scheme that balances high smoothness with user-defined shape control. Mustafa
et al. [11] presented a significant contribution to subdivision scheme theory by introducing an n-ary
interpolating subdivision scheme with odd-point masks.

Ghaffar et al. [12] makes a valuable contribution to subdivision scheme theory by presenting a
flexible 4-point a-ary approximating scheme. This generalization allows designers to adjust the level
of smoothness and computational demand, making the scheme adaptable to various applications in
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graphics and geometric modeling. Ashraf et al. [13] presented a significant advancement in subdivision
schemes by introducing a nonstationary four-point ternary interpolating scheme that emphasizes shape
preservation. The shape-preserving variant of the Lane-Riesenfeld algorithm introduced by Ashraf
et al. [14] enhances the traditional algorithm by ensuring that specific geometric features are maintained
throughout the refinement process. Finally, Zouaoui et al. [15] contributed to the field of subdivision
schemes by introducing novel n-point ternary schemes that mitigate the Gibbs phenomenon, leading to
smoother and more accurate curve approximations near sharp features.

Mustafa and Khan [16] pioneered the exploration of a 4-point quaternary SS characterized by a
single shape parameter, resulting in C3 limit curves. Ko [17] examined the convergence and regularity
properties of a quaternary approximating SS by using the Laurent polynomials technique. An algorithm
to introduce 3n-point quaternary approximation SS was developed by Bari et al. [18]. Using shape
parameters, Pervez [19] proposed a 3-point approximation approach that shows continuity from C0 to
C3. A generalized formula for 5-point approximating SS of any arity was created by Hussain et al. [20].
An algorithm for developing a novel 7-point quaternary approximation SS using shape parameters was
developed by Nawaz et al. [21]. Yao et al. [22] showed interest in fractal and convexity analysis of
a 4-point quaternary SS.

1.1. Role and motivation

Based on the literature review, we observe that a vast body of research has been dedicated to
binary and ternary SSs. However, quaternary SSs have remained less explored. There is a room to
define a family of quaternary approximating SSs showing diverse characteristics to meet the different
requirements of end users. The introduction of a new family of quaternary SSs is fundamental
because it provides an opportunity to improve the smoothness of the resulting curves without
significantly increasing the computational complexity. High-arity schemes, such as quaternary
schemes, strike a balance between smoothness and computational efficiency, making them
particularly advantageous in applications where both are critical. The motivation behind introducing a
new family of quaternary SSs stems from the need for increased smoothness and flexibility in
designing curves. The development of such schemes with free shape parameters allows for adjustable
smoothness and enhanced control over the generated geometry. Additionally, these schemes are
crucial for eliminating undesirable features such as the Gibbs phenomenon, which causes oscillations
near discontinuities in the limit function. Addressing this phenomenon is essential for improving the
visual quality and accuracy of the generated curves in practical applications.

In this study, we develop an explicit formula for building a family of quaternary approximating SSs.
The formulae involve three parameters, in which one parameter plays the role of the shape control
parameter and the rest of the two parameters identifies the different members of the proposed family
and smoothness level of limit curves. The remainder of the paper is organized as follows: Section 2
provided basic concepts and preliminaries. In Section 3, we present the explicit formulae to create
a family of m-point quaternary approximating SSs. The smoothness analysis of the proposed family
of schemes is given in Section 4. In Section 5, polynomial generation and reproduction property of
the proposed schemes is discussed. Section 6 presents theoretical and graphical analysis of the Gibbs
phenomenon of the proposed family. A comparative analysis of the proposed schemes is presented in
Section 7, followed by the conclusion in Section 8.
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2. Preliminaries

A quaternary subdivision scheme δ can be defined in the term of mask consisting of a finite set of
nonzero coefficients c = {ci : i ∈ Z}, as follows

qk+1
i =

∑
j∈Z

ci−4 jqk
j, i ∈ Z, j ∈ Z. (2.1)

The number of points added between two successive control points from level k to k + 1 indicates the
arity of the SS. When 4 points are put in this instance, it is referred to as quaternary. An SS is said to
be uniformly convergent, if for any initial data q0 = {q0

i : i ∈ Z}, there exists a continuous function q,
such that, for any closed interval I ⊂ R, it satisfies convergent.

lim
k→∞

sup
i∈4k I
|qk

i − q(4−ki)| = 0.

The limit function q is denoted by q = δ∞q0. A symbol also called the Laurent polynomial of the mask
c = {ci : i ∈ Z}, of the scheme (2.1) is defined as C(z) =

∑
i∈Z cizi. The Laurent polynomial of the

convergent quaternary subdivision scheme satisfies the following conditions

C(1) = 4, C(e
2ipπ

4 ) = 0, P = 1, 2, 3.

Definition 2.1. [23] Let g be a punctually discontinuous function and its sampling gh be defined by
gih = g(ih). The Gibbs phenomenon in the refinement scheme deals with the convergence of (δ∞gh)
toward g when h goes to 0. It can be delimited by two properties:
P1. Away from the discontinuity, the convergence is rather slow, and for any point x,

|g(x) − (δ∞gh)(x)| = O(h).

P2. There is an overstepped, close to discontinuity, that does not reduce with the reduction of h. Thus,
maxx∈R |g(x) − (δ∞gh)(x)| does not tend to zero with h.

Theorem 2.1. [24] Let g be any function defined by

g(x) = g−(x), g− ∈ Cn(] −∞, φ]), ∀x ≤ φ,

g(x) = g+(x), g+ ∈ Cn(] −∞, φ]), ∀x ≥ φ,

with n ≥ 2, 0 ≤ φ ≤ h, and g−(φ) > g+(φ). Let δc be a univariate stationary refinement scheme with;

ξ[k]
t (i) =


∑
τ≤i c4τ+t

[k], if i < 0,
0, if i = 0,∑
τ≥i c4τ+t

[k], if i > 0,

where c[k] defined as c(z)[k] =
∑

j∈Z c j−4i and 0 ≤ t < 4k. Then, if ξ[k]
t (i) ≥ 0 ∀i, k, and if h is sufficiently

small, we have the following two conditions:
C1. If |x| ≥ max

{∣∣∣M−1
2

∣∣∣ , ∣∣∣M+N
2 + 1

∣∣∣} h, then

|g(x) − (δ∞c gh)| = O(hn),

n ≥ 2.
C2. If |x| ≥ max

{∣∣∣M−1
2

∣∣∣ , ∣∣∣M+N
2 + 1

∣∣∣} h, there exists βh = O(h) such that:

g1,h − βh ≤ g+(h) − βh ≤ (H∞c )(x) ≤ g−(0) + βh = g0,h + βh.
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3. A new family of m-point QRS

In this section, we present a new family of m-point QRS , known as (δ
α,θ,m) with a shape control

parameter α. The family of the Laurent polynomials of the scheme δ
α,θ,m is defined as

Cα,θ,m(z) =
1
zm

(
1 + z + z2 + z3

4

)θ+1

(4α(1 + z4) + (z + z3) + 2(1 − 4α)z2), (3.1)

where θ = 0, 1, 2, . . . , and m = 2, 3, 4, . . . , identify the different subfamilies of δ
α,θ,m . Specifically, the

parameter θ governs both the smoothness of the scheme and the number of points m in the subdivision
rules. The value of m depends upon θ by the relation

m =
⌈
θ +

3
2

⌉
. (3.2)

The relation (3.2) suggests that as θ increases, the smoothness of the scheme improves and m grows
stepwise. The ceiling function ⌈a⌉ returns the largest integer greater than or equal to a. In this case, it
ensures that m remains an integer, as the number of points in a refinement scheme cannot be fractional.
By varying values of θ in (3.2), we get corresponding values of m to construct the subfamilies of δ

α,θ,m .
Table 1 shows the set of values for m depending on θ.

Table 1. Set of values for m depending on θ.

θ 0 1 2 3 4 . . .
m 2 3 4 5 6 . . .

3.1. Subfamily δ
α,0,2

A subfamily of 2-point schemes δ
α,0,2 can be derived by substituting θ = 0 and m = 2 in (3.1), which

results in the following Laurent polynomial:

Cα,0,2(z) = αz5 +

(
1
4
+ α

)
z4 +

(
3
4
− α

)
z3 + (1 − α) z2 + (1 − α) z +

(
3
4
− α

)
+

(
1
4
+ α

)
z−1 + αz−2. (3.3)

The Laurent polynomial (3.3) defines the refinement scheme δ
α,0,2 , which is given by

qk+1
4i = (1 − α) qk

i + αqk
i+1,

qk+1
4i+1 =

(
3
4 − α

)
qk

i +
(

1
4 + α

)
qk

i+1,

qk+1
4i+2 =

(
1
4 + α

)
qk

i +
(

3
4 − α

)
qk

i+1,

qk+1
4i+3 = αqk

i + (1 − α)qk
i+1.

(3.4)

Remark 3.1. δ 7
8 ,0,2

coincides with the scheme proposed in [25].
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3.2. Subfamily δ
α,1,3

By setting θ = 1 and m = 3 in (3.1), we generate a sub-family of 3-point schemes δ
α,1,3 . The Laurent

polynomial of δ
α,1,3 is as follows:

Cα,1,3(z) =
1
4
αz7 +

(
1

16
+

1
2
α

)
z6 +

(
1
4
+

1
4
α

)
z5 +

1
2

z4 +

(
3
4
−

1
2
α

)
z3 +

(
7
8
− α

)
z2 +

(
3
4
−

1
2
α

)
z

+
1
2
+

(
1
4
+

1
4
α

)
z−1 +

(
1

16
+

1
2
α

)
z−2 +

1
4
αz−3. (3.5)

The refinement scheme δ
α,1,3 corresponding to the Laurent polynomial (3.5) is given by

qk+1
4i =

1
2qk

i +
1
2qk

i+1,

qk+1
4i+1 =

(
1
4 +

1
4α

)
qk

i +
(

3
4 −

1
2α

)
qk

i+1 +
1
4qk

i+2,

qk+1
4i+2 =

(
1

16 +
1
2α

)
qk

i +
(

7
8 − α

)
qk

i+1 +
(

1
16 +

1
2α

)
qk

i+2,

qk+1
4i+3 =

1
4qk

i +
(

3
4 −

1
2α

)
qk

i+1 +
(

1
4 +

1
4α

)
qk

i+2.

(3.6)

3.3. Subfamily δ
α,2,4

By substituting θ = 2 and m = 4 in (3.1), we establish a subfamily of 4-point schemes δ
α,2,4 , which

leads to the Laurent polynomial

Cα,2,4(z) =
1

16
αz9 +

(
1

64
+

3
16
α

)
z8 +

(
5

64
+

1
4
α

)
z7 +

(
13
64
+

1
4
α

)
z6 +

(
25
64
+

1
16
α

)
z5

+

(
19
32
−

5
16
α

)
z4 +

(
23
32
−

1
2
α

)
z3 +

(
23
32
−

1
2
α

)
z2 +

(
19
32
−

5
16
α

)
z +

(
25
64
+

1
16
α

)
+

(
13
64
+

1
4
α

)
z−1 +

(
5
64
+

1
4
α

)
z−2 +

(
1

64
+

3
16
α

)
z−3 +

1
16
αz−4. (3.7)

The refinement scheme δ
α,2,4 linked with the Laurent polynomial (3.7) is described below

qk+1
4i =

(
13
64 +

1
4α

)
qk

i +
(

23
32 −

1
2α

)
qk

i+1 +
(

5
64 +

1
4α

)
qk

i+2,

qk+1
4i+1 =

(
5
64 +

1
4α

)
qk

i +
(

23
32 −

1
2α

)
qk

i+1 +
(

13
64 +

1
4α

)
qk

i+2,

qk+1
4i+2 =

(
1
64 +

3
16α

)
qk

i +
(

19
32 −

5
16α

)
qk

i+1 +
(

25
64 +

1
16α

)
qk

i+2 +
1

16αqk
i+3,

qk+1
4i+3 =

1
16αqk

i +
(

25
64 +

1
16α

)
qk

i+1 +
(

19
32 −

5
16α

)
qk

i+2 +
(

1
64 +

3
16α

)
qk

i+3.

(3.8)

3.4. Subfamily δ
α,3,5

By setting θ = 3 and m = 5 in (3.1), we drive a subfamily of 5-point schemes δ
α,3,5 , which results in

the following Laurent polynomial:

Cα,3,5(z) =
1

64
αz11 +

(
1

256
+

1
16
α

)
z10 +

(
3

128
+

1
8
α

)
z9 +

(
19

256
+

3
16
α

)
z8 +

(
11
64
+

3
16
α

)
z7
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+

(
81
256
+

1
16
α

)
z6 +

(
61
128
−

1
8
α

)
z5 +

(
155
256
−

5
16
α

)
z4 +

(
21
32
−

13
16
α

)
z3

+

(
155
256
−

5
16
α

)
z2 +

(
61
128
−

1
8
α

)
z +

(
81

256
+

1
16
α

)
+

(
11
64
+

3
16
α

)
z−1

+

(
19
256
+

3
16
α

)
z−2 +

(
3

128
+

1
8
α

)
z−3 +

(
1

256
+

1
16
α

)
z−4 +

1
64
αz−5. (3.9)

The refinement scheme δ
α,3,5 corresponding to the Laurent polynomial (3.9) is given by

qk+1
4i =

(
19
256 +

3
16α

)
qk

i +
(

155
256 −

5
16α

)
qk

i+1 +
(

81
256 +

1
16α

)
qk

i+2 +
(

1
256 +

1
16α

)
qk

i+3,

qk+1
4i+1 =

(
3

128 +
1
8α

)
qk

i +
(

61
128 −

1
8α

)
qk

i+1 +
(

61
128 −

1
8α

)
qk

i+2 +
(

3
128 +

1
8α

)
qk

i+3,

qk+1
4i+2 = ( 1

256 +
1

16α)qk
i + ( 81

256 +
1
16α)qk

i+1 +
(

155
256 −

5
16α

)
qk

i+2 +
(

19
256 +

3
16α

)
qk

i+3,

qk+1
4i+3 =

1
64αqk

i +
(

11
64 +

3
16α

)
qk

i+1 +
(

21
32 −

13
16α

)
qk

i+2 +
(

11
64 +

3
16α

)
qk

i+3 +
1
64αqk

i+4.

(3.10)

Remark 3.2. δ− 11
16 ,3,5

coincides with the scheme proposed in [26], when µ = 11
20 .

By proceeding with the same process for further values of θ and its corresponding exponent m > 5,
we can obtain new subfamilies of δ

α,θ,m .

4. Analysis of convergence and smoothness

The fundamental criteria for selecting an optimal refinement scheme are its convergence,
smoothness, and support width of the limit function. Here, we focus on the investigation of the
convergence and smoothness of δ

α,θ,m , with a specific emphasis on its alignment with the given
conditions.

For a given refinement scheme δc, let δc1 be the associated refinement scheme for the divided
differences of the primary points, ensuring that it satisfies

Dqk+1 = δc1Dqk,

where qk = δk
cq

0 and (Dqk)i = 4k(qk
i+1 − qk

i ). The symbol associated with the difference scheme δc1 is
given by

C1(z) =
4z3

1 + z + z2 + z3 C(z),

where C(z) is the symbol associated with the scheme δc. Now, we recall some celebrated results for
evaluating the convergence and smoothness of a refinement scheme.

Theorem 4.1. [16] Let δc and δc1 be the refinement schemes with the symbols C(z) and C1(z),
respectively. Then, the scheme δc is uniformly convergent (i.e., C0) if, and only if, there exist an
integer s > 0 such that

∥∥∥∥(1
4δa1

)s∥∥∥∥
∞
< 1.

Furthermore, to evaluate smoothness of the scheme δc, we have the following result:

AIMS Mathematics Volume 9, Issue 11, 33185–33214.



33192

Theorem 4.2. [16] Let δc and δc1 be the refinement schemes with the symbols C(z) and C1(z)
respectively, such that

C(z) =
(
1 + z + z2 + z3

4z3

)n

C1(z).

If the scheme δc1 is contractive, then the scheme δc is Cn for any initial data.

Now, we are ready to present the main results of this section for the convergence and smoothness
of the subfamilies of the scheme δα,θ,m.

4.1. Convergence

Theorem 4.3. The subfamilies of δ
α,θ,m presented in (3.4), (3.6), (3.8), and (3.10), converge when α ∈(

−1
4 ,

1
2

)
,
(
−7

4 ,
9
4

)
,
(
−13

8 ,
19
8

)
, and

(
−57

16 ,
71
16

)
, respectively.

Proof. The family of Laurent polynomials of the scheme δ
α,θ,m given in (3.1) can be expressed as

Cα,θ,m(z) =
(
1 + z + z2 + z3

4z3

)
dα,θ,m(z),

where

dα,θ,m(z) = z3−m

(
1 + z + z2 + z3

4

)θ
(4α(1 + z4) + (z + z3) + 2(1 − 4α), (4.1)

is the Laurent polynomial of the first-order divided difference of the scheme δ
α,θ,m .

Case-I: For the convergence of the subfamily δ
α,0,2 , we use θ = 0 and m = 2 in (4.1) and have

dα,0,2(z) = 4αz5 + z4 + (2 − 8α)z3 + z2 + 4αz.

Thus, the mask of the scheme δdα,0,2 , which is related to the Laurent polynomial dα,0,2(z), is
{4α, 1, (2 − 8α), 1, 4α}, since it can be easily verified that for α ∈

(
−1

4 ,
1
2

)
,∥∥∥∥∥1

4
δdα,0,2

∥∥∥∥∥
∞

=
1
4

max{2|4α|, |1|, |2 − 8α|} < 1.

Thus, the subfamily δ
α,0,2 converges when α ∈

(
−1

4 ,
1
2

)
.

Case-II: For the convergence of the subfamily δ
α,1,3 , we use θ = 1 and m = 3 in (4.1) and have

dα,1,3(z) = αz9 +

(
1
4
+ α

)
z8 +

(
3
4
− α

)
z7 + (1 − α)z6 + (1 − α)z5 +

(
3
4
− α

)
z4 +

(
1
4
+ α

)
z3 + αz2.

Thus, the mask of the scheme δdα,1,3 , which is related to the Laurent polynomial dα,1,3(z), is{
α,

(
1
4
+ α

)
,

(
3
4
− α

)
, (1 − α), (1 − α),

(
3
4
− α

)
,

(
1
4
+ α

)
, α

}
.

It can be easily verified that for α ∈
(
−7

4 ,
9
4

)
,∥∥∥∥∥1

4
δdα,1,3

∥∥∥∥∥
∞

=
1
4

max
{
|α| + |(1 − α)|,

∣∣∣∣∣∣
(
1
4
+ α

)∣∣∣∣∣∣ +
∣∣∣∣∣∣
(
3
4
− α

)∣∣∣∣∣∣
}
< 1.
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Thus, the subfamily δ
α,1,3 converges when α ∈

(
−7

4 ,
9
4

)
.

Case-III: For the convergence of the subfamily δ
α,2,4 , we use θ = 2 and m = 4 in (4.1) and have

dα,2,4(z) =
{

1
4
αz9 +

(
1

16
+

1
2
α

)
z8 +

(
1
4
+

1
4
α

)
z7 +

1
2

z6 +

(
3
4
−

1
2
α

)
z5 +

(
7
8
− α

)
z4

+

(
3
4
−

1
2
α

)
z3 +

1
2

z2 +

(
1
4
+

1
4
α

)
z +

(
1
16
+

1
2
α

)
+

1
4
αz−1

}
.

Thus, the mask of the scheme δdα,2,4 corresponding to the Laurent polynomial dα,2,4(z), is{
1
4
α,

(
1

16
+

1
2
α

)
,

(
1
4
+

1
4
α

)
,

1
2
,

(
3
4
−

1
2
α

)
,

(
7
8
− α

)
,

(
3
4
−

1
2
α

)
,

1
2
,

(
1
4
+

1
4
α

)
,

(
1
16
+

1
2
α

)
,

1
4
α

}
.

It is evident that for α ∈
(
−7

4 ,
9
4

)
∥∥∥∥∥1

4
δdα,2,4

∥∥∥∥∥
∞

=
1
4

max
{∣∣∣∣∣14α

∣∣∣∣∣ +
∣∣∣∣∣∣
(
3
4
−

1
2
α

)∣∣∣∣∣∣ +
∣∣∣∣∣∣
(
1
4
+

1
4
α

)∣∣∣∣∣∣ ,
∣∣∣∣∣∣
(

1
16
+

1
2
α

)∣∣∣∣∣∣ +
∣∣∣∣∣∣
(
7
8
− α

)∣∣∣∣∣∣ +
∣∣∣∣∣∣
(

1
16
+

1
2
α

)∣∣∣∣∣∣ , 1
}
< 1.

Thus, the subfamily δ
α,1,3 converges when α ∈

(
−7

4 ,
9
4

)
.

Case-IV: For the convergence of the subfamily δ
α,3,5 , we use θ = 3 and m = 5 in (4.1) and have

dα,3,5(z) =
1

16
αz11 +

(
1

64
+

3
16
α

)
z10 +

(
5
64
+

1
4
α

)
z9 +

(
13
64
+

1
4
α

)
z8 +

(
25
64
+

1
16
α

)
z7

+

(
19
32
−

5
16
α

)
z6 +

(
23
32
−

1
2
α

)
z5 +

(
23
32
−

1
2
α

)
z4 +

(
19
32
−

5
16
α

)
z3 +

(
25
64
+

1
16
α

)
z2

+

(
13
64
+

1
4
α

)
z +

(
5
64
+

1
4
α

)
+

(
1

64
+

3
16
α

)
z−1 +

1
16
αz−2.

Thus, the mask of the scheme δ
α,3,5 , which is related to the Laurent polynomial dα,3,5(z), is{

1
16
α,

(
1

64
+

3
16
α

)
,

(
5

64
+

1
4
α

)
,

(
13
64
+

1
4
α

)
,

(
25
64
+

1
16
α

)
,

(
19
32
−

5
16
α

)
,

(
23
32
−

1
2
α

)
,(

23
32
−

1
2
α

)
,

(
19
32
−

5
16
α

)
,

(
25
64
+

1
16
α

)
,

(
13
64
+

1
4
α

)
,

(
5

64
+

1
4
α

)
,

(
1
64
+

3
16
α

)
,

1
16
α

}
.

It is clear that for α ∈
(
−57

16 ,
71
16

)
,∥∥∥∥∥1

4
δdα,3,5

∥∥∥∥∥
∞

=
1
4

max
{∣∣∣∣∣ 1

16
α

∣∣∣∣∣ + ∣∣∣∣∣25
64
+

1
16
α

∣∣∣∣∣ + ∣∣∣∣∣19
32
−

5
16
α

∣∣∣∣∣ + ∣∣∣∣∣ 1
64
+

3
16
α

∣∣∣∣∣ , ∣∣∣∣∣13
64
+

1
4
α

∣∣∣∣∣+∣∣∣∣∣23
32
−

1
2
α

∣∣∣∣∣ + ∣∣∣∣∣ 5
64
+

1
4
α

∣∣∣∣∣} < 1.

Thus, the subfamily δ
α,3,5 converges when α ∈

(
−57

16 ,
71
16

)
. □
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4.2. Smoothness

The smoothness of a refinement scheme depends upon its continuity. The following result shows
that the family of schemes δα,θ,m maintains a level of Cθ continuity.

Theorem 4.4. The family of schemes δ
α,θ,m has smoothness Cθ ∀ α ∈ (−1

4 ,
1
2 ).

Proof. The family of the Laurent polynomials (3.1) can be expressed as

Cα,θ,m(z) =
(
1 + z + z2 + z3

4z3

)θ
dα,θ,m(z),

where

dα,θ,m(z) = 4z3θ+3−m

{
α +

1
4

z +
(
1
2
− 2α

)
z2 +

1
4

z3 + αz4
}
. (4.2)

Thus, the mask of the scheme δdα,θ,m corresponding to the Laurent polynomial dα,θ,m(z) is
{4α, 1, (2 − 8α), 1, 4α}. It can be easily verified that for α ∈

(
−1

4 ,
1
2

)
,∥∥∥∥∥1

4
δdα,θ,m

∥∥∥∥∥
∞

1
4

max{2|4α|, |1|, |2 − 8α|} < 1.

Thus, the δα,θ,m is Cθ when α ∈
(
−1

4 ,
1
2

)
. □

4.3. Hölder regularity

Hölder regularity is an extension of the notion of continuity which gives more information for
subdivision schemes like these, rather than just quoting the number of derivatives that converge. A
function φ : R → R is defined to be regular of order τ + α (for τ ∈ N0 and 0 < α ≤ 1) if it is τ times
continuously differentiable and φτ is Lipschitz of order α, i.e.,∣∣∣φ(τ)(v + h) − φ(τ)(v)

∣∣∣ ≤ c |h|α ,

for all v and h in R and some constant c.
Continuity of a subdivision curve is defined by just saying that if the nth derivative of a curve

exists everywhere in an interval and it is continuous, then the curve is said to be Cn continuous in that
interval. However, the Hölder regularity of a subdivision curve is a measure of how many derivatives
are continuous, and of how continuous the highest continuous derivative is. Therefore, Hölder
regularity is essential to determine the overall smoothness characteristics of the schemes. According
to Riouls method [27], the Hölder regularity of the δ

α,θ,m can be computed as follows:

Theorem 4.5. The Hölder regularity of the family of the schemes δ
α,θ,m is

Rθ =


θ − log4

(
1
2 − 2α

)
, if − 1

4 < α <
1
8 ,

θ − log4(2α), if 1
8 < α <

1
2 ,

θ + 1, if α = 1
8 .
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Proof. Hölder regularity is the extended continuity of a refinement scheme. Using the Rioul’s
approach [27], the δα,θ,m has Hölder regularity Rθ = θ + ψ

G, for all G ≥ 1, where ψG is determined by

4−GψG
=

∥∥∥∥∥∥
(
1
4
δdα,θ,m

)G∥∥∥∥∥∥
∞

.

The proof of the Theorem 4.4, indicates that

∥∥∥∥∥1
4
δdα,θ,m

∥∥∥∥∥
∞

=


1
2 − 2α, if − 1

4 < α <
1
8 ,

2α, if 1
8 < α <

1
2 ,

1
4 , if α = 1

8 .

For G = 1, we have

η =


− log4

(
1
2 − 2α

)
, if − 1

4 < α <
1
8 ,

− log4(2α), if 1
8 < α <

1
2 ,

1, if α = 1
8 .

Hence, the Hölder regularity of the scheme δα,θ,m is

Rθ =


θ − log4

(
1
2 − 2α

)
, if − 1

4 < α <
1
8 ,

θ − log4(2α), if 1
8 < α <

1
2 ,

θ + 1, if α = 1
8 .

□

4.4. Support of δ
α,θ,m

The support of a subdivision scheme represents the area of the limit curve affected by the
displacement of a single control point from its initial place. The support of a refinement scheme
reflects the effect of local control on its limiting curves. For the sake of computations, we only discuss
the support of the first family member δ

α,0,2 in detail. The support of the rest of the family members
can be easily calculated on the same principles.

Lemma 4.1. When we apply the δ
α,0,2 scheme to the initial data,

q0
i =

{
1, i = 0,
0, i , 0.

(4.3)

Following the initial subdivision step, the nonzero points are q1
−4, q1

−3, . . . , q1
2, q1

3.

Lemma 4.2. Applying the δ
α,0,2 scheme to the initial data as in (4.3) and then following the second

refinement step, the nonzero points are q2
−20, q2

−19, . . . , q2
14, q2

15.

Lemma 4.3. When we apply the δ
α,0,2 scheme with the initial data as in (4.3), after the third subdivision

step, the points with nonzero values are q3
−84, q3

−83, . . . , q3
62, q3

63.

We choose not to include the support derivation due to its obviousness.
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Theorem 4.6. The support of δ
α,0,2 is 7

3 , which implies that it vanishes outside the interval
[
−7

6 ,
7
6

]
.

Proof. By using the result of Lemmas 4.1, 4.2, and 4.3, we prove the above result. Consider a set

Gk =

{ j
4k : ∀ j ∈ Z

}
,

so that
ϑ
( j
4k

)
= qk

j,∀ j ∈ Z.

Using Lemma 4.1, we can deduce that if we apply the δ
α,0,2 scheme on the initial data, the position of

the first nonzero point on the left after the initial subdivision step is

q1
−4 = ϑ

(
−

4
4

)
,

and the last nonzero point on the right is

q1
3 = ϑ

(
3
4

)
.

Based on Lemma 4.2, it follows that when we use the δ
α,0,2 scheme for the initial data, the position of

the first nonzero point on the left after second subdivision step is as follows

q2
−20 = q2

−4(1+4) = ϑ

(
−

4(1 + 4)
42

)
,

and the last nonzero point on the right is

q2
15 = q2

3(1+4) = ϑ

(
3(1 + 4)

42

)
.

Similarly, from Lemma 4.3, if we apply δ
α,0,2 scheme to the initial data, the position of the first nonzero

point on the left after the third subdivision step is

q3
−84 = q3

−4(1+4+42) = ϑ

(
−

4(1 + 4 + 42)
43

)
,

and the last nonzero point on the right is

q3
63 = q3

3(1+4+42) = ϑ

(
3(1 + 4 + 42)

43

)
.

Continuing this procedure, the position of the first nonzero point on the left after the k-th subdivision
step is

qk
−4(1+4+...+4k−1) = ϑ

(
−

4(1 + 4 + . . . + 4k−1)
4k

)
,

and the last nonzero point on the right is

qk
3(1+4+...+4k−1) = ϑ

(
3(1 + 4 + . . . + 4k−1)

4k

)
.
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The difference between the nonzero points on the left and right after the k-th subdivision step is

l =
[
3(1 + 4 + . . . + 4k−1)

4k −
−4(1 + 4 + . . . + 4k−1)

4k

]
=

[
3(1 + 4 + . . . + 4k−1)

4k +
4(1 + 4 + . . . + 4k−1)

4k

]
=

[
(3 + 4)

(
1 + 4 + . . . + 4k−1

4k

)]
=

[
7
4

(
1 +

1
4
+

1
42 + . . . +

1
4k−1

)]
.

Since 1
4 < 1, the sum of the geometric sequence allows us to determine the accumulated extent on

each side. Consequently, we deduce that as we approach the limit, the complete impact of the initial
non-zero vertex will progressively spread further along.

7
4

 k−1∑
j=0

1
4 j

 = 7
4

 1
1 − 1

4

 = 7
3
.

Hence, the support width is 7
3 , which implies that it vanishes outside the interval

[
−7

6 ,
7
6

]
. □

Figure 1 shows basic limit curves generated by δ 1
8 ,θ,m

for θ = 0, . . . , 4 and m = 2, . . . , 6, respectively.

Figure 1. Basic limit curves generated by δ
α,θ,m at α = 1

8 .

In Table 2, we summarize the continuity and support of the δ
α,θ,m schemes.
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Table 2. Continuity and support of δ
α,θ,m .

Scheme Continuity Support
δ
α,1,3 C1 when α ∈

(
−1

4 ,
1
2

)
10/3

δ
α,2,4 C2 when α ∈

(
−1

4 ,
1
2

)
13/3

δ
α,3,5 C3 when α ∈

(
−1

4 ,
1
2

)
16/3

δ
α,4,6 C4 when α ∈

(
−1

4 ,
1
2

)
19/3

5. Polynomial generation and reproduction

The generation and the reproduction of polynomials are two significant features of a refinement
scheme. The generation degree is the highest degree of polynomials that a refinement scheme can
produce during its iterative process and the reproduction degree is the highest degree of polynomials
that a refinement scheme can precisely reproduce. Let us recall some basic results regarding
polynomial generation and reproduction.

Definition 5.1. [28] Let p0 = {p(n) : n ∈ Z} where p ∈ Πd with d ∈ N0. We say that a stationary
subdivision scheme δ reproduces polynomials in

∏
d, if δ is convergent and p = δ∞p0. Also, the

subdivision scheme δ is said to be
∏

d-generating if δ∞p0 ∈
∏

d.

Definition 5.2. [29] For a refinement scheme δc, we denote by τ = C′(1)
4 , the corresponding parametric

shift and attach the data qk
n for n ∈ N, k ∈N to the parameter values.

xk
n = xk

0 +
n
4k with xk

0 = xk−1
0 −

τ

4k . (5.1)

Theorem 5.1. [30] A convergent subdivision scheme δ with any arity r ≥ 2 reproduces polynomials
of degree d ≥ 1, with respect to the parametrization in (5.1) if, and only if,∑

j∈Z

jkcm j+i =

(
τ − i

m

)k

, i = 0, 1, . . . ,m − 1, f or k = 1, 2, . . . , d, (5.2)

where τ = C′(1)
r .

Theorem 5.2. [31] A convergent subdivision scheme that reproduces polynomial Pn has an
approximation order of n + 1.

In the case of a QRS (where m = 4), (5.2) takes the form as

∑
j∈Z

jkc4 j =
(
τ
4

)k
,∑

j∈Z
jkc4 j+1 =

(
τ−1

4

)k
,∑

j∈Z
jkc4 j+2 =

(
τ−2

4

)k
,∑

j∈Z
jkc4 j+3 =

(
τ−3

4

)k
,

(5.3)

for k = 1, 2, . . . , d, and τ =
C′α,θ,m(1)

4 . Now we are ready to present the main results of this section.
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Theorem 5.3. The family of δ
α,θ,m schemes generates polynomials up to degree θ.

Proof. The family of Laurent polynomials (3.1), can be expressed as

Cα,θ,m(z) = (1 + z + z2 + z3)(θ+1)
dα,θ,m(z),

where

dα,θ,m(z) =
α + 1

4z +
(

1
2 − 2α

)
z2 + 1

4z3 + αz4

4θzm .

Since dα,θ,m(1) = 1
4θ , the family of δ

α,θ,m schemes generates polynomials up to degree θ. □

Theorem 5.4. The subfamily δ
α,0,2 reproduces a linear polynomial when α = 1

8 .

Proof. From (3.3), the Laurent polynomial of the scheme δ
α,0,2 is given by

Cα,0,2(z) =
5∑

j=−2

c jz j

= αz5 +

(
1
4
+ α

)
z4 +

(
3
4
− α

)
z3 + (1 − α) z2 + (1 − α) z

+

(
3
4
− α

)
+

(
1
4
+ α

)
z−1 + αz−2. (5.4)

Differentiating (5.4) and then evaluating at z = 1 leads us to C′α,0,2(1) = 6 and τ = 3
2 . By

simplifying (5.3) for τ = 3
2 , we get the system as given below:

(1)kc4 =
(

3
8

)k
,

(1)kc5 =
(

1
8

)k
,

(−1)kc−2 =
(
−1

8

)k
,

(−1)kc−1 =
(
−3

8

)k
.

(5.5)

Since (5.5) is verified for k = 1, the scheme δ
α,0,2 reproduces the linear polynomials. □

Corollary 5.1. The subfamily δ
α,0,2 has approximation order 2.

Theorem 5.5. The subfamily δ
α,1,3 reproduces linear polynomial ∀ α ∈ (−7

4 ,
9
4 ).
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Proof. From (3.3), the Laurent polynomial of the scheme δ
α,1,3 is given by

Cα,1,3(z) =
7∑

j=−3

c jz j

=
1
4
αz7 +

(
1

16
+

1
2
α

)
z6 +

(
1
4
+

1
4
α

)
z5 +

1
2

z4 +

(
3
4
−

1
2
α

)
z3 +

(
7
8
− α

)
z2 +

(
3
4
−

1
2
α

)
z

+
1
2
+

(
1
4
+

1
4
α

)
z−1 +

(
1

16
+

1
2
α

)
z−2 +

1
4
αz−3. (5.6)

Differentiating (5.6) and then evaluating at z = 1 leads us to c′α,1,3(1) = 8 and, thus, τ = 4. By
simplifying (5.3) for τ = 4, we get the system as given below:

c4 =
(

1
2

)k
,

(−1)kc−3 + c5 =
(

1
4

)k
,

(−1)kc−2 + c6 = 0,

(−1)kc−1 + c7 =
(
−1

4

)k
.

(5.7)

Since (5.7) is verified only for k = 1, ∀ α ∈ (−7
4 ,

9
4 ), thus the scheme δ

α,1,3 reproduces the linear
polynomials. □

Corollary 5.2. The subfamily δ
α,1,3 has approximation order 2, ∀ α ∈ (−7

4 ,
9
4 ).

Theorem 5.6. The subfamily δ
α,2,4 reproduces linear polynomial ∀ α ∈ (−13

8 ,
19
8 ).

Proof. From (3.7), the Laurent polynomial of the scheme δ
α,2,4 is given by

Cα,2,4(z) =
9∑

j=−4

c jz j

=
1

16
αz9 +

(
1

64
+

3
16
α

)
z8 +

(
5

64
+

1
4
α

)
z7 +

(
13
64
+

1
4
α

)
z6 +

(
25
64
+

1
16
α

)
z5

+

(
19
32
−

5
16
α

)
z4 +

(
23
32
−

1
2
α

)
z3 +

(
23
32
−

1
2
α

)
z2 +

(
19
32
−

5
16
α

)
z +

(
25
64
+

1
16
α

)
+

(
13
64
+

1
4
α

)
z−1 +

(
5
64
+

1
4
α

)
z−2 +

(
1

64
+

3
16
α

)
z−3 +

1
16
αz−4. (5.8)

Differentiating (5.8) and then evaluating at z = 1 leads us to C′α,2,4(1) = 10 and τ = 5
2 . By
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simplifying (5.3) for τ = 5
2 , we get the system as given below

c4 + (2)kc8 =
(

5
8

)k
,

(−1)kc−3 + c5 + (2)kc9 =
(

3
8

)k
,

(−1)kc−2 + c6 + (2)kc10 =
(

1
8

)k
,

(−1)kc−1 + c7 =
(
−1

8

)k
.

(5.9)

Since (5.9) is verified for k = 1, ∀ α ∈ (−7
4 ,

9
4 ), thus the scheme δ

α,2,4 reproduces the linear polynomials.
□

Corollary 5.3. The subfamily of the schemes δ
α,2,4 has approximation order 2, ∀ α ∈ (−7

4 ,
9
4 ).

Theorem 5.7. The subfamily of the schemes δ
α,3,5 reproduces linear polynomial ∀ α ∈ (−13

8 ,
19
8 ).

Proof. From (3.7), the Laurent polynomial of the scheme δ
α,3,5 is given by

Cα,3,5(z) =
11∑

j=−5

c jz j

=
1
64
αz11 +

(
1

256
+

1
16
α

)
z10 +

(
3

128
+

1
8
α

)
z9 +

(
19

256
+

3
16
α

)
z8 +

(
11
64
+

3
16
α

)
z7

+

(
81
256
+

1
16
α

)
z6 +

(
61
128
−

1
8
α

)
z5 +

(
155
256
−

5
16
α

)
z4 +

(
21
32
−

13
16
α

)
z3

+

(
155
256
−

5
16
α

)
z2 +

(
61
128
−

1
8
α

)
z +

(
81

256
+

1
16
α

)
+

(
11
64
+

3
16
α

)
z−1

+

(
19
256
+

3
16
α

)
z−2 +

(
3

128
+

1
8
α

)
z−3 +

(
1

256
+

1
16
α

)
z−4 +

1
64
αz−5. (5.10)

Differentiating (5.10) and then evaluating at z = 1 leads us to C′α,2,4(1) = 14 and τ = 7
2 . By

simplifying (5.3) for τ = 7
2 , we get the system as given below:

(−1)kc−4 + c4 + (2)kc8 =
(

3
4

)k
,

(−1)kc−3 + c5 + (2)kc9 =
(

1
2

)k
,

(−1)kc−2 + c6 + (2)kc10 =
(

1
4

)k
,

(−2)kc−5 + (−1)kc−1 + c7 + (2)kc11 = 0.

Since (5.11) is verified for k = 1, ∀ α ∈ (−7
4 ,

9
4 ), thus the scheme δ

α,3,5 reproduces the linear
polynomials. □

Corollary 5.4. The subfamily δ
α,3,5 has approximation order 2, ∀ α ∈ (−7

4 ,
9
4 ).
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Similarly, by using the same process, we get the polynomial reproduction degree and approximation
order of the rest of the family members as given in Table 3.

Table 3. Polynomial generation/reproduction and Approximation order of δ
α,θ,m .

Scheme Degree of PG Degree of PR AO
δ
α,1,3 1 1 when α ∈ (−7

4 ,
9
4 ) 2

δ
α,2,4 2 1 when α = 0 2
δ
α,3,5 3 3 when α = −11

16 4
δ
α,4,6 4 3 when α = −27

32 4

For better understanding, we display the graphical representation of the polynomial reproduction
property.

Example 5.1. In this example, we use a linear polynomial f (x) to obtain the initial control points

f (x) = 2x + 1, x ∈ (0, 18). (5.11)

We evaluate the property of polynomial reproduction. The graphical representation in Figure 2a–e
illustrates the behavior of δ

α,θ,m with α = 1
8 .

Example 5.2. In this example, we use a cubic polynomial g(x) to obtain the initial control points

g(x) = x3, x ∈ (0, 6). (5.12)

We evaluate the property of polynomial reproduction. The graphical representation in Figure 3a,c and
Figure 3b,d illustrates the behavior of δ

α,θ,m for θ = 3, α = −11
16 and θ = 4, α = −27

32 respectively.
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(a) δ
α,0,2 (b) δ

α,1,3 (c) δ
α,2,4

(d) δ
α,3,5 (e) δ

α,4,6

Figure 2. The limit functions obtained by using a linear polynomial. The results shown in
(a)–(e) are obtained by δ

α,θ,m , for α = 1/8.

(a) cubic polynomial (b) cubic polynomial

Figure 3. The limit functions obtained by the scheme δ
α,θ,m , employing the cubic polynomial

specified in (5.12), for the values of α = −27/32.

6. Theoretical and graphical analysis of the Gibbs phenomenon

This section focuses on the analysis of the Gibbs phenomenon in the curves generated by the
scheme δ

α,θ,m . The Gibbs phenomenon refers to a mathematical phenomenon that occurs when
attempting to approximate a sharp jump or discontinuity in a function using a Fourier series, leading
to persistent overshoot or oscillations near the discontinuity. Eliminating these oscillations is crucial
for improving accuracy, visual quality, and overall performance of a subdivision scheme. To address
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this, we evaluate the characteristics of the masks in these subdivision schemes by applying
appropriate criteria (as given in [24]), including partial sums of the nonnegative masks, to determine
whether Gibbs oscillations occur near discontinuities. Recently, a family of 7-point binary
subdivision schemes derived in [32] similarly addresses the Gibbs phenomenon. The transition from a
binary to a quaternary framework allows our family of m-point schemes to encompass a wider variety
of subdivision behaviors. This generalization demonstrates that the same principles for avoiding the
Gibbs phenomenon apply effectively across different types of schemes, including both binary and
quaternary settings.

Theorem 6.1. The subfamily δ
α,0,2 does not produce Gibbs oscillations close to the discontinuity for

α ∈ [0,∞).

Proof. By Theorem 2.1, a stationary refinement scheme avoids the Gibbs phenomenon occurring near
a discontinuity if

ξ[k]
t (i) ≥ 0 ∀i, k, (6.1)

where

ξ[k]
t (i) =


∑
τ≤i c[k]

4τ+t, if i < 0,
0, if i = 0,∑
τ≥i c[k]

4τ+t, if i > 0,

(6.2)

and, 0 ≤ t < 4k.
The Laurent polynomial of δα,0,2 is

Cα,θ,m(z) =
5∑

j=−2

c jz j. (6.3)

Without loss of generality, we focus on the case where k = 1, as the coefficients of the subdivision
scheme do not depend on k, simplifying the analysis without affecting the generality of the results.
Therefore, by setting k = 1 and substituting c[1]

j = c j for j = −2,−1, . . . , 5, in (6.2), we obtain

ξ[1]
t (i) =


∑
τ≤i c[1]

4τ+t, if i < 0,
0, if i = 0,∑
τ≥i c[1]

4τ+t, if i > 0,

(6.4)

where 0 ≤ t ≤ 4. Thus, for t = 0, we get

ξ[1]
0 (i) =


∑
τ≤i c[1]

4τ , if i < 0,
0, if i = 0,∑
τ≥i c[1]

4τ , if i > 0.

(6.5)

By substituting i = −1, 0, 1 in (6.5), we have

ξ[1]
0 (−1), ξ[1]

0 (0), ξ[1]
0 (1) ≥ 0 ∀ α ∈ [−0.25,∞). (6.6)
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Similarly for t = 1, (6.4) becomes

ξ[1]
1 (i) =


∑
τ≤i c[1]

4τ+1, if i < 0,
0, if i = 0,∑
τ≥i c[1]

4τ+1, if i > 0.

(6.7)

By taking i = −1, 0, 1 in (6.7), we get

ξ[1]
1 (−1), ξ[1]

1 (0), ξ[1]
1 (1) ≥ 0 ∀ α ∈ [0,∞). (6.8)

Similarly for t = 2, (6.4) becomes

ξ[1]
2 (i) =


∑
τ≤i c[1]

4τ+2, if i < 0,
0, if i = 0,∑
τ≥i c[1]

4τ+2, if i > 0.

(6.9)

By taking i = −1, 0, 1 in (6.9), we get

ξ[1]
2 (−1), ξ[1]

2 (0), ξ[1]
2 (1) ≥ 0 ∀ α ∈ [0,∞). (6.10)

Finally for t = 3, (6.4) takes the form

ξ[1]
3 (i) =


∑
τ≤i c[1]

4τ+3, if i < 0,
0, if i = 0,∑
τ≥i c[1]

4τ+3, if i > 0.

(6.11)

By taking i = −1, 0, 1 in (6.11), we get

ξ[1]
3 (−1), ξ[1]

3 (0), ξ[1]
3 (1) ≥ 0 ∀ α ∈ [−0.25,∞). (6.12)

By combining (6.6), (6.8), (6.10), and (6.12), we conclude that the subfamily of the schemes δ
α,0,2 does

not exhibit the Gibbs phenomenon ∀ α ∈ [0,∞). □

Similarly, by using same the process to find the interval where Gibbs phenomenon does not appear,
we get the following results of other δ

α,θ,m schemes given in Table 4.

Table 4. Absence of Gibbs phenomenon for some value of α.

Scheme Range for absence of Gibbs phenomenon
δ
α,1,3 α ∈ [0,∞)
δ
α,2,4 α ∈

[
0, 39

8

]
δ
α,3,5 α ∈

[
0, 39

8

]
δ
α,4,6 α ∈

[
0, 751

132

]
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We present some figures which graphically demonstrate the smoothness of the proposed schemes.
These figures are created by applying the proposed schemes to different open and closed polygons.
We offer numerical illustrations of continuous functions. We also provide some numerical examples
of discontinuous functions after eliminating the Gibbs phenomenon for some particular choice of
parameter.

Example 6.1. In this example, we derive the initial control points by utilizing a continuous and
discontinuous function f (x) and g(x), respectively,

f (x) = x2 sin(x), x ∈ (−10, 10), (6.13)

and

g(x) =


tan(x), if x < −π2 ,

tan(x), if − π
2 < x < π

2 ,

tan(x), if x > π
2 .

(6.14)

In Figure 4, the black dotted lines depict the original control polygon, while the black solid circles
represent the initial control points. The solid red lines illustrate the behavior of the proposed SS when
α = 1

8 . Figure 4a visualizes the C0 limit curves produced by δ 1
8 ,0,2

. Figure 4b exhibits the C1 limit curves
generated by δ 1

8 ,1,3
. Figure 4c displays the C2 limit curves resulting from δ 1

8 ,2,4
. Figure 4d showcases

the C3 limit curves produced by δ 1
8 ,3,5

. Lastly, Figure 4e demonstrates the C4 limit curves created
by δ 1

8 ,4,6
. Figure 4f–j provides a comprehensive overview of the behavior of δ 1

8 ,θ,m
for θ = 0, . . . , 4

and m = 2, . . . , 6, respectively. The observed results indicate that the limit function does not exhibit
Gibbs oscillations near the discontinuity. This is an important finding, as it suggests that the function
maintains stability and smoothness even in the presence of discontinuities.
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(a) (b) (c)

(d) (e)

( f ) (g) (h)

(i) ( j)

Figure 4. The limit functions obtained by the scheme δ
α,θ,m , using the continuous function

(left) given in (6.13) and discontinuous function (right) described in (6.14), for specific value
of α = 1/8.

Example 6.2. In this example, we give a comparison of the behavior of the scheme δ
α,0,2 to the Gibbs

phenomenon for different values of α. For this, we consider the initial data from a discontinuous

AIMS Mathematics Volume 9, Issue 11, 33185–33214.
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function f (x)

f (x) =

sin(πx), if 0 ≤ x ≤ 0.5,
− sin(πx), if 0.5 < x < 1.

(6.15)

In Figure 5, the black dotted lines depict the original control polygon, while the black solid circles
represent the initial control points. The solid blue lines illustrate the behavior of the scheme δ

α,0,2 .
Figure 5a shows the limit curve produced by δ

α,0,2 at α = −1
5 and the Figure 5b exhibits the limit curve

generated by δ
α,0,2 at α = 3

7 . As seen in Figure 5a, the scheme δ
α,0,2 fails to avoid the Gibbs phenomenon

when the value of α a does not satisfy the constraints outlined in Theorem 6.1.

(a) α = −1
5 (b) α = 3

7

Figure 5. Gibbs phenomenon: The limit curves obtained by the scheme δ
α,0,2 , using the

discontinuous function given in (6.15), at different values of α.

7. Parametric impact of δ
α,θ,m

In this section, we deal with the visual performance of the proposed schemes δ
α,0,2 , δα,1,3 , δα,2,4 , δα,3,5 ,

and δ
α,4,6 . The proposed schemes offer higher continuity Cθ and create smooth limit curves. Hence, it

provides great flexibility for the designers to create smooth curves according to their requirements. We
present some figures which graphically demonstrate the smoothness of the proposed schemes. These
figures are created by applying the proposed schemes to different closed polygons.

Example 7.1. In this example, we showcase the approximating behavior of δ
α,0,2 on a closed control

polygon for various α values. Figure 6a illustrates this behavior for α = 3
32 . Figure 6b–d corresponds

to α = 1
4 , 5

16 , and 19
64 , respectively.

Example 7.2. In this example, we present the approximating behavior of δ
α,1,3 on a closed control

polygon for different values of α. Figure 7a illustrates the behavior of δ
α,1,3 when α = 1

6 . Figure 7b–d
corresponds to α = 1

4 , 1
8 , and 1

12 , respectively.

Example 7.3. In this example, we express the approximating behavior of δ
α,2,4 on an open polygon for

different values of α. Figure 8a depicts the behavior of δ
α,2,4 when α = 1

8 . Figure 8b–d illustrates the
behaviors of δ

α,2,4 for α = 5
16 , 13

32 , and 19
64 , respectively.
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Example 7.4. In this example, we present the approximating behavior of δ
α,3,5 on a closed control

polygon for different values of α. Figure 9a depicts the behavior of δ
α,3,5 when α = 1

8 . Figure 9b–d
illustrates the behavior of δ

α,3,5 for α = 5
16 , 13

32 , and − 5
32 , respectively.

Example 7.5. In this example, we examine the approximating behavior of δ
α,4,6 on a closed control

polygon across various values of α. Figure 10a illustrates the behavior of δ
α,4,6 when α = 1

8 . Figure 10b–
d represents the behaviors of δ

α,4,6 for α = 5
16 , 13

32 , and − 5
32 , respectively.

(a) α = 3/32 (b) α = 1/4 (c) α = 5/16 (d) α = 19/64

Figure 6. Behavior of limit curves generated by δ
α,0,2 for the different values of α. The dotted

line represents the original closed polygon and the solid circles represent the initial control
points.

(a) α = 1/6 (b) α = 1/4 (c) α = 1/8 (d) α = 1/12

Figure 7. Behavior of limit curves generated by δ
α,1,3 for the different values of α. The dotted

line represents the original closed polygon and the solid circles represent the initial control
points.
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(a) α = 1/8 (b) α = 5/16 (c) α = 13/32 (d) α = 19/64

Figure 8. Behavior of limit curves generated by δ
α,2,4 for the different values of α. The dotted

line represents the original closed polygon and the solid circles represent the initial control
points.

(a) α = 1/8 (b) α = 5/16 (c) α = 13/32 (d) α = −5/32

Figure 9. Behavior of limit curves generated by δ
α,3,5 for the different values of α. The dotted

line represents the original closed polygon and the solid circles represent the initial control
points.

(a) α = 1/8 (b) α = 5/16 (c) α = 13/32 (d) α = −5/32

Figure 10. Behavior of limit curves generated by δ
α,4,6 for the different values of α. The

dotted line represents the original closed polygon and the solid circles represent the initial
control points.
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8. Comparison of δ
α,θ,m

In this section, we provide a comparative analysis of our proposed schemes and discuss that the
proposed schemes coincide with existing schemes in Table 5.

Table 5. Comparison of δ
α,θ,m , where AO stands for approximation order.

m-point Scheme Continuity Support AO Coincide with
2 δ

α,0,2 C0 7/3 2 scheme [25]
3 δ

α,1,3 C1 10/3 2
4 δ

α,2,4 C2 13/3 2
5 δ

α,3,5 C3 16/3 4 scheme [26]
6 δ

α,4,6 C4 19/3 4 scheme [20]
...

...
...

m δ
α,θ,m Cθ

Figure 11 illustrates the comparison of limit curves produced by δ
α,θ,m for different values of α.

(a) Comparison (b) Comparison (c) Comparison

(d) Magni f ying f actor (e) Magni f ying f actor ( f ) Magni f ying f actor

Figure 11. Comparison of limit curves generated by δ
α,θ,m for the different

values of α. (a): α = 13
32 (blue), 1

8 (red),− 1
16 (purple), and − 5

32 (green),
(b): α = 13

32 (brown), 1
8 (navyblue),− 1

16 (red), and − 5
32 (black), (c): α =

13
32 (purple), 1

8 (red),− 1
16 (navyblue),− 5

32 (brown), and − 6
25 (blue). (d)-( f ) illustrate the

magnification factor. The dotted line represents the original closed polygon and the solid
circles represent the initial control points.
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9. Conclusions

In this paper, we have introduced a family of m-point quaternary approximating subdivision
schemes that offer flexibility and enhanced control through the use of a shape control parameter and
two additional parameters determining smoothness. Our analysis has demonstrated the versatility of
these schemes in generating smooth curves, with the ability to adjust the smoothness and shape of the
limit curves by varying the parameters. The study thoroughly examined the polynomial generation
and reproduction capabilities of the proposed schemes, establishing their readiness in practical
applications.

Furthermore, we addressed the Gibbs phenomenon, both theoretically and graphically, showcasing
the ability of our schemes to minimize unwanted oscillations near discontinuities. A comparative study
with existing schemes has confirmed the effectiveness of the proposed approach, particularly in terms
of improving smoothness and control. These findings suggest that our family of m-point quaternary
subdivision schemes is well-suited for applications in computer graphics and geometric modeling,
where smoothness and flexibility are critical.
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