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Abstract: Rewarding cooperators and punishing defectors are effective measures for promoting
cooperation in evolutionary game theory. Given that previous models treated rewards as constants, this
does not reflect real-world dynamics changes. Therefore, this paper focused on the classical payoff
matrix and examined the dynamic variable rewards affected by cooperation and defection strategies,
as well as the impact of time delays. First, for the system without a time delay, we analyzed the
existence and stability of numerous equilibrium points and explored transcritical bifurcations under
various conditions. Second, for the time-delay system, we discussed a series of delayed dynamical
behaviors including Hopf bifurcation, period, and the stability and direction of bifurcation. Finally, the
changes of cooperation strategy were observed by numerical simulation, and some interesting results
were obtained: (i) Under certain circumstances, even if the reward given to the cooperators reaches
the maximum, the proportion of cooperators is still zero, which means that increasing rewards does
not always promote cooperation. (ii) The initial state can affect the choice of cooperation strategy and
defection strategy. (iii) The increase of the time delay makes the stable equilibrium point disappear
and forms a stable limit cycle.
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1. Introduction

In natural and social systems, an individual’s strategy is often shaped by complex game processes
that influence not only personal outcomes but also the evolutionary trajectory of group
behavior [1–4]. The dynamic equilibrium between cooperation and defection significantly impacts the
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system’s long-term stability. However, maintaining cooperation is challenging under limited resources
and competitive pressure, particularly when defection yields short-term gains [5–8]. Researchers are
focusing on mechanisms such as rewards to promote cooperation or punishments to deter
defection [9, 10]. Understanding the dynamic balance between cooperation and defection, and the
factors that affect this balance, is crucial for developing effective incentive policies and sustaining
stable cooperative relationships. This issue is both a theoretical and practical challenge with broad
implications for economics [11], sociology [12], and biology [13].

In the past, most of the classical game theory simply considered the change of strategy, but now
more and more researchers are beginning to address the influence of the surrounding environment on
strategy. Strategy and environment change and interact with each other [14, 15]. Individual strategies
within a group can alter the environmental state, which in turn affects subsequent strategy choices.
Environmental feedback is a crucial factor influencing participant behavior and the evolution of group
dynamics. For instance, plants’ nitrogen fixation strategies can change soil nitrogen content [16],
and over time, this nitrogen content influences plant selection strategies. In microbial communities,
collaborators produce enzymes to decompose nutrients for microorganisms. Conversely, changes in
nutrient availability affect whether microorganisms choose to collaborate [17]. Positive environmental
feedback following a decision increases the likelihood of that decision being repeated, thereby raising
the group’s adoption rate of the strategy. Rewarding cooperators is one of the most direct ways to
promote individual selection and cooperation in the population [18,19]. Li et al. explored the influence
of reciprocal rewards on cooperative evolution in the dilemma of voluntary society by adding the third
strategy, the loner strategy [20]. Besides, it is also interesting to study different game models in the
complex network structure [21, 22]. In previous studies, the reward for collaborators was treated as a
constant. However, in real life, cooperative reward can change with the change of collaborators and
betrayers in the population. It has been verified that dynamic reward is more beneficial to cooperation
than fixed reward in the game of space public goods [23].

Time delay plays a significant and complex role in systems [24, 25]. It not only influences the
response speed and stability of the system but also plays a crucial role in its dynamic behavior and
long-term regulation [26–29]. It takes time to complete many biological processes, which leads to
time lag. Biological systems often experience various types of delays, such as latency delays [30]
and growth delays [31]. Despite numerous studies attempting to reveal the dynamic characteristics
and stability conditions of cooperation and defection strategies in game models, most models assume
immediate payoff feedback, neglecting the delay effects present in many real-world scenarios. Tao
and Wang incorporated time delay into an evolutionary game model with two strategies, finding that it
influences the stability of equilibria. They analyzed the stability conditions for both systems with and
without time delay [32]. Khalifa et al. studied how discrete and distributed delays affect evolutionary
stable strategies. They found that evolutionary stable strategies are asymptotically stable regardless of
the rate parameters under an exponential delay distribution [33].

Therefore, this paper not only considers that the reward intensity can be affected by the strategic
proportion, but also further explores the role of time delay in the feedback game system through the
replicator equation [34,35]. In section 2, a feedback game system is constructed for the classical payoff
matrix, and the existence and stability of the equilibrium points of the system without time delay and
the conditions for the system to experience transcritical bifurcation are analyzed. In section 3, we
consider the payoff delay and find the critical delay of Hopf bifurcation in time-delay systems. In
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section 4, we explore the related properties of hopf bifurcation. Numerical simulation and biological
significance analysis of strategic dynamics are exhibited in section 5. The sixth section summarizes
the paper and presents future prospects.

2. Model and results without time delay

This section investigates an infinitely mixed group, in which the payoff matrix of cooperative
strategy and defective strategy is the classical payoff matrix as follows

C D
C a b
D c d

(2.1)

where non-negative parameters a and b represent the payoffs of the collaborator meeting the
collaborator and the betrayer, respectively. Non-negative parameters c and d represent the payoffs of
the betrayer meeting the collaborator and the betrayer, respectively.

To incentivize cooperators to enhance their cooperative efforts, they will be rewarded with an
additional amount r on top of their original payoff. This adjustment modifies the payoff matrix to

C D
C a + r b + r
D c d

. (2.2)

Let the proportion of cooperators among the participants be x (t), and the proportion of defectors be
y (t). According to the matrix (2.2), the payoff equations for cooperators and defectors are given byπC (t) = (a + r)x (t) + (b + r)y (t) ,

πD (t) = cx (t) + dy (t) .
(2.3)

Then according to the replicator equation, we haveẋ (t) = x (t)
(
πC (t) − f̄ (t)

)
,

ẏ (t) = y (t)
(
πD (t) − f̄ (t)

)
,

(2.4)

where f̄ (t) = πC (t) x (t) + πD (t) y (t).
Here, we assume that the reward intensity r is a variable that changes over time, ranging from a

minimum value of 0 to a maximum value of m. To more effectively promote cooperation, the reward
for cooperators is influenced by the proportions of defectors and cooperators within the population.
Specifically, the presence of more defectors increases the reward for cooperators, while a higher
proportion of cooperators decreases the reward. In other words, as the number of defectors rises, the
reward for cooperators increases. Therefore the dynamic equation for reward intensity is described by

ṙ (t) = r (t) (m − r (t)) (u1y (t) − u2x (t)) , (2.5)

where u1 and u2 represent the growth rates of defectors and cooperators, respectively. Letting β = u1
u2

,
we have

ṙ (t) = r (t) (m − r (t)) (βy (t) − x (t)) . (2.6)
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In the above equations, πC (t) and πD (t) represent the payoffs of the group that chooses to
cooperate and defect in the population, respectively, and f̄ (t) represents the average payoff. We
eliminate y (t) = 1 − x (t), substitute Eq (2.4) into the above equation, and combining with the reward
intensity Eq (2.6), where ϵ indicates the relative speed between the influence reward intensity and the
strategy. The inequality ϵ < 1 (ϵ > 1) means that the strategy evolves faster (slower) than the reward
intensity. So we obtain a high-order evolutionary game system with reward feedback and the classical
payoff matrix as follows:ẋ (t) = x (t) (1 − x (t))((a − b − c + d)x (t) + b + r (t) − d),

ṙ (t) = ϵr (t) (m − r (t))(β − (β + 1)x (t)).
(2.7)

2.1. Existence and stability of numerous equilibrium points

The system (2.7) may have seven equilibrium points: E1 (0, 0), E2 (0,m), E3 (1,m), E4 (1, 0),
E5 (x5, 0), E6 (x6,m), and E7 (x7, r7), where x5 =

d−b
a−b−c+d , x6 =

d−b−m
a−b−c+d , x7 =

β

β+1 , and r7 =
d−b−βa+βc

β+1 .
Obviously, E1, E2, E3, and E4 always exist.

Define

(H1) (a − c)(b − d) < 0,
(H2) (a − c + m)(b − d + m) < 0,
(H3) d − b − βa + βc > 0,
(H4) mβ + m − d + b + βa − βc > 0,
(H5) b − d + m < 0,
(H6) c − a < 0,
(H7) a − b − c + d < 0,

where x5, x6, and x7 ∈ (0, 1) and r7 ∈ (0,m) in the game.
For the equilibrium point E5, we have d−b

a−b−c+d ∈ (0, 1). Thus, E5 exists when (a− c)(b− d) < 0, that
is, H1 holds.

For the equilibrium point E6, we have d−b−m
a−b−c+d ∈ (0, 1). Thus, E6 exists when (a−c+m)(b−d+m) < 0,

that is, H2 holds.
For the equilibrium point E7, given β

β+1 ∈ (0, 1) and d−b−βa+βc
β+1 ∈ (0,m),we obtain 0 < d−b−βa+βc <

m(β + 1), that is, H3 and H4 hold.
Thus the existence of equilibria is summarized as follows:

Lemma 2.1. (1) The boundary equilibria E1, E2, E3, and E4 always exist.
(2) E5(x5, 0) exists when H1 holds.
(3) E6(x6,m) exists when H2 holds.
(4) E7(x7, r7) exists when H3 and H4 hold.

Next, we determine the stability conditions for the above seven equilibria. The Jacobian matrix of
system (2.7) is known to be(

−3(a − b − c + d)x2 + 2(a − 2b − c + 2d − r)x + b − d + r −x(x − 1)
−ϵr(m − r)(β + 1) ϵ(m − 2r)[β − x(β + 1)]

)
. (2.8)

AIMS Mathematics Volume 9, Issue 11, 33161–33184.



33165

The stability of the equilibrium points can be assessed by examining the real parts of the eigenvalues
of the Jacobian matrix evaluated at those equilibrium points.

The following theorem is utilized to elucidate the local stability of system (2.7).

Theorem 2.1. (1) The equilibrium E1 is always unstable.
(2) E2 is locally asymptotically stable when H5 is true.
(3) E3 is always unstable.
(4) E4 is locally asymptotically stable when H6 is true.
(5) E5 is locally asymptotically stable when H3 is not true and H7 is true.
(6) E6 is locally asymptotically stable when H4 is not true and H7 is true.
(7) E7 is locally asymptotically stable when H7 is true.

Proof. (1) The Jacobian matrix at E1 is

J1 =

(
b − d 0

0 ϵmβ

)
.

We obtain λ11 = b − d and λ12 = ϵmβ. It is easy to see that E1 is unstable since λ12 > 0.
(2) The matrix (2.9) at the equilibrium point E2 is

J2 =

(
b − d + m 0

0 −ϵmβ

)
.

Given that λ21 = b − d + m and λ22 = −ϵmβ, E2 is locally asymptotically stable when H5 is satisfied.
(3) The matrix (2.9) at the equilibrium point E3 is

J3 =

(
c − a − m 0

0 ϵm

)
.

We obtain λ31 = c − a − m and λ32 = ϵm > 0. So E3 is unstable.
(4) The matrix (2.9) at E4 is

J4 =

(
c − a 0

0 −ϵm

)
.

It is easy to see that λ41 = c − a and λ42 = −ϵm < 0. Therefore, E4 is locally asymptotically stable
when H6 is true.

(5) The matrix (2.9) at E5 is

J5 =

(
j51 j52

0 j53

)
,

where j51 = −
(d−b)(c−a)
a−b−c+d , j52 = −

(d−b)(c−a)
(a−b−c+d)2 , and j53 =

ϵm(d−b−βa+βc)
b+c−a−d .

Thus, given that λ51 = j51 and λ52 = j53, the equilibrium E5 is locally asymptotically stable when
condition H7 is true and H3 is not.

(6) For system (2.7) at E6, the Jacobian matrix (2.9) is

J6 =

(
j61 j62

0 j63

)
,
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where j61 = −
(d−b−m)(c−a−m)

a−b−c+d , j62 = −
(d−b−m)(c−a−m)

(a−b−c+d)2 , and j63 = −
ϵm(d−b−βa+βc−mβ−m)

b+c−a−d . Thus, given that
λ61 = j61 and λ62 = j63, the equilibrium point E6 is locally asymptotically stable when H7 is true and
H4 is not.

(7) The Jacobian matrix of sysytem (2.7) at E7 is

J7 =

(
j71 j72

j73 0

)
,

where j71 =
(−a−b+c+d−2r)β2+(2a−3b−2c+3d−r)

(β+1)2 ), j72 =
β

(β+1)2 , and j73 = −ϵ
(d−b−βa+βc)(mβ+m−d+b+βa−βc)

β+1 . One has

Det(J7) = −
ϵ(d − b − βa + βc)(d − b + m + βa − βc + βm)

β + 1
,

Tr(J7) =
(a − b − c + d)β

(β + 1)2 .

If Det(J7) > 0 and tr(J7) < 0, at this time, a − b − c + d < 0, that is, H7 is true. Therefore, E7 is locally
asymptotically stable when H7 is true. □

In summary, Table 1 provides a recap of the information discussed above.

Table 1. Existence and stability of equilibria.

Equilibria Existence conditions Stability conditions
E1 always unstable
E2 always H5

E3 always unstable
E4 always H6

E5 H1 H7 and not H3

E6 H2 H7 and not H4

E7 H3 and H4 H7

Thus the bistability of the equilibrium points can be obtained.

Theorem 2.2. When conditions H5 and H6 are both true, the equilibrium points E2 and E4 are stable.

2.2. Bifurcation analysis

Next, we use the Sotomayor theorem to explore the bifurcation scenarios of system (2.7) [36].

Theorem 2.3. (1) When the cooperator meets the defector, the payoff of the cooperator is b = b∗ =
d − m, and a transcritical bifurcation occurs at E2.
(2) When a cooperator meets the cooperator, the payoff of the cooperator is b , d and a = a∗ = c, and
a transcritical bifurcation occurs at E4.
(3) When the ratio of the defective strategy promotion reward to the cooperator inhibition reward is
β = β∗ = d−b

a−c , a transcritical bifurcation occurs at E5.
(4) When β = β∗∗ = d−b−m

a−c+m , a transcritical bifurcation occurs at E6.
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Proof. (1) The Jacobian matrix J2 has eigenvalues λ21 = b − d + m and λ22 = −ϵmβ. Let λ21 = 0, and
we get b = b∗ = d−m, and at this time λ22 < 0. In this case, the eigenvectors corresponding to the zero
eigenvalue for J2 and JT

2 are

V1 =

(
1
0

)
, W1 =

(
1
0

)
.

We rewrite Eq (2.7) as

F =
(
S
Q

)
=

(
x(1 − x)((a − b − c + d)x + b + r − d)

ϵr(m − r)(β − (β + 1)x)

)
. (2.9)

Then we get

Fb(E2, b∗) =
(
x(1 − x)2

0

)∣∣∣∣∣∣
E2

=

(
0
0

)
,

DFb(E2, b∗) =
(
x(2x − 2) + (x − 1)2 0

0 0

)∣∣∣∣∣∣
E2

=

(
1 0
0 0

)
,

and

D2Fb(E2, b∗)(V1,V1) =
(
2(a − c + m)

0

)
.

Further, we have 
WT

1 Fb(E2, b∗) = 0,
WT

1 DFb(E2, b∗)V1 = 1 , 0,
WT

1 D2Fb(E2, b∗)(V1,V1) = 2(a − c + m) , 0.

Therefore, when b = b∗ = d − m, a transcritical bifurcation occurs at E2.
(2) According to the the Jacobian matrix J4, it has eigenvalues λ41 = c − a and λ42 = −ϵm. Let

λ41 = 0, and we get a = a∗ = c, that is λ2 < 0. The eigenvectors corresponding to the eigenvalue 0 for
J4 and JT

4 are

V2 =

(
1
0

)
, W2 =

(
1
0

)
.

Thus one has

Fa(E4, a∗) =
(
S a

Qa

)
=

(
x2(1 − x)

0

)∣∣∣∣∣∣
E4

=

(
0
0

)
,

DFa(E4, a∗) =
(
∂Fa
∂x

∂Fa
∂r

)
=

(
−x(2x − 2) + x2 0

0 0

)∣∣∣∣∣∣
E4

=

(
−1 0
0 0

)
,

and

D2Fa(E4, a∗)(V2,V2) =
(
2(b − d)

0

)
.

Further, we have 
WT

2 Fa(E4, a∗) = 0,
WT

2 DFa(E4, a∗)V2 = −1 , 0,
WT

2 D2Fa(E4, a∗)(V2,V2) = 2(b − d) , 0.
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Therefore, when b , d and a = a∗ = c, a transcritical bifurcation occurs at E4.
(3) The Jacobian matrix J5 has eigenvalues λ51 =

ϵm(d−b−βa+βc)
b+c−a−d and λ52 = −

(d−b)(c−a)
a−b−c+d . Let λ51 = 0, that

is d − b − βa + βc = 0, and we get β = β∗ = d−b
a−c . At this time, λ2 < 0. The eigenvectors corresponding

to the eigenvalue 0 for J5 and JT
5 are

V3 =

(
− 1

a−b−c+d
1

)
, W3 =

(
0
1

)
.

Thus we have

Fβ(E5, β
∗) =

(
S β

Qβ

)
=

(
0

−ϵr(m − r)(x − 1)

)∣∣∣∣∣∣
E5

=

(
0
0

)
,

DFβ(E5, β
∗) =

(
0 0

−ϵr(m − r) ϵr(x − 1) − ϵ(m − r)(x − 1)

)∣∣∣∣∣∣
E5

=

(
0 0
0 −ϵm(x − 1)

)
,

and

D2Fβ(E5, β
∗)(V3,V3) =

(
L

2ϵm
a−c

)
,

where L = − 2(x+1)
a−b−c+d +

2(a−2b−c+2d)
(a−b−c+d)2 .

Further, we have 
WT

3 Fβ(E5, β
∗) = 0,

WT
3 DFβ(E5, β

∗)V3 = −ϵm c−a
a−b−c+d , 0,

WT
3 D2Fβ(E5, β

∗)(V3,V3) = 2ϵm
a−c , 0.

Hence, when β = β∗ = d−b
a−c , a transcritical bifurcation occurs at E5.

(4) The Jacobian matrix at E6 has eigenvalues λ61 = −
ϵm(d−b−βa+βc−mβ−m)

b+c−a−d and λ62 = −
(d−b−m)(c−a−m)

a−b−c+d .

Let λ61 = 0, that is d − b − βa + βc − mβ − m = 0, and we get β = β∗∗ = d−b−m
a−c+m . At this time, λ62 < 0.

The eigenvectors corresponding to the zero eigenvalue for J6 and JT
6 are

V4 =

(
− 1

a−b−c+d
1

)
, W4 =

(
0
1

)
.

Then one has

Fβ(E6, β
∗∗) =

(
S β

Qβ

)
=

(
0

−ϵr(m − r)(x − 1)

)∣∣∣∣∣∣
E6

=

(
0
0

)
,

and

DFβ(E6, β
∗∗) =

(
∂Fβ
∂x

∂Fβ
∂r

)
=

(
0 0

−ϵr(m − r) ϵr(x − 1) − ϵ(m − r)(x − 1)

)∣∣∣∣∣∣
E6

=

(
0 0
0 ϵm(x − 1)

)
.

Similarly, the calculation of D2Fβ(E6, β
∗∗) follows the same method as above. Substituting the values

of E6 and β∗∗ yields

D2Fβ(E6, β
∗∗)(V4,V4) =

(
0

− 2ϵm
a−c+m

)
.
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We have 
WT

4 Fβ(E6, β
∗∗) = 0,

WT
4 DFβ(E6, β

∗∗)V4 = ϵm c−a−m
a−b−c+d , 0,

WT
4 D2Fβ(E6, β

∗∗)(V4,V4) = − 2ϵm
a−c+m , 0.

Therefore, when β = β∗∗ = d−b−m
a−c+m , a transcritical bifurcation occurs at E6. □

3. Model and results with time delay

In the real world, games are not instantaneous and involve time delays, such as a payoff time delay
and feedback time delay. This section introduces the concept of a payoff time delay, denoted as τ,
which represents the time required for players to realize revenue during the game. In other words, a
player’s income at time t depends on the proportion of players at time (t−τ). Consequently, the average
expected payoffs for cooperation and defection strategies are, respectively,πd

C (t) = (a + r (t)) x (t − τ) + (b + r (t))y (t − τ) ,
πd

D (t) = cx (t − τ) + dy (t − τ) .
(3.1)

Based on the replicator equation, the evolutionary game system with reward feedback and a time delay
is described by ẋ (t) = x (t) (1 − x (t))((a − b − c + d)x (t − τ) + b + r (t) − d),

ṙ (t) = ϵr (t) (m − r (t))(β − (β + 1)x (t)).
(3.2)

Theorem 3.1. For the time-delay system (3.2),
(1) when τ ∈ (0, τk), system (3.2) is stable at E7,
(2) when τ ∈ (τk,+∞), system (3.2) is unstable at E7,
(3) when τ = τk, system (3.2) incurs a Hopf bifurcation at E7.

Proof. Linearizing system (3.2) at the equilibrium point E7, we obtainẋ(t) = m1x (t) + m2 (t − τ) + m3r(t),
ṙ(t) = m4x (t) + m5r(t),

(3.3)

where 

m1 = (1 − 2x7)((a − b − c + d)x7 + b − d + r7),
m2 = x7(1 − x7)(a − b − c + d),
m3 = x7(1 − x7),
m4 = −ϵr7(m − r7)(β + 1),
m5 = ϵ(m − 2r7)(β − (β + 1)x7).

From the second equation of the system (3.2), we obtain

x(t) =
1

m4
r′(t) −

m5

m4
r(t). (3.4)
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Differentiating the above equation can get

x′(t) =
1

m4
r′′(t) −

m5

m4
r′(t). (3.5)

Substituting Eqs (3.4) and (3.5) into the first equation of the system (3.2), one has

r′′(t) − m5r′(t) = m1r′(t) − m1m5r(t) + m2r′(t − τ) − m2m5r(t − τ). (3.6)

Letting r = eλt and substituting into the above equation, the following characteristic equation can be
obtained:

λ2 − (m1 + m5 + m2e−λτ)λ + m2m5e−λτ + m1m5 − m3m4 = 0. (3.7)

Let
s1 = m1 + m5, s2 = m1m5 − m3m4, s3 = m2m5.

Then we obtain the simplified form of the characteristic equation:

λ2 − (s1 + m2e−λτ)λ + s3e−λτ + s2 = 0. (3.8)

Let λ = iω, and then Eq (3.8) become

−ω2 − s1ωi − m2ωie−iωτ + s3e−iωτ + s2 = 0. (3.9)

Substituting e−iωτ = cos(ωτ) − i sin(ωτ) into Eq (3.9), one has

−ω2 − s1ωi − m2ωi cos(ωτ) − m2ω sin(ωτ) + s3 cos(ωτ) − s3i sin(ωτ) + s2 = 0.

Then we obtain s3 cos(ωτ) − m2ω sin(ωτ) = ω2 − s2,

s3 sin(ωτ) + m2ω cos(ωτ) = −s1ω.
(3.10)

Taking the square sum of the two equations in the above system yields

ω4 + (s2
1 − 2s2 − m2

2)ω2 + s2
2 − s2

3 = 0. (3.11)

Let ω̄ = ω2, and substituting into the above equation, we obtain

ω̄2 + (s2
1 − 2s2 − m2

2)ω̄ + s2
2 − s2

3 = 0. (3.12)

If s2
2 − s2

3 < 0 is true, then Eq (3.12) has at least one positive root ω̄,

ω̄ =
2s2 − s2

1 + m2
2 +

√
(−2s2 + s2

1 − m2
2)2 − 4(s2

2 − s2
3)

2
. (3.13)

According to the above equation, one has

ω =

√√
2s2 − s2

1 + m2
2 +

√
(−2s2 + s2

1 − m2
2)2 − 4(s2

2 − s2
3)

2
. (3.14)
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Furthermore, from the system of Eq (3.10), we have

(s2
3 + m2

2ω
2) cos(ωτ) = s3ω

2 − s2s3 − s1m2ω
2. (3.15)

Then the critical time delay is

τk =
1
ω

arccos
(

s3ω
2 − s2s3 − s1m2ω

2

s2
3 + m2

2ω
2

)
+

2kπ
ω
, k = 0, 1, 2, .... (3.16)

□

The following lemma proves that τ satisfies the transversal condition of bifurcation.

Lemma 3.1. If s2
2 − s2

3 < 0 holds, then[
dRe(λ)

dτ

]
τ=τk

> 0, k = 1, 2, . . .

Proof. According to Eq (3.8), we have

dλ
dτ
=

(λs3 − λ
2m2)e−λτ

2λ − s1 − (m2 + s3τ − m2λτ)e−λτ
.

Then (
dλ
dτ

)−1

=
2λ − s1 − m2e−λτ

(λs3 − λ2m2)e−λτ
−
τ

λ
.

Substituting λ = iω into the above equation results in(
dλ
dτ

)−1

|λ=iω =
2iω − s1 − m2(cos(ωτ) − i sin(ωτ))
(iωs3 + ω2m2)(cos(ωτ) − i sin(ωτ))

−
τ

ωi
.

Therefore, its real part is

Re
(
dλ
dτ

)−1

|λ=iω =
2ω2 − 2s2 + s2

1 − m2
2

s2
3 + ω

2m2
2

.

Substituting the value from Eq (3.16) into the above equation leads to

Re
(
dλ
dτ

)−1

τ=τk

=

√
(−2s2 + s2

1 − m2
2)2 − 4(s2

2 − s2
3)

s2
3 + ω

2m2
2

> 0.

Then
sign

{
dRe(λ)

dτ τ=τk

}
= sign

{
( dλ

dτ )τ=τk

}
> 0.

□

AIMS Mathematics Volume 9, Issue 11, 33161–33184.



33172

4. Stability and direction of Hopf bifurcation

Next, we explore various properties of Hopf bifurcation including direction, stability, and period
changes [37].

Theorem 4.1. For system (3.2) with time delay,
(1) the Hopf bifurcation is supercritical (subcritical) when ι > 0 (ι < 0),
(2) the bifurcating periodic solution is stable (unstable) if χ < 0 (χ > 0),
(3) when κ > 0 (κ < 0), the period increases (decreases).
The values of ι, χ, and κ are given by Eq (4.2) below.

Proof. Let ẋ (t) = x (t) − x7, ṙ (t) = r (t) − r7, and τ = τ0 + υ ∈ R. System (3.2) is rewritten as

Ż (t) = Lυ(Zt) + S (υ,Zt), (4.1)

where Z(t) = (x(t), r(t))T ∈ R2, Lυ : C → R, and S : R ×C → R are given by Lυ(φ) = (τ0 + υ)J7φ(−1),
S (υ, φ) = (τ0 + υ)(S 1, S 2)T , and φ = (φ1, φ2)T . S 1 and S 2 are

S 1 = g1φ1(0)φ1(−1) + g2φ
2
1(0)φ1(−1),

S 2 = 0,

where

g1 = (1 − x7)(a − b − c + d),
g2 = −(a − b − c + d).

We have a bounded variational function κ(γ, υ), (γ ∈ [0, 1]), according to the Riesz representation
theorem, satisfying

Lυ(φ) =
∫ 0

−1
⌈κ(γ, υ)φ(γ), φ ∈ C

(
[−1, 0] ,R2

)
.

Next
Lυ(φ) = −τJ7η(γ + 1),

and

η(γ) =

1, γ ∈ [−1, 0),
0, γ = 0.

Define

P(υ)φ =

 dφ(γ)
dγ , γ ∈ [−1, 0),∫ 0

−1
dκ(q, υ)φ(q), γ = 0,

and

Q(υ)φ =

0, γ ∈ [−1, 0),
S (υ, φ), γ = 0.

System (4.1) is rewritten as
Ż (t) = P(υ)Zt + Q(υ)Zt,
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where Zt(γ) = Z(t + γ) ∈ C, γ ∈ [−1, 0]. For ϕ ∈ C([0, 1],R2∗), we get

P∗ϕ(q) = −

dϕ(q)
dγ , q ∈ (0, 1],∫ 0

−1
dκT (t, 0)ϕ(−1), q = 0,

and

⟨ϕ(γ), φ(γ)⟩ =
−

ϕ(0)φ(0) −
∫ 0

−1

∫ γ

0

−

ϕ(δ − γ)dκ(γ)φ(δ)dδ,

where κ(γ) = κ(γ, 0). P = P(0) and P∗ are adjoint operators. Since for eigenvalue iω0τ0, the eigenvector
of P(0) is v(γ) = (1, v7)T eiω0τ0γ and the eigenvector of P∗ is v∗(q) = U(1, v∗7)eiω0τ0q when the eigenvalue
is −iω0τ0, we have ⟨v∗(q), v(p)⟩ = 1 and

v7 =
m4

iω0 − m5
,

v∗7 = −
m3

iω0 + m5
,

U = [1 + v7v∗7 + m2τ0eiω0τ0]−1.

One has

g20 = 2Uτ0

(
g1e−iω0τ0

)
,

g11 = Uτ0

(
g1

(
eiω0τ0 + e−iω0τ0

))
,

g02 = 2Uτ0

(
g1eiω0τ0

)
,

g21 = 2Uτ0

[
g1

W (1)
11 (−1) +

W (1)
20 (−1)

2
e−2iω0τ0 +

W (1)
20 (0)
2

eiω0τ0 +W (1)
11 (0)e−iω0τ0


+ g2

(
eiω0τ0 + 2e−iω0τ0

) ]
,

and

W20(ψ) =
ig20 p(0)eiω0τ0ψ

ω0τ0
+

ig02 p(0)e−iω0τ0ψ

3ω0τ0
+ Ω1e2iω0τ0ψ,

W11(ψ) =
−ig11 p(0)eiω0τ0ψ

ω0τ0
+

ig11 p(0)e−iω0τ0ψ

ω0τ0
+ Ω2.

The values of Ω1 and Ω2 are given by

Ω1 = 2
(
2iω0 − m1 − m3e−2iω0τ0 −m3

−m4 2iω0 − m5

)−1 (
g1e−iω0τ0

0

)
,

Ω2 = −

(
m1 + m2 m3

m4 m5

)−1 (
g1(eiω0τ0 + e−iω0τ0)

0

)
.
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Therefore, we define

N1(0) =
(
g11g20 − 2 |g11|

2
−
|g02|

2

3

)
i

2ω0τ0
+

1
2

g21,

ι = −
Re[N1(0)]
Re[λ′(τ0)]

,

χ = 2Re[N1(0)],

κ = −
Im[N1(0)] + ιIm[λ

′

(τ0)]
ω0τ0

.

(4.2)

The proof of this theorem is complete. □

5. Numerical simulation and analysis

This section uses numerical simulations to confirm the previous theoretical derivations, and analyzes
its biological significance.

5.1. Non-delay system

Figure 1 exhibits the equilibrium points of system (2.7) under varying parameter settings. The
equilibrium points E1, E2, E3, and E4 consistently exist across all parameter configurations.
Specifically, the parameters depicted in Figure 1(a) satisfy the conditions necessary for the existence
of E5. Figure 1(b) demonstrates the presence of both E5 and E6, while Figure 1(c) reveals the
existence of E6 and E7.
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Figure 1. Existence of equilibrium points. Parameters: (a) a = 0.9, b = 1.2, c = 1, d = 0.8,
ϵ = 0.1, β = 3, m = 4; (b) a = 3, b = 0.5, c = 1, d = 5, ϵ = 0.1, β = 3, m = 4; (c) a = 2,
b = 1, c = 5, d = 6, ϵ = 0.1, β = 3, m = 4.

Subsequent figures, Figures 2–6, depict the stabilization of system (2.7) at the equilibria E2, E3,
E4, E5, E6, and E7, respectively. Irrespective of the initial conditions, the system consistently
converges to a stable equilibrium point, in accordance with Theorem 2.1. The analysis reveals that the
stable values of cooperation strategy and reward intensity vary with different parameter settings. By
tuning these parameters, one can achieve the desired proportions of cooperation strategy and reward
intensity. It shows five different situations: defectors and reward intensity dominate, cooperators exist
independently and stably, cooperators and defectors coexist, and reward intensity reaches the
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maximum, and defectors, cooperators, and reward intensity coexist. When the reward intensity
reaches the maximum, there is a phenomenon that no player chooses to cooperate, as shown in
Figure 2. Notably, when the reward intensity is minimized, the cooperation strategy can potentially
reach its maximum, as illustrated in Figure 3. Similarly, Figure 6 shows that cooperators, defectors,
and reward intensity can reach a stable coexistence state. This is conducive to maintaining population
diversity.
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Figure 2. The stable equilibrium E2 for a = 0.8, b = 0.6, c = 2, d = 5, ϵ = 0.1, β = 2, and
m = 4.
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Figure 3. The stable equilibrium E4 for a = 2, b = 0.6, c = 1, d = 0.8, ϵ = 0.1, β = 2, and
m = 4.
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Figure 4. The stable equilibrium E5 with the same parameters as those in Figure 1(a).
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Figure 5. The stable equilibrium E6 for a = 0.9, b = 2, c = 5, d = 0.8, ϵ = 0.1, β = 53, and
m = 4.
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Figure 6. The stability of E7 for a = 2, b = 1, c = 4, d = 2, ϵ = 0.1, β = 1, and m = 4.
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Figure 7 illustrates the bistable phenomenon of equilibrium points E2 and E4. We observe that
the final stable equilibrium point of system (2.7) is influenced by the initial states. Different initial
values result in the system converging to various equilibrium points. At this stage, the maximum
value of the cooperator is influenced by the initial condition of the number of collaborators and reward
intensity. This indicates that even when the reward intensity reaches its maximum, the proportion of
the cooperation strategy can still be zero due to the different initial values.
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Figure 7. The bistable diagram of E2 and E4 for a = 2, b = 0.6, c = 1, d = 5, ϵ = 0.1, β = 2,
and m = 4.

Theorem 2.3 is illustrated in Figure 8. Figure 8 provides a clear depiction of the state of each
equilibrium point. In Figure 8(a), the equilibrium point E2 transitions from stable to unstable.
Figure 8(b) shows that the equilibrium point E4 initially exhibits instability but becomes stable
subsequently; additionally, a bistable phenomenon involving equilibrium points E2 and E4 is observed
following the transcritical bifurcation. Figure 8(c) reveals that the previously stable equilibrium E5

becomes unstable, giving rise to a new stable equilibrium E6. Finally, (d) demonstrates that the stable
equilibrium E6 transitions to instability, while a new stable internal equilibrium E7 emerges. These
observations highlight that variations in parameters are intricately linked to the system’s final stable
state and influence the dynamics of cooperative strategies.

Fix the parameter values in Figure 2 and change the maximum value of the reward intensity, as
shown in Figure 8(e). At this time, all the equilibrium points in the system (2.7) are no longer stable.
The reward intensity oscillates between the highest and lowest intensity, while the players oscillate
between complete cooperation and complete defection, which forms an evolutionary oscillation
dynamic as shown in Figure 9. The influence of different relative speeds, ϵ, on the system is shown in
Figure 8(f). When ϵ changes from 0 to 3, the equilibrium points of the system are not affected, and the
original stability is maintained. This suggests that, in this case, changes in relative speed do not
impact the player’s choice of strategy or the intensity of rewards.
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Figure 8. Parameter variation diagram. The parameters of (a) and (e) are the same as those
of Figure 2, (b) and (c) are the same as those of Figures 3 and 4, and the parameters of (d)
and (f) are the same as those of Figure 5. E2, E4, E5, E6, and E7 are represented by the
green, red, cyan, magenta, and yellow lines, respectively. Solid lines show stable equilibria,
whereas dotted lines denote unstable equilibrium points.
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Figure 9. Time series diagram and phase diagram for a = 2, b = 0.6, c = 1, d = 0.8, ϵ = 0.1,
β = 2, and m = 8.

5.2. Time-delay system

We continue to study the dynamic behavior of the time-delay system (3.2) by selecting the
parameters in Figure 6. Then the internal equilibrium point is E7 (0.5, 1.5), and the following results
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can be obtained through calculation.

ω0 = 0.5757, τ0 = 2.7285,
N1(0) = −0.3076 − 1.9775i, d(Re λ)

dτ = 0.0773 > 0,
ι = 3.9812, χ = −0.6152, κ = 1.3442.

Therefore, Hopf bifurcation is supercritical, and the periodic solution of the bifurcation is stable and
the period increases.

Regarding the system (3.2), we first examine the behavior of the system under a small time delay,
as illustrated in Figure 10. When the time delay is minimal, the ratio of reward intensity to cooperation
strategy stabilizes following a minor perturbation. At this stage, the time-delay system remains stable
at E7. Additionally, as evidenced by Figure 10(c), the system ultimately approaches a stable state.
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Figure 10. E7 is stable when τ = 1. The parameters of the following figures are the same as
those of Figure 6.

An oscillatory phenomenon emerges as the time delay gradually increases as depicted in
Figure 11. At this point, the variables x(t) and r(t) begin to oscillate periodically rather than remaining
stable at a single value, leading to the instability of the previously stable internal equilibrium point E7.
Subsequently, a stable limit cycle is observed in Figure 11(c). Simultaneously, the increase in time
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delay causes the stable strategy to begin oscillating, leading to a Hopf bifurcation at the critical time
delay. After the Hopf bifurcation, the proportion of the cooperative strategy and reward intensity
oscillate between the blue and the red lines, as illustrated in Figure 12. This shows that the time delay
induces the switching of different stable states of the system.
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Figure 11. E7 is unstable and there is stable periodic oscillation when τ = 4.
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Figure 12. Bifurcation diagram of x and r with respect to τ when τ0 = 2.7285.
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6. Conclusions

Building upon the classical evolutionary game theory framework, this paper introduces the concepts
of reward feedback and time delay. To facilitate a more nuanced application of reward feedback for
enhancing cooperation, the model posits that the proportion of the defection strategy promotes a modest
reward for cooperators, while a higher proportion of the cooperative strategy suppresses the reward
intensity. Under certain conditions, even when the reward intensity reaches its maximum value, the
cooperation strategy may still yield a minimum value of zero. Additionally, in systems without a time
delay, bistability is observed, and the attainment of the maximum cooperation strategy is contingent
upon the initial values of the cooperative strategies and reward intensity. Specifically, variations in
initial conditions lead to differing final states of stability for the cooperation strategy. In the system
incorporating a time delay, the previously stable equilibrium point becomes unstable as the time delay
increases. At the critical time delay, Hopf bifurcation occurs, causing oscillations in both strategies
and the reward intensity rather than maintaining a stable constant value. The delayed system yields
a series of delayed dynamical behaviors including Hopf bifurcation, period, stability, and direction
of bifurcation. This shows that the time delay induces the switching of different stable states of the
system.

With the advancement of feedback evolutionary game theory, exploring various feedback
mechanisms and enhancing the evolutionary game model remain key areas of future
investigation [38, 39]. Cheng et al. have examined the evolutionary game system within spatial and
temporal contexts, uncovering numerous interesting phenomena [40]. However, time delay emerges
as a critical factor in spatiotemporal games, warranting further research in this area [41, 42]. This
aspect represents a significant direction for our future studies.
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