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Abstract: Choosing an optimal artificial intelligence (AI) provider involves multiple factors, including 

scalability, cost, performance, and dependability. To ensure that decisions align with organizational 

objectives, multi-attribute decision-making (MADM) approaches aid in the systematic evaluation and 

comparison of AI vendors. Therefore, in this article, we propose a MADM technique based on the 

framework of the complex intuitionistic fuzzy rough model. This approach effectively manages the 

complex truth grade and complex false grade along with lower and upper approximation. Furthermore, 

we introduced aggregation operators based on Dombi t-norm and t-conorm, including complex 

intuitionistic fuzzy rough (CIFR) Dombi weighted averaging (CIFRDWA), CIFR Dombi ordered 

weighted averaging (CIFRDOWA), CIFR Dombi weighted geometric (CIFRDWG), and CIFR Dombi 

ordered weighted geometric (CIFRDOWG) operators, which were integrated into our MADM 

technique. We then demonstrated the application of this technique in a case study on AI provider 

selection. To highlight its advantages, we compared our proposed method with other approaches, 

showing its superiority in handling complex decision-making scenarios. 

Keywords: artificial intelligence; complex intuitionistic fuzzy rough set; Dombi t-norm and t-conorm; 

MADM technique 

mailto:m.ahmad4900@gmail.com


33088 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

Mathematics Subject Classification: 03E52, 03E72, 94D05 

 

1. Introduction 

Artificial intelligence (AI) providers, also known as AI suppliers or AI vendors, are companies 

that offer a wide range of AI technologies, services, and solutions to help businesses and other users 

adopt and leverage AI for a variety of purposes. These vendors provide cloud-based AI services, 

allowing companies to access AI tools and infrastructure from industry leaders such as Amazon Web 

Services, Google Cloud AI, and Microsoft Azure, without the need for in-house development. Amazon 

web services offer a suite of AI services such as Amazon SageMaker (a fully managed service that 

enables the developers to build, train and deploy machine learning models) and Amazon Lex (a service 

that enables developers to build conversational interfaces using voice and text). Google Cloud AI 

provides AI and machine learning services like Google Automated Machine Learning, TensorFlow, 

and natural language tools. Microsoft Azure AI offers AI tools like Azure (machine learning, Cognitive 

Services (for speech, vision, decision making and language) and Bot services). AI vendors also 

developed customized AI platforms, AI software, and tools for training, building, and deploying AI 

models, such as DataRobot (specializes in automated machine learning and helps businesses build and 

deploy machine learning models quickly), H2O.ai (an open source AI platform that provides machine 

learning and deep learning capabilities for predictive analysis), C3.ai (provides and AI and internet of 

things platform for developing and deploying large-scale AI applications, especially in industries like 

energy, manufacturing, and utilities), and Palantir (it offers data integration and AI analytics platforms 

that is Palantir Foundry and Gotham for organizations to manage and analyze large datasets). In 

addition, they offer consulting services to guide businesses in creating effective AI strategies and 

managing AI implementation, with firms like Accenture (it provides AI consulting, data analytics, and 

implementation services across industries, including AI-driven automation and cognitive services) and 

Deloitte AI (offers consulting services to develop AI strategies, AI model development, and intelligent 

automation for businesses) leading in this area. AI vendors supply specialized products and solutions, 

including AI-powered automation, predictive analytics, and customer service tools from companies 

like UiPath (specializes in robotic process automation (RPA) and AI-powered automation tools for 

businesses to streamline processes), NVIDIA (offers GPUs and AI software for deep learning, machine 

learning, and AI-powered applications in industries like autonomous vehicles, healthcare, and gaming), 

and Salesforce Einstein (it provides AI-powered customer relationship management tools to help 

businesses automate sales, service, and marketing tasks). Some vendors provide industry-oriented 

solutions, for example, Zebra Medical Vision focuses on artificial intelligence in the healthcare 

industry and provides radiologists with AI tools for quicker and more accurate diagnosis or Ayasdi 

develops artificial intelligence services for the financial services industry and provides tools for ‘see-

through’ of money mules and frauds. With advancements in AI hardware from companies like NVIDIA 

and Intel, many vendors ensure that AI models can operate efficiently at scale. Overall, AI vendors 

enable businesses to automate processes, improve decision-making, innovate, and stay competitive by 

offering cutting-edge AI solutions tailored to their needs. 

Decision-making is a dynamic and complex process. Daily, every person or organization faces 

different problems. To solve those problems, they have to make a decision. To make a good and 

sustainable decision, a decision maker has to study all the available data and information with great 
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care and preparation. One of the most important techniques to deal with uncertain and imprecise data 

is the MADM technique, in which a professional decision maker or specialist provides the input 

assessments for each alternative to arrive at the desirable answer. However, expressing the assessment 

value as a precise number of an attribute can be challenging. To address this problem, Zadeh [1] first 

proposed the fuzzy set (FS) theory and since this theory has a clear explanation of uncertain 

information in MADM problems, the MADM is most discussed in FS theory because its influence is 

seen in almost all scientific disciplines. Moreover, Pawlak [2] proposed a rough set (RS) theory to cope 

with the uncertainty and ambiguity in data processing and knowledge representation. It means that 

within this framework it is possible to analyze sketchy data without using the so-called fuzzy logic or 

probability theory. Rough set theory partitions a set over the basis of relative levels of similarity called 

an equivalence relation or vague indiscernibility. Rough sets were later generalized into fuzzy rough 

sets (FRSs) by Dubois and Prade [3] who replaced the binary relations with the fuzzy relations. Instead 

of this the integration used above employs a notion of truth grades of FS within the context of RS and 

is more sound. After that, Cornelis proposed the concept of intuitionistic fuzzy rough set (IFRS) by 

combining intuitionistic fuzzy set (IFS) with rough sets. 

1.1. Motivation and contribution 

AI solution partners are key players within numerous organizations with the purpose of assisting 

organizations to enhance performance and innovate using AI solutions across multiple fields. They 

provide specific solutions where existing applications of Artificial Intelligence are not sufficient to 

address problems in organizations; they assist organizations with AI strategies; and they ensure the 

data is correct to ensure proper training of the AI model. AI as a Service is a model that implies that 

organizations can utilize advanced AI tools, without significant capital investments. Vendors also 

automate working processes, help in the implementation and support of AI solutions, and obey ethical 

practices about data protection and equal opportunities. Moreover, they offer training to transition new 

and existing employees to become more proficient in the application and deployment of AI within 

organizations to enhance their organizational AI talent and to also develop solutions that meet 

particular sector demands. As AI vendors, this means that constant investment is made in research and 

development to ensure that businesses are always updated with the latest technology advancements 

hence the feature of flexibility and scalability as the business expands. In other words, these 

partnerships facilitate efficient, affordable and innovative structures in business today in the context 

of AI. Consequently, selecting the right AI provider transforms into a necessity for various 

organizations that would like to improve their processes and decision-making frameworks within the 

current rapidly changing technology landscape. The decision-making process of choosing an AI 

service provider is a multi-attribute decision making process and the criteria used include cost, 

experience, reliability and scalability. Moreover, from the background study, it also emerges that the 

idea of complex intuitionistic fuzzy rough set (CIFRS) stands in a more commanding position than all 

other structures such as FS, IFS, FRS, and IFRS. The main feature of this theory is that it can process 

fuzzy information in the form of lower approximation and upper approximation all other concepts such 

as FS, IFS, FRS, and IFRS cannot process second dimension information in the form of lower and 

upper approximation. So, when employing MADM techniques, particularly with CIFRSs, the 

motivation lies in the ability to handle the inherent uncertainty, vagueness, and imprecision in such 

evaluations. Using CIFRSs offers different advantages given as follows: 
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• Better handling of uncertainty and vagueness in AI provider evaluations. 

• Flexible, nuanced decision-making through complex intuitionistic truth grade and complex 

intuitionistic false grade. 

• Reduced information loss and enhanced accuracy in AI provider ranking. 

• Support for complex, multi-attribute evaluations in scalable and adaptive ways. 

This motivates current research and causes CIFRS to be a powerful tool for organizations aiming 

to choose the most suitable AI provider. Therefore, this manuscript contains a technique of MADM 

under the model of CIFRS. The CIFRS is a suitable technique to manage the two-dimensional 

information of truth grade and false grade along with the lower and UA. Dombi t-norm (DT-N) and 

Dombi t-conorms (DT-CN) have been used in many developments and are useful structures. Therefore, 

in this manuscript, we propose the elementary operating conditions (algebraic sum, algebraic product) 

based on DT-N and DT-CN, and these new operational rules are used to aggregate the averaging and 

geometric operators. Moreover, we settle the idea of CIFRDWA, CIFRDOWA, CIFRDWG, and 

CIFRDOWG operators and discuss their properties using basic operations. By utilizing the 

CIRSCIFRS rough numbers (CIFRNs), a model is constructed using these AOs to evaluate the MADM 

process. In Figure 1, we establish the flowchart of the introduced work. 

 

Figure 1. Flowchart of the introduced work. 

1.2. Study framework 

The rest of the manuscript is sectioned as following: In Section 2, we discuss the background 

study related to FS theory and RS theory. In Section 3, we address some basic notions of IFS, complex 

fuzzy set (CFS), FRS, IFRS, and CIFRS and discuss their operational laws. Dombi aggregation 

operators (AOs) based on CIFR sets and their properties are developed in Section 4. In Section 5, we 
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develop a MADM method under the investigated operators and analyze a case study “Selection of AI 

provider”. In Section 6, we compare our work with some existing work to reveal the supremacy and 

advantages. Section 7 of this manuscript contains a conclusion. 

2. Literature review 

A business or organization that specializes in providing AI solutions, services, or goods to 

individuals, businesses or other entities is referred to as an AI provider or AI vendor. AI is now an 

indispensable tool for contemporary enterprises, and AI providers are a significant contributor to its use. 

These firms provide additionally numerous AI technology, service lines and solution packages, which 

include various requirements of companies in different industries. These vendors—who provide such 

applications as computer vision, natural language processing, machine learning and more—are critical 

to the development, deployment and ongoing maintenance of AI technologies. The impact of AI 

innovation in a variety of sectors is the rationale for why AI providers are essential. These companies 

create technology by creating new algorithms, frameworks, and tools to help firms use AI to achieve 

greater efficiency, productivity, and creativity in carrying out their activities. AI models, APIs, and 

platforms can be bought off the shelf by the providers; this means that the incorporation of AI features 

into a solution can be done with little or no understanding of machine learning. Bizzo et al. [4] used AI 

and clinical decision support for radiologists and patient care. Yu et al. [5] built on this concept of an AI 

service provider to deliver bundled services to customers. Khaleel et al. [6] proposed workflow 

scheduling schemes with AI modeling for enhancing dependability and controlling interruption in cloud 

computing. 

In addition, by making these technologies available to a more extensive pool of users, the providers 

of AI make AI more accessible. AI providers are offering their solutions to researchers and developers 

as well as to businesses of various sizes to enhance products, optimize processes, and gain valuable 

information from data. This accessibility helps promote the AI ecosystem’s inclusiveness and hence the 

uptake. The projects between AI providers and consumers also develop long-term improvement and 

adaptation to fluctuating demands as well. AI suppliers are critical to ensuring that innovation stays on 

top of the industry as AI technologies evolve since this ensures that the products supplied to the market 

are relevant and effective in fulfilling the changing requirements of the market. The goals of selecting an 

AI supplier are price, performance, reliability and scalability. Consequently, it becomes a MADM issue 

because decision-makers have to evaluate and assign priority levels to the providers based on these 

various factors. To enable a logical and well-informed decision to select the best AI provider for a 

particular situation, MADM approaches assist in quantifying and analyzing the intricate interactions 

between these features. Wu et al. [7] explain the AI techniques in data science and develop linguistic 

representations in decision making. Dukyil [8] developed the AI and MCDM approach for a cost-

effective Radio Frequency identification tracking management system. Hu et al. [9] developed the 

governance of AI applications in a business audit via a fusion fuzzy multiple rule-based DM model. 

Wang et al. [10] give the evaluation of ecological governance in the Yellow River basin based on the 

Uninorm combination weight and the MULTIMOORA-Borda method. 

2.1. Brief review of fuzzy set theory 

FS theory is an extension of the crisp set theory. Crisp set theory cannot handle the unclear and 
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vague data but FS can deal with such type of data. According to crisp set theory, if an element is a part 

of a set then its value is regarded as 1, or does not belong to a set then its value is regarded as 0. FS 

described the vagueness of an element by a truth grade with a value from the set [0,1]. If an element 

has a value of 1, it fully belongs to a set, if it has a value of 0, it does not belong to the set. The grading 

system uses a value between 0 and 1 to indicate how much an element is part of a set. Simply, FS 

enables elements to have a truth grade that ranges from 0 to 1. The crisp and fuzzy logics are displayed 

in Figure 2. 

 

Figure 2. Crisp and fuzzy logics. 

In Figure 2, the difference between crisp logic and fuzzy logic is depicted in a weather-related 

example. On the left side, crisp logic makes binary decisions such as “Is it raining” is answered in a 

strict yes or no format. There are only two possible outcomes either it is raining, or it is not. On the 

right side, fuzzy logic is a more nuanced system. Instead of simple yes and no, it assigns degrees of 

truth to the conditions, such as “very much (0.9) close to true”, “little (0.25) partially true” or “very 

little (0.1) close to false”. This representation shows how fuzzy models are more realistic than crisp 

models, which is binary in nature. 

FSs provide an efficient framework for modeling and dealing with situations when knowledge is 

incomplete, unclear, or uncertain. FS theory has many applications in different sectors, including the 

aerospace, medical, automobile, and energy sectors. Zhuang et al. [11] optimize a sustainable 

renewable energy portfolio using a multi-tolerance fuzzy programming approach. Wen et al. [12] give 

an application of fuzzy multi-criteria decision-making methods in civil engineering. Zhang et al. [13] 

developed a hybrid MADM method for renewable energy portfolio optimization with public 

participation under uncertainty. Hocine et al. [14] proposed a weighted-additive fuzzy multi-choice 

goal programming for supporting renewable energy site selection decisions. Shen et al. [15] proposed 

an outranking approach for multi-attribute group decision-making with interval valued hesitant fuzzy 

information. Zhuang et al. [16] developed a method for the selection of senior centres using 

intuitionistic fuzzy MADM. Javed et al. [17] developed a technique of multi-attribute group decision-

making with T-spherical fuzzy Dombi power Heronian mean based AOs. Kumar et al. [18] proposed 

an efficient approach for solving type-2 intuitionistic fuzzy solid transportation problems with their 

equivalent crisp solid transportation problems. Zhuang et al. [19] propose a MEAN-R decision support 
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system integrating MEAN architecture and R for efficient group decision-making, applied to selecting 

senior co-living centers. Ye [20] developed multi-attribute group decision making methods with 

unknown weights in intuitionistic fuzzy settings. Beccali et al. [21] introduced the multi-criteria 

analysis techniques related to FS methodology and established a decision-making approach in energy 

planning. Bigaud et al. [22] provide a fuzzy hybrid AI system for the selection of a third-party 

operations and maintenance provider. Abdullah et al. [23] developed an integrated decision-making 

framework built on fractional fuzzy sets for the evaluation of AI cloud platforms. Hu et al. [24] 

developed the key factors for adopting AI-enabled auditing methods by joint operation of fuzzy RS 

theory and multiple rule-based decision-making techniques. 

However, in FS, decision makers have dealt with only the truth grade and cannot deal with the 

false grade because the false grade also plays an important part in making a decision. To handle this 

situation, Atanassov [25] originated the thought of IFS to handle the data in the form of two grades, 

truth grade and false grade, with the requirement that the total of truth grade and false grade be 

contained within the interval [0,1], which enables better sketch of the deficient and vague data in 

decision making problems. Since the initiation of IFS, different researchers suggested various concepts 

of which one of the key concepts is AOs. AOs reduce the set of finite values on the decision-making 

process to a single value, which was one of the major concerns for specialists on how to obtain a unique 

outcome from the data collected from various sources. Xu [26] introduced the IF-weighted averaging 

(IFWA) and IF-ordered WA (IFOWA) AOs in the environment of IFSs. Also, geometric AOs based on 

IFSs were introduced by Xu and Yager [27]. The graphical technique for ranking accuracy and score 

function was developed by Ali et al. [28]. He et al. [29,30] initiated the idea of IF neutral averaging 

operators and geometric interaction averaging operators with application in decision making. 

Generalized [(IFWA), (IFOWA), (IFHA)] operators were initiated by Zhao et al. [31] and using them 

in DM. Many AOs have been made in the settings of IFSs such as, IF Einstein WA and geometric 

operators by Wang and Liu [32], IFDWA and IFDWG operators and application in DM by Seikh and 

Mandal [33] IF Hamacher WA (IFHWA), IFHOWA, and IFHHA operators by Huang [34], quasi-IF 

OWA, quasi-IF Choquet OA by Yang and Chen [35]. From the dominant idea of IFSs, much research 

has been done by different experts in different directions. However, many experts raise the question of 

what happens when we change the range from [0,1] to complex numbers because in many situations 

we have been given a piece of data in the arrangement of complex numbers. Remot et al. [36] initiate 

the dominant paradigm of a CFS in which the truth grade belongs to a complex plane, to address this 

problem. CFS is an excellent method for defining human opinion in the form of complex grades since 

it manages two-dimensional data into a single set. Tamir et al. [37] give a new interpretation of complex 

truth grade. CFS has gained significant attention within the last few years. Many researchers have 

performed great work in the settings of CFS. Such as, Li and Chiang [38] initiated the idea of complex 

neuro-FS using CFS, CF geometric AOs, and CF-arithmetic AOs interpreted by Bi et al. [39,40], CF-

power AOs by Hu et al. [41]. 

2.2. Brief review of rough set theory 

Pawlak generalized the idea of crisp set theory to handle the uncertain and imprecise data and 

interpret the dominant notion of RS theory. It has been used as a tool for database mining and 

knowledge discovery. It is a new era of uncertainty mathematics that is strongly connected to FS theory 

in its abstract form. In noisy and imprecise data, structural relationships can be found using a RS 
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technique. The complementary extensions of crisp sets are RSs and FSs. RS theory’s approximation 

spaces are sets with many memberships, whereas fuzzy sets focus on partial memberships. RSs and 

FSs are corresponding generalizations of crisp sets. According to Pawlak’s RS, a universal set called 

the universe of discourse is characterized by two sets called the UA and LA. Later on, Dubois and 

Prade compared the concept of Pawlak’s RS with that of FS and introduced the notion of FRS. They 

combine the two concepts (FS and RS) of uncertainty and vagueness and provide a more natural way 

to deal with identical problems. In 2003, Cornelis et al. [42] initiated a new idea of IFRS by merging 

RS and IFS. It is a more generalized form because it uses the truth grade and false grade in the form 

of UA and LA. Hence, certain developments in this field have been achieved using the idea of IFRS. 

Zhou et al. [43] introduce the characterization of IFRSs based on IF implicators. Jane et al. [44] 

initiated the MADM technique based on the intuitionistic Dombi operators and its application in 

mutual fund evaluation. Alnoor et al. [45] developed the oil industry benchmarking system and the 

multi-criteria DM technique for sustainable transportation, which is based on the extension of linear 

Diophantine FRS. Tan et al. [46] give the idea of granular structures and attribute subset selection 

based on IFRS. Hussain et al. [47] presented the TOPSIS technique for MCGDM based on the IFR 

Dombi AOs. Based on the IF coverings Zhang [48] developed the IFR approximation operators. 

Mehmood et al. [49] delivered the confidence level AOs based on IFRSs and delivered the 

prioritization and analysis of the factors of Robotics by using the EDAS method based on IFR Yager 

AOs. Yi et al. [50] introduced the notion of complex fuzzy rough set (CFRS). Emam et al. [51] deduced 

frank AOs based on CFRS. IFRS is very useful and dominant but it cannot handle the 2nd dimension 

data into a single set. To overcome this situation, Mehmood et al. [52] propose a concept of CIFRS to 

tackle both the complex truth grade and complex false grade in the form of UA and LA. 

3. Preliminaries 

In this segment, we study some basic notions and discuss their fundamental properties. 

Throughout this article, the universal set is denoted by 𝐾. 

Atanassov [25] originated the thought of IFS defined as follows: 

Definition 1. A IFS €⏞ on a universal set 𝐾 is presented as 

€⏞ = {(ɬ∗,Ш
€⏞
(ɬ∗), И

€⏞
(ɬ∗)) |ɬ∗ ∈ 𝐾}, 

where Ш
€⏞
: 𝐾 → [0,1] denotes the truth grade and И

€⏞
: 𝐾 → [0,1] denotes the false grade of every 

element ɬ∗ ∈ 𝐾, such that 0 ≤ Ш
€⏞
(ɬ∗) + И

€⏞
(ɬ∗) ≤ 1. 

Tamir et al. [37] introduced the concept of CFS defined as follows: 

Definition 2. A CFS €⏞ on a universal set 𝐾 is presented as 

€⏞ = {(ɬ∗,Ш
€⏞
(ɬ∗)) |ɬ∗ ∈ 𝐾} = {(ɬ∗, 𝜎

€⏞
(ɬ∗) + 𝜄𝜌

€⏞
(ɬ∗)) |ɬ∗ ∈ 𝐾} 

Where the term Ш
€⏞
(ɬ∗) denotes the complex truth grade and 𝜎

€⏞
, 𝜌

€⏞
∈ [0,1]. 

Dubois and Prade [3] introduced the idea of FRS defined as follows: 

Definition 3. For fuzzy approximation space (𝐾, Ʀ𝑒) and a FS Ñ in 𝐾. Then the UA and LA of Ñ 

w.r.t (𝐾, Ʀ𝑒) is presented by 
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Ʀ𝑒(Ñ) = {(ɬ∗,Ш
Ʀ𝑒

(ɬ∗)) |ɬ∗ ∈ 𝐾} 

Ʀ𝑒(Ñ) = {(ɬ∗,ШƦ𝑒
(ɬ∗)) |ɬ∗ ∈ 𝐾} 

Where, 

Ш
Ʀ𝑒

(ɬ∗) = ⋁ʂ∗∈𝐾[𝑒( ɬ∗, ʂ∗)⋀𝜎Ñ(ʂ∗)] 

ШƦ𝑒
(ɬ∗) = ⋀ʂ∗∈𝐾[(1 − e( ɬ∗, ʂ∗))⋁𝜎Ñ(ʂ∗)] 

Then, the pair Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) is termed FRS. 

Chinram et al. [53] introduced the notion of IFRS defined as follows: 

Definition 4. For an IF approximation space (𝐾, 𝑅𝑒
∗) and a FS Ñ in 𝐾. Then we define the UA and 

LA of Ñ w.r.t (𝐾, 𝑅𝑒
∗) denoted and defined as 

Ʀ𝑒(Ñ) = {(ɬ∗,Ш
Ʀ𝑒

(ɬ∗), И
Ʀ𝑒

(ɬ∗)) |ɬ∗ ∈ 𝐾} 

Ʀ𝑒(Ñ) = {(ɬ∗,ШƦ𝑒
(ɬ∗), ИƦ𝑒

(ɬ∗)) |ɬ∗ ∈ 𝐾} 

Where, 

Ш
Ʀ𝑒

(ɬ∗) = ⋁ʂ∗∈𝐾[𝑒( ɬ∗, ʂ∗)⋁𝜎Ñ(ʂ∗)] 

ШƦ𝑒
(ɬ∗) = ⋀ʂ∗∈𝐾[e( ɬ∗, ʂ∗)⋀𝜎Ñ(ʂ∗)] 

И
Ʀ𝑒

(ɬ∗) = ⋀ʂ∗∈𝐾[𝑔( ɬ∗, ʂ∗)⋀𝜏Ñ(ʂ∗)] 

ИƦ𝑒
(ɬ∗) = ⋁ʂ∗∈𝐾[𝑔( ɬ∗, ʂ∗)⋁𝜏Ñ(ʂ∗)] 

Where, 0 ≤ Ш
Ʀ𝑒

+ И
Ʀ𝑒

 ≤ 1, and 0 ≤ ШƦ𝑒
+ ИƦ𝑒

≤ 1. Then the pair Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) =

{(ɬ∗, < Ш
Ʀ𝑒

(ɬ∗), И
Ʀ𝑒

(ɬ∗) >,< ШƦ𝑒
(ɬ∗), ИƦ𝑒

(ɬ∗) >) |ɬ∗ ∈ 𝐾} is called IFRS w.r.t (𝐾, Ʀ𝑒). 

Chinram et al. [53] introduced the algebraic operations of IFRS defined as follows: 
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Definition 5. Suppose Ʀ𝑒(Ñ1) = (Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ1))  and Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ2))  are two 

intuitionistic fuzzy rough numbers, 

i. Ʀ𝑒(Ñ1) ∪ Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ1) ∪ Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ1) ∪ Ʀ𝑒(Ñ2)); 

ii. Ʀ𝑒(Ñ1) ∩ Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ1) ∩ Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ1) ∩ Ʀ𝑒(Ñ2)); 

iii. Ʀ𝑒(Ñ)𝑐 = (Ʀ𝑒(Ñ)𝑐 , Ʀ𝑒(Ñ)𝑐)  where Ʀ𝑒(Ñ)𝑐  and Ʀ𝑒(Ñ)𝑐  signifies the complement of 

Ʀ𝑒(Ñ) and  Ʀ𝑒(Ñ). 

Mahmood et al. [52] introduced the notion of CIFRS defined as follows: 

Definition 6. Let 𝐾 be a universal set and Ʀ𝑒 be a CIF relation over 𝐾, and a pair (𝐾, Ʀ𝑒) define 

the CIF approximation space. Then, for Ñ = {(ʂ∗, 𝜎Ñ(ʂ∗) + 𝜄𝜌Ñ(ʂ∗), 𝜏Ñ(ʂ∗) + 𝜄𝜐Ñ(ʂ∗))|ʂ∗ ∈ 𝐾} ∈

𝐶𝐼𝐹𝑆(𝐾), we describe the UA and LA of Ñ w.r.t (𝐾, Ʀ𝑒), 

Ʀ𝑒(Ñ) = {(ɬ∗,Ш
Ʀ𝑒

(ɬ∗), И
Ʀ𝑒

(ɬ∗)) |ɬ∗ ∈ 𝐾} 

Ʀ𝑒(Ñ) = {(ɬ∗,ШƦ𝑒
(ɬ∗), ИƦ𝑒

(ɬ∗)) |ɬ∗ ∈ 𝐾} 

Where, 

Ш
Ʀ𝑒

(ɬ∗) = ⋁ʂ∗∈𝐾[𝑎( ɬ∗, ʂ∗)⋁𝜎Ñ(ʂ∗)] + 𝜄⋁ɬ∗∈𝐾[𝑏( ɬ∗, ʂ∗)⋁𝜌Ñ(ʂ∗)] = 𝜎
Ʀ𝑒

+ 𝜄𝜌
Ʀ𝑒

 

ШƦ𝑒
(ɬ∗) = ⋀ʂ∗∈𝐾[(𝑎( ɬ∗, ʂ∗))⋀𝜎Ñ(ʂ∗)] + 𝜄⋀ɬ∗∈𝐾[(𝑏( ɬ∗, ʂ∗))⋀𝜌Ñ(ʂ∗)] = 𝜎Ʀ𝑒

+ 𝜄𝜌Ʀ𝑒
 

И
Ʀ𝑒

(ɬ∗) = ⋀ʂ∗∈𝐾[(𝑐( ɬ∗, ʂ∗))⋀𝜏Ñ(ʂ∗)] + 𝜄⋀ɬ∗∈𝐾[(𝑑(ɬ∗, ʂ∗))⋀𝜐Ñ(ʂ∗)] = 𝜏
Ʀ𝑒

+ 𝜄𝜐
Ʀ𝑒

 

ИƦ𝑒
(ɬ∗) = ⋁ʂ∗∈𝐾[𝑐( ɬ∗, ʂ∗)⋁𝜏Ñ(ʂ∗)] + 𝜄⋁ɬ∗∈𝐾[𝑑( ɬ∗, ʂ∗)⋁𝜐Ñ(ʂ∗)] = 𝜏Ʀ𝑒

+ 𝜄𝜐Ʀ𝑒
 

Where, 0 ≤ 𝜎
Ʀ𝑒

+ 𝜏
Ʀ𝑒

 ≤ 1, 0 ≤ 𝜎Ʀ𝑒
+ 𝜏Ʀ𝑒

 ≤ 1, 0 ≤ 𝜌
Ʀ𝑒

+ 𝜐
Ʀ𝑒

≤ 1, and 0 ≤ 𝜌Ʀ𝑒
+ 𝜐Ʀ𝑒

≤ 1. 

 As Ʀ𝑒(Ñ)  and Ʀ𝑒(Ñ)  are CIFRSs. Then, the pair Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) =

{(ɬ∗, < Ш
Ʀ𝑒

(ɬ∗), И
Ʀ𝑒

(ɬ∗) >,< ШƦ𝑒
(ɬ∗), ИƦ𝑒

(ɬ∗) >) |ɬ∗ ∈ 𝐾}  is called CIFRS w.r.t (𝐾, Ʀ𝑒) . For 
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easiness, we will say that Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) = ((𝜎
Ʀ𝑒

+ 𝜄𝜌
Ʀ𝑒

, 𝜏
Ʀ𝑒

+ 𝜄𝜐
Ʀ𝑒

) , (𝜎Ʀ𝑒
+ 𝜄𝜌Ʀ𝑒

, 𝜏Ʀ𝑒
+

𝜄𝜐Ʀ𝑒
)) represents CIFRN. In the below Table 1, we explain each letter used in the definition of CIFRS. 

Table 1. Explanation of each letter in the definition of CIFRS. 

Letters used in the formula Explanation 

Ʀ𝒆(Ñ) Upper approximation 

Ш
Ʀ𝒆

(ɬ∗) Complex truth grade of upper approximation 

И
Ʀ𝒆

(ɬ∗) Complex false grade of upper approximation 

𝝈
Ʀ𝒆

+ 𝜾𝝆
Ʀ𝒆

 Real + Imaginary part of truth grade of upper approximation 

𝝉
Ʀ𝒆

+ 𝜾𝝊
Ʀ𝒆

 Real + Imaginary part of false grade of upper approximation 

Ʀ𝒆(Ñ) Lower approximation 

ШƦ𝒆
(ɬ∗) Complex truth grade of lower approximation 

ИƦ𝒆
(ɬ∗) Complex false grade of lower approximation 

𝝈Ʀ𝒆
+ 𝜾𝝆Ʀ𝒆

 Real + Imaginary part of truth grade of lower approximation 

𝝉Ʀ𝒆
+ 𝜾𝝊Ʀ𝒆

 Real + Imaginary part of false grade of lower approximation 

Mahmood et al. [52] introduced the algebraic operations of CIFRS defined as follows: 

Definition 7. For two CIFRNs, Ʀ𝑒(Ñ1) = (Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ1)) = (𝜎
Ʀ𝑒

+ 𝜄𝜌
Ʀ𝑒

, 𝜏
Ʀ𝑒

+ 𝜄𝜐
Ʀ𝑒

, 𝜎Ʀ𝑒
+

𝜄𝜌Ʀ𝑒
, 𝜏Ʀ𝑒

+ 𝜄𝜐Ʀ𝑒
)  and Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ2)) = (𝜎

Ʀ𝑒
+ 𝜄𝜌

Ʀ𝑒
, 𝜏

Ʀ𝑒
+ 𝜄𝜐

Ʀ𝑒
, 𝜎Ʀ𝑒

+ 𝜄𝜌Ʀ𝑒
, 𝜏Ʀ𝑒

+

𝜄𝜐Ʀ𝑒
) 

1) Complement: 

Ʀ𝑒(Ñ1)
𝑐 = (Ʀ𝑒(Ñ1)

𝑐 , Ʀ𝑒(Ñ1)
𝑐) = (𝜏

Ʀ𝑒
+ 𝜄𝜐

Ʀ𝑒
, 𝜎

Ʀ𝑒
+ 𝜄𝜌

Ʀ𝑒
, 𝜏Ʀ𝑒

+ 𝜄𝜐Ʀ𝑒
, 𝜎Ʀ𝑒

+ 𝜄𝜌Ʀ𝑒
) 

2) Union: 

Ʀ𝑒(Ñ1) ∪ Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ1) ∪ Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ1) ∪ Ʀ𝑒(Ñ2)) 
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=

(

 
 
 
 
 

max [𝜎
Ʀ𝑒

(Ñ1), 𝜎Ʀ𝑒
(Ñ2)] + 𝜄 max [𝜌

Ʀ𝑒
(Ñ1), 𝜌Ʀ𝑒

(Ñ2)] 

min [𝜏
Ʀ𝑒

(Ñ1), 𝜏Ʀ𝑒
(Ñ2)] + 𝜄 min [𝜐

Ʀ𝑒
(Ñ1) + 𝜐

Ʀ𝑒
(Ñ2)] 

max [𝜎Ʀ𝑒
(Ñ1), 𝜎Ʀ𝑒

(Ñ2)] + 𝜄 max [𝜌Ʀ𝑒
(Ñ1), 𝜌Ʀ𝑒

(Ñ2)] 

min [𝜏Ʀ𝑒
(Ñ1), 𝜏Ʀ𝑒

(Ñ2)] + 𝜄 min [𝜐Ʀ𝑒
(Ñ1) + 𝜐Ʀ𝑒

(Ñ2)] )

 
 
 
 
 

 

3) Intersection: 

Ʀ𝑒(Ñ1) ∩ Ʀ𝑒(Ñ2) = (Ʀ𝑒
̿̿ ̿(Ñ1) ∩ Ʀ𝑒

̿̿ ̿(Ñ2), Ʀ𝑒(Ñ1) ∩ Ʀ𝑒(Ñ2)) 

=

(

 
 
 
 
 

min [𝜎
Ʀ𝑒

(Ñ1), 𝜎Ʀ𝑒
(Ñ2)] + 𝜄 min [𝜌

Ʀ𝑒
(Ñ1), 𝜌Ʀ𝑒

(Ñ2)] 

max [𝜏
Ʀ𝑒

(Ñ1), 𝜏Ʀ𝑒
(Ñ2)] + 𝜄 max [𝜐

Ʀ𝑒
(Ñ1) + 𝜐

Ʀ𝑒
(Ñ2)] 

min [𝜎Ʀ𝑒
(Ñ1), 𝜎Ʀ𝑒

(Ñ2)] + 𝜄 min [𝜌Ʀ𝑒
(Ñ1), 𝜌Ʀ𝑒

(Ñ2)] 

max [𝜏Ʀ𝑒
(Ñ1), 𝜏Ʀ𝑒

(Ñ2)] + 𝜄 max [𝜐Ʀ𝑒
(Ñ1) + 𝜐Ʀ𝑒

(Ñ2)] )

 
 
 
 
 

 

Mahmood et al. [52] introduced the score and accuracy functions of CIFRS defined as follows: 

Definition 8. The score function 𝑆𝐹  of a CIFRN Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) = (𝜎
Ʀ𝑒

+ 𝜄𝜌
Ʀ𝑒

, 𝜏
Ʀ𝑒

+

𝜄𝜐
Ʀ𝑒

, 𝜎Ʀ𝑒
+ 𝜄𝜌Ʀ𝑒

, 𝜏Ʀ𝑒
+ 𝜄𝜐Ʀ𝑒

) is define as 

𝑆𝐹(Ʀ𝑒(Ñ)) =
1

8
(4 + 𝜎

Ʀ𝑒
+ 𝜌

Ʀ𝑒
+ 𝜎Ʀ𝑒

+ 𝜌Ʀ𝑒
− 𝜏

Ʀ𝑒
− 𝜐

Ʀ𝑒
− 𝜏Ʀ𝑒

− 𝜐Ʀ𝑒
),          𝑆𝐹(Ʀ𝑒(Ñ)) ∈ [0,1]. 

The accuracy function 𝐴𝐹 of a CIFRN is defined as 

𝐴𝐹(Ʀ𝑒(Ñ)) =
1

8
(𝜎

Ʀ𝑒
+ 𝜌

Ʀ𝑒
+ 𝜎Ʀ𝑒

+ 𝜌Ʀ𝑒
+ 𝜏

Ʀ𝑒
+ 𝜐

Ʀ𝑒
+ 𝜏Ʀ𝑒

+ 𝜐Ʀ𝑒
),          𝐴𝐹(Ʀ𝑒(Ñ)) ∈ [0,1]. 

3.1. Dombi operation 

In this section, we interpret Dombi [54] operations known as Dombi sum and product, which are 

special cases of t-norms and t-conorms defined as follows: 

Definition 9. Let ę1  and ę2  be two real numbers with ℃ ≥ 1 . Then DT-N and DT-CN are 

elaborated as 

𝛽𝐷𝑜𝑚(ę1, ę2) =
1

1 + {(
1 − ę1

ę1
)
℃

+ (
1 − ę2

ę2
)
℃

}

1
℃
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𝛽𝐷𝑜𝑚
′ (ę1, ę2) = 1 −

1

1 + {(
ę1

1 − ę1
)
℃

+ (
ę2

1 − ę2
)
℃
}

1
℃

 

3.2. Dombi operations on CIFRNs 

In this sub-sequel, we develop the concept of Dombi operation on CIFRNs. 

Definition 10. Let Ʀ𝑒(Ñ1) = (Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ1)) = (𝜎
Ʀ𝑒

+ 𝜄𝜌
Ʀ𝑒

, 𝜏
Ʀ𝑒

+ 𝜄𝜐
Ʀ𝑒

, 𝜎Ʀ𝑒
+ 𝜄𝜌Ʀ𝑒

, 𝜏Ʀ𝑒
+ 𝜄𝜐Ʀ𝑒

) 

and Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ2)) = (𝜎
Ʀ𝑒

+ 𝜄𝜌
Ʀ𝑒

, 𝜏
Ʀ𝑒

+ 𝜄𝜐
Ʀ𝑒

, 𝜎Ʀ𝑒
+ 𝜄𝜌Ʀ𝑒

, 𝜏Ʀ𝑒
+ 𝜄𝜐Ʀ𝑒

) be two CIFRNs, 

then 

1) Ʀ𝑒(Ñ1) ⊕ Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ1) ⊕ Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ1) ⊕ Ʀ𝑒(Ñ2)) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {(
𝜎

Ʀ𝑒

(Ñ1)

1 − 𝜎
Ʀ𝑒

(Ñ1)
)

℃

+ (
𝜎

Ʀ𝑒

(Ñ2)

1 − 𝜎
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+

𝜄

(

 
 
 
 
 

1 −
1

1 + {(
𝜌

Ʀ𝑒

(Ñ1)

1 − 𝜌
Ʀ𝑒

(Ñ1)
)

℃

+ (
𝜌

Ʀ𝑒

(Ñ2)

1 − 𝜌
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

)

 
 
 
 
 

,

1

1 + {(
1 − 𝜏

Ʀ𝑒

(Ñ1)

𝜏
Ʀ𝑒

(Ñ1)
)

℃

+ (
1 − 𝜏

Ʀ𝑒

(Ñ2)

𝜏
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+ 𝜄
1

1 + {(
1 − 𝜐

Ʀ𝑒

(Ñ1)

𝜐
Ʀ𝑒

(Ñ1)
)

℃

+ (
1 − 𝜐

Ʀ𝑒

(Ñ2)

𝜐
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {(
𝜎Ʀ𝑒

(Ñ1)

1 − 𝜎Ʀ𝑒
(Ñ1)

)

℃

+ (
𝜎Ʀ𝑒

(Ñ2)

1 − 𝜎Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+𝜄

(

 
 
 
 
 
 

1 −
1

1 + {(
𝜌Ʀ𝑒

(Ñ1)

1 − 𝜌Ʀ𝑒
(Ñ1)

)

℃

+ (
𝜌Ʀ𝑒

(Ñ2)

1 − 𝜌Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1

1 + {(
1 − 𝜏Ʀ𝑒

(Ñ1)

𝜏Ʀ𝑒
(Ñ1)

)

℃

+ (
1 − 𝜏Ʀ𝑒

(Ñ2)

𝜏Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+ 𝜄
1

1 + {(
1 − 𝜐Ʀ𝑒

(Ñ1)

𝜐Ʀ𝑒
(Ñ1)

)

℃

+ (
1 − 𝜐Ʀ𝑒

(Ñ2)

𝜐Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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2) Ʀ𝑒(Ñ1) ⊗ Ʀ𝑒(Ñ2) = (Ʀ𝑒(Ñ1) ⊗ Ʀ𝑒(Ñ2), Ʀ𝑒(Ñ1) ⊗ Ʀ𝑒(Ñ2)) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {(
1 − 𝜎

Ʀ𝑒

(Ñ1)

𝜎
Ʀ𝑒

(Ñ1)
)

℃

+ (
1 − 𝜎

Ʀ𝑒

(Ñ2)

𝜎
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+ 𝜄
1

1 + {(
1 − 𝜌

Ʀ𝑒

(Ñ1)

𝜌
Ʀ𝑒

(Ñ1)
)

℃

+ (
1 − 𝜌

Ʀ𝑒

(Ñ2)

𝜌
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

,

1 −
1

1 + {(
𝜏
Ʀ𝑒

(Ñ1)

1 − 𝜏
Ʀ𝑒

(Ñ1)
)

℃

+ (
𝜏
Ʀ𝑒

(Ñ2)

1 − 𝜏
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+

𝜄

(

 
 
 
 
 

1 −
1

1 + {(
𝜐
Ʀ𝑒

(Ñ1)

1 − 𝜐
Ʀ𝑒

(Ñ1)
)

℃

+ (
𝜐
Ʀ𝑒

(Ñ2)

1 − 𝜐
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {(
1 − 𝜎Ʀ𝑒

(Ñ1)

𝜎Ʀ𝑒
(Ñ1)

)

℃

+ (
1 − 𝜎Ʀ𝑒

(Ñ2)

𝜎Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+ 𝜄
1

1 + {(
1 − 𝜌Ʀ𝑒

(Ñ1)

𝜌Ʀ𝑒
(Ñ1)

)

℃

+ (
1 − 𝜌Ʀ𝑒

(Ñ2)

𝜌Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

,

1 −
1

1 + {(
𝜏Ʀ𝑒

(Ñ1)

1 − 𝜏Ʀ𝑒
(Ñ1)

)

℃

+ (
𝜏Ʀ𝑒

(Ñ2)

1 − 𝜏Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+

𝜄

(

 
 
 
 
 
 

1 −
1

1 + {(
𝜐Ʀ𝑒

(Ñ1)

1 − 𝜐Ʀ𝑒
(Ñ1)

)

℃

+ (
𝜐Ʀ𝑒

(Ñ2)

1 − 𝜐Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3) 𝜆Ʀ𝑒(Ñ) = (𝜆Ʀ𝑒(Ñ), 𝜆Ʀ𝑒(Ñ)) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {𝜆 (
𝜎

Ʀ𝑒
(Ñ1)

1 − 𝜎
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {𝜆 (
𝜌

Ʀ𝑒
(Ñ1)

1 − 𝜌
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

)

 
 
 
 
 

,

1

1 + {𝜆 (
1 − 𝜏

Ʀ𝑒
(Ñ1)

𝜏
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {𝜆 (
1 − 𝜐

Ʀ𝑒
(Ñ1)

𝜐
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {𝜆 (
𝜎Ʀ𝑒

(Ñ1)

1 − 𝜎Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {𝜆 (
𝜌Ʀ𝑒

(Ñ1)

1 − 𝜌Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1

1 + {𝜆 (
1 − 𝜏Ʀ𝑒

(Ñ1)

𝜏Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {𝜆 (
1 − 𝜐Ʀ𝑒

(Ñ1)

𝜐Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4) (Ʀ𝑒(Ñ))
𝜆

= ((Ʀ𝑒(Ñ))

𝜆

, (Ʀ𝑒(Ñ))

𝜆

) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {𝜆 (
1 − 𝜎

Ʀ𝑒
(Ñ1)

𝜎
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {𝜆 (
1 − 𝜌

Ʀ𝑒
(Ñ1)

𝜌
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {𝜆 (
𝜏
Ʀ𝑒

(Ñ1)

1 − 𝜏
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {𝜆 (
𝜐
Ʀ𝑒

(Ñ1)

1 − 𝜐
Ʀ𝑒

(Ñ1)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {𝜆 (
1 − 𝜎Ʀ𝑒

(Ñ1)

𝜎Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {𝜆 (
1 − 𝜌Ʀ𝑒

(Ñ1)

𝜌Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {𝜆 (
𝜏Ʀ𝑒

(Ñ1)

1 − 𝜏Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {𝜆 (
𝜐Ʀ𝑒

(Ñ1)

1 − 𝜐Ʀ𝑒
(Ñ1)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. CIFR Dombi average AOs 

In this sequel, we develop the idea of a CIFRDWA operator and discuss several new aggregation 

operators based on CIFRNs with their properties using Dombi operations. 

Definition 11. Suppose Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰) be a gathering of CIFRNs and 

ß = (ß1, ß2, ß3 . . . , ß𝔰)
𝑇 be the weight vector (WV) with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 = 1, then a 

CIFRDWA operator is defined as 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⊕𝑗=1
𝔰 ß𝑗Ʀ𝑒(Ñ𝑗),⊕𝔱=1

𝔰 ß𝑗  Ʀ𝑒(Ñ𝑗)) 
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= ((ß1Ʀ𝑒(Ñ1) ⊕ ß2Ʀ𝑒(Ñ2) ⊕. . . . .⊕ ß𝔰Ʀ𝑒(Ñ𝔰)) , (ß1Ʀ𝑒(Ñ1) ⊕ ß2Ʀ𝑒(Ñ2) ⊕. . . . .⊕ ß𝔰Ʀ𝑒(Ñ𝔰))) 

From the above definition, the results for CIFRDWA operator are: 

Theorem 1. Using the equation above, we obtain the CIFRNs and 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⊕𝑗=1
𝔰 ß𝑗Ʀ𝑒(Ñ𝑗),⊕𝑗=1

𝔰 ß𝑗  Ʀ𝑒(Ñ𝑗)) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜎
Ʀ𝑒

(Ñ𝑗)

1 − 𝜎
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜌
Ʀ𝑒

(Ñ𝑗)

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)

𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)

𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜎Ʀ𝑒
(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜌Ʀ𝑒
(Ñ𝑗)

1 − 𝜌Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜐Ʀ𝑒
(Ñ𝑗)

𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Proof. See Appendix A. 

Theorem 2. (Idempotency property) Assume Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰)  be a 
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gathering of CIFRNs and ß = (ß1, ß2, ß3 . . . , ß𝔰)
𝑇 be the WV with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 =

1. If Ʀ𝑒(Ñ𝑗) = Ʀ𝑒(Ñ) ∀ (𝑗 = 1,2,3… , 𝔰), where Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) then 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = Ʀ𝑒(Ñ) 

Proof. See Appendix A. 

Theorem 3. (Boundedness property) Assume Ʀ𝑒(Ñ𝑗) = ((Ʀ𝑒(Ñ𝑗))
+

, (Ʀ𝑒(Ñ𝑗))
−

) (𝑡 = 1,2,3… , 𝔰) 

be a gathering of CIFRNs where (Ʀ𝑒(Ñ𝑗))
+

= (min
𝑗

Ʀ𝑒(Ñ𝑗) ,max
𝑗

Ʀ𝑒(Ñ𝑗))  and (Ʀ𝑒(Ñ𝑗))
−

=

(max
𝑗

Ʀ𝑒(Ñ𝑗) ,min
𝑗

Ʀ𝑒(Ñ𝑗)), then 

(Ʀ𝑒(Ñ𝑗))
−

≤ CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ (Ʀ𝑒(Ñ𝑗))
+

 

Proof. See Appendix A. 

Theorem 4. (Monotonicity property) Suppose 

Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗) + 𝜄𝜌
Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗)) ,

(𝜎Ʀ𝑒
(Ñ𝑗) + 𝜄𝜌Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐Ʀ𝑒

(Ñ𝑗))
)

 
 

 

and 

Ʀ𝑒(Ñ𝑗
′) = (Ʀ𝑒(Ñ𝑗

′), Ʀ𝑒(Ñ𝑗
′)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜌

Ʀ𝑒
(Ñ𝑗

′), 𝜏
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗

′)) ,

(𝜎Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜌Ʀ𝑒
(Ñ𝑗

′), 𝜏Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜐Ʀ𝑒
(Ñ𝑗

′))
)

 
 

(𝑗 = 1, 2, . . . , 𝔰) 

be a gathering of two CIFRSs, and ß = (ß1, ß2, . . . , ß𝔰)
𝑇 be the WV with ß𝔱 ∈ [0, 1] and ∑ ß𝔱

𝔰
𝔱=1 =

1. If Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(𝐵𝑡) , Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(Ñ𝑗
′), then 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ CIFRDWA(Ʀ𝑒(Ñ1
′ ), Ʀ𝑒(Ñ2

′ ), . . . , Ʀ𝑒(Ñ𝔰
′)) 

Proof. The proof can be followed from theorem 2 and 3. 

Definition 12. Let Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰) be a gathering of CIFRNs and ß =

(ß1, ß2, ß3 . . . , ß𝔰)
𝑇  be the WV with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 = 1 .   Then, a CIFRDOWA 

operator is determined as 
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CIFRDOWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⊕𝑗=1
𝔰 ß𝑗Ʀ𝑒(Ñŏ(𝑗)),⊕𝑗=1

𝔰 ß𝑗  Ʀ𝑒(Ñŏ(𝑗))) 

= ((ß1Ʀ𝑒(Ñŏ(1)) ⊕ ß2Ʀ𝑒(Ñŏ(2)) ⊕. . . . .⊕ ß𝔰Ʀ𝑒(Ñŏ(𝔰))) , (ß1Ʀ𝑒(Ñŏ(1)) ⊕ ß2Ʀ𝑒(Ñŏ(2)) ⊕. . . . .

⊕ ß𝔰Ʀ𝑒(Ñŏ(𝔰)))) 

Where (ŏ(1), ŏ(2), ŏ(3), . . . , ŏ(𝔰)) is a permutation of the largest gathering Ʀ𝑒(Ñŏ(𝑗)) ∀ 𝑗. 

From the above definition the results for CIFRDOWA operator are: 

Theorem 5. Using the equation above, we obtain the CIFRNs and 

CIFRDOWA(𝑅𝑒
∗(Ñ1), 𝑅𝑒

∗(Ñ2), . . . , 𝑅𝑒
∗(Ñ𝔰)) = (⊕𝑗=1

𝔰 ß𝑗Ʀ𝑒(Ñŏ(𝑗)),⊕𝑗=1
𝔰 ß𝑗  Ʀ𝑒(Ñŏ(𝑗))) = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜎
Ʀ𝑒

(Ñŏ(𝑗))

1 − 𝜎
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜌
Ʀ𝑒

(Ñŏ(𝑗))

1 − 𝜌
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

)

 
 
 
 
 

,

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜏
Ʀ𝑒

(Ñŏ(𝑗))

𝜏
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜐
Ʀ𝑒

(Ñŏ(𝑗))

𝜐
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜎Ʀ𝑒
(Ñŏ(𝑗))

1 − 𝜎Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜌Ʀ𝑒
(Ñŏ(𝑗))

1 − 𝜌Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜏Ʀ𝑒
(Ñŏ(𝑗))

𝜏Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜐Ʀ𝑒
(Ñŏ(𝑗))

𝜐Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Proof. The proof is similar to theorem 1. 
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Theorem 6. (Idempotency property) Assume Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰)  be a 

gathering of CIFRNs and ß = (ß1, ß2, ß3 . . . , ß𝔰)
𝑇 be the WV with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 =

1. If Ʀ𝑒(Ñ𝑗) = Ʀ𝑒(Ñ) ∀ (𝑗 = 1,2,3… , 𝔰), where Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) then 

CIFRDOWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = Ʀ𝑒(Ñ) 

Proof. The proof is similar to theorem 2. 

Theorem 7. (Boundedness property) Assume Ʀ𝑒(Ñ𝑗) = ((Ʀ𝑒(Ñ𝑗))
+

, (Ʀ𝑒(Ñ𝑗))
−

) (𝑡 = 1,2,3… , 𝔰) 

be a gathering of CIFRNs where (Ʀ𝑒(Ñ𝑗))
+

= (min
𝔱

Ʀ𝑒(Ñ𝑗) ,max
𝔱

Ʀ𝑒(Ñ𝑗))  and (Ʀ𝑒(Ñ𝑗))
−

=

(max
𝑗

Ʀ𝑒(Ñ𝑗) ,min
𝑗

Ʀ𝑒(Ñ𝑗)), then 

(Ʀ𝑒(Ñ𝑗))
−

≤ CIFRDOWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ (Ʀ𝑒(Ñ𝑗))
+

 

Proof. The prove is similar to theorem 3. 

Theorem 8. (Monotonicity property) Suppose 

Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗) + 𝜄𝜌
Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗)) ,

(𝜎Ʀ𝑒
(Ñ𝑗) + 𝜄𝜌Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐Ʀ𝑒

(Ñ𝑗))
)

 
 

 

and 

Ʀ𝑒(Ñ𝑗
′) = (Ʀ𝑒(Ñ𝑗

′), Ʀ𝑒(Ñ𝑗
′)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜌

Ʀ𝑒
(Ñ𝑗

′), 𝜏
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗

′)) ,

(𝜎Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜌Ʀ𝑒
(Ñ𝑗

′), 𝜏Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜐Ʀ𝑒
(Ñ𝑗

′))
)

 
 

(𝑗 = 1, 2, . . . , 𝔰) 

be a gathering of two CIFRSs, and ß = (ß1, ß2, . . . , ß𝔰)
𝑇 be the WV with ß𝔱 ∈ [0, 1] and ∑ ß𝔱

𝔰
𝔱=1 =

1. If Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(𝐵𝑡) , Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(Ñ𝑗
′), then 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ CIFRDOWA(Ʀ𝑒(Ñ1
′ ), Ʀ𝑒(Ñ2

′ ), . . . , Ʀ𝑒(Ñ𝔰
′)) 

Proof. The proof can be followed from theorem 2 and 3. 

4.1. CIFR Dombi geometric AOs 

This part includes, the idea of the CIFRDWG operator, and the CIFRDOWG operator based on 
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CIFRNs, and we discuss their properties using basic operations. 

Definition 13. Suppose Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰) be a gathering of CIFRNs and 

ß = (ß1, ß2, ß3 . . . , ß𝔰)
𝑇  be the WV with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 = 1 , then a CIFRDWG 

operator is defined as 

CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⨂𝑗=1
𝔰 ß𝑗Ʀ𝑒(Ñ𝑗),⨂𝔱=1

𝔰 ß𝑗  Ʀ𝑒(Ñ𝑗)) 

= ((ß1Ʀ𝑒(Ñ1)⨂ß2Ʀ𝑒(Ñ2)⨂. . . . . ⨂ß𝔰Ʀ𝑒(Ñ𝔰)) , (ß1Ʀ𝑒(Ñ1)⨂ß2Ʀ𝑒(Ñ2)⨂. . . . . ⨂ß𝔰Ʀ𝑒(Ñ𝔰))) 

The following are the outcomes for the CIFRDWG operator based on the definition above. 

Theorem 9. Using the equation above, we obtain the CIFRNs and 

CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⨂𝑗=1
𝔰 ß𝑗Ʀ𝑒(Ñ𝑗),⨂𝑗=1

𝔰 ß𝑗  Ʀ𝑒(Ñ𝑗)) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜎
Ʀ𝑒

(Ñ𝑗)

𝜎
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)

𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜏
Ʀ𝑒

(Ñ𝑗)

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜐
Ʀ𝑒

(Ñ𝑗)

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜌Ʀ𝑒
(Ñ𝑗)

𝜌Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜏Ʀ𝑒
(Ñ𝑗)

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜐Ʀ𝑒
(Ñ𝑗)

1 − 𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Proof. See Appendix A. 
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Theorem 10. (Idempotency property) Assume Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰) be a 

gathering of CIFRNs and ß = (ß1, ß2, ß3 . . . , ß𝔰)
𝑇 be the WV with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 =

1. If Ʀ𝑒(Ñ𝑗) = Ʀ𝑒(Ñ) ∀ (𝑗 = 1,2,3… , 𝔰), where Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) then 

CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = Ʀ𝑒(Ñ) 

Theorem 11. (boundedness property) Assume Ʀ𝑒(Ñ𝑗) = ((Ʀ𝑒(Ñ𝑗))
+

, (Ʀ𝑒(Ñ𝑗))
−

) (𝑡 =

1,2,3… , 𝔰)  be a gathering of CIFRNs where (Ʀ𝑒(Ñ𝑗))
+

= (min
𝔱

Ʀ𝑒(Ñ𝑗) ,max
𝔱

Ʀ𝑒(Ñ𝑗))  and 

(Ʀ𝑒(Ñ𝑗))
−

= (max
𝑗

Ʀ𝑒(Ñ𝑗) ,min
𝑗

Ʀ𝑒(Ñ𝑗)), then 

(Ʀ𝑒(Ñ𝑗))
−

≤ CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ (Ʀ𝑒(Ñ𝑗))
+

 

Theorem 12. (Monotonicity property) Let 

Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗) + 𝜄𝜌
Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗)) ,

(𝜎Ʀ𝑒
(Ñ𝑗) + 𝜄𝜌Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐Ʀ𝑒

(Ñ𝑗))
)

 
 

 

and 

Ʀ𝑒(Ñ𝑗
′) = (Ʀ𝑒(Ñ𝑗

′), Ʀ𝑒(Ñ𝑗
′)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜌

Ʀ𝑒
(Ñ𝑗

′), 𝜏
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗

′)) ,

(𝜎Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜌Ʀ𝑒
(Ñ𝑗

′), 𝜏Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜐Ʀ𝑒
(Ñ𝑗

′))
)

 
 

(𝑗 = 1, 2, . . . , 𝔰) 

be a gathering of two CIFRSs, and ß = (ß1, ß2, . . . , ß𝔰)
𝑇 be the WV with ß𝔱 ∈ [0, 1] and ∑ ß𝔱

𝔰
𝔱=1 =

1. If Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(𝐵𝑡) , Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(Ñ𝑗
′), then 

CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ CIFRDWG(Ʀ𝑒(Ñ1
′ ), Ʀ𝑒(Ñ2

′ ), . . . , Ʀ𝑒(Ñ𝔰
′)) 

Definition 14. Suppose Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰) be a gathering of CIFRNs and 

ß = (ß1, ß2, ß3 . . . , ß𝔰)
𝑇  be the WV with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 = 1 .  Then, a CIFRDOWG 

operator is determined as 

CIFRDOWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⨂𝑗=1
𝔰 ß𝑗Ʀ𝑒(Ñŏ(𝑗)),⨂𝑗=1

𝔰 ß𝑗  Ʀ𝑒(Ñŏ(𝑗))) 
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=

(

 
 

(ß1Ʀ𝑒(Ñŏ(1))⨂ß2Ʀ𝑒(Ñŏ(2))⨂. . . . . ⨂ß𝔰Ʀ𝑒(Ñŏ(𝔰))) ,

(ß1Ʀ𝑒(Ñŏ(1))⨂ß2Ʀ𝑒(Ñŏ(2))⨂. . . . . ⨂ß𝔰Ʀ𝑒(Ñŏ(𝔰)))
)

 
 

 

Where (ŏ(1), ŏ(2), ŏ(3), . . . , ŏ(𝔰)) is a permutation of the largest gathering Ʀ𝑒(Ñŏ(𝑗)) ∀ 𝑗. 

The following are the outcomes for the CIFRDWG operator based on the definition above. 

Theorem 13. Using the equation above, we obtain the CIFRNs and 

CIFRDOWG(𝑅𝑒
∗(Ñ1), 𝑅𝑒

∗(Ñ2), . . . , 𝑅𝑒
∗(Ñ𝔰)) = (⨂𝑗=1

𝔰 ß𝑗Ʀ𝑒(Ñŏ(𝑗)),⨂𝑗=1
𝔰 ß𝑗  Ʀ𝑒(Ñŏ(𝑗))) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜎
Ʀ𝑒

(Ñŏ(𝑗))

𝜎
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜌
Ʀ𝑒

(Ñŏ(𝑗))

𝜌
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜏
Ʀ𝑒

(Ñŏ(𝑗))

1 − 𝜏
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

+

𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜐
Ʀ𝑒

(Ñŏ(𝑗))

1 − 𝜐
Ʀ𝑒

(Ñŏ(𝑗))
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜎Ʀ𝑒
(Ñŏ(𝑗))

𝜎Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜌Ʀ𝑒
(Ñŏ(𝑗))

𝜌Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜏Ʀ𝑒
(Ñŏ(𝑗))

1 − 𝜏Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

+

𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
𝔰
𝑗=1 (

𝜐Ʀ𝑒
(Ñŏ(𝑗))

1 − 𝜐Ʀ𝑒
(Ñŏ(𝑗))

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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Theorem 14. (Idempotency property) Assume Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) (𝑗 = 1,2,3… , 𝔰) be a 

gathering of CIFRNs and ß = (ß1, ß2, ß3 . . . , ß𝔰)
𝑇 be the WV with ß𝑗 ∈ [0, 1] such that ∑ ß𝑗

𝔰
𝑗=1 =

1. If Ʀ𝑒(Ñ𝑗) = Ʀ𝑒(Ñ) ∀ (𝑗 = 1,2,3… , 𝔰), where Ʀ𝑒(Ñ) = (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) then 

CIFRDOWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = Ʀ𝑒(Ñ) 

Theorem 15. (Boundedness property) Assume Ʀ𝑒(Ñ𝑗) = ((Ʀ𝑒(Ñ𝑗))
+

, (Ʀ𝑒(Ñ𝑗))
−

) (𝑡 =

1,2,3… , 𝔰)  be a gathering of CIFRNs where (Ʀ𝑒(Ñ𝑗))
+

= (min
𝔱

Ʀ𝑒(Ñ𝑗) ,max
𝔱

Ʀ𝑒(Ñ𝑗))  and 

(Ʀ𝑒(Ñ𝑗))
−

= (max
𝑗

Ʀ𝑒(Ñ𝑗) ,min
𝑗

Ʀ𝑒(Ñ𝑗)), then 

(Ʀ𝑒(Ñ𝑗))
−

≤ CIFRDOWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ (Ʀ𝑒(Ñ𝑗))
+

 

Theorem 16. (Monotonicity property) Let 

Ʀ𝑒(Ñ𝑗) = (Ʀ𝑒(Ñ𝑗), Ʀ𝑒(Ñ𝑗)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗) + 𝜄𝜌
Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗)) ,

(𝜎Ʀ𝑒
(Ñ𝑗) + 𝜄𝜌Ʀ𝑒

(Ñ𝑗), 𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄𝜐Ʀ𝑒

(Ñ𝑗))
)

 
 

 

and 

Ʀ𝑒(Ñ𝑗
′) = (Ʀ𝑒(Ñ𝑗

′), Ʀ𝑒(Ñ𝑗
′)) =

(

 
 

(𝜎
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜌

Ʀ𝑒
(Ñ𝑗

′), 𝜏
Ʀ𝑒

(Ñ𝑗
′) + 𝜄𝜐

Ʀ𝑒
(Ñ𝑗

′)) ,

(𝜎Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜌Ʀ𝑒
(Ñ𝑗

′), 𝜏Ʀ𝑒
(Ñ𝑗

′) + 𝜄𝜐Ʀ𝑒
(Ñ𝑗

′))
)

 
 

(𝑗 = 1, 2, . . . , 𝔰) 

be a gathering of two CIFRSs, and ß = (ß1, ß2, . . . , ß𝔰)
𝑇 be the WV with ß𝔱 ∈ [0, 1] and ∑ ß𝔱

𝔰
𝔱=1 =

1. If Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(𝐵𝑡) , Ʀ𝑒(Ñ𝑗) ≤ Ʀ𝑒(Ñ𝑗
′), then 

CIFRDOWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ CIFRDOWG(Ʀ𝑒(Ñ1
′ ), Ʀ𝑒(Ñ2

′ ), . . . , Ʀ𝑒(Ñ𝔰
′)) 

5. A new approach of MADM in the framework of CIFR information 

In this section, we discuss the MADM procedure under the investigated operators for determining 

the beneficial alternative from the class of alternatives. 

Suppose Ç𝓈 = {Ç1, Ç2, … , Ç𝓂}  be a set of alternatives, Ḅ𝓇 = {Ḅ1, Ḅ2, … , Ḅ𝓃}  be a set of 

attributes and ώ = (ώ1, ώ2, . . . , ώ𝓃)𝑇 be the WV of attributes with ώ𝓇 ∈ [𝟶, 1], 𝓇 = (1,2,3, … ,𝓃) 

and ∑ ώ𝓇
𝓃
𝓇=1 = 1. Based on the deduced attributes, the decision maker will calculate the evaluated 

vales of the alternatives. These assessed values are found in the CIFRNs structure, which is, Ḿ =



33111 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

(Ὥ𝓈𝓇)𝓂×𝓃 = ((Ш𝓈𝓇 , И𝓈𝓇) , (Ш𝓈𝓇 , И𝓈𝓇))
𝓂×𝓃

= (
(𝜎𝓈𝓇 + 𝗂𝜌

𝓈𝓇
, 𝜏𝓈𝓇 + 𝗂𝜐𝓈𝓇) ,

(𝜎𝓈𝓇 + 𝗂𝜌𝓈𝓇 , 𝜏𝓈𝓇 + 𝗂𝜐𝓈𝓇)
)

𝓂×𝓃

 is a CIFR 

decision matrix. To handle the MADM problem, we interpret the beneath algorithm. 

5.1. Algorithm 

To solve MADM dilemma, we use the CIFRDWA and CIFRDWG operators to create an 

algorithm in the framework of CIFRSs. 

Stage-1: Using the CIFRDWA operator and CIFRDWG operator to the CIFR information provided in 

the matrix Ḿ, find all the aggregated values of alternatives Ç𝓈 = {Ç1, Ç2, … , Ç𝓂}. 

Stage-2: the combined outcomes score values are examined by definition 8. 

Stage-3: In this stage, use the score values to rank the alternatives and attain the optimum alternative. 

Stage-4: End. 

5.2. Case study 

One of the methodologies and applications mentioned in the given references is Multiple Criteria 

Decision-Making (MADM) which is appropriate to the case of choosing an AI services provider. Chen 

et al. [55] showed that AHP, a MADM technique, can be used in construction topics and thus, it can 

be used in the selection of an AI service provider. This supports the company’s approach of assessing 

the providers based on the multiple attributes of the service. Zhuang and Fu [56] have also conducted 

empirical studies on the housing preference structures, which is the same way that the company intends 

to structure the preferences for the AI services by advocating on the cost, expertise, reliability, and 

scalability. Its focus on non-paradigmatic transitions between metropoles suggests that it may be useful 

to examine regional differences, which might be useful when assessing the skills and efficiency of AI 

suppliers. Last, Chi et al. [57] used post-training analysis to budgeting criteria for unmanned aerial 

system design which is similar to the company’s requirement of ranking attributes in decision making. 

Another feature that has also been looked at in the course of this study is sustainability, and there are 

other factors such as scalability, which should also be considered when choosing an appropriate AI 

provider. Together these references provide practical support for one of the company’s strategic 

activities, namely, rational decision-making; moreover, these references stress that decision-making in 

the choice of business partners and technologies should take into account several factors. 

To improve its business operations, the corporation is currently choosing an AI services supplier. 

Four important factors are evaluated during the DM process: Cost, expertise, reliability, and scalability. 

All are used to determine if the given AI service provider is suitable for the specific needs of the 

business. 

1) Ḅ𝟏: Cost: The cost attribute means the money that is required to acquire and maintain the AI 

services. The organization needs to find an AI services provider who can offer quality solutions 

at reasonable market price. 

2) Ḅ𝟐: Expertise: This is important when assessing the effectiveness of the AI services provider 

with regards to delivering unique solutions in AI technologies. Here, the organization is keen on 
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selecting a provider who has experienced professionals, skilled, and knowledgeable about the 

organization’s sector. 

3) Ḅ𝟑: Reliability: This placed so much reliance on the AI services provider who has to deliver 

reliable and dependable services. The supplier that is capable of meeting the set time lines, 

meeting the service delivery standards, and providing reliable support to the organization is 

considered very valuable. 

4) Ḅ𝟒: Scalability: As for a number of weaknesses, one of them has to do with scalability: since the 

business is expected to expand and expand in the future, the possibility of expansion must be 

present. For the successful implementation of AI technology, the service provider selected needs 

to be able to scale up its solutions to accommodate the dynamics of the business. 

The Artificial Intelligence Service Providers that have been identified include Ç𝟏, Ç𝟐, Ç𝟑, and 

Ç𝟒. In order to make the correct decision in regard to the needs and the strategic position of the company, 

every of the options will be evaluated according to the characteristics described above. 

This statement outlines the structure for the company’s MADM analysis through which the 

company will assess and rank the AI service providers based on aforementioned qualities in order to 

make the correct decision. The weights for each attribute are (0.2, 0.3, 0.4, 0.1) . Below Table 2 

represents CIFRNs. 

Table 2. Complex intuitionistic fuzzy rough numbers. 

 Ḅ𝟏 Ḅ𝟐 Ḅ𝟑 Ḅ𝟒 

Ç𝟏 (
(
(0.4 + 𝜄0.2),
(0.5 + 𝜄0.3)

) ,

(
(0.6 + 𝜄0.2),
(0.1 + 𝜄0.4)

)
) (

(
(0.2 + 𝜄0.3),
(0.2 + 𝜄0.6)

) ,

(
(0.3 + 𝜄0.1),
(0.1 + 𝜄0.5)

)
) (

(
(0.4 + 𝜄0.4),
(0.2 + 𝜄0.5)

) ,

(
(0.4 + 𝜄0.3),
(0.2 + 𝜄0.5)

)
) (

(
(0.3 + 𝜄0.5),
(0.2 + 𝜄0.3)

) ,

(
(0.3 + 𝜄0.6),
(0.2 + 𝜄0.3)

)
) 

Ç𝟐 (
(
(0.7 + 𝜄0.2),
(0.2 + 𝜄0.6)

) ,

(
(0.3 + 𝜄0.4),
(0.5 + 𝜄0.2)

)
) (

(
(0.4 + 𝜄0.3),
(0.2 + 𝜄0.6)

) ,

(
(0.3 + 𝜄0.3),
(0.2 + 𝜄0.6)

)
) (

(
(0.3 + 𝜄0.5),
(0.5 + 𝜄0.3)

) ,

(
(0.4 + 𝜄0.3),
(0.3 + 𝜄0.5)

)
) (

(
(0.5 + 𝜄0.2),
(0.4 + 𝜄0.3)

) ,

(
(0.1 + 𝜄0.7),
(0.6 + 𝜄0.2)

)
) 

Ç𝟑 (
(
(0.2 + 𝜄0.5),
(0.7 + 𝜄0.1)

) ,

(
(0.7 + 𝜄0.2),
(0.1 + 𝜄0.3)

)
) (

(
(0.2 + 𝜄0.4),
(0.5 + 𝜄0.1)

) ,

(
(0.4 + 𝜄0.1),
(0.3 + 𝜄0.7)

)
) (

(
(0.5 + 𝜄0.3),
(0.2 + 𝜄0.4)

) ,

(
(0.2 + 𝜄0.3),
(0.3 + 𝜄0.6)

)
) (

(
(0.6 + 𝜄0.3),
(0.4 + 𝜄0.3)

) ,

(
(0.2 + 𝜄0.5),
(0.6 + 𝜄0.2)

)
) 

Ç𝟒 (
(
(0.2 + 𝜄0.2),
(0.4 + 𝜄0.6)

) ,

(
(0.4 + 𝜄0.3),
(0.4 + 𝜄0.2)

)
) (

(
(0.5 + 𝜄0.4),
(0.3 + 𝜄0.4)

) ,

(
(0.5 + 𝜄0.2),
(0.4 + 𝜄0.1)

)
) (

(
(0.3 + 𝜄0.6),
(0.2 + 𝜄0.3)

) ,

(
(0.1 + 𝜄0.3),
(0.2 + 𝜄0.6)

)
) (

(
(0.1 + 𝜄0.8),
(0.9 + 𝜄0.1)

) ,

(
(0.8 + 𝜄0.1),
(0.2 + 𝜄0.4)

)
) 

Stage 1: Using the CIFRDWA operators to determine the values, Ç𝓈 = {Ç1, Ç2, … , Ç𝓂} 

Ç1 = (
((0.1318 + 𝗂0.1472), (0.2325 + 𝗂0.5309)),

((0.2596 + 𝗂0.1732), (0.0453 + 𝗂0.6070))
) 

Ç2 = (
((0.4110 + 𝗂0.1915), (0.1956 + 𝗂0.7228)),

((0.1192 + 𝗂0.2758), (0.2839 + 𝗂0.2884))
) 
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Ç3 = (
((0.2470 + 𝗂0.1753), (0.7807 + 𝗂0.0464)),

((0.3852 + 𝗂0.0866), (0.1006 + 𝗂0.4215))
) 

Ç4 = (
((0.1622 + 𝗂0.5695), (0.4896 + 𝗂0.1841)),

((0.4992 + 𝗂0.0611), (0.4232 + 𝗂0.06728))
) 

Stage 2: In 𝑆𝐹(Ç𝓈)(𝓈 = 1, 2, 3, 4), the obtained score values are 

𝑆𝐹(Ç1) = 0.412, 𝑆𝐹(Ç2) = 0.4383, 𝑆𝐹(Ç3) = 0.4431, 𝑆𝐹(Ç4) = 0.5159 

Stage 3: Using the following score values 𝑆𝐹(Ç𝓈)(𝓈 = 1, 2, 3, 4) of the total CIFRNs, rank the values 

Ă𝓈(𝓈 = 1, 2, 3, 4): 

Ç4 > Ç3 > Ç2 > Ç1. 

Ç4 is selected as the best. 

Stage 4: End. 

If we use the CIFRDWG operator then the result of above problem is follows: 

Stage 1: Using the CIFRDWG operators to determine the values, Ç𝓈 = {Ç1, Ç2, … , Ç𝓂}. 

Ç1 = (
((0.2565 + 𝗂0.2884), (0.1111 + 𝗂0.3610)),

((0.4687 + 𝗂0.0676), (0.0183 + 𝗂0.2875))
) 

Ç2 = (
((0.7113 + 𝗂0.2371), (0.1921 + 𝗂0.3782)),

((0.1559 + 𝗂0.4876), (0.2054 + 𝗂0.3535))
) 

Ç3 = (
((0.1991 + 𝗂0.5848), (0.4216 + 𝗂0.0918)),

((0.4638 + 𝗂0.0675), (0.1511 + 𝗂0.5629))
) 

Ç4 = (
((0.1470 + 𝗂0.3400), (0.8052 + 𝗂0.2475)),

((0.7256 + 𝗂0.1250), (0.1124 + 𝗂0.3244))
) 

Stage 2: In 𝑆𝐹(Ç𝓈)(𝓈 = 1, 2, 3, 4), the obtained score values of are 

𝑆𝐹(Ç1) = 0.5379, 𝑆𝐹(Ç2) = 0.5578, 𝑆𝐹(Ç3) = 0.5109, 𝑆𝐹(Ç4) = 0.4810 

Stage 3: Using the following score values 𝑆𝐹(Ç𝓈)(𝓈 = 1, 2, 3, 4) of the total CIFRNs, rank the values 

Ă𝓈(𝓈 = 1, 2, 3, 4): 

Ç2 > Ç1 > Ç3 > Ç4. 

Ç2 is selected as the best. 

Stage 4: End 
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6. Comparative analysis 

To demonstrate the value and significance of our proposed work, we present a comparative study 

between the proposed operators and existing ones. Comparison plays a vital role in assessing the 

accuracy and superiority of any newly introduced work, as it allows for a clearer understanding of the 

strengths, limitations, and applicability of various approaches. Through such comparisons, we aim to 

highlight the improvements offered by our methods in terms of accuracy, computational efficiency, and 

decision-making effectiveness. Hence, we investigate and compare decision making techniques from 

previously published approaches on FRSs and IFRSs with our proposed methods. Specifically, we 

evaluate our work against the methods presented by Xu [26], Xu and Yager [27], Seikh and Mandal [33], 

Hussain et al. [47], Yi et al. [50], Emam et al. [51], Chinram et al. [53], and Yahya et al. [58]. These 

methods were chosen for comparison due to their relevance and impact in the field of FRS based decision 

making, and because they represent a broad range of AOs and decision-making frameworks. Each of 

these methods introduces unique approaches to handling uncertainty and imprecision in decision making 

problems, making them ideal for a comprehensive comparison with our newly proposed Dombi AOs. A 

detailed comparison of the performance, properties, and advantages of these methods is presented in 

Table 3, which underscores the superiority and practical utility of our approach in solving complex 

decision-making problems. 

Table 3. A Comparison of suggested and current work. 

Methods Score values of Alternatives Rankings 

Ç𝟏 Ç𝟐 Ç𝟑 Ç𝟒 

Xu [26] method NO NO 

Xu and Yager [27] method NO NO 

Seikh and Mandal [33] method NO NO 

Hussain et al. [47] method NO NO 

Yi et al. [50] method NO NO 

Emam et al. [51] method NO NO 

Chinram et al. [53] method NO NO 

Yahya et al. [58] method NO NO 

CIFRDWA AOs (Proposed) 0.4357 0.4797 0.4452 0.5091 Ç4 > Ç2 > Ç3 > Ç1 

CIFRDWG AOs (Proposed) 0.5379 0.5986 0.4794 0.4492 Ç2 > Ç1 > Ç3 > Ç4 

Table 3 reveals the characteristic analysis of the delivered notions with all the existing literature 

above. We compare our work with IFWA by Xu [26] and IFWG by Xu and Yager [27] and observe that 

it can use the information that contains truth grade and false grade while the delivered notions rely on 

complex intuitionistic fuzzy rough information. Because of this, IFWA and IFWG cannot handle that 

type of information. Seikh and Mandal [33] utilize the IF Dombi AOs and can deal with the set of possible 

truth grade and false grade and cannot handle our developed structure data, such as roughness with 

complex data. If we compare our work with Hussain et al. [47], Chinram et al. [53], and Yahya et al. [58]. 

We observed that these methods can deal with IF information with roughness but it cannot handle the 2nd 

dimension information. Although Yi et al.’s [50] method can deal with complex information with 

roughness and based on this information it can aggregate the existing structures like FS and FRS but fails 

to aggregate our proposed structure. In the same way, Emam et al. [51] deduced frank AOs based on 
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CFRS, which can aggregate the complex information with roughness but it should be noted that it is 

unable to resolve the rough information in the form of truth and false aspects of any data whose values 

existed in the 2nd dimension. Therefore, none of the established theories solve the given information in 

Table 3. Hence, it is clear that our established work is more effective and can aggregate the information 

of FS, RS, IFS, CIFS, and IFRS. 

7. Conclusions 

With the advancements in FS theory, researchers have been exploring new structures to derive 

valuable insights. CIFRSs, which is generalized from the pioneering concept of IFRS for dealing with 

complex uncertainties. The ranges of values are extended to the unit circle in the complex plane for 

both truth grade and false grade along with the UA and LA. When choosing an AI service supplier, 

there are several factors to consider, including scalability, cost, performance, and dependability. 

Selecting the best suppliers according to these attributes is a MADM problem related to AI providers 

containing extra fuzzy information along with roughness. Therefore, based on CIFRSs and Dombi 

operational laws, here in this manuscript, we have established basic Dombi operational laws for 

CIFRNs, based on these operations we delivered the Dombi AOs such as CIFRDWA, CIFRDOWA, 

CIFRDWG, and CIFRDOWG operators. To show the effectiveness, superiority, and practicality of our 

approach, we use these notions to deliver a MADM technique and analyze a case study “Selection of 

AI provider”. We compare our work with other work in order to reveal the supremacy and advantages. 

7.1. Advantages 

Using CIFRSs provides different key advantages, such as better handling of uncertainty and 

vagueness in AI provider evaluations. It enables flexible, nuanced decision-making through the use of 

complex intuitionistic truth grade and complex intuitionistic false grade, reducing information loss and 

enhanced accuracy in ranking AI providers. Additionally, CIFRSs support complex, multi-attribute 

evaluations in a scalable and adaptive ways. It makes CIFRS a powerful tool for organizations aiming 

to choose the most suitable AI provider. This technique is a suitable for managing the two-dimensional 

information of truth grade and false grade along with the lower and UA. 

7.2. Limitations 

This work has certain limitations and gaps: For example, when a decision maker encounters the 

information that the sum of the truth grade and false grade exceeds the range, then the basic condition 

of CIFRS fails. Furthermore, if the decision makers consider the picture fuzzy information that include 

the abstinence grade, then CIFRS also fail to handle this type of information. 

7.3. Future work 

Our long-term goal is to extend this theory to additional structures like bipolar complex fuzzy 

sets [59,60] and other structures including decision-making techniques [61–63]. 

 



33116 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

Author contributions 

Tahir Mehmood: Conceptualization, Supervision, Investigation, Methodology, Validation; 

Ahmad Idrees: Original draft preparation, Visualization, Formal analysis, Writing review and editing, 

Validation; Majed Albaity: Writing and review, Validation, Investigation, Formal analysis, 

visualization; Ubaid ur Rehman: Methodology, Investigation, Writing and review, Validation. All 

authors have read and approved the final version of the manuscript for publication. 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. 

https://doi.org/10.1016/S0019-9958(65)90241-X 

2. Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 

341–356. https://doi.org/10.1007/BF01001956 

3. D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–

209. https://doi.org/10.1080/03081079008935107 

4. B. C. Bizzo, R. R. Almeida, M. H. Michalski, T. K. Alkasab, Artificial intelligence and clinical 

decision support for radiologists and referring providers, J. Amer. Coll. Radio., 16 (2019), 1351–

1356. https://doi.org/10.1016/j.jacr.2019.06.010 

5. S. Yu, C. Guo, Service design under asymmetric service provider competition: applications of AI 

services, Transport. Res. E: Log., 182 (2024), 103424. https://doi.org/10.1016/j.tre.2024.103424 

6. M. I. Khaleel, M. Safran, S. Alfarhood, M. Zhu, Workflow scheduling scheme for optimized 

reliability and end-to-end delay control in cloud computing using AI-based modeling, 

Mathematics, 11 (2023), 4334. https://doi.org/10.3390/math11204334 

7. Y. Wu, Z. Zhang, G. Kou, H. Zhang, X. Chao, C. C. Li, et al., Distributed linguistic 

representations in decision making: Taxonomy, key elements and applications, and challenges in 

data science and explainable artificial intelligence, Inform. Fusion, 65 (2021), 165–178. 

https://doi.org/10.1016/j.inffus.2020.08.018 

8. A. S. Dukyil, Artificial intelligence and multiple criteria decision-making approach for a cost-

effective RFID-enabled tracking management system, phD thesis, Brunel University, London, 

2018. 

9. K.-H. Hu, F.-H. Chen, M.-F. Hsu, G.-H. Tzeng, Governance of artificial intelligence applications 

in a business audit via a fusion fuzzy multiple rule-based decision-making model, Financ. Innova., 

9 (2023), 117. https://doi.org/10.1186/s40854-022-00436-4 

10. P. Wang, Y. Fu, P. Liu, B. Zhu, F. Wang, D. Pamucar, Evaluation of ecological governance in 

the Yellow River basin based on Uninorm combination weight and MULTIMOORA-Borda 

method, Expert Syst. Appl., 235 (2024), 121227. https://doi.org/10.1016/j.eswa.2023.121227 

11. Z.-Y. Zhuang, A. Hocine, N. Kouaissah, G. A. Kiker, Optimising sustainable renewable energy 

portfolios using a multi-tolerance fuzzy goal programming approach, Int. J. Green Energy, 20 

(2023), 640–655. https://doi.org/10.1080/15435075.2022.2080502 

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/BF01001956
https://doi.org/10.1080/03081079008935107
https://doi.org/10.1016/j.jacr.2019.06.010
https://doi.org/10.1016/j.tre.2024.103424
https://doi.org/10.3390/math11204334
https://doi.org/10.1016/j.inffus.2020.08.018
https://doi.org/10.1186/s40854-022-00436-4
https://doi.org/10.1016/j.eswa.2023.121227
https://doi.org/10.1080/15435075.2022.2080502


33117 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

12. Z. Wen, H. Liao, E. K. Zavadskas, J. Antuchevičienė, Applications of fuzzy multiple criteria 

decision-making methods in civil engineering: a state-of-the-art survey, J. Civ. Eng. Manag., 27 

(2021), 358–371. https://doi.org/10.3846/jcem.2021.15252 

13. Z. Zhang, H. Liao, A. Tang, Renewable energy portfolio optimization with public participation 

under uncertainty: a hybrid multi-attribute multi-objective decision-making method, Appl. Energ., 

307 (2022), 118267. https://doi.org/10.1016/j.apenergy.2021.118267 

14. A. Hocine, Z.-Y. Zhuang, N. Kouaissah, D.-C. Li, Weighted-additive fuzzy multi-choice goal 

programming (WA-FMCGP) for supporting renewable energy site selection decisions, Eur. J. 

Oper. Res., 285 (2020), 642–654. https://doi.org/10.1016/j.ejor.2020.02.009 

15. F. Shen, Q. Huang, H. Su, Z. Xu, An outranking approach for multi-attribute group decision-

making with interval-valued hesitant fuzzy information, Eng. Appl. Artif. Intel., 137 (2024), 

109120. https://doi.org/10.1016/j.engappai.2024.109120 

16. Z.-Y. Zhuang, C. R. Su, S. C. Chang, The effectiveness of IF-MADM (intuitionistic-fuzzy multi-

attribute decision-making) for group decisions: methods and an empirical assessment for the 

selection of a senior centre, Technol. Econ. Dev. Eco., 25 (2019), 322–364. 

https://doi.org/10.3846/tede.2019.8399 

17. M. Javed, S. Javeed, T. Senapati, Multi-attribute group decision-making with T-spherical fuzzy 

Dombi power Heronian mean-based aggregation operators, Granul. Comput., 9 (2024), 71. 

https://doi.org/10.1007/s41066-024-00487-1 

18. P. S. Kumar, An efficient approach for solving type-2 intuitionistic fuzzy solid transportation 

problems with their equivalent crisp solid transportation problems, Int. J. Syst. Assur. Eng. 

Manag., 15 (2024), 4370–4403. https://doi.org/10.1007/s13198-024-02433-5 

19. Z.-Y. Zhuang, L.-W. Yang, M.-H. Lee, C.-Y. Wang, ‘MEAN+ R’: implementing a web-based, 

multi-participant decision support system using the prevalent MEAN architecture with R based 

on a revised intuitionistic-fuzzy multiple attribute decision-making model, Microsyst. Technol., 

24 (2018), 4291–4309. https://doi.org/10.1007/s00542-018-3755-z 

20. J. Ye, Multiple attribute group decision-making methods with unknown weights in intuitionistic 

fuzzy setting and interval-valued intuitionistic fuzzy setting, Int. J. Gen. Syst., 42 (2013), 489–

502. https://doi.org/10.1080/03081079.2013.775127 

21. M. Beccali, M. Cellura, D. Ardente, Decision making in energy planning: the ELECTRE 

multicriteria analysis approach compared to a FUZZY-SETS methodology, Energ. Convers. 

Manage., 39 (1998), 1869–1881. https://doi.org/10.1016/S0196-8904(98)00053-3 

22. D. Bigaud, F. Thibault, L. Gobert, Decision-making through a fuzzy hybrid AI system for 

selection of a third-party operations and maintenance provider, International Journal of 

Multicriteria Decision Making, 6 (2016), 35–65. https://doi.org/10.1504/IJMCDM.2016.075630 

23. S. Abdullah, Saifullah, A. O. Almagrabi, An integrated group decision-making framework for the 

evaluation of artificial intelligence cloud platforms based on fractional fuzzy sets, Mathematics, 

11 (2023), 4428. https://doi.org/10.3390/math11214428 

24. K.-H. Hu, F.-H. Chen, M.-F. Hsu, G.-H. Tzeng, Identifying key factors for adopting artificial 

intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM 

technique, Technol. Econ. Dev. Eco., 27 (2021), 459–492. 

https://doi.org/10.3846/tede.2020.13181 

25. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. 

https://doi.org/10.1016/S0165-0114(86)80034-3 

https://doi.org/10.3846/jcem.2021.15252
https://doi.org/10.1016/j.apenergy.2021.118267
https://doi.org/10.1016/j.ejor.2020.02.009
https://doi.org/10.1016/j.engappai.2024.109120
https://doi.org/10.3846/tede.2019.8399
https://doi.org/10.1007/s41066-024-00487-1
https://doi.org/10.1007/s13198-024-02433-5
https://doi.org/10.1007/s00542-018-3755-z
https://doi.org/10.1080/03081079.2013.775127
https://doi.org/10.1016/S0196-8904(98)00053-3
https://doi.org/10.1504/IJMCDM.2016.075630
https://doi.org/10.3390/math11214428
https://doi.org/10.3846/tede.2020.13181
https://doi.org/10.1016/S0165-0114(86)80034-3


33118 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

26. Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. 

https://doi.org/10.1109/TFUZZ.2006.890678 

27. Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. 

J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 

28. M. I. Ali, F. Feng, T. Mahmood, I. Mahmood, H. Faizan, A graphical method for ranking 

Atanassov’s intuitionistic fuzzy values using the uncertainty index and entropy, Int. J. Intell. Syst., 

34 (2019), 2692–2712. https://doi.org/10.1002/int.22174 

29. Y. He, H. Chen, Z. He, L. Zhou, Multi-attribute decision making based on neutral averaging 

operators for intuitionistic fuzzy information, Appl. Soft Comput., 27 (2015), 64–76. 

https://doi.org/10.1016/j.asoc.2014.10.039 

30. Y. He, H. Chen, L, Zhou, J. Liu, Z. Tao, Intuitionistic fuzzy geometric interaction averaging 

operators and their application to multi-criteria decision making, Inform. Sciences, 259 (2014), 

142–159. https://doi.org/10.1016/j.ins.2013.08.018 

31. H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Int. 

J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 

32. W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein 

operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 

33. M. R. Seikh, U. Mandal, Intuitionistic fuzzy Dombi aggregation operators and their application 

to multiple attribute decision-making, Granul. Comput., 6 (2021), 473–488. 

https://doi.org/10.1007/s41066-019-00209-y 

34. J.-Y. Huang, Intuitionistic fuzzy Hamacher aggregation operators and their application to multiple 

attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 505–513. https://doi.org/10.3233/IFS-

131019 

35. W. Yang, Z. Chen, The quasi-arithmetic intuitionistic fuzzy OWA operators, Knowl.-Based Syst., 

27 (2012), 219–233. https://doi.org/10.1016/j.knosys.2011.10.009 

36. D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 

(2002), 171–186. https://doi.org/10.1109/91.995119 

37. D. E. Tamir, L. Jin, A. Kandel, A new interpretation of complex membership grade, Int. J. Intell. 

Syst., 26 (2011), 285–312. https://doi.org/10.1002/int.20454 

38. C. Li, T.-W. Chiang, Function approximation with complex neuro-fuzzy system using complex 

fuzzy sets–a new approach, New Gener. Comput., 29 (2011), 261–276. 

https://doi.org/10.1007/s00354-011-0302-1 

39. L. Bi, S. Dai, B. Hu, Complex fuzzy geometric aggregation operators, Symmetry, 10 (2018), 251. 

https://doi.org/10.3390/sym10070251 

40. L. Bi, S. Dai, B. Hu, S. Li, Complex fuzzy arithmetic aggregation operators, J. Intell. Fuzzy Syst., 

36 (2019), 2765–2771. https://doi.org/10.3233/JIFS-18568 

41. B. Hu, L. Bi, S. Dai, Complex fuzzy power aggregation operators, Math. Prob. Eng., 2019 (2019), 

9064385. https://doi.org/10.1155/2019/9064385 

42. C. Cornelis, M. De Cock, E. E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of 

imperfect knowledge, Expert Syst., 20 (2003), 260–270. https://doi.org/10.1111/1468-

0394.00250 

43. L. Zhou, W.-Z. Wu, W.-X. Zhang, On characterization of intuitionistic fuzzy rough sets based on 

intuitionistic fuzzy implicators, Inform. Sciences, 179 (2009), 883–898. 

https://doi.org/10.1016/j.ins.2008.11.015 

https://doi.org/10.1109/TFUZZ.2006.890678
https://doi.org/10.1080/03081070600574353
https://doi.org/10.1002/int.22174
https://doi.org/10.1016/j.asoc.2014.10.039
https://doi.org/10.1016/j.ins.2013.08.018
https://doi.org/10.1002/int.20386
https://doi.org/10.1002/int.20498
https://doi.org/10.1007/s41066-019-00209-y
https://doi.org/10.3233/IFS-131019
https://doi.org/10.3233/IFS-131019
https://doi.org/10.1016/j.knosys.2011.10.009
https://doi.org/10.1002/int.20454
https://doi.org/10.1007/s00354-011-0302-1
https://doi.org/10.3390/sym10070251
https://doi.org/10.3233/JIFS-18568
https://doi.org/10.1155/2019/9064385
https://doi.org/10.1111/1468-0394.00250
https://doi.org/10.1111/1468-0394.00250
https://doi.org/10.1016/j.ins.2008.11.015


33119 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

44. C. Jane, M. Pal, G. Wei, Multiple attribute decision making method based on intuitionistic Dombi 

operators and its application in mutual fund evaluation, Arch. Control Sci., 30 (2020), 437–470. 

https://doi.org/10.24425/acs.2020.134673 

45. A. Alnoor, A. A. Zaidan, S. Qahtan, H. A. Alsattar, R. T. Mohammed, K. W. Khaw, et al., Toward 

a sustainable transportation industry: oil company benchmarking based on the extension of linear 

diophantine fuzzy rough sets and multicriteria decision-making methods, IEEE Trans. Fuzzy Syst., 

31 (2023), 449–459. https://doi.org/10.1109/TFUZZ.2022.3182778 

46. A. Tan, W.-Z. Wu, Y. Qian, J. Liang, J. Chen, J. Li, Intuitionistic fuzzy rough set-based granular 

structures and attribute subset selection, IEEE Trans. Fuzzy Syst., 27 (2019), 527–539. 

https://doi.org/10.1109/TFUZZ.2018.2862870 

47. A. Hussain, T. Mahmood, F. Smarandache, S. Ashraf, TOPSIS approach for MCGDM based on 

intuitionistic fuzzy rough Dombi aggregation operations, Comp. Appl. Math., 42 (2023), 176. 

https://doi.org/10.1007/s40314-023-02266-1 

48. Z. Zhang, Generalized intuitionistic fuzzy rough sets based on intuitionistic fuzzy coverings, 

Inform. Sciences, 198 (2012), 186–206. https://doi.org/10.1016/j.ins.2012.02.054 

49. T. Mahmood, J. Ahmmad, Z. Ali, M. S. Yang, Confidence level aggregation operators based on 

intuitionistic fuzzy rough sets with application in medical diagnosis, IEEE Access, 11 (2023), 

8674–8688. https://doi.org/10.1109/ACCESS.2023.3236410 

50. J. Yi, J. Ahmmad, T. Mahmood, U. ur Rehman S. Zeng, Complex fuzzy rough set: an application 

in digital marketing for business growth, IEEE Access, 12 (2024), 66453–66465. 

https://doi.org/10.1109/ACCESS.2024.3397699 

51. W. Emam, J. Ahmmad, T. Mahmood, U. ur Rehman, S. Yin, Classification of artificial 

intelligence tools for civil engineering under the notion of complex fuzzy rough Frank aggregation 

operators, Sci. Rep., 14 (2024), 11892. https://doi.org/10.1038/s41598-024-60561-1 

52. T. Mahmood, A. Idrees, K. Hayat, M. Ashiq, U. ur Rehman, Selection of AI architecture for 

autonomous vehicles using complex intuitionistic fuzzy rough decision making, World Electr. 

Veh. J., 15 (2024), 402. https://doi.org/10.3390/wevj15090402 

53. R. Chinram, A. Hussain, T. Mahmood, M. I. Ali, EDAS method for multi-criteria group decision 

making based on intuitionistic fuzzy rough aggregation operators, IEEE Access, 9 (2021), 10199–

10216. https://doi.org/10.1109/ACCESS.2021.3049605 

54. J. Dombi, A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness 

measures induced by fuzzy operators, Fuzzy Set. Syst., 8 (1982), 149–163. 

https://doi.org/10.1016/0165-0114(82)90005-7 

55. P.-J. Chen, P.-C. Chen, Z.-Y. Zhuang, AHP can be applied to construction topics, too, In: Analytic 

hierarchy process–an overview, IntechOpen, 2024. https://doi.org/10.5772/intechopen.1006376 

56. Z.-Y. Zhuang, C.-H. Fu, Housing preference structures in East Asia: an empirical study and non-

paradigmatic shifts between nearby metropoles, Int. J. Strateg. Prop. Manag., 27 (2023), 1–20. 

https://doi.org/10.3846/ijspm.2023.18628 

57. L.-P. Chi, C.-H. Fu, J.-P. Chyng, Z.-Y. Zhuang, J.-H. Huang, A post-training study on the 

budgeting criteria set and priority for MALE UAS design, Sustainability, 11 (2019), 1798. 

https://doi.org/10.3390/su11061798 

58. M. Yahya, M. Naeem, S. Abdullah, M. Qiyas, M. Aamir, A novel approach on the intuitionistic 

fuzzy rough frank aggregation operator-based EDAS method for multicriteria group decision-

making, Complexity, 2021 (2021), 5534381. https://doi.org/10.1155/2021/5534381 

https://doi.org/10.24425/acs.2020.134673
https://doi.org/10.1109/TFUZZ.2022.3182778
https://doi.org/10.1109/TFUZZ.2018.2862870
https://doi.org/10.1007/s40314-023-02266-1
https://doi.org/10.1016/j.ins.2012.02.054
https://doi.org/10.1109/ACCESS.2023.3236410
https://doi.org/10.1109/ACCESS.2024.3397699
https://doi.org/10.1038/s41598-024-60561-1
https://doi.org/10.3390/wevj15090402
https://doi.org/10.1109/ACCESS.2021.3049605
https://doi.org/10.1016/0165-0114(82)90005-7
https://doi.org/10.5772/intechopen.1006376
https://doi.org/10.3846/ijspm.2023.18628
https://doi.org/10.3390/su11061798
https://doi.org/10.1155/2021/5534381


33120 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

59. T. Mahmood, U. ur Rehman, A novel approach towards bipolar complex fuzzy sets and their 

applications in generalized similarity measures, Int. J. Intell. Syst., 37 (2022), 535–567. 

https://doi.org/10.1002/int.22639 

60. T. Mahmood, U. ur Rehman, M. Naeem, Prioritization of strategies of digital transformation of 

supply chain employing bipolar complex fuzzy linguistic aggregation operators, IEEE Access, 11 

(2023), 3402–3415. https://doi.org/10.1109/ACCESS.2023.3234117 

61. U. ur Rehman, Selection of database management system by using multi-attribute decision-

making approach based on probability complex fuzzy aggregation operators, Journal of 

Innovative Research in Mathematical and Computational Sciences, 2 (2023), 1–16. 

62. M. Akram, H. Garg, K. Zahid, Extensions of ELECTRE-I and TOPSIS methods for group 

decision-making under complex Pythagorean fuzzy environment, Iran. J. Fuzzy Syst., 17 (2020), 

147–164. https://doi.org/10.22111/IJFS.2020.5522 

63. P. Wang, B. Zhu, Y. Yu, Z. Ali, B. Almohsen, Complex intuitionistic fuzzy DOMBI prioritized 

aggregation operators and their application for resilient green supplier selection, Facta Univ. Ser. 

Mech. Eng., 21 (2023), 339–357. https://doi.org/10.22190/FUME230805029W 

Appendix A 

Proof of Theorem 1. Using a well-known mathematical induction (MI) technique, we demonstrate 

the preceding equation by assuming that, for 𝔰 = 2, we obtain 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2)) = (⊕𝑗=1
2 ß𝑗Ʀ𝑒(Ñ𝑗),⊕𝑗=1

2 ß𝑗  Ʀ𝑒(Ñ𝑗))

= (ß1Ʀ𝑒(Ñ1) ⊕ ß2Ʀ𝑒(Ñ2), ß1 Ʀ𝑒(Ñ1) ⊕ ß2 Ʀ𝑒(Ñ2)) 

https://doi.org/10.1002/int.22639
https://doi.org/10.1109/ACCESS.2023.3234117
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22190/FUME230805029W
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {ß1 (
𝜎

Ʀ𝑒
(Ñ1)

1 − 𝜎
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
𝜎

Ʀ𝑒
(Ñ2)

1 − 𝜎
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+

𝜄

(

 
 
 
 
 

1 −
1

1 + {ß1 (
𝜌

Ʀ𝑒
(Ñ1)

1 − 𝜌
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
𝜌

Ʀ𝑒
(Ñ2)

1 − 𝜌
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

)

 
 
 
 
 

,

1

1 + {ß1 (
1 − 𝜏

Ʀ𝑒
(Ñ1)

𝜏
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
1 − 𝜏

Ʀ𝑒
(Ñ2)

𝜏
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+ 𝜄
1

1 + {ß1 (
1 − 𝜐

Ʀ𝑒
(Ñ1)

𝜐
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
1 − 𝜐

Ʀ𝑒
(Ñ2)

𝜐
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {ß1 (
𝜎Ʀ𝑒

(Ñ1)

1 − 𝜎Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
𝜎Ʀ𝑒

(Ñ2)

1 − 𝜎Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+

𝜄

(

 
 
 
 
 
 

1 −
1

1 + {ß1 (
𝜌Ʀ𝑒

(Ñ1)

1 − 𝜌Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
𝜌Ʀ𝑒

(Ñ2)

1 − 𝜌Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1

1 + {ß1 (
1 − 𝜏Ʀ𝑒

(Ñ1)

𝜏Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
1 − 𝜏Ʀ𝑒

(Ñ2)

𝜏Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+ 𝜄
1

1 + {ß1 (
1 − 𝜐Ʀ𝑒

(Ñ1)

𝜐Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
1 − 𝜐Ʀ𝑒

(Ñ2)

𝜐Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜎
Ʀ𝑒

(Ñ𝐽)

1 − 𝜎
Ʀ𝑒

(Ñ𝐽)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜌
Ʀ𝑒

(Ñ𝑗)

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)

𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)

𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜎Ʀ𝑒
(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜌Ʀ𝑒
(Ñ𝑗)

1 − 𝜌Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜐Ʀ𝑒
(Ñ𝑗)

𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The result is true for 𝔰 = 2. Next, suppose that it is true for 𝔰 = Ķ. 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⊕𝑗=1
Ķ

ß𝑗Ʀ𝑒(Ñ𝑗),⊕𝑗=1
Ķ

ß𝑗  Ʀ𝑒(Ñ𝑗)) 
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1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜎
Ʀ𝑒

(Ñ𝑗)

1 − 𝜎
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜌
Ʀ𝑒

(Ñ𝑗)

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)

𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)

𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)
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1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜎Ʀ𝑒
(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜌Ʀ𝑒
(Ñ𝑗)

1 − 𝜌Ʀ𝑒
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℃
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℃
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,

1

1 + {∑ ß𝑗
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℃
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1

1 + {∑ ß𝑗
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𝑗=1 (

1 − 𝜐Ʀ𝑒
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𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Further, we have to prove that it is true for 𝔰 = Ķ + 1, we have 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⊕𝑗=1
Ķ+1

ß𝑗Ʀ𝑒(Ñ𝑗),⊕𝑗=1
Ķ+1

ß𝑗  Ʀ𝑒(Ñ𝑗)) 
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Ķ
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1 − 𝜎
Ʀ𝑒
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1 −
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Ʀ𝑒
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℃
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1 −
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1 − 𝜎Ʀ𝑒
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℃
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(

 
 
 
 
 
 

1 −
1
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𝜌Ʀ𝑒
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1 − 𝜌Ʀ𝑒
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1
℃
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Ķ
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℃
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(
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1 + {∑ ß𝑗
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𝜐Ʀ𝑒
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℃

}
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℃
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⊕
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1 −
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1 + {ßĶ+1 (
𝜎

Ʀ𝑒
(ÑĶ+1)
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)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



33126 

AIMS Mathematics  Volume 9, Issue 11, 33087–33138. 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

𝜎
Ʀ𝑒

(Ñ𝑗)

1 − 𝜎
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
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Ʀ𝑒
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℃

}

1
℃
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,
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1 + {∑ ß𝑗
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1 −
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℃

}

1
℃

)
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Hence, it is also hold for 𝔰 =  Ķ + 1. Thus, by MI, it is hold for all 𝔰 ≥ 0. 

As a result, Ʀ𝑒(Ñ𝑡) and Ʀ𝑒(Ñ𝑡) are CIFRNs according to the preceding theorem. Accordingly, 

⊕𝔱=1
𝔰 ß𝔱Ʀ𝑒(Ñ𝑡) and ⊕𝔱=1

𝔰 ß𝔱 Ʀ𝑒(Ñ𝑡) are also CIFRNs. Hence, CIFRDWA is CIFRN as well. 

Proof of Theorem 2. Let Ʀ𝑒(Ñ𝑗) = Ʀ𝑒(Ñ) ∀ (𝑗 = 1,2,3… , 𝔰) then 

CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⊕𝑗=1
𝔰 ß𝑗Ʀ𝑒(Ñ𝑗),⊕𝑗=1

𝔰 ß𝑗  Ʀ𝑒(Ñ𝑗)) 
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For all 𝑗, Ʀ𝑒(Ñ𝑡) = Ʀ𝑒(Ñ). Therefore, 
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)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

= (Ʀ𝑒(Ñ), Ʀ𝑒(Ñ)) = Ʀ𝑒(Ñ). 

Proof of Theorem 3. As 

(Ʀ𝑒(Ñ𝑗))
+

=

[
 
 
 
 ((max

𝑗
𝜎

Ʀ𝑒
(Ñ𝑗) + 𝜄 max

𝑗
𝜌

Ʀ𝑒
(Ñ𝑗)) , (min

𝔱
𝜏
Ʀ𝑒

(Ñ𝑗) + 𝜄 min
𝑗

𝜐
Ʀ𝑒

(Ñ𝑗))) ,

((max
𝑗

𝜎Ʀ𝑒
(Ñ𝑗) + 𝜄 max

𝑗
𝜌Ʀ𝑒

(Ñ𝑗)) , (min
𝔱

𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄 min

𝑗
𝜐Ʀ𝑒

(Ñ𝑗)))
]
 
 
 
 

 

and 
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(Ʀ𝑒(Ñ𝑗))
−

=

[
 
 
 
 ((min

𝑗
𝜎

Ʀ𝑒
(Ñ𝑗) + 𝜄 min

𝑗
𝜌

Ʀ𝑒
(Ñ𝑗)) , (max

𝑗
𝜏
Ʀ𝑒

(Ñ𝑗) + 𝜄 max
𝑗

𝜐
Ʀ𝑒

(Ñ𝑗))) ,

((min
𝑗

𝜎Ʀ𝑒
(Ñ𝑗) + 𝜄 min

𝑗
𝜌Ʀ𝑒

(Ñ𝑗)) , (max
𝑗

𝜏Ʀ𝑒
(Ñ𝑗) + 𝜄 max

𝑗
𝜐Ʀ𝑒

(Ñ𝑗)))
]
 
 
 
 

 

Since for every 𝑗 = 1,2,3… 𝔰, we have 

min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)} ≤ 𝜎Ʀ𝑒

(Ñ𝑗) ≤ max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)} 

(
min

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

) ≤
𝜎Ʀ𝑒

(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

≤ (
max

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

) 

1 + (
min

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

) ≤ 1 +
𝜎Ʀ𝑒

(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

≤ 1 + (
max

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

) 

1

1 + (
min

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

)

≤
1

1 +
𝜎Ʀ𝑒

(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

≤
1

1 + (
max

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

)

 

1 −
1

1 +

(

 ∑ ß𝑗
𝔰
𝑗=1 (

min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

1 − min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

)

℃

)

 

1
℃

≤ 1 −
1

1 + (∑ ß𝑗
𝔰
𝑗=1 (

𝜎Ʀ𝑒
(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

)

1
℃

≤ 1 −
1

1 +

(

 ∑ ß𝑗
𝔰
𝑗=1 (

max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

1 − max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

)

℃

)

 

1
℃
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1 −
1

1 + (
min

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

)

≤ 1 −
1

1 + (∑ ß𝑗
𝔰
𝑗=1 (

𝜎Ʀ𝑒
(Ñ𝑗)

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

)

1
℃

≤ 1 −
1

1 + (
max

𝑗
{𝜎Ʀ𝑒

(Ñ𝑗)}

1 − max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}

)

 

Hence, 

min
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)} ≤ 1 −

1

1+(∑ ß𝑗
𝔰
𝑗=1 (

𝜎Ʀ𝑒(Ñ𝑗)

1−𝜎Ʀ𝑒(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜎Ʀ𝑒
(Ñ𝑗)}              (1) 

Similarly, 

min
𝑗

{𝜌Ʀ𝑒
(Ñ𝑗)} ≤ 1 −

1

1+(∑ ß𝑗
𝔰
𝑗=1 (

𝜌Ʀ𝑒(Ñ𝑗)

1−𝜌Ʀ𝑒(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜌Ʀ𝑒
(Ñ𝑗)}                         (2) 

Now, for every 𝑡 = 1,2,3… 𝔰, we have 

min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)} ≤ 𝜏Ʀ𝑒

(Ñ𝑗) ≤ max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)} 

1 − min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)} ≥ 1 − 𝜏Ʀ𝑒

(Ñ𝑗) ≥ 1 − max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)} 

1 +
1 − min

𝑗
{𝜏Ʀ𝑒

(Ñ𝑗)}

min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

≥ 1 =
1 − 𝜏Ʀ𝑒

(Ñ𝑗)

𝜏Ʀ𝑒
(Ñ𝑗)

≥ 1 +
1 − max

𝑗
{𝜏Ʀ𝑒

(Ñ𝑗)}

max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

 

This implies that 
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1 +

(

 
 

∑ß𝑗

𝔰

𝑗=1

 (
1 − min

𝑗
{𝜏Ʀ𝑒

(Ñ𝑗)}

min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

)

℃

)

 
 

1
℃

≥ 1 + (∑ß𝑗

𝔰

𝑗=1

(
1 − 𝜏Ʀ𝑒

(Ñ𝑗)

𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

)

1
℃

≥ 1 +

(

 
 

∑ß𝑗

𝔰

𝑗=1

(
1 − max

𝑗
{𝜏Ʀ𝑒

(Ñ𝑗)}

max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

)

℃

)

 
 

1
℃

 

1

1 +

(

 ∑ ß𝑗
𝔰
𝑗=1  (

1 − min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

)

℃

)

 

1
℃

≤
1

1 + (∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

)

1
℃

≤
1

1 +

(

 ∑ ß𝑗
𝔰
𝑗=1 (

1 − max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

)

℃

)

 

1
℃

 

1

1 +
1 − min

𝑗
{𝜏Ʀ𝑒

(Ñ𝑗)}

min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

≤
1

1 + (∑ ß𝑗
𝔰
𝑗=1 (

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

)

1
℃

≤
1

1 +
1 − max

𝑗
{𝜏Ʀ𝑒

(Ñ𝑗)}

max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}

 

min
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)} ≤

1

1+(∑ ß𝑗
𝔰
𝑗=1 (

1−𝜏Ʀ𝑒(Ñ𝑗)

𝜏Ʀ𝑒(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜏Ʀ𝑒
(Ñ𝑗)}                              (3) 

Similarly, 

min
𝑗

{𝜐Ʀ𝑒
(Ñ𝑗)} ≤

1

1+(∑ ß𝑗
𝔰
𝑗=1 (

1−𝜐Ʀ𝑒(Ñ𝑗)

𝜐Ʀ𝑒(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜐Ʀ𝑒
(Ñ𝑗)}                         (4) 

Similarly, we can show that 
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min
𝑗

{𝜎
Ʀ𝑒

(Ñ𝑗)} ≤ 1 −
1

1+(∑ ß𝑗
𝔰
𝑗=1 (

𝜎
Ʀ𝑒

(Ñ𝑗)

1−𝜎
Ʀ𝑒

(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜎
Ʀ𝑒

(Ñ𝑗)}                            (5) 

min
𝑗

{𝜌
Ʀ𝑒

(Ñ𝑗)} ≤ 1 −
1

1+(∑ ß𝑗
𝔰
𝑗=1 (

𝜌
Ʀ𝑒

(Ñ𝑗)

1−𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜌
Ʀ𝑒

(Ñ𝑗)}                            (6) 

min
𝑗

{𝜏
Ʀ𝑒

(Ñ𝑗)} ≤
1

1+(∑ ß𝑗
𝔰
𝑗=1 (

1−𝜏
Ʀ𝑒

(Ñ𝑗)

𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜏
Ʀ𝑒

(Ñ𝑗)}                                  (7) 

min
𝑗

{𝜐
Ʀ𝑒

(Ñ𝑗)} ≤
1

1+(∑ ß𝑗
𝔰
𝑗=1 (

1−𝜐
Ʀ𝑒

(Ñ𝑗)

𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

)

1
℃

≤ max
𝑗

{𝜐
Ʀ𝑒

(Ñ𝑗)}                                   (8) 

From Eqs (1)–(8) we have 

(Ʀ𝑒(Ñ𝑗))
−

≤ CIFRDWA(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) ≤ (Ʀ𝑒(Ñ𝑗))
+
. 

Proof of Theorem 9. Using a well-known mathematical induction (MI) technique, we demonstrate 

the preceding equation by assuming that, for 𝔰 = 2, we obtain 

CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2)) = (⨂𝑗=1
2 ß𝑗Ʀ𝑒(Ñ𝑗),⨂𝑗=1

2 ß𝑗  Ʀ𝑒(Ñ𝑗))

= (ß1Ʀ𝑒(Ñ1)⨂ß2Ʀ𝑒(Ñ2), ß1 Ʀ𝑒(Ñ1)⨂ß2 Ʀ𝑒(Ñ2)) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {ß1 (
1 − 𝜎

Ʀ𝑒
(Ñ1)

𝜎
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
1 − 𝜎

Ʀ𝑒
(Ñ2)

𝜎
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+𝜄

(

 
 
 
 
 

1

1 + {ß1 (
1 − 𝜌

Ʀ𝑒
(Ñ1)

𝜌
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
1 − 𝜌

Ʀ𝑒
(Ñ2)

𝜌
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {ß1 (
𝜏
Ʀ𝑒

(Ñ1)

1 − 𝜏
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
𝜏
Ʀ𝑒

(Ñ2)

1 − 𝜏
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

+𝜄

(

 
 
 
 
 

1 −
1

1 + {ß1 (
𝜐
Ʀ𝑒

(Ñ1)

1 − 𝜐
Ʀ𝑒

(Ñ1)
)

℃

+ ß2 (
𝜐
Ʀ𝑒

(Ñ2)

1 − 𝜐
Ʀ𝑒

(Ñ2)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {ß1 (
1 − 𝜎Ʀ𝑒

(Ñ1)

𝜎Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
1 − 𝜎Ʀ𝑒

(Ñ2)

𝜎Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+𝜄

(

 
 
 
 
 
 

1

1 + {ß1 (
1 − 𝜌Ʀ𝑒

(Ñ1)

𝜌Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
1 − 𝜌Ʀ𝑒

(Ñ2)

𝜌Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {ß1 (
𝜏Ʀ𝑒

(Ñ1)

1 − 𝜏Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
𝜏Ʀ𝑒

(Ñ2)

1 − 𝜏Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

+𝜄

(

 
 
 
 
 
 

1 −
1

1 + {ß1 (
𝜐Ʀ𝑒

(Ñ1)

1 − 𝜐Ʀ𝑒
(Ñ1)

)

℃

+ ß2 (
𝜐Ʀ𝑒

(Ñ2)

1 − 𝜐Ʀ𝑒
(Ñ2)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜎
Ʀ𝑒

(Ñ𝐽)

𝜎
Ʀ𝑒

(Ñ𝐽)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)

𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜏
Ʀ𝑒

(Ñ𝑗)

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜐
Ʀ𝑒

(Ñ𝑗)

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
2
𝑗=1 (

1 − 𝜌Ʀ𝑒
(Ñ𝑗)

𝜌Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜏Ʀ𝑒
(Ñ𝑗)

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
2
𝑗=1 (

𝜐Ʀ𝑒
(Ñ𝑗)

1 − 𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The result is true for 𝔰 = 2. Next, suppose that it is true for 𝔰 = Ķ. 

CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⨂𝑗=1
Ķ

ß𝑗Ʀ𝑒(Ñ𝑗),⨂𝑗=1
Ķ

ß𝑗  Ʀ𝑒(Ñ𝑗)) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜎
Ʀ𝑒

(Ñ𝐽)

𝜎
Ʀ𝑒

(Ñ𝐽)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)

𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜏
Ʀ𝑒

(Ñ𝑗)

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜐
Ʀ𝑒

(Ñ𝑗)

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜌Ʀ𝑒
(Ñ𝑗)

𝜌Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜏Ʀ𝑒
(Ñ𝑗)

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜐Ʀ𝑒
(Ñ𝑗)

1 − 𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Further, we have to prove that it is true for 𝔰 = Ķ + 1, we have 

CIFRDWG(Ʀ𝑒(Ñ1), Ʀ𝑒(Ñ2), . . . , Ʀ𝑒(Ñ𝔰)) = (⨂𝑗=1
Ķ+1

ß𝑗Ʀ𝑒(Ñ𝑗),⨂𝑗=1
Ķ+1

ß𝑗  Ʀ𝑒(Ñ𝑗)) 
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜎
Ʀ𝑒

(Ñ𝐽)

𝜎
Ʀ𝑒

(Ñ𝐽)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)

𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜏
Ʀ𝑒

(Ñ𝑗)

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜐
Ʀ𝑒

(Ñ𝑗)

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

1 − 𝜌Ʀ𝑒
(Ñ𝑗)

𝜌Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜏Ʀ𝑒
(Ñ𝑗)

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ
𝑗=1 (

𝜐Ʀ𝑒
(Ñ𝑗)

1 − 𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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⨂

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {ßĶ+1 (
1 − 𝜎

Ʀ𝑒
(ÑĶ+1)

𝜎
Ʀ𝑒

(ÑĶ+1)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {ßĶ+1 (
1 − 𝜌

Ʀ𝑒
(ÑĶ+1)

𝜌
Ʀ𝑒

(ÑĶ+1)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {ßĶ+1 (
𝜏
Ʀ𝑒

(ÑĶ+1)

1 − 𝜏
Ʀ𝑒

(ÑĶ+1)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {ßĶ+1 (
𝜐
Ʀ𝑒

(ÑĶ+1)

1 − 𝜐
Ʀ𝑒

(ÑĶ+1)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {ßĶ+1 (
1 − 𝜎Ʀ𝑒

(ÑĶ+1)

𝜎Ʀ𝑒
(ÑĶ+1)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {ßĶ+1 (
1 − 𝜌Ʀ𝑒

(ÑĶ+1)

𝜌Ʀ𝑒
(ÑĶ+1)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {ßĶ+1 (
𝜏Ʀ𝑒

(ÑĶ+1)

1 − 𝜏Ʀ𝑒
(ÑĶ+1)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {ßĶ+1 (
𝜐Ʀ𝑒

(ÑĶ+1)

1 − 𝜐Ʀ𝑒
(ÑĶ+1)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

1 − 𝜎
Ʀ𝑒

(Ñ𝐽)

𝜎
Ʀ𝑒

(Ñ𝐽)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

1 − 𝜌
Ʀ𝑒

(Ñ𝑗)

𝜌
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

𝜏
Ʀ𝑒

(Ñ𝑗)

1 − 𝜏
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

𝜐
Ʀ𝑒

(Ñ𝑗)

1 − 𝜐
Ʀ𝑒

(Ñ𝑗)
)

℃

}

1
℃

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

1 − 𝜎Ʀ𝑒
(Ñ𝑗)

𝜎Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

1 − 𝜌Ʀ𝑒
(Ñ𝑗)

𝜌Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

,

1 −
1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

𝜏Ʀ𝑒
(Ñ𝑗)

1 − 𝜏Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

+ 𝜄

(

 
 
 
 
 
 

1 −
1

1 + {∑ ß𝑗
Ķ+1
𝑗=1 (

𝜐Ʀ𝑒
(Ñ𝑗)

1 − 𝜐Ʀ𝑒
(Ñ𝑗)

)

℃

}

1
℃

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Hence, it is also held for 𝔰 =  Ķ + 1. Thus, by MI, it is held ∀ 𝔰 ≥ 0. 

As a result, Ʀ𝑒(Ñ𝑡) and Ʀ𝑒(Ñ𝑡) are CIFRNs according to the preceding theorem. Accordingly, 

⊕𝔱=1
𝔰 ß𝔱Ʀ𝑒(Ñ𝑡) and ⊕𝔱=1

𝔰 ß𝔱 Ʀ𝑒(Ñ𝑡) are also CIFRNs. Hence, CIFRDWA is CIFRN as well. 
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