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Abstract: This paper explored an investment and risk control issue within a contagious financial
market, specifically focusing on a mean-variance (MV) framework for an insurer. The market’s
risky assets were depicted via a jump-diffusion model, featuring jumps due to a multivariate dynamic
contagion process with diffusion (DCPD). The process enveloped several popular processes, including
the Hawkes process with exponentially decaying intensity, the Cox process with Poisson shot-noise
intensity, and the Cox process with Cox-Ingersoll-Ross (CIR) intensity. The model distinguished
between externally excited jumps, indicative of exogenous influences, modeled by the Cox process,
and internally excited jumps, representing endogenous factors captured by the Hawkes process. Given
an expected terminal wealth, the insurer seeked to minimize the variance of terminal wealth by
adjusting the issuance volume of policies and investing the surplus in the financial market. In order to
address this MV problem, we employed a suite of mathematical techniques, including the stochastic
maximum principle (SMP), backward stochastic differential equations (BSDEs), and linear-quadratic
(LQ) control techniques. These methodologies facilitated the derivation of both the efficient strategy
and the efficient frontier. The presentation of the results in a semi-closed form was governed by
a nonlocal partial differential equation (PDE). For empirical validation and demonstration of our
methodology’s efficacy, we provided a series of numerical examples.
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1. Introduction

In recent years, asset prices have experienced occasional and persistent jumps due to a variety of
factors, such as public sentiment and coronavirus disease. The Lévy jump-diffusion models stand out as
the most popular frameworks incorporating jump components, primarily propelled by a Lévy process.
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These models have gained widespread acclaim across various financial domains, including applications
such as option pricing, term structure analysis, and credit risk modeling. However, empirical research
has consistently shown that when an asset, or a class of assets, experiences a jump of price, it is
often followed by additional jumps within a brief timeframe. These subsequent fluctuations occur not
only in the same asset or class but also across different assets or classes, leading to the contagion or
clustering effects within the market. Aı̈t-Sahalia et al. [1] noted that jumps within the standard Lévy
jump-diffusion model are rare events, thus falling short of adequately explaining the clustering that
occurs during large price movements.

Various models and methods have been developed to elucidate the clustering effects observed
in jump phenomena. The Hawkes process, originally introduced by Hawkes [11], emerges as a
particularly compelling example. The Hawkes process, featuring simultaneous jumps in both the
point process and its intensity, is characterized by a stochastic intensity process determined by the
process’s history. Consequently, the occurrence for an event enhances the likelihood for subsequent
events, enabling effective modeling of contagion effects within the finance and insurance sectors.
Shen and Zou [20] captured the contagion and clustering effects observed within the financial market
by using a multivariate Hawkes process. They derive the mean-variance (MV) optimal solution
through the application of the stochastic maximum principle (SMP) and the theory of backward
stochastic differential equations (BSDEs). Aı̈t-Sahalia and Hurd [2] tackled the intricate issue of
optimizing investment and consumption strategies within frameworks where asset prices are modulated
by multivariate Hawkes processes. A closed-form solution of the log-utility investor was achieved by
using the Hamilton-Jacobi-Bellman (HJB) equation method. Swishchuk et al. [22] delved into how
Hawkes processes affect optimal investment strategies for insurers in incomplete markets, applying
asset-liability management approaches. In a similar vein, Liu et al. [12] investigated an optimization
challenge for households in a market influenced by contagion, considering a portfolio that includes a
life insurance product, a type of risk-free asset and multiple types of risk assets. Notable works in the
financial field that apply the Hawkes process to modeling include Azizpour et al. [3], Chavez-Demoulin
and McGill [7], and Embrechts et al. [10], along with the references cited therein.

Based on the foundational principles of the Hawkes process, Dassios and Zhao [8] defined a new
point process, designated as the dynamic contagion process (DCP). This model enriches the traditional
Hawkes process and the Cox process with Poisson shot-noise intensity by integrating both internally
and externally excited jumps. Such a comprehensive framework could effectively model the dynamic
contagion effects arising from both internal and external factors within a system. In recent research,
Cao et al. [6] investigated the optimization problem of reinsurance and investment using DCP for time-
inconsistent MV criterion. Closed-form solution was derived through the application of the extended
HJB equation approach. Subsequently, Dassios and Zhao [9] enhanced the DCP by introducing an
additional independent diffusion. This led to the proposal of a DCP with diffusion (DCPD), which
introduces a Brownian motion to simulate white noise in markets, making it more applicable to the
finance and insurance sectors. Pasricha and Selvamuthu [14] employed a Markov modulated DCPD
to price the synthetic collateralized debt obligations, demonstrating its effectiveness in the field of
credit risk management. Wu et al. [23] applied the DCPD to model the claim process, addressing an
optimization problem of reinsurance and investment for MV criterion. This progression of research
underscores the versatility and utility of the DCPD model in tackling complex financial problems.

It is widely acknowledged that for insurers, beyond engaging in investment activities in financial
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markets, precisely controlling the number of policies sold to avoid excessive underwriting risk is of
paramount importance. Therefore, the examination of insurers’ optimization strategies of investment
and risk control is particularly crucial. Zou and Cadenillas [25] investigated this issue with the objective
for maximizing expected utility, assuming negative correlation between financial and insurance
markets and providing the specific form of the optimal strategy through the martingale method. Bo
and Wang [5] employed the HJB equation method to derive the optimal solution with a power utility
function. Bo et al. [4] extended this issue to scenarios that include regime switching and default risk.
Shen and Zou [19] addressed a similar issue for the MV criterion by formulating a time-consistent
problem with a deterministic auxiliary process to obtain the optimal strategy and value function in
closed form. For other studies, one can consult the works of Peng and Wang [16], Peng et al. [15],
Shen and Yin [18], Zhou et al. [24], and many others.

This paper explores the integration of investment and risk control strategies for an MV insurer
who is allowed to participate in a contagion risky financial market. Using multidimensional DCPD to
model the price jumps of risky assets can capture both internally and externally excited jumps, thereby
effectively reflecting the financial market’s clustering and contagion effects. In the insurance market,
we use a general jump process to describe the unit liabilities (risks) of the insurer. The insurer seeks
to minimize the variance of terminal wealth, under the condition of a given expected terminal wealth,
by adjusting the issuance volume of policies (i.e., risk control strategy) and investing the surplus in
the financial market (i.e., investment strategy). Utilizing the SMP, BSDEs, and linear-quadratic (LQ)
control techniques, we express the efficient strategy and the efficient frontier for the MV problem
through the solution of a nonlocal partial differential equation (PDE). We also provide illustrative
numerical examples to demonstrate the economic characteristics for the efficient frontier.

The recently published study by Shen and Zou [20] explored an MV portfolio selection problem
within a contagious financial market. Our work presents distinct differences from Shen and Zou [20]
in at least four significant aspects. First, Shen and Zou [20] describe the prices of risky assets using
a multivariate Hawkes process, while our model employs a multivariate DCPD, introducing a more
complex challenge to the MV problem. Second, the induced BSDE is different due to different market
dynamics. Notably, our paper introduces an additional diffusion term related to the Brownian motion,
necessitating substantial effort to demonstrate its uniform integrability as a martingale—a critical step
for the proof of Lemma 3.1. Third, whereas the intensity process in Shen and Zou [20] enables moment
estimates through the standard stochastic differential equation (SDE) theory because it satisfies the
Lipschitz and linear growth conditions, our scenario requires a novel approach. The special structure
of our intensity process allows for the derivation of moment estimates via fundamental inequalities for
local martingales, diverging from the methodology in Shen and Zou [20]. Finally, our investigation
extends to a combined market of finance and insurance, where the dynamics of the insurance sector
can be modulated through policy issuance volume adjustments, offering a comprehensive view of both
markets’ interplay.

The following is an explanation of other sections in this article: Section 2 introduces the DCPD
and the MV problem within a combined market. Section 3 derives a candidate solution by utilizing
the SMP and the BSDE theory. Section 4 identifies the efficient strategy and the efficient frontier for
the MV problem by using the completing the square technique from LQ theory. Section 5 provides
numerical analyses, and the article concludes with a summary in Section 6.
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2. Preliminaries

2.1. General setting

Consider a filtered probability space (Ω,F ,F = {Ft}t≥0,P) adhering to the usual conditions of
right-continuity and completeness. Let [0,T ] denote a finite time interval, where the terminal time
is T < ∞. In the subsequent discussion, it is assumed that all processes reside within this space.
Under the probability measure P, the operators E[·] and Var[·] represent the expectation and variance,
respectively. Additionally, E[·|Ft] is simplified to Et[·]. We now define five independent stochastic
processes as follows:

• An n-dimensional standard Brownian motion denoted by

W := (W1(t),W2(t), . . . ,Wn(t))>t∈[0,T ].

• A d-dimensional standard Brownian motion denoted by

B := (B1(t), B2(t), . . . , Bd(t))>t∈[0,T ].

• An m-dimensional càdlàg (right-continuous with left limits) point process denoted by

N := (N1(t),N2(t), . . . ,Nm(t))>t∈[0,T ].

• An e-dimensional Poisson process denoted by

M := (M1(t),M2(t), . . . ,Me(t))>t∈[0,T ].

• A one-dimensional Poisson random measure γ(·, ·).

Define λ := {(λ1(t), λ2(t), . . . , λm(t))>}t∈[0,T ] as the intensity process of N, in which the instantaneous
intensity of Nl is represented by λl(t) for l = 1, 2, . . . ,m at each time t within [0,T ]. We consider λ in
its càglàd (left continuous with right limits) form, expressed as

λ(t) = lim
∆t→0

Et [N(t + ∆t) − N(t)]
∆t

, t ∈ [0,T ].

This paper utilizes the DCPD, as introduced in Dassios and Zhao [9], to model the point process N.
Specifically, the intensity process λl is expressed as

dλl(t) = αl(λl∞ − λl(t))dt +

d∑
i=1

βli

√
λl(t)dBi(t) +

m∑
i=1

ζlidNi(t) +

e∑
i=1

δlidMi(t), (2.1)

where λl(0) = λl0 > 0, all coefficients in (2.1) are assumed to be constants, and αl > 0, λl∞ ≥ 0, βli ≥ 0,
ζli ≥ 0, and δli ≥ 0. The equation indicates that the intensity process λl mean reverts to its long-term
level λl∞ with a reversion rate of αl and exhibits volatility of βli

√
λl(t). Additionally, it increases by ζli

when process Ni experiences a jump and by δli when process Mi does.

AIMS Mathematics Volume 9, Issue 11, 33062–33086.



33066

Remark 2.1. As demonstrated by (2.1), the DCPD serves as an expansive generalization,
incorporating the Hawkes process with exponentially decaying intensity, the Cox process with Poisson
shot-noise intensity, and the Cox process with Cox-Ingersoll-Ross (CIR) intensity. This framework
is especially potent for modeling risky assets due to its dual capacity for capturing the clustering
phenomenon. On one hand, it demonstrates internal-excitation: an event in Nl at a given time t
raises its own immediate intensity λl(t) through ζll (self-excitation), while simultaneously increasing
the immediate intensities λi(t) for alternative processes Ni through ζil (cross-excitation), for i , l
and i = 1, 2, . . . ,m. On the other hand, it showcases external-excitation, with a surge in the external
Poisson process Ml amplifying the jump intensity λ(t) of N instantly by δ(l), with δ(l) signifying the
lth column in the matrix δ. This combined mechanism of internal and external excitation augments
the probability of observing increased jumps within a brief duration and across various components,
effectively elucidating the phenomenon of jumping clusters within the financial market.

The vector form of the intensity process λ(t) is represented as

dλ(t) = α
(
λ∞ − λ(t)

)
dt + Diag[

√
λ(t)]βdB(t) + ζdN(t) + δdM(t), (2.2)

where

λ(0) = λ0 := (λ10, λ20, . . . , λm0)>, λ∞ := (λ1∞, λ2∞, . . . , λm∞)>,

α := Diag[(α1, α2, . . . , αm)>], Diag[
√
λ(t)] = Diag

[( √
λ1(t),

√
λ2(t), . . . ,

√
λm(t)

)>]
,

β := [βli]m×d, ζ := [ζli]m×m, δ := [δli]m×e.

Additionally, three compensated processes are defined: Ñ := {(Ñ1(t), Ñ2(t), . . . , Ñm(t))>}t∈[0,T ] from
N, expressed as

Ñ(t) := N(t) −
∫ t

0
λ(s)ds, t ∈ [0,T ],

M̃ := {(M̃1(t), M̃2(t), . . . , M̃e(t))>}t∈[0,T ] from M, represented as

M̃(t) := M(t) − ρt, t ∈ [0,T ],

and γ̃(·, ·) from γ(·, ·), formulated as

γ̃(dt, dz) := γ(dt, dz) − νγ(dz)dt, t ∈ [0,T ],

where νγ(·) is the Lévy density of jump sizes of the random measure γ(·, ·) and the vector ρ :=
(ρ1, ρ2, . . . , ρe)> represents the intensity vector of M.

2.2. The market model

This research considers an insurer operating within a market that integrates both financial and
insurance components. The financial sector includes a risk-free asset alongside k types of risky assets.
The price of the risk-free asset is defined as

dS 0(t) = rS 0(t)dt, S 0(0) = 1, (2.3)
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where the interest rate r > 0 is a constant. Define the prices of risky assets as

dS i(t) = S i(t−)
[
µidt +

n∑
j=1

σi jdW j(t) +

m∑
l=1

Jil

(
Zl(t)dNl(t) − E[Zl(t)]λl(t)dt

)]
, i = 1, 2, . . . , k, (2.4)

in which the initial value of risky assets is represented as si0 = S i(0) > 0 and Nl is the lth entry of the
m-dimensional DCPD whose intensity process λ is given by (2.2). Define µ as the expected return rate
vector and σ as the volatility matrix, by

µ := (µ1, µ2, . . . , µk)>, σ := [σi j]k×n.

Additionally, define b as the risk premium vector and ξ as the jump size matrix, where

b := (µ1 − r, µ2 − r, . . . , µk − r)>, ξ(Z(t)) := [JilZl(t)]k×m, ∀t ∈ [0,T ].

In the market model (2.4), several parameters are constants: the drift coefficient µi, the volatility
rate σi j, which are always positive, and the scaling factor Jil, which falls within the interval [0, 1]. This
holds for all i = 1, 2, . . . , k, j = 1, 2, . . . , n, and l = 1, 2, . . . ,m. Define a sequence of independent
and identically distributed (i.i.d.) random variables Zl = Zl(t)t∈[0,T ] to represent the jump sizes within
the range (−1,∞). Additionally, νN

l (·) serves as the common probability measure for Zl, possessing a
finite second moment with l = 1, 2, . . . ,m. It is easy to deduce that under the condition of Jil ∈ [0, 1]
and Zl ∈ (−1,∞), the asset price S i(t) remains strictly positive for all i = 1, 2, . . . , k. Let us denote
νN := (νN

1 , ν
N
2 , . . . , ν

N
m)>. As usual, we assume the variance-covariance matrix σσ> is positive definite,

i.e., σσ> ≥ εIk, for some constants ε, and Ik is the k-dimensional identity matrix. Furthermore, we
suppose that {Zl}l=1,2,...,m,W, B,N,M, and γ are independent of each other, with an augmented filtration
denoted by F.

Based on the aforementioned model setup, it follows from Lemma 2.1 in Shen and Zou [19] that
the variance-covariance matrix is generalized as

Σ(t) := σσ> +

∫
(−1,∞)m

ξ(z) Diag[λ(t) • νN(dz)]ξ(z)>, (2.5)

which is positive definite. Additionally, the operator • is defined by

λ(t) • νN(dz) =
(
λ1(t)νN

1 (dz1), λ2(t)νN
2 (dz2), . . . , λm(t)νN

m(dzm)
)>
.

Remark 2.2. Both internal and external excitation characteristics from the DCPD are reflected in the
financial market model (2.4). The model exhibits contagion, meaning that a jump in one risky asset,
triggered by internal or external factors, will enhance the intensity process of jumping for all risky
assets. This implies that more jumps are likely to occur in the foreseeable future, thereby generating
contagion and clustering effects.

Furthermore, by employing the standard notation for random measures (refer to Øksendal and
Sulem [13]), it follows that∫ t

0
Jil

(
Zl(t)dNl(t) − E[Zl(t)]λl(t)dt

)
=

∫ t

0

∫
(−1,∞)

JilzlÑl(dt, dzl), ∀t ∈ [0,T ], l = 1, 2, . . .m,
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where
Ñl(dt, dzl) := Nl(dt, dzl) − λl(t)νN

l (dzl)dt

is the compensated random measure generated from the DCPD. Define

Ñ(dt, dz) :=
(
Ñ1(dt, dz1), Ñ2(dt, dz2), . . . , Ñm(dt, dzm)

)>
.

Then, the vector form of the market model (2.4) can be inferred as

dS (t) = Diag
[
S (t−)

](
µdt + σdW(t) +

∫
(−1,∞)m

ξ(z)Ñ(dt, dz)
)
.

In the insurance market, we define the unit liabilities (risk) of the insurer, which are represented by
the jump process R = {R(t)}t∈[0,T ], where

dR(t) = ψdt +

∫
R

φ(t, z)̃γ(dt, dz). (2.6)

Here, ψ ≥ 0 and φ(t, z) > 0 with all t and z. In addition, we assume that φ(t, ·) = φ(·) is homogeneous
and deterministic with ∫

R

φ(z)νγ(dz) < +∞ and
∫
R

φ2(z)νγ(dz) < +∞.

In the context of the financial market, we use πi(t) to represent the investment amount in the
ith risky asset at time t for i = 1, 2, . . . , k, and consider the situation where an insurer adopts an
investment strategy denoted as π := {π1(t), π2(t), . . . , πk(t)}>t∈[0,T ]. Additionally, in the insurance market,
` := {`(t)}t∈[0,T ] is defined as the risk control (liability) strategy implemented by the insurer, representing
the underwriting liabilities at time t. The notation θ is defined as the unit premium rate for unit liabilities
(risk) R, in which θ > 0. Thus, the gains of the insurance business follow the formula `(t)(θdt − dR(t))
for any fixed `.

Remark 2.3. In the discussion above regarding the combined market (2.3), (2.4), and (2.6), we assume
that the model parameters (r, µ, θ, and ψ) are constants. Notice that all subsequent analyses and
results remain valid if these parameters are represented through bounded and deterministic processes.
Furthermore, when the deterministic function φ(t, ·) is not time-homogeneous, replacing the constant
unit premium rate θ with a time-dependent rate θ(t) becomes necessary. In this case, it is essential to
assume that θ(t) remains positive and bounded for all t.

Let u = (π, `) denote the shorthand notation for the insurer’s investment and risk control strategy.
The wealth process, denoted as X(t) := Xu(t), has dynamics represented as follows:

dX(t) =
X(t) −

∑k
i=1 πi(t)

S 0(t)
dS 0(t) +

k∑
i=1

πi(t)
S i(t)

dS i(t) + `(t)(θdt − dR(t))

=
(
rX(t) + π(t)>b + `(t)a

)
dt + π(t)>σdW(t) +

∫
(−1,∞)m

π(t)>ξ(z)Ñ(dt, dz)

−

∫
R

`(t)φ(z)̃γ(dt, dz), t ∈ [0,T ], (2.7)

where the insurer’s initial wealth is defined as x0 = X(0) > 0 and a := θ − ψ.
In the remainder of this paper, the following notations are used:
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• S2
F

(0,T ;R): the set of R-valued, F-adapted, càdlàg processes {ϕ(t)}t∈[0,T ] such that

E
[

sup
t∈[0,T ]

|ϕ(t)|2
]
< ∞;

• L2
F

(0,T ;Rk): the set of Rk-valued, F-predictable processes {ϕ(t)}t∈[0,T ] such that

E
[ ∫ T

0
|ϕ(t)|2dt

]
< ∞;

• L
2,N
F

(0,T ;Rm): the set of Rm-valued, F-predictable processes {ϕ(t, ·)t∈[0,T ]} such that

E
[ m∑

l=1

∫ T

0

∫
(−1,∞)

|ϕl(t, zl)|2λl(t)νN
l (dzl)dt

]
< ∞;

• L
2,γ
F

(0,T ;R): the set of R-valued, F-predictable processes {ϕ(t, ·)t∈[0,T ]} such that

E
[ ∫ T

0

∫
R

|ϕ(t, z)|2νγ(dz)dt
]
< ∞.

As commonly required in the literature, we must impose specific integrability conditions on the
strategy u. These conditions are detailed below.

Definition 2.1. An investment and risk control strategy u is considered admissible if (1) π ∈

L2
F

(0,T ;Rk) and ξ>π ∈ L2,N
F

(0,T ;Rm); (2) ` ∈ L2
F

(0,T ;R). The set of all admissible strategies is
denoted asA.

Remark 2.4. When the admissible set is defined, the condition ` ≥ 0 is not imposed. In other words,
` is allowed to be less than 0. For ` ≥ 0, ` represents the amount of liabilities the insurer decides
to undertake in the insurance business, while θ denotes the premium rate the insurer receives from
underwriting policies against the risk R. The modeling approach is based on Chapter 6 in Stein [21],
inspired by the American international group case during the 2007-2008 financial crisis. When ` < 0,
the gains of the insurance business can be reformulated as −(−`(t))[θdt − dR(t)]. In this scenario, −`
indicates the number of reinsurance policies purchased by the insurer, θ is the reinsurance premium
rate, and R represents the risk borne by the reinsurer. Thus, θdt − dR(t) constitutes the price of each
reinsurance policy. Similar assumptions can be found in Shen and Zou [19].

Remark 2.5. According to standard SDE theory, the SDE (2.7) admits a unique strong solution X ∈
S2
F

(0,T ;R) with any u ∈ A. Therefore, both E[X(T )] and E[X2(T )] exist, which in turn ensures that the
variance Var[X(T )] is also well-defined. This makes the forthcoming discussion on the MV problem
meaningful.

2.3. The problem

We now progress to formulating of the MV problem, which is the central focus of this study. The
insurer aims to address the MV problem as outlined below:

min
u∈A
J(x0, λ0; u) := min

u∈A
E[(X(T ) − κ)2],

subject to

E[X(T )] = κ,

X is the solution to (2.7),

(2.8)
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where x0 and λ0 represent the initial values of the wealth for insurer and the intensity process λ,
respectively. A solution u∗ of the aforementioned problem is called an optimal (investment and risk
control) strategy, also referred to as an efficient strategy. In order to preclude trivial scenarios, let us
impose the condition κ ≥ x0erT .

Since problem (2.8) is a convex optimization problem constrained by E[X(T )] = κ, the Lagrange
multiplier method can be applied. Define

J1(x0, λ0; u, ϑ) := E
[
(X(T ) − κ)2] + 2ϑ

(
E
[
X(T )

]
− κ

)
= E

[
(X(T ) − (κ − ϑ))2] − ϑ2,

wherein the range of the Lagrange multiplier ϑ is R. The MV problem, as presented in (2.8), can
be transformed into a maximum-minimum problem according to the principles of Lagrangian duality
theory, expressed asmax

ϑ∈R
min
u∈A
J1(x0, λ0; u, ϑ) = max

ϑ∈R
min
u∈A

{
E
[
(X(T ) − (κ − ϑ))2] − ϑ2},

subject to X as in (2.7).
(2.9)

Therefore, two steps are involved in solving problem (2.9). Initially, the internal minimization
problem is solved for each fixed Lagrange multiplier ϑ. Subsequently, the optimal solution of
the external maximization problem is determined. Therefore, following the first step, the internal
unconstrained minimization problem is expressed asmin

u∈A
J2(x0, λ0; u, c) := min

u∈A
E
[
(X(T ) − c)2],

subject to X as in (2.7),
(2.10)

where the range of the free parameter c is R. Let us denote by u∗c the optimal solution to problem
(2.10). Upon solving this problem, we can address problem (2.9) by examining

max
ϑ∈R
J3(x0, λ0;ϑ) := max

ϑ∈R

{
J2(x0, λ0; u∗c, κ − ϑ) − ϑ2

}
. (2.11)

Therefore, the efficient strategy of the MV problem (2.8) is denoted as u∗ := u∗c|c=κ−ϑ∗ , where ϑ∗ is the
solution to problem (2.11). Under the condition κ ≥ x0erT and the strategy u∗, the terminal wealth is
defined as X∗(T ). Then, the efficient frontier appears as (E[(X∗(T ) − κ)2], κ).

3. Stochastic maximum principle

This section addresses the solution of the MV problem (2.8) by focusing on the unconstrained
minimization problem (2.10). This problem is tackled through the application of the SMP. Given that
the standard SMP provides only a necessary condition for optimality, the strategy u∗c defined in (3.26)
and (3.27) emerges as a potential optimal solution for problem (2.10). Nevertheless, the unbounded
nature of the intensity process λ suggests that strategies determined by the SMP are not directly
applicable for confirming their optimality. Consequently, the verification of this will be postponed to
the next section, where the technique of completing the square in LQ control theory will be employed.

First of all, the process X̂ := {X̂(t)}t∈[0,T ] is defined as

X̂(t) := X(t) − ce−r(T−t). (3.1)
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According to the Itô’s formula, one can infer from the above equation that

dX̂(t) =
(
rX̂(t) + π(t)>b + `(t)a

)
dt + π(t)>σdW(t)

+

∫
(−1,∞)m

π(t)>ξ(z)Ñ(dt, dz) −
∫
R

`(t)φ(z)̃γ(dt, dz), (3.2)

with X̂(0) = x0 − ce−rT representing the initial value. Thus, we can simplify problem (2.10) into the
form of

min
u∈A
J2(x0, λ0; u, c) = min

u∈A
E
[
X̂(T )2]. (3.3)

Based on the state process X̂ described in (3.2), we can derive the Hamiltonian for problem (2.10)
or, equivalently, (3.3), as follows:

H(t, x, π, `, p, q, v,w, s, η) :=
(
rx + π>b + `a

)
p + π>σq −

∫
R

`φ(z)s(t, z)νγ(dz)

+

∫
(−1,∞)m

π>ξ(z) Diag[λ(t) • νN(dz)]w(t, z).

Here, the 6-tuple (p, q, v,w, s, η) is referred to as the adjoint process. It should be noted that p :=
{p(t)}t∈[0,T ] ∈ R, q := {q(t)}t∈[0,T ] ∈ R

n, v := {v(t)}t∈[0,T ] ∈ R
d, w := {w(t, z)}(t,z)∈[0,T ]×(−1,∞)m ∈ Rm,

s := {s(t, z)}(t,z)∈[0,T ]×R ∈ R, and η := {η(t)}t∈[0,T ] ∈ R
e. According to standard control theory, the adjoint

process (p, q, v,w, s, η) satisfies the following adjoint equation:
dp(t) = −rp(t)dt + q(t)>dW(t) + v(t)>dB(t) +

∫
(−1,∞)m

w(t, z)>Ñ(dt, dz)

+

∫
R

s(t, z)̃γ(dt, dz) + η(t)>dM̃(t),

p(T ) = 2X̂(T ) = 2(X(T ) − c).

(3.4)

It is important to point out that in (3.4), the drift term is determined by

−
∂

∂x
H(t, X̂(t), π(t), `(t), p(t), q(t), v(t),w(t, ·), s(t, ·), η(t)) = −rp(t).

An ansatz for p is proposed to address the adjoint Eq (3.4), expressed as

p(t) = Y(t)X̂(t), (3.5)

in which Y is defined as the solution to the follwoing BSDE:dY(t) = − f (t,Y(t), P(t),Q(t),G(t))dt + P(t)>dB(t) + Q(t)>dÑ(t) + G(t)>dM̃(t),
Y(T ) = 2.

(3.6)

The driver f is currently unknown in (3.6), but will be determined at a later stage. Employing (3.2)
and (3.6) and utilizing Itô’s formula to p(t) = Y(t)X̂(t), yields

dp(t) =X̂(t−)dY(t) + Y(t−)dX̂(t) + d[Y(t), X̂(t)]

AIMS Mathematics Volume 9, Issue 11, 33062–33086.



33072

=
[
− f

(
t,Y(t), P(t),Q(t),G(t)

)
X̂(t) + Y(t)

(
rX̂(t) + π(t)>b + `(t)a

)
+

k∑
i=1

m∑
l=1

∫
(-1,∞)

πi(t)ξil(zl)Ql(t)λl(t)νN
l (dzl)

]
dt

+ Y(t)π(t)>σdW(t) + X̂(t)P(t)>dB(t)

+

m∑
l=1

∫
(−1,∞)

[
X̂(t−)Ql(t) +

k∑
i=1

πi(t)ξil(zl)
(
Y(t−) + Ql(t)

)]
Ñl(dt, dzl)

−

∫
R

Y(t−)`(t)φ(z)̃γ(dt, dz) + X̂(t−)G(t)>dM̃(t). (3.7)

By analyzing the dynamics equation for p, as described in (3.4) and (3.7), one can derive

−rY(t)X̂(t) = − f
(
t,Y(t), P(t),Q(t),G(t)

)
X̂(t) + Y(t)

(
rX̂(t) + π(t)>b + `(t)a

)
+

k∑
i=1

m∑
l=1

∫
(−1,∞)

πi(t)ξil(zl)Ql(t)λl(t)νN
l (dzl), (3.8)

q(t) = σ>π(t)Y(t), (3.9)

v(t) = P(t)X̂(t), (3.10)

wl(t, zl) = X̂(t−)Ql(t) +

k∑
i=1

πi(t)ξil(zl)
(
Y(t−) + Ql(t)

)
, (3.11)

s(t, z) = −`(t)φ(z)Y(t−), (3.12)

η(t) = G(t)X̂(t−). (3.13)

By the SMP, a candidate optimal solution is identified as

π∗c(t) = arg max
π∈Rk
H

(
t, X̂∗(t), π, `, p∗(t), q∗(t), v∗(t),w∗(t, ·), s∗(t, ·), η∗(t)

)
,

`∗c(t) = arg max
`∈R
H

(
t, X̂∗(t), π, `, p∗(t), q∗(t), v∗(t),w∗(t, ·), s∗(t, ·), η∗(t)

)
,

where under the strategy u∗c = (π∗c, `
∗
c), the state process is defined as X̂∗, while the adjoint process

is denoted by
(
p∗, q∗, v∗,w∗, s∗, η∗

)
. Additionally, the subscript c represents the parameter of problem

(2.10). Then, u∗c is derived by using the first-order condition

p(t)b + σq(t) +

∫
(−1,∞)m

ξ(z) Diag[λ(t) • νN(dz)]w(t, z) = 0,

p(t)a −
∫
R

φ(z)s(t, z)νγ(dz) = 0.

Using the above equation and replacing it with (3.5), (3.9), (3.11), and (3.12), it can be inferred that

π∗c(t) = −Γ(t)−1Z(t)X̂∗(t−), (3.14)

`∗c(t) = −a
( ∫
R

φ(z)2νγ(dz)
)−1

X̂∗(t−), (3.15)
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where

Γ(t) := Y(t−)
(
σσ> +

∫
(−1,∞)m

ξ(z)Diag[λ(t) • νN(dz)]ξ(z)>
)

+

∫
(−1,∞)m

ξ(z) Diag[Q(t) • λ(t) • νN(dz)]ξ(z)>, (3.16)

Z(t) := bY(t−) +

∫
(−1,∞)m

ξ(z) Diag[λ(t) • νN(dz)]Q(t). (3.17)

By substituting π∗c and `∗c as specified in (3.14) and (3.15) back into (3.8), we obtain the driver f of the
BSDE described in (3.6), which is represented as

f
(
t,Y(t), P(t),Q(t),G(t))

)
= 2rY(t) −Z(t)>Γ(t)−1Z(t) − a2

( ∫
R

φ(z)2νγ(dz)
)−1

Y(t). (3.18)

To solve the solution (Y, P,Q,G) for (3.6), we propose the following ansatz:

Y(t) = 2e2r(T−t)+g(t,λ(t)), (3.19)

where g(t, λ(t)) is a bounded function that remains to be determined.
Utilizing Itô’s formula to (3.19), it follows that

dY(t) = Y(t)
[
− 2r +

∂g
∂t

(t, λ(t)) +
∂g
∂λ

(t, λ(t))>α
(
λ∞ − λ(t)

)
+

1
2

m∑
l=1

m∑
i=1

d∑
j=1

( ∂g
∂λl

(t, λ(t))
∂g
∂λi

(t, λ(t)) +
∂2g
∂λl∂λi

(t, λ(t))
) √

λl(t)
√
λi(t)βl jβi j

+

m∑
l=1

λl(t)
(
eg(t,λ(t)+ζ(l))−g(t,λ(t)) − 1

)
+

e∑
i=1

ρi

(
eg(t,λ(t)+δ(i))−g(t,λ(t)) − 1

)]
dt

+ Y(t)
∂g
∂λ

(t, λ(t))>Diag[
√
λ(t)]βdB(t) + Y(t−)

m∑
l=1

(
eg(t,λ(t)+ζ(l))−g(t,λ(t)) − 1

)
dÑl(t)

+ Y(t−)
e∑

i=1

(
eg(t,λ(t)+δ(i))−g(t,λ(t)) − 1

)
dM̃i(t), (3.20)

in which the lth column of the matrix ζ is denoted by ζ(l) for l = 1, 2, . . . ,m, and, similarly, the ith
column of the matrix δ is represented by δ(i) for i = 1, 2, . . . , e, that is,

ζ(l) := (ζ1l, ζ2l, . . . , ζml)>, δ(i) := (δ1i, δ2i, . . . , δmi)>.

For notation simplification, the following are introduced:

U(t, λ) : =
(
eg(t,λ+ζ(1))−g(t,λ) − 1, . . . , eg(t,λ+ζ(m))−g(t,λ) − 1

)>
, (3.21)

V(t, λ) : =
(
eg(t,λ+δ(1))−g(t,λ) − 1, . . . , eg(t,λ+δ(e))−g(t,λ) − 1

)>
, (3.22)

Γ̂(t, λ) : =
Γ(t)

Y(t−)
= σσ> +

∫
(−1,∞)m

ξ(z)Diag[(U(t, λ) + 1m) • λ • νN(dz)]ξ(z)>, (3.23)
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Ẑ(t, λ) : =
Z(t)
Y(t−)

= b +

∫
(−1,∞)m

ξ(z) Diag[λ • νN(dz)]U(t, λ), (3.24)

Ψ :=
∫
R

φ(z)2νγ(dz), (3.25)

where 1m denotes the m-dimensional vector consisting entirely of 1. Notably, given the ansatz for Y in
(3.19), both Γ̂ and Ẑ are defined as functions solely of t and λ, indicating they are independent from
Y , P, Q, and G. From these definitions, it becomes evident that

Q(t) = Y(t)U(t, λ(t)),
G(t) = Y(t)V(t, λ(t)).

Additionally, by rewriting π∗c and `∗c as presented in (3.14) and (3.15), one has

π∗c(t) = −Γ̂(t, λ(t))−1Ẑ(t, λ(t))X̂∗(t−), (3.26)

`∗c(t) = −aΨ−1X̂∗(t−), (3.27)

and by rewriting f as presented in (3.18), we obtain

f
(
t,Y(t), P(t),Q(t),G(t))

)
= Y(t)

[
2r − Ẑ(t, λ(t))>Γ̂(t, λ(t))−1Ẑ(t, λ(t)) − a2Ψ−1

]
. (3.28)

Through comparing the drift terms of (3.20) and (3.28), one can readily derive the following non-
local PDE governing g:

∂g
∂t

(t, λ) +
∂g
∂λ

(t, λ)>α(λ∞ − λ) + U(t, λ)>λ + V(t, λ)>ρ

+
1
2

m∑
l=1

m∑
i=1

d∑
j=1

( ∂g
∂λl

(t, λ)
∂g
∂λi

(t, λ) +
∂2g
∂λl∂λi

(t, λ)
) √

λl

√
λi βl jβi j

= Ẑ(t, λ)>Γ̂(t, λ)−1Ẑ(t, λ) + a2Ψ−1,

g(T, ·) = 0.

(3.29)

Moreover, the BSDE (3.20) can be reformulated as

dY(t) = − Y(t)
[
2r − Ẑ(t, λ(t))>Γ̂(t, λ(t))−1Ẑ(t, λ(t)) − a2Ψ−1

]
dt

+ Y(t)
∂g
∂λ

(t, λ(t))>Diag[
√
λ(t)]βdB(t)

+ Y(t−)U(t, λ(t))>dÑ(t) + Y(t−)V(t, λ(t))>dM̃(t). (3.30)

Remark 3.1. Notably, in comparison with the MV problem involving the Hawkes process as
described in Shen and Zou [20], the introduction of DCPD in this paper significantly complicates
the resolution of the BSDE (3.30). This complexity arises from the additional diffusion term
Y(t) ∂g

∂λ
(t, λ(t))>Diag[

√
λ(t)]βdB(t) and the jump term Y(t−)V(t, λ(t))>dM̃(t) featured in (3.30). The

diffusion term, in particular, requires considerable effort to demonstrate that it is a uniformly integrable
martingale. To address this, we initially assume that g is a bounded function when proposing a solution
for Y(t) in (3.19), and we establish its strict upper and lower bounds in Lemma 3.1 below. Furthermore,
the Eq (3.29) that governs g in this paper is more complex, incorporating second-order derivative terms
of g, which adds to the challenge of finding a solution. These elements distinctly differentiate this work
from that of Shen and Zou [20].
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We now present a technical result concerning the strict upper and lower bounds of the function g,
which solves (3.29).

Lemma 3.1. If g(·, ·) is solution to (3.29), then the following holds:

0 ≤ eg(t,λ(t)) ≤ 1, ∀t ∈ [0,T ], and 0 ≤ eg(0,λ0) < 1,

in which λ(·) represents the intensity process of the DCPD as described in (2.2).

Proof. Integrating from t to T on both sides of the Eq (3.30) yields

Y(T ) − Y(t) =

∫ T

t
Y(s)

[
− 2r + Ẑ(s, λ(s))>Γ̂(s, λ(s))−1Ẑ(s, λ(s)) + a2Ψ−1

]
ds

+

∫ T

t
Y(s)

∂g
∂λ

(s, λ(s))>Diag[
√
λ(s)]βdB(s) +

∫ T

t
Y(s−)U(s, λ(s))>dÑ(s)

+

∫ T

t
Y(s−)V(s, λ(s))>dM̃(s).

Since g is assumed to be a bounded function, the processes Y , U, and V are also bounded. Furthermore,
by following the approach used in the proof of Lemma 2.1 in Shen and Zou [20], it is established that
Γ̂(t, λ(t)) ≥ εIk. Consequently, given that the distribution function νN

l (·), for l = 1, . . . ,m, has a finite
second moment, we conclude that

E
[∣∣∣∣ ∫ T

t
Y(s)Ẑ(s, λ(s))>Γ̂(s, λ(s))−1Ẑ(s, λ(s))ds

∣∣∣∣] ≤ K
{
1 + E

[ ∫ T

t
|λ(s)|2ds

]}
< +∞,

where K is defined as a positive constant. Additionally, under the condition E[sups∈[0,T ] |λ(s)|2] < ∞
(see (3.34)), the last inequality holds.

From Theorem 3.7 of Dassios and Zhao [9], it holds that E[N(t)] < ∞. Therefore,

E
[∣∣∣∣ ∫ T

t
Y(s−)U(s, λ(s))>dÑ(s)

∣∣∣∣]
= E

[∣∣∣∣ ∫ T

t
Y(s−)U(s, λ(s))>

(
dN(s) − λ(s)ds

)∣∣∣∣]
≤ K

{
E[N(T ) − N(t)] + E

[ ∫ T

t
|λ(s)|ds

]}
≤ K

{
1 + E

[
sup

s∈[0,T ]
|λ(s)|2

]}
< +∞.

Similarly, one has

E
[∣∣∣∣ ∫ T

t
Y(s−)V(s, λ(s))>dM̃(s)

∣∣∣∣] < +∞.

Therefore,

E
[∣∣∣∣ ∫ T

t
Y(s)

∂g
∂λ

(s, λ(s))>Diag[
√
λ(s)]βdB(s)

∣∣∣∣]
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= E
[∣∣∣∣2 − Y(t) +

∫ T

t
Y(s)

[
2r − Ẑ(s, λ(s))>Γ̂(s, λ(s))−1Ẑ(s, λ(s)) − a2Ψ−1

]
ds

−

∫ T

t
Y(s−)U(s, λ(s))>dÑ(s) −

∫ T

t
Y(s−)V(s, λ(s))>dM̃(s)

∣∣∣∣]
< +∞. (3.31)

This implies that the stochastic integral with respect to the Brownian motion B is a uniformly integrable
martingale. Additionally, since Y , U, and V are bounded, the jump components in (3.30) are also
martingales. Hence, by the dynamics of Y as presented in (3.30), we can readily deduce that
{e2rtY(t)}t∈[0,T ] is a sub-martingale, and then for any t ∈ [0,T ],

e2rtY(t) ≤ Et

[
e2rT Y(T )

]
.

Noticing Y(T ) = 2 and (3.19), it can be inferred that

2e2r(T−t) · eg(t,λ(t)) = Y(t) ≤ 2e2r(T−t),

thus,
0 ≤ eg(t,λ(t)) ≤ 1, ∀t ∈ [0,T ]. (3.32)

Next, by utilizing Itô’s formula to eg(t,λ(t)) and substituting from (3.29), we find that

deg(t,λ(t)) =eg(t,λ(t))
[∂g
∂t

(t, λ(t)) +
∂g
∂λ

(t, λ(t))>α
(
λ∞ − λ(t)

)
+ U(t, λ(t))>λ(t) + V(t, λ(t))>ρ

+
1
2

m∑
l=1

m∑
i=1

d∑
j=1

( ∂g
∂λl

(t, λ(t))
∂g
∂λi

(t, λ(t)) +
∂2g
∂λl∂λi

(t, λ(t))
) √

λl(t)
√
λi(t)βl jβi j

]
dt

+ eg(t,λ(t)) ∂g
∂λ

(t, λ(t))>Diag[
√
λ(t)]βdB(t)

+ eg(t,λ(t))U(t, λ(t))>dÑ(t) + eg(t,λ(t))V(t, λ(t))>dM̃(t)

=eg(t,λ(t))
[
Ẑ(t, λ(t))>Γ̂(t, λ(t))−1Ẑ(t, λ(t)) + a2Ψ−1

]
dt

+ eg(t,λ(t)) ∂g
∂λ

(t, λ(t))>Diag[
√
λ(t)]βdB(t)

+ eg(t,λ(t))U(t, λ(t))>dÑ(t) + eg(t,λ(t))V(t, λ(t))>dM̃(t).

Based on prior analysis, the stochastic integrals are determined to be martingales. When we integrate
both sides of the above equation over the interval from t1 to t2 and condition on t1, assuming 0 ≤ t1 ≤

t2 ≤ T , it follows that

0 ≤Et1
[
eg(t2,λ(t2))] − eg(t1,λ(t1))

=Et1

{ ∫ t2

t1
eg(s,λ(s))

[
Ẑ(s, λ(s))>Γ(s, λ(s))−1Ẑ(s, λ(s)) + a2Ψ−1

]
ds

}
≤ 1. (3.33)

Thus, Et
[
eg(t,λ(t))] ≥ eg(0,λ(0)) holds true for any t ∈ [0,T ]. If eg(0,λ(0)) = 1, it then follows from (3.32) that

eg(t,λ(t)) ≡ 1. In that case, from (3.33), we obtain that a = 0 and

Ẑ(t, λ(t)) = b −
∫

(−1,∞)m
ξ(z) Diag[λ(t) • νN(dz)]1m = 0k, P-a.s., a.e. t ∈ [0,T ],
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where 0k denotes the k-dimensional vector consisting entirely of 0. Given that λ is a stochastic process,
it is impossible for this to hold across all t. Consequently, it must be true that eg(0,λ(0)) = eg(0,λ0) < 1. �

The solvability results for (3.29) are outlined below.

Lemma 3.2. The nonlocal PDE given by (3.29) possesses a unique solution.

Proof. Given that the SDE (2.2) for the DCPD does not satisfy the Lipschitz condition, the moment
estimates from standard SDE theory cannot be directly applied to λ. Consequently, our proof deviates
somewhat from that of Lemma 3.2 in Shen and Zou [19]. Here, we detail only the modifications made
to the proof. To simplify the presentation and prevent the explosion of the results, we will limit our
consideration to the case where m = d = e = 1. Extending these results to multidimensional cases is
straightforward. Unless specified otherwise, the symbol C will represent positive constants, which can
vary from one line to the next for subsequent estimates.

We first express (2.2) in the following integral form:

λ(t) =λ0e(ζ−α)t +
αλ∞
α − ζ

(
1 − e(ζ−α)t

)
+

∫ t

0
e(α−ζ)(s−t)

√
λ(s)βdB(s)

+

∫ t

0
e(α−ζ)(s−t)ζdÑ(s) +

∫ t

0
e(α−ζ)(s−t)δdM(s).

From the Burkholder-Davis-Gundy (B-D-G) inequality, it holds that

E
[

sup
t∈[0,T ]

|λ(t)|4
]
≤ C

{
1 + E

[
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0

√
λ(s)dB(s)

∣∣∣∣∣4 + sup
t∈[0,T ]

|Ñ(t)|4 + |M(T )|4
]}

≤ C
{
1 + E

[( ∫ T

0
λ(s)ds

)2

+ |N(T )|2
]}

≤ C
{
1 + E

[
sup

t∈[0,T ]
|λ(t)|2 · T 2

]}
= C

{
1 + E

[
2

1
$

sup
t∈[0,T ]

|λ(t)|2 ·
$

2
T 2

]}
≤ C

{
1 + E

[ 1
$2 sup

t∈[0,T ]
|λ(t)|4

]}
,

where we have used the fact that the quadratic variation process for Ñ is N, Theorem 3.8 of Dassios and
Zhao [9] to derive that N(T ) has a finite second moment, and the fundamental inequality 2ab ≤ a2 +b2.
By choosing the constant $ =

√
2C, one easily gets

E
[

sup
t∈[0,T ]

|λ(t)|4
]
< +∞. (3.34)

The remainder of the proof closely follows the arguments presented in Appendix B of Shen and
Zou [20], which we do not replicate here. �

Noticing that the intensity process of the DCPD, represented as λ, is unbounded, confirming the
optimality of u∗c is not straightforward. Considering the linearity of the wealth SDE given by (2.7) and
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the fact that the objective function J2 is quadratic, we can naturally infer that problem (2.10) is an
LQ control problem. According to LQ theory, it is nature to hypothesize that YX̂2 behaves as a sub-
martingale for any control strategy u ∈ A and as a martingale specifically under the optimal control u∗c.
Assuming this conjecture to be true, we can immediately infer

1
2
E
[
Y(T )

(
X̂∗(T )

)2
]

=
1
2

Y(0)
(
X̂∗(0)

)2
≤

1
2
E
[
Y(T )

(
X̂(T )

)2
]
,

where, under the “optimal” strategy u∗c, the wealth process is defined as X̂∗. Consequently, observing
that (3.1), (3.19), and Y(T ) = 2, it follows that

J2(x0, λ0; u∗, c) = min
u∈A

1
2
E
[
Y(T )

(
X̂(T )

)2
]

= e2rT+g(0,λ0)(x0 − ce−rT )2
. (3.35)

After determining the value function for problem (2.10) using (3.35), we can infer the solution ϑ∗ for
problem (2.11), which is a straightforward quadratic problem involving the variable ϑ.

4. Efficient strategy and efficient frontier

This section presents a comprehensive solution of the MV problem (2.8), detailing both the efficient
strategy and the efficient frontier in Theorem 4.1. We employ completing the square technique
from LQ control theory to confirm the optimality for the obtained candidate strategies. Additionally,
Theorem 4.1 also affirms the admissibility of the strategy.

Theorem 4.1. The efficient strategy u∗(t) = {(π∗(t), `∗(t))}t∈[0,T ] of the MV problem (2.8) is determined
by

π∗(t) = −Γ̂(t, λ(t))−1Ẑ(t, λ(t))
(
X∗(t−) − (κ − ϑ∗)e−r(T−t)

)
, (4.1)

`∗(t) = −aΨ−1
(
X∗(t−) − (κ − ϑ∗)e−r(T−t)

)
, (4.2)

and the efficient frontier is represented as

Var[X∗(T )] =
eg(0,λ0)

1 − eg(0,λ0)

(
x0erT − κ

)2
, κ ≥ x0erT , (4.3)

where ϑ∗ is the Lagrange multiplier, expressed as

ϑ∗ =
eg(0,λ0)

1 − eg(0,λ0)

(
x0erT − κ

)
. (4.4)

Here, g(·, ·) represents the solution of (3.29), Γ̂(t, λ(t)), Ẑ(t, λ(t)), and Ψ are defined by (3.23)–(3.25)
respectively, and X∗ (referred to as the optimal wealth process) is the solution of SDE (2.7) with the
efficient strategy u∗ = (π∗, `∗).

Proof. We first derive u∗c by utilizing the completing the square technique. To this end, X̂2 and YX̂2 are
deduced utilizing the Itô’s formula and represented as

dX̂(t)2 =

(
2rX̂(t)2 + 2X̂(t)π(t)>b + 2aX̂(t)`(t) + π(t)>σσ>π(t) +

∫
R

`(t)2φ(z)2νγ(dz)
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+

∫
(−1,∞)m

π(t)>ξ(z)Diag[λ(t) • νN(dz)]ξ(z)>π(t)
)
dt + 2X̂(t)π(t)>σdW(t)

+

∫
(−1,∞)m

2X̂(t−)π(t)>ξ(z)Ñ(dt, dz) +

∫
(−1,∞)m

π(t)>ξ(z)Diag[Ñ(dt, dz)]ξ(z)>π(t)

+

∫
R

(
`(t)2φ(z)2 − 2X̂(t−)`(t)φ(z)

)̃
γ(dt, dz),

and

dY(t)X̂(t)2 =Y(t)
(
U(t, λ(t))>Γ̂(t, λ(t))U(t, λ(t)) + ΨV(t)2

)
dt

+ 2Y(t)X̂(t)π(t)>σdW(t) + Y(t)X̂(t)2 ∂g
∂λ

(t, λ(t))>Diag[
√
λ(t)]βdB(t)

+

∫
(−1,∞)m

Y(t−)π(t)>ξ(z)Diag
[(

U(t, λ(t)) + 1m
)
• Ñ(dt, dz)

]
ξ(z)>π(t)

+

∫
(−1,∞)m

Y(t−)X̂(t−)
(
2π(t)>ξ(z)Diag

[(
U(t, λ(t)) + 1m

)]
+ X̂(t−)U(t, λ(t))>

)
Ñ(dt, dz)

+

∫
R

Y(t−)
(
`(t)2φ(z)2 − 2X̂(t−)`(t)φ(z)

)̃
γ(dt, dz) + Y(t−)X̂(t−)2V(t, λ(t))>dM̃(t), (4.5)

where

U(t, λ(t)) =π(t) + Γ̂(t, λ(t))−1Ẑ(t, λ(t))X̂(t),

V(t) =`(t) + aΨ−1X̂(t).

Define {τi}i=1,2,... as the stopping time, represented by

τi := inf
{
t ≥ 0; |X̂(t)| > i

}
, i = 1, 2, . . . .

It is apparent that τi ↑ ∞ and (T ∧ τi) ↑ T as i → ∞. Integrating Eq (4.5) from 0 to T ∧ τi and taking
expectations, in accordance with (3.31) and the localization technique, ultimately leads to

1
2
E
[
Y(T ∧ τi)(X(T ∧ τi) − c)2] − 1

2
Y(0)

(
x0 − ce−rT )2

=
1
2
E
[ ∫ T∧τi

0
Y(t)

(
U(t, λ(t))>Γ̂(t, λ(t))U(t, λ(t)) + ΨV(t)2

)
dt

]
, (4.6)

where the integrability conditions outlined in Definition 2.1 have been used. Since X(·) ∈ S2
F

(0,T ;R)
and Y(·) is bounded, the integrand on the above equation’s righthand side is nonnegative. Then, by
employing the dominated convergence theorem and monotone convergence theorem to both sides
of (4.6), and progressively letting i tend to∞, it follows that

E
[
(X(T ) − c)2] − 1

2
Y(0)

(
x0 − ce−rT

)2
=

1
2
E
[ ∫ T

0
Y(t)

(
U(t, λ(t))>Γ̂(t, λ(t))U(t, λ(t)) + ΨV(t)2

)
dt

]
.

Note that since Y(t) > 0, Ψ > 0, and Γ̂(t, λ(t)) is positive definite, the optimal control can be obtained
by makingU(t, λ(t)) andV(t) equal to 0, as represented by

π∗c(t) = − Γ̂(t, λ(t))−1Ẑ(t, λ(t))
(
X∗(t−) − ce−r(T−t)

)
, (4.7)

AIMS Mathematics Volume 9, Issue 11, 33062–33086.



33080

`∗c(t) = − aΨ−1
(
X∗(t−) − ce−r(T−t)

)
, (4.8)

which aligns with the expressions provided in (3.26) and (3.27).
Note that in Section 3, the π∗c and `∗c derived from the SMP are represented by (3.26) and (3.27),

which constitute only a necessary condition for optimality. π∗c and `∗c, as outlined in (4.7) and (4.8),
are confirmed as the optimal solutions for problem (2.10) through applying the completing the square
technique, thereby constituting a sufficient condition for optimality.

We next address problem (2.11) to determine ϑ∗, thereby identifying the efficient strategy and the
efficient frontier. It should be noted that problem (2.11) aims to maximize J2(x0, λ0; u∗c, κ − ϑ) − ϑ2

across all ϑ ∈ R, where c = κ − ϑ and J2 denotes the value function for problem (2.10) defined by

J2(x0, λ0; u∗c, κ − ϑ) = E
[
(X∗(T ) − c)2] =

1
2

Y(0)
(
x0 − ce−rT

)2
.

It is clear that we can determine ϑ∗ through

ϑ∗ = arg max
ϑ∈R

{
e2rT+g(0,λ0)

(
x0 − (κ − ϑ)e−rT

)2
− ϑ2

}
=

eg(0,λ0)

1 − eg(0,λ0)

(
x0erT − κ

)
,

where the sufficiency of the first-order condition is confirmed by Lemma 3.1, thus establishing that ϑ∗

represents the optimal solution for problem (2.11).
Upon determining ϑ∗ as specified in (4.4), it is easy to deduce the efficient strategy u∗ from the

condition u∗ = u∗κ−ϑ∗ , utilizing the formulations for u∗c presented in (4.7) and (4.8), which coincides
with (4.1) and (4.2). Ultimately, applying the Lagrangian duality theorem enables us to infer the
efficient frontier as detailed within (4.3) by

Var[X∗(T )] = E
[(

X∗(T ) − (κ − ϑ∗)
)2]
− (ϑ∗)2. (4.9)

To complete the proof, we need to verify that u∗ given by (4.1) and (4.2) is admissible. Using (4.9)
and the condition eg(0,λ0) < 1 derived from Lemma 3.1, it can be deduced that

E
[
(X∗(T ) − (κ − ϑ∗))2] = Var[X∗(T )] + (ϑ∗)2 =

eg(0,λ0)

(1 − eg(0,λ0))2

(
x0erT − κ

)2
< ∞,

which means that X̂∗(T ) = X∗(T )− (κ−ϑ∗) is square integrable. Based on the dynamic equation for X̂∗

in (3.2), it can be demonstrated that (X̂∗, π∗, `∗) satisfies the following BSDE:
dy(t) =

(
ry(t) + π∗(t)>b + `∗(t)a

)
dt + π∗(t)>σdW(t)

+
∫

(−1,∞)m π
∗(t)>ξ(z)Ñ(dt, dz) −

∫
R
`∗(t)φ(z)̃γ(dt, dz),

y(T ) = X̂∗(T ), t ∈ [0,T ].
(4.10)

Introduce the following new notations:

ς(t) := σ>π∗(t), %(t, z) := ξ(z)>π∗(t), κ(t, z) := −φ(z)`∗(t), (4.11)

from which we obtain that

π∗(t) = (σσ>)−1σς(t) and `∗(t) = −Ψ−1
∫
R

κ(t, z)νγ(dz). (4.12)
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Substituting (4.11) and (4.12) into (4.10), it follows that

(y(t), ς(t), %(t, z), κ(t, z)) = (X̂∗(t), σ>π∗(t), ξ(z)>π∗(t),−φ(z)`∗(t))

is the solution for the BSDE below:
dy(t) =

(
ry(t) + b>(σσ>)−1σς(t) − aΨ−1

∫
R
κ(t, z)νγ(dz)

)
dt + ς(t)>dW(t)

+
∫

(−1,∞)m %(t, z)>Ñ(dt, dz) +
∫
R
κ(t, z)̃γ(dt, dz),

y(T ) = X̂∗(T ), t ∈ [0,T ].

(4.13)

In particular, (4.13) represents a linear BSDE characterized by a square integrable terminal condition
and a Lipschitz driver as defined by the Definition 2.1 in Quenez and Sulem [17]. Consequently,
according to Theorem 2.3 of Quenez and Sulem [17], (4.13) admits a unique solution satisfying

E
[ ∫ T

0
|ς(t)|2dt +

m∑
l=1

∫ T

0

∫
(−1,∞)

|%l(t, zl)|2λl(t)νN
l (dzl)dt +

∫ T

0

∫
R

|κ(t, z)|2νγ(dz)dt
]
< +∞. (4.14)

By applying (4.11) and (4.12) once again, we obtain that

π∗ ∈ L2
F

(0,T ;Rk), ξ>π∗ ∈ L2,N
F

(0,T ;Rm), and `∗ ∈ L2
F

(0,T ;R).

The proof is completed. �

5. Numerical analysis

This section is dedicated to conducting numerical analysis for demonstrating the theoretical results
outlined in Theorem 4.1. Our numerical examination focuses on a univariate case where n = d =

m = e = k = 1, indicating the presence of a single risky asset, with jumps represented through a
one-dimensional DCPD. In this example, model parameters are assigned following Shen and Zou [19]
and Dassios and Zhao [8], as delineated in Table 1.

Table 1. Setup of model parameters.

r µ σ E[Z] E[Z2] α β ζ δ

0.02 0.09 0.2 -0.02 0.06 1 1 1.2 10

5.1. Sensitivity analysis

This subsection explores the sensitivity for the efficient frontier within the DCPD, as introduced
in (4.3) of Theorem 4.1. Our objective is to understand how variations in the parameters of the DCPD’s
intensity process influence the efficient frontier. During the subsequent analysis, each parameter is
individually adjusted to various levels while keeping all other parameters fixed, as detailed in Table 1.

The initial phase of our analysis delves into the effects of the initial value, λ0, and the mean-reversion
level, λ∞, on the efficient frontier, as illustrated in Figure 1. The left panel of Figure 1 evaluates three
distinct values of λ0: 0.5, 0.9, and 1.5. Graphical examination indicates a deterioration in the efficient
frontier as λ0 increases. This is because an increase in λ0 will cause the intensity process to increase,
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thereby worsening the efficient frontier. The right panel focuses on three levels of λ∞: 0.5, 0.9, and 2.
The graph shows that an increase in λ∞ is disadvantageous for the MV insurer. To comprehend this
result, observe that a higher λ∞ leads to a higher average intensity λ as λ mean-reverts to λ∞.
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Figure 1. The impact of λ0 and λ∞.

Our subsequent analysis examines the influence of α and β, where α indicates the mean-reversion
speed of the intensity process, and β represents the volatility coefficient of the diffusion part of the
intensity process. On the left part of Figure 2, three levels of α are explored: 1, 2, and 4. An increase
in α accelerates the mean-reversion for the intensity process to λ∞, thereby improving the efficient
frontier. This improvement occurs because a larger α enables the intensity process λ to recover quickly
from an abnormal state to λ∞, thereby reducing the uncertainty associated with the risky assets. On the
right part of Figure 2, three levels of β are explored: 0.5, 1, and 1.5. It is readily observed that β has
positive effects, meaning the efficient frontier decreases as β increases. This implies that an increase in
the volatility coefficient within the intensity diffusion could improve the efficient frontier. This result
is consistent with the findings in Dassios and Zhao [9].
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Figure 2. The impact of α and β.

Our final analysis delves into the impact of ζ and δ, where ζ denotes the internal-excitation factor
and δ signifies the external-excitation factor, as defined in (2.2). The results are illustrated in Figure 3.
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On its left part, three levels of ζ are assessed: 0.5, 1.2, and 2. The figure clearly shows a deterioration
of the efficient frontier with an increase in ζ. Similarly, on the right part, where δ is examined at the
levels of 2, 4, and 10, an increase in δ also leads to a worsening of the efficient frontier. This is because
a larger ζ or δ results in a greater increase in λ following a jump in N or M, which in turn triggers more
frequent jumps in the near future, thereby worsening the efficient frontier.
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Figure 3. The impact of ζ and δ.

5.2. Comparisons with the Hawkes and DCP models

In the final subsection of the numerical analysis, a comparative analysis is conducted encompassing
the Hawkes, DCP, and DCPD models. In the DCPD model, setting β = 0 and δ = 0 transitions
the model to the Hawkes process, marked by the absence of diffusion and external-excitation jumps.
Additionally, setting β = 0 converts the model into the DCP, characterized by the exclusion of diffusion.

By observing Figure 4, it is found that under the parameters set in this paper, the efficient frontier
of the Hawkes model is superior to that of the DCP model. This is because the DCP model includes
external-excitation characteristics, which increase the intensity process when external events occur,
thereby triggering more jumps in the foreseeable future and worsening the efficient frontier. Compared
to the DCP model, the DCPD model includes an additional diffusion term. As concluded in the previous
section, the additional diffusion term has a positive effect on the efficient frontier, thereby improving
it.
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Figure 4. Comparisons among the Hawkes, DCP, and DCPD models.

AIMS Mathematics Volume 9, Issue 11, 33062–33086.



33084

6. Conclusions

In this paper, we explore investment and risk control strategies within a contagious financial
market from an MV perspective for insurers. By adopting a jump-diffusion model that incorporates
a multivariate DCPD, we manage to distinguish between externally and internally excited jumps,
allowing for a nuanced risk assessment. Our paper uses advanced mathematical techniques, including
the SMP, BSDEs, and LQ control, to deduce the efficient strategy and the efficient frontier within
a semi-closed form solution. Through extensive numerical simulations, we validate our model and
demonstrate its practical applicability in enhancing risk control and investment decision-making for
insurers in the face of market contagions. For further research, one may consider the situation where
financial market models and insurance risk processes are correlated. Additionally, another promising
direction is to extend the present study into a time-inconsistent MV investment and risk control
(reinsurance) problem.
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