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Abstract: In this paper, we study the higher-order uncertain differential equations (UDEs) as defined
by Kaixi Zhang [11], mainly focus on the second-order case. We propose a pivotal condition
(monotonicity in some sense, see more details in Section 3), introduce the concept of α-paths of
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of the solution. Finally, we present numerical examples to substantiate the rationality of the condition.

Keywords: higher-order uncertain differential equations; inverse uncertainty distribution; α-paths
Mathematics Subject Classification: 47E05, 34A12

1. Introduction

Events with known frequencies of occurrence are classified as random, while those with unknown
frequencies are termed uncertain [1]. With the rapid advancement of science and technology, a
multitude of uncertain factors have emerged in real life, rendering the phenomena of uncertainty in
the objective world undeniable. Consequently, scholars have begun to incorporate these uncertain
factors into the establishment of mathematical models, leading to the research and development of
uncertainty theory.

Integrating uncertain factors into differential equations results in the formation of UDEs, a type of
differential equation established by Liu in 2007 [1], designed to describe the dynamics of uncertain
phenomena. Yao and Chen provided an effective formula for calculating the inverse uncertainty
distribution of the solutions to UDEs, known as the Yao-Chen formula [2].

The Yao-Chen formula yields a family of solutions to ordinary differential equations, denoted as
α-paths, and it has been indicated [2] that these α-paths represent the inverse uncertainty distribution
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of the solutions. Therefore, to determine the inverse uncertainty distribution of the solution, we need
to solve a family of ordinary differential equations to obtain the α-paths. For first-order scalar UDE,
the inverse uncertainty distribution of the solutions can be determined using the Yao-Chen formula.
Building on this foundation, research has been conducted in many fields, including finance [3],
optimal control [4], population growth [5], pharmacokinetics [6, 7], epidemiology [8], and heat
conduction [9, 10]. However, in many practical contexts, first-order scalar UDEs may not fully
capture the complexity of real-world scenarios. Often, more intricate cases emerge, such as
higher-order, fractional-order, functional differential equations, etc. Thus, investigating theories
concerning those UDEs is of significant importance. This paper primarily focuses on the inverse
uncertainty distribution problem of a class of higher-order UDEs.

Zhang [11] has rigorously defined the concept of multiple integrals and higher-order derivatives
of uncertain processes, establishing the framework for higher-order UDEs. These contributions have
addressed previous theoretical deficiencies in higher-order UDEs and provided new analytical methods
for solving more complex uncertain system problems. However, the definition of the α-path, which
is crucial for determining the inverse uncertainty distribution of UDEs’ solutions, was not provided.
Therefore, in this article, we define the α-path for second-order UDEs and a class of higher-order
UDEs, and determine the corresponding inverse uncertainty distributions for the solutions of these
types of UDEs. This will enable a more comprehensive understanding and analysis of higher-order
uncertain processes, offering new perspectives and tools for the theoretical development and practical
application of uncertain calculus.

To determine the inverse uncertainty distribution of the solutions to UDEs, it is essential to identify
the α-paths. The formation of α-paths must satisfy fundamental conditions, primarily concerning the
monotonicity with respect to α. That is, at any given time t, the value of Xαt on an α-path should
monotonically increase with respect to α, as illustrated in Figure 1(a). It is impermissible to encounter
a scenario as depicted in Figure 1(c) and Figure 2(b). The main focus of this paper is to study under
what conditions the α-paths of UDEs behave like the one in Figure 1(a), rather than exhibiting the
situations shown in (b) and (c).

Figure 1. Schematic diagram of α-paths.
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Figure 2. Analysis diagram of the inverse uncertainty distribution in UDEs.

The rest of this paper is organized as follows: In Section 2, we review related concepts and
conclusions of uncertainty theory. In Section 3, we define the α-paths for some second-order UDEs
and a class of higher-order UDEs, deriving the inverse uncertainty distribution corresponding to the
solutions. In Section 4, we provide positive and negative instances of the theorem in Section 3. In
Section 5, we give a brief summary of this paper. Figure 2 illustrates the conceptual framework of this
manuscript, encapsulating the core ideas and interconnections presented in the paper.

2. Preliminary

In this section, we introduce some basic concepts and theorems about uncertain processes and
uncertain calculus.

Definition 2.1. (Liu [12]) Let Γ be a non-empty set, let Λ be a σ-algebra over Γ, and let M be an
uncertain measure. Then the triplet (Γk,Lk,Mk) is called an uncertainty space.

Theorem 2.1. [13] (Measure Inversion Theorem) Let ξ be an uncertain variable with uncertainty
distribution Φ. Then for any real number x, we have

M{ξ ≤ x} = Φ(x),M{ξ > x} = 1 − Φ(x).

Definition 2.2. (Liu [14]) An uncertain process Ct is said to be a Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t-Cs is a normal uncertain variable with an expected value of 0 and variance

t2.

AIMS Mathematics Volume 9, Issue 11, 33023–33061.



33026

Definition 2.3. (Yao-Chen [2]) Let α be a number between 0 and 1. An uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

is said to have an α-path Xαt if it solves the corresponding ordinary differential equation

dXαt = f (t, Xαt )dt + |g(t, Xαt )|Φ−1(α)dt

where Φ−1(α) is the inverse standard normal uncertainty distribution, i.e.,

Φ−1(α) =

√
3
π

ln
α

1 − α
.

Definition 2.4. (Liu [12]) Suppose f and g are continuous functions. An uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

is said to satisfy the regular condition if

g(t, Xt) > 0,∀t ≥ 0.

Theorem 2.2. (Liu [12]) The uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

has a unique solution if the functions f (t, x) and g(t, x) satisfy the linear growth condition

| f (t, x)| + |g(t, x)| ≤ L(1 + |x|),∀x ∈ ℜ, t ≥ 0

and the Lipschitz condition

| f (t, x) − f (t, y)| + |g(t, x) − g(t, y)| ≤ L(|x − y|),∀x, y ∈ ℜ, t ≥ 0.

Without loss of generality, suppose L. Moreover, the solution is sample continuous.

Theorem 2.3. (Liu [12]) Let Xαt be the α-path of the regular uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt.

If the linear growth, Lipschitz, and regular conditions hold, then Xαt is a strictly increasing function
with respect to α at each time t > 0.

Theorem 2.4. (Liu [12]) Let Xαt be the α-path of the regular uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt.

Then Xαt is a continuous function with respect to α at each time t > 0.
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Theorem 2.5. (Yao-Chen formula [2]) Let Xt and Xαt be the solution and α-path of the regular
uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt,

respectively. Then
M{Xt ≤ Xαt ,∀t} = α,

M{Xt > Xαt ,∀t} = 1 − α.

Definition 2.5. (Liu [14]; Chen and Ralescu [15]; Ye [16]) Let Ct be a Liu process, and let Zt be an
uncertain process. If there exist two sample-continuous uncertain processes µt and δt such that

Zt = Z0 +

∫ t

0
µsds +

∫ t

0
δsdCs,

for any t ≥ 0, then Zt is called a general Liu process with drift µt and diffusion δt. Furthermore, Zt has
an uncertain differential

dZt = µtdt + δtdCt,

and a first-order derivative
Żt = µt + δtĊt,

where Ċt is the formal derivative dCt/dt.

Definition 2.6. (Zhang [11]) Let Ct be a Liu process, and let Zt be an uncertain process. If there exist
sample-continuous uncertain processes µt and δt such that

Zt = Z0 + Ż0t +
∫ t

0

∫ s

0
µrdrds +

∫ t

0

∫ s

0
δrdCrds

for any t ≥ 0, then Zt is called a second-order Liu process and has a second-order derivative

Z̈t = µt + δtĊt,

where Z̈t is the formal second-order derivative d2Zt/dt2.

Theorem 2.6. (Zhang [11]) Let f (t, s) be an uncertain field, and let Xt and Ys be general Liu processes.
For any partition of the closed region [0, a] × [0, b] with

0 = t1 < t2 < · · · < tn+1 = a, 0 = s1 < s2 < · · · < sm+1 = b,

the mesh is written as
∆ = max

1≤i≤n
1≤ j≤m

√
(ti+1 − ti)2 + (si+1 − si)2.

Then the double Liu integral of f (t, s) with respect to Xt and Ys is defined as"
[0,a]×[0,b]

f (t, s)dXtdYs = lim
∆→0

n∑
i=1

m∑
j=1

f (ti, si)(Xti+1 − Xti)(Ys j+1 − Ys j),

provided that there is an uncertain variable to which the above sum converges almost surely as ∆→ 0.
In this case, the uncertain field f (t, s) is said to be integrable with respect to Xt and Ys.
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Theorem 2.7. Zhang [11] (Fubini’s Theorem) Let Xt and Ys be general Liu processes. Suppose f (t, s)
is an integrable uncertain field with respect to Xt and Ys. Then

(1)
∫ a

0
f (t, s)dXt and

∫ b

0
f (t, s)dYs exist almost surely;

(2)
∫ a

0
f (t, s)dXt and

∫ b

0
f (t, s)dYs are integrable with respect to Ys and Xt, respectively;

(3) "
[0,a]×[0,b]

f (t, s)dYsdXt =

∫ b

0

∫ a

0
f (t, s)dXtdYs, a.s.

Definition 2.7. (Liu [12]) Suppose f and g are continuous functions. An uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

is said to be regular if

g(t, Xt) > 0,∀t > 0.

Definition 2.8. (Zhang [11]) An uncertain process Xt is called a solution of the higher-order uncertain
integral equation if

Xt =

n−1∑
i=0

ti

i!
Xi

0 +

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
f (t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t )dtndtn−1 . . . dt2dt1

+

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
g(t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t )dCtndtn−1 . . . dt2dt1,

where Ct is a Liu process, and f and g are continuous functions. Equivalently, the above equation can
be simply written as the differential form

X(n)
t = f (t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t ) + g(t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t )Ċt,

that is called a higher-order uncertain diferential equation.

Theorem 2.8. (Liu [17]) A function Φ−1 : (0, 1) → ℜ is the inverse uncertainty distribution of an
uncertain variable ξ if and only if it is continuous and

M{ξ ≤ Φ−1(α)} = α.

3. The inverse uncertainty distribution to some higher-order UDEs

Initially, for the significant research conclusions obtained in this paper, such as Theorem 3.6, a
schematic diagram is employed for a more intuitive representation of the research process, as shown in
Figure 3.
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Figure 3. The proof process of the Ψ−1
t (α) for second-order UDEs.

Next, we introduce Lemma 3.1, which serves as a foundation for the proof of Theorems 3.3, 3.4,
3.7, and 3.8.

Lemma 3.1. Lemma 3.1. Let Xt satisfies the following higher-order UDE:X(n)
t = f (t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t ) + g(t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t Ċt,

X0(γ) = X0, X
(k)
0 (γ) = Xk

0, k = 1, 2, . . . , n − 1.

Then, Xt also satisfies the following integral equation:

Xt =

n−1∑
k=0

tk

k!
Xk

0 +
1

(n − 1)!

∫ t

0
(t − s)n−1 f (s, X(1)

s , X
(2)
s , . . . , X

(n−1)
s )ds

+
1

(n − 1)!

∫ t

0
(t − s)n−1g(s, Xs, X(1)

s , X
(2)
s , . . . , X

(n−1)
s )dCs.

For simplicity and clarity, we denote Xt(γ) as Xt. Henceforth, we shall use Xt to represent the
solution to the UDE and Xαt to denote its corresponding α-path.

Proof. Introduce two variables, Zt and Wt, which respectively satisfy the following two equations:Z(n)
t = 0,

Zt

∣∣∣∣
t=0
= Z0,Z

(k)
t

∣∣∣∣
t=0
= Zk

0, k = 1, 2, . . . , n − 1.

W (n)
t = f (t,Wt,W

(1)
t ,W

(2)
t , . . . ,W

(n−1)
t ) + g(t,Wt,W

(1)
t ,W

(2)
t , . . . ,W

(n−1)
t )Ċt,

W (k)
t

∣∣∣∣
t=0
= 0.
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It can be easily derived that Xt = Zt +Wt. For Zt, we integrate both sides directly:

Zt =

∫ t

0
Z(1)

s ds

= −

∫ t

0
Z(1)

s d(t − s)

= −Z(1)
s (t − s)|t0 −

1
2

∫ t

0
Z(2)

s d(t − s)2

= Z1
0 t +

1
2

Z2
0 t2 −

1
3 × 2

∫ t

0
Z(3)

s (s)d(t − s)3

. . .

= Z1
0 t +

1
2

Z2
0 t2 +

1
3 × 2

Z3
0 t3 + · · · +

1
(n − 1)!

Zn−1
0 t(n−1)

=

n−1∑
k=0

tk

k!
Zk

0.

(3.1)

For Wt, we use intregration by parts repeatedly as follows:

Wt =

∫ t

0
W (1)

s ds

= −

∫ t

0
W (1)

s d(t − s)

= −W (1)
s (t − s)|t0 +

∫ t

0
(t − s)W (2)

s ds

= −
1
2

W2
0 t2 +

1
2

∫ t

0
(t − s)2W (3)

s ds

. . .

=
1

(n − 1)!

∫ t

0
(t − s)n−1 f (s,Ws,W (1)

s ,W
(2)
s , . . . ,W

(n−1)
s )ds

+
1

(n − 1)!

∫ t

0
(t − s)n−1g(s,Ws,W (1)

s ,W
(2)
s , . . . ,W

(n−1)
s )dCs.

(3.2)

Thus, adding Eqs (3.1) and (3.2), we derive the integral equation satisfied by Xt:

Xt = Zt +Wt

=

n−1∑
k=0

tk

k!
Xk

0 +
1

(n − 1)!

∫ t

0
(t − s)n−1X(n)

s (s)ds

=

n−1∑
k=0

tk

k!
Xk

0 +
1

(n − 1)!

∫ t

0
(t − s)n−1 f (s, Xs, X(1)

s , X
(2)
s , . . . , X

(n−1)
s )ds

+
1

(n − 1)!

∫ t

0
(t − s)n−1g(s, Xs, X(1)

s , X
(2)
s , . . . , X

(n−1)
s )dCs.

□

AIMS Mathematics Volume 9, Issue 11, 33023–33061.



33031

Definition 3.1. Let α be a number between 0 and 1. An uncertain differential equationdnXt
dtn = f (t, Xt, . . . ,

dn−1Xt
dtn−1 ) + g(t, Xt, . . . ,

dn−1Xt
dtn−1 )dCt

dt ,

Xt

∣∣∣∣
t=0
= X0,

dXt
dt

∣∣∣∣
t=0
= X1, . . . ,

dnXt
dtn

∣∣∣∣
t=0
= Xn

is said to have an α-path Xαt if it solves the corresponding ordinary differential equation
dnXαt
dtn = f (t, Xαt , . . . ,

dn−1Xαt
dtn−1 ) + |g(t, Xαt , . . . ,

dn−1Xαt
dtn−1 )|Φ−1(α),

Xαt
∣∣∣∣
t=0
= X0,

dXαt
dt

∣∣∣∣
t=0
= X1, . . . ,

dnXαt
dtn

∣∣∣∣
t=0
= Xn,

where Φ−1(α) is the inverse standard normal uncertainty distribution, i.e.,

Φ−1(α) =

√
3
π

ln
α

1 − α
.

Example 1. In the uncertain spring vibration equation [18] denoted asd2Xt
dt2 + 20 dXt

dt + 64Xt =
dCt
dt ,

Xt

∣∣∣∣
t=0
= 0, dXt

dt

∣∣∣∣
t=0
= 0.

The solution is given by

Xt =
1

12

∫ t

0
(exp(−4t + 4s) − exp(−16t + 16s))dCs,

it has an α-path

Xαt = (
3

16
−

1
4

exp(−4α) +
1

16
exp(−16α))

√
3

12π
ln

t
1 − t
,

and the inverse uncertainty distribution is expressed as

Ψ−1
t (α) = (

3
16
−

1
4

exp(−4t) +
1

16
exp(−16t))

√
3

12π
ln
α

1 − α
.

Note 1.

(1) There are generally two approaches to obtaining the inverse uncertain distribution Ψ−1
t (α) of the

solution to a UDE. One approach involves directly solving the equation to obtain Ψ−1
t (α) [18],

and the other involves solving its α-path, which entails solving a family of deterministic ordinary
differential equations to determine Ψ−1

t (α).
(2) The first method is straightforward, allowing for the direct computation of the solution Xt, and

consequently, the inverse uncertainty distribution. Example 1 is linear and thus allows for the
computation of Xt. However, for the majority of equations, analytical solutions cannot be
derived, and currently, there are no numerical methods available for directly solving uncertain
systems. Therefore, this method has significant limitations. The second method does not suffer
from such limitations, as it involves solving a family of ordinary differential equations for the
α-path, which has a variety of solution methods. Consequently, the second method is more
meaningful in practical applications and represents the direction of research in this paper.
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(3) Regarding Xαt and Ψ−1
t (α), if we consider them as bivariate functions, they represent the same

function. If we view them as univariate functions with a single parameter, Xαt is a function with
α as the parameter and t as the independent variable. Ψ−1

t (α) is a function with t as the parameter
and α as the independent variable. Therefore, knowing Xαt allows us to determine Ψ−1

t (α) by
simply interchanging the roles of the parameter and the independent variable.

Definition 3.2. Suppose f and g are continuous functions. An uncertain differential equation

dnXt

dtn = f (t, Xt, . . . ,
dn−1Xt

dtn−1 ) + g(t, Xt, . . . ,
dn−1Xt

dtn−1 )
dCt

dt

is said to be regular if

g(t, Xt, . . . ,
dn−1Xt

dtn−1 ) > 0,∀t > 0.

Theorem 3.1. The uncertain differential equation isX(n)
t = f (t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t ) + g(t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t )Ċt,

Xt

∣∣∣∣
t=0
= y0, X

(1)
t

∣∣∣∣
t=0
= y1, . . . , X

(n−1)
t

∣∣∣∣
t=0
= yn−1

where
X = (Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t ).

It has a unique solution if the functions f (t,X) and g(t,X) satisfy the linear growth condition

| f (t,X)| + |g(t,X)| ≤ L(1 + ||X||),∀X ∈ ℜn, t ≥ 0, ||X|| =
n∑

i=1

|Xi|,

and the Lipschitz condition

| f (t,X) − f (t,Z)| + |g(t,X) − g(t,Z)| ≤ L(|X − Z|),∀X,Z ∈ ℜn, t ≥ 0.

Without loss of generality, suppose L ≥ 2. Moreover, the solution is sample continuous.

Proof. At first, Theorem 14.1 in [12] says that there exists an event Λ withM{Λ} = 1, such that Ct(γ)
is Lipschitz continuous with respect to t for each γ ∈ Λ. Next, we prove the existence and continuity
of the solution by a successive approximation method. Define

X(0)
t (γ) = y0, . . . ,Y

(0)
tn−1

(γ) = yn−1,

and 

dXt = Yt,1dt,

dYt,1 = Yt,2dt,

. . .

dYt,n−1 = f (t, Xt,Yt,1, . . . ,Yt,n−1)dt + g(t, Xt,Yt,2, . . . ,Yt,n−1)dCt,

Xt

∣∣∣∣
t=0
= y0,Yt,1

∣∣∣∣
t=0
= y1, . . . ,Yt,n−1

∣∣∣∣
t=0
= yn−1.
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By integrating,



X(n)
t (γ) = y0 +

∫ t

0
Y (n−1)

t,1 (γ)ds,

Y (n)
t,1 (γ) = y1 +

∫ t

0
Y (n−1)

t,2 (γ)ds,

. . .

Y (n)
t,n−1(γ) = yn−1 +

∫ t

0
f (s, X(n−1)

s (γ), . . . ,Y (n−1)
s,n−1 (γ))ds +

∫ t

0
g(s, X(n−1)

s (γ), . . . ,Y (n−1)
s,n−1 (γ))dCs(γ),

Xt

∣∣∣∣
t=0
= y0,Yt,1

∣∣∣∣
t=0
= y1, . . . ,Yt,n−1

∣∣∣∣
t=0
= yn−1,

for each integer n. It follows from the linear growth condition that

|X(1)
t (γ) − X(0)

t (γ)| + |Y (1)
t,1 (γ) − Y (0)

s,1 (γ)| + · · · + |Y (1)
t,n−1(γ) − Y (0)

t,n−1(γ)|

=|

∫ t

0
Y0

s,1(γ)ds| + |
∫ t

0
Y0

s,2(γ)ds| + · · · + |
∫ t

0
f (s, X0

s (γ), . . . ,Y0
s,n−1(γ))ds|

+ |

∫ t

0
g(s, X0

s (γ), . . . ,Y0
s,n−1(γ))dCs(γ)|

≤

∫ t

0
|y1|ds +

∫ t

0
|y2|ds + · · · +

∫ t

0
| f (s, X0

s (γ), . . . ,Y0
s,n−1(γ))|ds

+ Kγ

∫ t

0
|g(s, X0

s (γ), . . . ,Y0
s,n−1(γ))|ds

≤

∫ t

0
(|y1| + · · · + |yn−1|)ds +

∫ t

0
L(1 + |y0| + |y1| + · · · + |yn−1|)ds

+ Kγ

∫ t

0
L(1 + |y0| + |y1| + · · · + |yn−1|)ds

≤

∫ t

0
(1 + |y0| + |y1| + · · · + |yn−1|)ds +

∫ t

0
L(1 + |y0| + |y1| + · · · + |yn−1|)ds

+ Kγ

∫ t

0
L(1 + |y0| + |y1| + · · · + |yn−1|)ds

=

∫ t

0
(1 + L + Kγ · L)(1 + |y0| + |y1| + · · · + |yn−1|)ds

≤

∫ t

0
(2 + Kγ)L(1 + |y0| + |y1| + · · · + |yn−1|)ds

=(1 + |y0| + |y1| + · · · + |yn−1|)L(2 + Kγ)t

for any t ≥ 0, where Kγ is the Lipschitz constant to the sample path Ct(γ). Assume

|X(k)
t (γ) − X(k−1)

t (γ)| + |Y (k)
t,1 (γ) − Y (k−1)

t,1 (γ)| + · · · + |Y (k)
t,n−1(γ) − Y (k−1)

t,n−1 (γ)|

≤(1 + |y0| + |y1| + · · · + |yn−1|)
Lk(2 + Kγ)k

k!
tk.
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It follows from the Lipschitz condition that

|X(k+1)
t (γ) − X(k)

t (γ)| + |Y (k+1)
t,1 (γ) − Y (k)

t,1 (γ)| + · · · + |Y (k+1)
tn−1

(γ) − Y (k)
tn−1

(γ)|

≤

∫ t

0
|Y (k)

s,1(γ) − Y (k−1)
s,1 (γ)|ds + · · · +

∫ t

0
|Y (k)

s,n−1(γ) − Y (k−1)
s,n−1(γ)|ds

+

∫ t

0
| f (s, X(k)

s (γ), . . . ,Y (k)
s,n−1(γ)) − f (s, X(k−1)

s (γ), . . . ,Y (k−1)
s,n−1(γ))|ds

+ Kγ

∫ t

0
|g(s, X(k)

s (γ), . . . ,Y (k)
s,n−1(γ)) − g(s, X(k−1)

s (γ), . . . ,Y (k−1)
s,n−1(γ))|ds

≤

∫ t

0
(|X(k)

s (γ) − X(k−1)
s (γ)| + |Y (k)

s,1(γ) − Y (k−1)
s,1 (γ)| + · · · + |Y (k)

s,n−1(γ) − Y (k−1)
s,n−1(γ)|)ds

+ L
∫ t

0
(|X(k)

s (γ) − X(k−1)
s (γ)| + |Y (k)

s,1(γ) − Y (k−1)
s,1 (γ)| + · · · + |Y (k)

s,n−1(γ) − Y (k−1)
s,n−1(γ)|)ds

+ KγL
∫ t

0
(|X(k)

s (γ) − X(k−1)
s (γ)| + |Y (k)

s,1(γ) − Y (k−1)
s,1 (γ)| + · · · + |Y (k)

s,n−1(γ) − Y (k−1)
s,n−1(γ)|)ds

≤(1 + |y0| + |y1| + · · · + |yn−1|)
Lk+1(2 + Kγ)k+1

(k + 1)!
tk+1.

The above induction shows that

|Y (k+1)
t,n−1 (γ) − Y (k)

t,n−1(γ)| ≤ (1 + |y0| + |y1| + · · · + |yn−1|)
Ln+1(2 + Kγ)n+1

(n + 1)!
tn+1

for each integer n. This means that, for each γ ∈ Λ, the sequence X(n)
t (γ) converges uniformly on any

given time interval as n→ ∞. Furthermore, since X(0)
t is constant, obviously it is continuous. Suppose

X(k)
t is continuous. Then, X(k)

t is also continuous with respect to t. So, by induction, X(n)
t is continuous

for all n. Provided X(n)
t converges uniformly, that is lim

n→∞
X(n)

t (γ) = Xt(γ), the limit function Xt is also
continuous.

The solution to the first equation below is Xt(γ).

Xt(γ) = y0 +
∫ t

0
Yt,1(γ)ds,

Yt,1(γ) = y1 +
∫ t

0
Yt,2(γ)ds,

. . .

Yt,n−1(γ) = yn−1 +
∫ t

0
f (s, Xs(γ), . . . ,Ys,n−1(γ))ds +

∫ t

0
g(s, Xs(γ), . . . ,Ys,n−1(γ))dCs(γ),

Xt

∣∣∣∣
t=0
= y0,Yt,1

∣∣∣∣
t=0
= y1, . . . ,Yt,n−1

∣∣∣∣
t=0
= yn−1.

We then prove that the solution is unique. Assume that both Xt and X∗t are solutions of the UDE. For
each γ ∈ Λ, it follows from the Lipschitz condition that

Xt(γ) − X∗t (γ) ≤ L(2 + Kγ)
∫ t

0
(Xs(γ) − X∗s(γ))ds.

By using the Gronwall inequality, we obtain

Xt(γ) − X∗t (γ) = 0 · exp(L(2 + Kγ)t) = 0.

Hence Xt = X∗t . The uniqueness is verified. The theorem is proved. □
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Note 2. The conditions on f and g in the aforementioned theorem are stringent, leading to an ideal
conclusion: the global existence of solutions. However, in practical problems, such a perfect
conclusion is not necessary. Therefore, we can relax the condition, for instance, by discussing the
properties of solutions within a bounded domain. In this case, the linear growth condition for f and g
is not required. Instead, it is sufficient that f and g have an upper bound M on the domain G. This
also allows us to derive th einequality

|X(1)
t (γ) − X(0)

t (γ)| + |Y (1)
t1 (γ) − Y (0)

s1
(γ)| + · · · + |Y (1)

tn−1
(γ) − Y (0)

tn−1
(γ)|

≤ (1 + |y0| + |y1| + · · · + |yn−1|)L(2 + Kγ)t.

From this inequality, we can infer the existence, continuity, and uniqueness of the solution on the
domain. These are more practical conditions for applications, and the examples provided later in the
paper all meet this criterion.

Theorem 3.2. Let Xαt be the α-path of the uncertain differential equationX(n)
t = f (t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t ) + g(t, Xt, X

(1)
t , X

(2)
t , . . . , X

(n−1)
t )Ċt,

Xt

∣∣∣∣
t=0
= y0, X

(1)
t

∣∣∣∣
t=0
= y1, . . . , X

(n−1)
t

∣∣∣∣
t=0
= yn−1.

If f and g satisfy the Lipschitz and regular conditions hold, then Xαt is a continuous function with
respect to α at each time t > 0.

Proof. Since f and g satisfy the Lipschitz conditions, it follows from Theorem 3.1 that the UDEs

dXαt = Yαt,1dt,

dYαt,1 = Yαt,2dt,

. . .

dYαt,n−1 = f (t, Xαt ,Y
α
t,1, . . . ,Y

α
t,n−1)dt + g(t, Xαt ,Y

α
t,2, . . . ,Y

α
t,n−1)Φ−1(α)dt,

Xt

∣∣∣∣
t=0
= y0,Yt1

∣∣∣∣
t=0
= y1, . . . ,Yt,n−1

∣∣∣∣
t=0
= yn−1.

have a unique solution Xαt , where Φ−1(α) is the inverse standard normal uncertainty distribution. For
any numbers α and β between 0 and 1, it follows from the Lipschitz condition that

|Xαt − Xβt | + |Y
α
t,1 − Yβt,1| + · · · + |Y

α
t,n−1 − Yβt,n−1|

≤

∫ t

0
|Yαs,1 − Yβs,1|ds + · · · +

∫ t

0
|Yαs,n−1 − Yβs,n−1|ds

+

∫ t

0
| f (s, Xαs , . . . ,Y

α
s,n−1) − f (s, Xβs , . . . ,Y

β
s,n−1)|ds

+

∫ t

0
|g(s, Xαs , . . . ,Y

α
s,n−1) − g(s, Xβs , . . . ,Y

β
s,n−1)||Φ−1(α)|ds

+

∫ t

0
|g(s, Xβs , . . . ,Y

β
s,n−1)||Φ−1(α) − Φ−1(β)|
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≤

∫ t

0
(|Xαs − Xβs | + |Y

α
s,1 − Yβs,1| + · · · + |Y

α
s,n−1 − Yβs,n−1|)ds

+ L
∫ t

0
(|Xαs − Xβs | + |Y

α
s,1 − Yβs,1| + · · · + |Y

α
s,n−1 − Yβs,n−1|)ds

+ L|Φ−1(α)|
∫ t

0
(|Xαs − Xβs | + |Y

α
s,1 − Yβs,1| + · · · + |Y

α
s,n−1 − Yβs,n−1|)ds

+ |Φ−1(α) − Φ−1(β)|
∫ t

0
|g(s, Xβs , . . . ,Y

β
s,n−1)|ds

≤(2 + Φ−1(α))L
∫ t

0
(|Xαs − Xβs | + |Y

α
s,1 − Yβs,1| + · · · + |Y

α
s,n−1 − Yβs,n−1|)ds

+ |Φ−1(α) − Φ−1(β)|
∫ t

0
|g(s, Xβs , . . . ,Y

β
s,n−1)|ds.

By using the Gronwall inequality, we obtain

|Xαt − Xβt | + |Y
α
t,1 − Yβt,1| + · · · + |Y

α
t,n−1 − Yβt,n−1|

≤ |Φ−1(α) − Φ−1(β)|
∫ t

0
|g(s, Xβs , . . . ,Y

β
s,n−1)|ds · L(2 + Φ−1(α))t.

Thus
lim
α→β
|Xαt − Xβt | = 0

for each time t > 0. Hence Xαt is continuous with respect to α.
Note 3. The proof of Theorem 3.2 is pivotal as it establishes a necessary condition for Xαt to serve
as an inverse uncertainty distribution. This condition will be instrumental in the subsequent proofs of
Theorems 3.6 and 3.10.

Theorem 3.3. Let Xαt be the α-path of the regular uncertain differential equation

d2Xt

dt2 = f (t, Xt,
dXt

dt
) + g(t, Xt,

dXt

dt
)
dCt

dt
.

If the conditions
f (x, y1, z) ≤ f (x, y2, z), g(x, y1, z) ≤ g(x, y2, z),∀y1 < y2 (H)

are met and the linear growth, Lipschitz, and regular conditions hold, then Xαt is a continuous and
strictly increasing function with respect to α at each time t > 0.

Proof. Since f and g satisfy the linear growth and Lipschitz conditions, the α-path Xαt is continuous
with respect to t. Let Φ−1 be the inverse standard normal uncertainty distribution, and let α and β be
numbers with 0 < α < β < 1. Write the second-order UDEs in the form of a system of equations:

dXαt = Yαt dt,

dYαt = f (t, Xαt ,Y
α
t ) + g(t, Xαt ,Y

α
t )Φ−1(α)dt,

Xα0 = X0,Yα0 = Y0.

(3.3)
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dXβt = Yβt dt,

dYβt = f (t, Xβt ,Y
β
t ) + g(t, Xβt ,Y

β
t )Φ−1(β)dt,

Xβ0 = X0,Y
β
0 = Y0.

(3.4)

Define µ and ν as:
µ(T, t) = (T − t)[ f (t, Xαt ,Y

α
t ) + g(t, Xαt ,Y

α
t )Φ−1(α)],

ν(T, t) = (T − t)[ f (t, Xβt ,Y
β
t ) + g(t, Xβt ,Y

β
t )Φ−1(β)].

We have
µ(T, 0) = T [ f (0, X0,Y0) + g(0, X0,Y0)Φ−1(α)],

ν(T, 0) = T [ f (0, X0,Y0) + g(0, X0,Y0)Φ−1(β)].

Since g(0, X0,Y0) > 0 (regular condition), we have

µ(T, 0) < ν(T, 0).

Due to the continuous nature of f and g, and the continuity of Xαt and Yαt , we can infer that the
composite functions µ and ν are also continuous with respect to t.

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(T, t) < ν(T, t),∀t ∈ [0, r].

Thus, by Lemma 3.1, we have:

XαT = X0 + Y0T +
∫ T

0
(T − t) f (t, Xαt ,Y

α
t )dt +

∫ T

0
(T − t)g(t, Xαt ,Y

α
t )Φ−1(α)dt

< X0 + Y0T +
∫ T

0
(T − t) f (t, Xβt ,Y

β
t )dt +

∫ T

0
(T − t)g(t, Xβt ,Y

β
t )Φ−1(β)dt

= XβT

for any time T ∈ (0, r].
If for any t > r, Xαt < Xβt , and the theorem holds. We will prove that by contradiction.
Suppose there exists a time b > r at which Xαt and Xβt first meet, i.e.,

Xαb = Xβb , X
α
t < Xβt ,∀t ∈ (0, b).

The next phase of our proof will be to compare Yαt and Yβt in a similar way. Write

µ(t) = f (t, Xαt ,Y
α
t ) + g(t, Xαt ,Y

α
t )Φ−1(α),

ν(t) = f (t, Xβt ,Y
β
t ) + g(t, Xβt ,Y

β
t )Φ−1(β).

Since g(0, X0,Y0) > 0, we have
µ(0) < ν(0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(t) < ν(t),∀t ∈ [0, r].
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Thus,

Yαt = Y0 +

∫ t

0
f (s, Xαs ,Y

α
s )ds +

∫ t

0
g(s, Xαs ,Y

α
s )Φ−1(α)ds

< Y0 +

∫ t

0
f (s, Xβs ,Y

β
s )ds +

∫ t

0
g(s, Xβs ,Y

β
s )Φ−1(β)ds

= Yβt ,

for any time t ∈ (0, r].
We will prove Yαt < Yβt for r < t < b by contradiction.
Suppose there exists a time r < b < b at which Yαt and Yβt first meet, i.e.,

Yα
b
= Yβ

b
,Yαt < Yβt ,∀t ∈ (0, b).

Due to conditions (H), we have

f (b, Xα
b
,Yα

b
) < f (b, Xβ

b
,Yβ

b
), 0 < g(b, Xα

b
,Yα

b
) < g(b, Xβ

b
,Yβ

b
).

Then
µ(b) < ν(b).

By the continuity of µ and ν, there exists a time a ∈ (0, b) such that

µ(t) < ν(t), t ∈ [a, b].

Thus,

Yα
b
= Yαa +

∫ b

a
f (s, Xαs ,Y

α
s )ds +

∫ b

a
g(s, Xαs ,Y

α
s )Φ−1(α)ds

< Yβa +
∫ b

a
f (s, Xβs ,Y

β
s )ds +

∫ b

a
g(s, Xβs ,Y

β
s )Φ−1(β)ds

= Yβ
b
,

which is in contradiction with the assumption Yα
b
= Yβ

b
. Therefore,

Yαt < Yβt ,∀0 < t < b.

Integrate Eqs (3.3) and(3.4)

Xαb = X0 +

∫ b

0
Yαt dt,

Xβb = X0 +

∫ b

0
Yαt dt,

and we have
Xαb < Xβb ,

which is in contradiction with the assumption Xαb = Xβb . The theorem is proved. □
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Note 4. Condition (H) is indispensable in the proof of the theorem. Should condition (H) not hold, it
would be impossible to establish the relationship between Xα

b
and Xβ

b
when proving µ(b) < ν(b) and

thus the proof would be untenable.
By Theorem 3.3, we have established that Xt is a continuous and strictly increasing function with

respect to α. We wonder whether this collection of α-paths can determine the inverse uncertainty
distribution of the solutions to second-order UDEs. The following Theorem 3.4 provides a definitive
answer.

Theorem 3.4. Let Xt and Xαt be the solution and α-path of a regular uncertain differential equation

d2Xt

dt2 = f (t, Xt,
dXt

dt
) + g(t, Xt,

dXt

dt
)
dCt

dt
.

If the conditions (H) are met and the linear growth, Lipschitz, and regular conditions hold, then we
have

M{Xt ≤ Xαt ,∀t} = α,

M{Xt > Xαt ,∀t} = 1 − α.

Proof. Theorem 14.3 in [12] constructs an event Λ1 withM{Λ1} = α, and shows that for each γ ∈ Λ1,
there exists a small number δ > 0 such that

Cs(γ) −Ct(γ)
s − t

< Φ−1(α − δ) (3.5)

for any times s and t with s > t, where Φ−1 is the inverse standard normal uncertainty distribution.
Since f and g satisfy the linear growth and Lipschitz conditions, Xαt and Xt(γ) are continuous with
respect to t. Write the second-order UDE in the form of a system of equations:

dXt = Ytdt,

dYt = f (t, Xt,Yt)dt + g(t, Xt,Yt)dCt,

Xt

∣∣∣∣
t=0
= X0,Yt

∣∣∣∣
t=0
= Y0.

(3.6)

Define λ, µ, and ν as:

λ(T, t, s) = (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
],

µ(T, t) = (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α − δ)],

ν(T, t) = (T − t)[ f (t, Xαt ,Y
α
t ) + g(t, Xαt ,Y

α
t )Φ−1(α)].

Due to the continuous nature of f and g, and the continuity of Xt(γ) and Yt(γ), we can infer that the
composite functions λ, µ, and ν are also continuous with respect to t.

Since g(0, X0,Y0) > 0 (regular condition), we have

µ(T, 0) < ν(T, 0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(T, t) < ν(T, t),∀t ∈ [0, r].
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By inequality (3.5), for any time t ∈ [0, r] and any time s ∈ (t,∞), we have

λ(T, t, s) = (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
]

< (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α − δ)]
= µ(T, t) < ν(T, t).

By Lemma 3.1, it follows that

XT (γ) = X0 + Y0T +
∫ T

0
(T − t) f (t, Xt(γ),Yt(γ))dt +

∫ T

0
(T − t)g(t, Xt(γ),Yt(γ))dCt(γ)

= X0 + Y0T + lim
∆→0

k∑
i=1

λ(T, ti+1, ti)(ti+1 − ti)

≤ X0 + Y0T + lim
∆→0

k∑
i=1

µ(T, ti)(ti+1 − ti)

= X0 + Y0T +
∫ T

0
µ(T, t)dt

< X0 + Y0T +
∫ T

0
ν(T, t)dt

= X0 + Y0T +
∫ T

0
(T − t) f (t, Xαt ,Y

α
t )dt +

∫ T

0
(T − t)g(t, Xαt ,Y

α
t )Φ−1(α)dt

= XαT

for any time T ∈ (0, r].
We will then prove Xt(γ) < Xαt for all t > r by contradiction.
Suppose there exists a time b > r at which Xt(γ) and Xαt first meet, i.e.,

Xb(γ) = Xαb , Xt(γ) < Xαt ,∀t ∈ (0, b).

The next phase of our proof will be to compare Yαt and Yt(γ) in a similar way. Write

λ(t, s) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
,

µ(t) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α − δ),

ν(t) = f (t, Xαt ,Y
α
t ) + g(t, Xαt ,Y

α
t )Φ−1(α).

Since g(0, X0,Y0) > 0, we have
µ(0) < ν(0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(t) < ν(t),∀t ∈ [0, r].
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By inequality (3.5), for any time t ∈ [0, r] and any time s ∈ (t,∞), we have

λ(t, s) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
< f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α − δ)
= µ(t) < ν(t).

Thus,

Yt(γ) = Y0 +

∫ t

0
f (s, Xs(γ),Ys(γ))ds +

∫ t

0
g(s, Xs(γ),Ys(γ))dCs(γ)

= Y0 + lim
∆→0

k∑
i=1

λ(ti+1, ti)(ti+1 − ti)

≤ Y0 + lim
∆→0

k∑
i=1

µ(ti)(ti+1 − ti)

= Y0 +

∫ t

0
µ(t)dt

< Y0 +

∫ t

0
ν(t)dt

= Y0 +

∫ t

0
f (s, Xαs ,Y

α
s )ds +

∫ t

0
g(s, Xαs ,Y

α
s )Φ−1(α)ds

= Yαt
for any time t ∈ (0, r].

We will prove Yt(γ) < Yαt for all r < t < b by contradiction.
Suppose there exists a time r < b < b at which Yt(γ) and Yαt first meet, i.e.,

Yb(γ) = Yα
b
,Yt(γ) < Yαt ,∀t ∈ (0, b).

Due to conditions (H), we have

f (b, Xb(γ),Yb(γ)) < f (b, Xα
b
,Yα

b
), 0 < g(b, Xb(γ),Yb(γ)) < g(b, Xα

b
,Yα

b
),

and then
µ(b) < ν(b).

By the continuity of µ and ν, there exists a time a ∈ (0, b) such that

µ(t) < ν(t), t ∈ [a, b].

By inequality (3.5), for any time t ∈ [a, b] and any time s ∈ (t,∞), we have

λ(t, s) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
< f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α − δ)
= µ(t) < ν(t).
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Thus,

Yb(γ) = Ya(γ) +
∫ b

a
f (s, Xs(γ),Ys(γ))ds +

∫ b

a
g(s, Xs(γ),Ys(γ))dCs(γ)

= Ya(γ) + lim
∆→0

k∑
i=1

λ(ti+1, ti)(ti+1 − ti)

≤ Ya(γ) + lim
∆→0

k∑
i=1

µ(ti)(ti+1 − ti)

= Ya(γ) +
∫ b

a
µ(t)ds

< Yαa +
∫ b

a
ν(t)ds

= Yαa +
∫ b

a
f (s, Xαs ,Y

α
s )ds +

∫ b

a
g(s, Xαs ,Y

α
s )Φ−1(α)ds

= Yα
b
,

which is in contradiction with Yb(γ) = Yα
b
. Therefore,

Yt(γ) < Yαt ,∀0 < t < b.

Integrate Eq (3.6),

Xb(γ) = X0 +

∫ b

0
Yt(γ)dt,

Xαb = X0 +

∫ b

0
Yαt dt,

and we have
Xb(γ) < Xαb ,

which is in contradiction with Xb(γ) = Xαb . Therefore,

Xt(γ) < Xαt ,∀t > 0.

SinceM{Λ1} = α, we have
M{Xt ≤ Xαt ,∀t} ≥ α. (3.7)

Theorem 14.3 in [12] constructs an event Λ2 withM{Λ2} = 1 − α, and shows that for each γ ∈ Λ2,
there exists a small number δ > 0 such that

Cs(γ) −Ct(γ)
s − t

> Φ−1(α + δ) (3.8)

for any times s and t with s > t. Write

λ(T, t, s) = (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
],
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µ(T, t) = (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α + δ)],

ν(T, t) = (T − t)[ f (t, Xαt ,Y
α
t ) + g(t, Xαt ,Y

α
t )Φ−1(α)].

Since g(0, X0,Y0) > 0 (regular condition), we have

µ(T, 0) > ν(T, 0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(T, t) > ν(T, t),∀t ∈ [0, r].

By inequality (3.8), for any time t ∈ [0, r] and any time s ∈ (t,∞), we have

λ(T, t, s) = (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
]

> (T − t)[ f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α + δ)]
= µ(T, t) > ν(T, t).

By Lemma 3.1, it follows that

XT (γ) = X0 + Y0T +
∫ T

0
(T − t) f (t, Xt(γ),Yt(γ))dt +

∫ T

0
(T − t)g(t, Xt(γ),Yt(γ))dCt(γ)

= X0 + Y0T + lim
∆→0

k∑
i=1

λ(T, ti+1, ti)(ti+1 − ti)

≥ X0 + Y0T + lim
∆→0

k∑
i=1

µ(T, ti)(ti+1 − ti)

= X0 + Y0T +
∫ T

0
µ(T, t)dt

> X0 + Y0T +
∫ T

0
ν(T, t)dt

= X0 + Y0T +
∫ T

0
(T − t) f (t, Xαt ,Y

α
t )dt +

∫ T

0
(T − t)g(t, Xαt ,Y

α
t )Φ−1(α)dt

= XαT

for any time T ∈ (0, r].
We will then prove Xt(γ) < Xαt for all t > r by contradiction.
Suppose there exists a time b > r at which Xt(γ) and Xαt first meet, i.e.,

Xb(γ) = Xαb , Xt(γ) > Xαt ,∀t ∈ (0, b).

The next phase of our proof will be to compare Yαt and Yt(γ) in a similar way. Write

λ(t, s) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
,
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µ(t) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α + δ),

ν(t) = f (t, Xαt ,Y
α
t ) + g(t, Xαt ,Y

α
t )Φ−1(α).

Since g(0, X0,Y0) > 0, we have
µ(0) > ν(0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(t) > ν(t),∀t ∈ [0, r].

By inequality (3.8), for any time t ∈ [0, r] and any time s ∈ (t,∞), we have

λ(t, s) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
> f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α + δ)
= µ(t) > ν(t).

Thus,

Yt(γ) = Y0 +

∫ t

0
f (s, Xs(γ),Ys(γ))ds +

∫ t

0
g(s, Xs(γ),Ys(γ))dCs(γ)

= Y0 + lim
∆→0

k∑
i=1

λ(ti+1, ti)(ti+1 − ti)

≥ Y0 + lim
∆→0

k∑
i=1

µ(ti)(ti+1 − ti)

= Y0 +

∫ t

0
µ(t)dt

> Y0 +

∫ t

0
ν(t)dt

= Y0 +

∫ t

0
f (s, Xαs ,Y

α
s )ds +

∫ t

0
g(s, Xαs ,Y

α
s )Φ−1(α)ds

= Yαt

for any time t ∈ (0, r].
We will prove Yt(γ) > Yαt for all r < t < b by contradiction.
Suppose there exists a time r < b < b at which Yt(γ) and Yαt first meet, i.e.,

Yb(γ) = Yα
b
,Yt(γ) > Yαt ,∀t ∈ (0, b).

Due to conditions (H), we have

f (b, Xb(γ),Yb(γ)) > f (b, Xα
b
,Yα

b
), g(b, Xb(γ),Yb(γ)) > g(b, Xα

b
,Yα

b
) > 0,

and then
µ(b) > ν(b).
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By the continuity of µ and ν, there exists a time a ∈ (0, b) such that

µ(t) > ν(t), t ∈ [a, b].

By inequality (3.8), for any time t ∈ [a, b] and any time s ∈ (t,∞), we have

λ(t, s) = f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))
Cs(γ) −Ct(γ)

s − t
> f (t, Xt(γ),Yt(γ)) + g(t, Xt(γ),Yt(γ))Φ−1(α + δ)
= µ(t) > ν(t).

Thus,

Yb(γ) = Ya(γ) +
∫ b

a
f (s, Xs(γ),Ys(γ))ds +

∫ b

a
g(s, Xs(γ),Ys(γ))dCs(γ)

= Ya(γ) + lim
∆→0

k∑
i=1

λ(ti+1, ti)(ti+1 − ti)

≥ Ya(γ) + lim
∆→0

k∑
i=1

µ(ti)(ti+1 − ti)

= Ya(γ) +
∫ b

a
µ(t)ds

> Yαa +
∫ b

a
ν(t)ds

= Yαa +
∫ b

a
f (s, Xαs ,Y

α
s )ds +

∫ b

a
g(s, Xαs ,Y

α
s )Φ−1(α)ds

= Yα
b
,

which is in contradiction with Yb(γ) = Yα
b
. Therefore,

Yt(γ) > Yαt ,∀0 < t < b.

Integrate Eq (3.6),

Xb(γ) = X0 +

∫ b

0
Yt(γ)dt,

Xαb = X0 +

∫ b

0
Yαt dt,

and we have
Xb(γ) > Xαb ,

which is in contradiction with Xb(γ) = Xαb . Therefore,

Xt(γ) > Xαt ,∀t > 0.

SinceM{Λ2} = 1 − α, we have
M{Xt > Xαt ,∀t} ≥ 1 − α. (3.9)
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It follows from (3.7), (3.9) and

M{Xt ≤ Xαt ,∀t} +M{Xt > Xαt ,∀t} ≤ 1,

that
M{Xt ≤ Xαt ,∀t} = α,

M{Xt > Xαt ,∀t} = 1 − α.

The proof is now complete. □

Theorem 3.5. Let Xt and Xαt be the solution and α-path of a regular uncertain differential equation

d2Xt

dt2 = f (t, Xt,
dXt

dt
) + g(t, Xt,

dXt

dt
)
dCt

dt
.

If the conditions (H) are met, the linear growth, Lipschitz and regular conditions hold, then at any time
t > 0, we have

M{Xt ≤ Xαt } = α,

M{Xt > Xαt } = 1 − α.

Proof. Note that {Xt ≤ Xαt } ⊃ {Xs ≤ Xαs ,∀s > 0} holds for any time t > 0. By using the Theorems 3.3
and 3.4, we obtain

M{Xt ≤ Xαt } ≥ M{Xs ≤ Xαs ,∀s > 0} = α.

Similarly, we also have
M{Xt > Xαt } ≥ M{Xs > Xαs ,∀s > 0} = 1 − α.

Since {Xt ≤ Xαt } and {Xt > Xαt } are opposite events for each t > 0, the duality axiom makes

M{Xt ≤ Xαt } +M{Xt > Xαt } = 1.

The theorem is proved. □

Theorem 3.6. Let Xt and Xαt be the solution and α-path of the uncertain differential equation

d2Xt

dt2 = f (t, Xt,
dXt

dt
) + g(t, Xt,

dXt

dt
)
dCt

dt
,

respectively. If the conditions (H) are met, the linear growth, Lipschitz and regular conditions hold,
then Xt has an inverse uncertainty distribution

Ψ−1
t (α) = Xαt .

Proof. Theorem 3.2 says that Xαt is a continuous function with respect to α at each time t > 0.
Theorem 3.4 says that

M{Xt ≤ Xαt } = α

for any α ∈ (0, 1). It follows from Theorem 2.8 that the inverse uncertainty distribution of Xt is
Ψ−1

t (α) = Xαt . □
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Determining the inverse uncertainty distribution of solutions to second-order UDEs is more complex
than that for first-order UDEs. In our analysis, we employ Condition H, which is fundamentally derived
from the comparison theorem. Readers can refer to publications on the comparison theorem for higher-
order differential equations [19], partial order relations, and quasi-monotone functions [20].

We now turn to the discussion of higher-order UDEs. In Definition 2.7, we defined higher-order
UDEs and presented them in the form of a system of Eq (3.10). The first component of the solution to
system (3.10) is the solution to the equation as defined in Definition 2.7.

dXt = Yt,1dt,

dYt,1 = Yt,2dt,

. . .

dYt,n−1 = f (t, Xt,Yt,1, . . . ,Yt,n−1)dt + g(t, Xt,Yt,1, . . . ,Yt,n−1)dCt,

Xt

∣∣∣∣
t=0
= X0,Yt1

∣∣∣∣
t=0
= Y1, . . . ,Ytn−1

∣∣∣∣
t=0
= Yn−1.

(3.10)

However, since f is an (n+1)-ary function, applying the condition of inverse monotonicity becomes
more complex and less straightforward to prove. Yet, if our UDE is formulated as in Eq (3.11), we will
proceed to provide a proof for the theorem below.

Theorem 3.7. Let Xαt be the α-path of a regular uncertain differential equation

dnXt

dtn = f (t, Xt) + g(t, Xt)
dCt

dt
. (3.11)

If the linear growth, Lipschitz and regular conditions hold, then Xαt is a continuous and strictly
increasing function with respect to α at each time t > 0.

Proof. Since f and g satisfy the linear growth and Lipschitz conditions, the α-path Xαt is continuous
with respect to t. Let Φ−1 be the inverse standard normal uncertainty distribution, and let α and β be
numbers with 0 < α < β < 1. Write

dXαt = Yαt,1dt,

dYαt,1 = Yαt,2dt,

. . .

dYαt,n−1 = f (t, Xαt )dt + g(t, Xαt )Φ−1(α)dt,

Xαt
∣∣∣∣
t=0
= X0,Yαt,1

∣∣∣∣
t=0
= Y1, . . . ,Yαt,n−1

∣∣∣∣
t=0
= Yn−1.

(3.12)



dXβt = Yβt,1dt,

dYβt,1 = Yβt,2dt,

. . .

dYβt,n−1 = f (t, Xβt )dt + g(t, Xβt )Φ−1(β)dt,

Xβt
∣∣∣∣
t=0
= X0,Y

β
t,1

∣∣∣∣
t=0
= Y1, . . . ,Y

β
t,n−1

∣∣∣∣
t=0
= Yn−1.

(3.13)

µ(T, t) = (T − t)n−1[ f (t, Xαt ) + g(t, Xαt )Φ−1(α)],
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ν(T, t) = (T − t)n−1[ f (t, Xβt ) + g(t, Xβt )Φ−1(β)],

µ1(t) = f (t, Xαt ) + g(t, Xαt )Φ−1(α),

ν1(t) = f (t, Xβt ) + g(t, Xβt )Φ−1(β).

Due to the continuous nature of f and g, and the continuity of Xαt and Yαt , we can infer that the
composite functions µ, ν and µ1, ν1 are also continuous with respect to t.

Since g(0, X0) > 0 (regular condition), we have

µ(T, 0) < ν(T, 0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(T, t) < ν(T, t),∀t ∈ [0, r].

By Lemma 3.1, it follows that

XαT = X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

[
∫ T

0
(T − t)n−1 f (t, Xαt )dt +

∫ T

0
(T − t)n−1g(t, Xαt )Φ−1(α)dt]

< X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

[
∫ T

0
(T − t)n−1 f (t, Xβt )dt +

∫ T

0
(T − t)n−1g(t, Xβt )Φ−1(β)dt]

= XβT

for any time T ∈ (0, r].
We will prove Xαt < Xβt for any t > r by contradiction.
Suppose there exists a time b > r at which Xαt and Xβt first meet, i.e.,

Xαb = Xβb , X
α
t < Xβt ,∀t ∈ (0, b).

Since f (b, Xβb) = f (b, Xαb ), g(b, Xβb) = g(b, Xαb ) > 0, and we have

µ1(b) < ν1(b).

By the continuity of µ1 and ν1, there exists a time a ∈ (0, b) such that

µ1(t) < ν1(t), t ∈ [a, b].

Then, we have
(b − t)n−1

(n − 1)!
µ1(t) <

(b − t)n−1

(n − 1)!
ν1(t), t ∈ [a, b).

Choose a1 and b1 such that a < a1 < b1 < b. Thus, we have

(b − t)n−1

(n − 1)!
µ1(t) <

(b − t)n−1

(n − 1)!
ν1(t), t ∈ [a1, b1].
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Note that any continuous function defined on a closed interval can always reach its minimum. Without
loss of generality, suppose that ν1(t)-µ1(t) reaches its minimum on [a1, b1] at t∗ ∈ [a1, b1]. Then, we
have the following inequality:∫ b

a

(b − t)n−1

(n − 1)!
(ν1(t) − µ1(t))dt ⩾

∫ b1

a1

(b − t)n−1

(n − 1)!
(ν1(t) − µ1(t))dt

⩾

∫ b1

a1

(b − b1)n−1

(n − 1)!
(ν1(t∗) − µ1(t∗))dt

=
(b − b1)n−1

(n − 1)!
(ν1(t∗) − µ1(t∗))(b1 − a1)

>0.

Thus,

Xαb = X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

[
∫ b

a
(b − t)n−1 f (t, Xαt )dt

+

∫ b

a
(b − t)n−1g(t, Xαt )Φ−1(α)dt]

< X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

[
∫ b

a
(b − t)n−1 f (t, Xβt )dt

+

∫ b

a
(b − t)n−1g(t, Xβt )Φ−1(β)dt]

= Xβb ,

which is in contradiction with Xb(γ) = Xαb . The theorem is proved. □

By Theorem 3.7, we have established that Xt is a continuous and strictly increasing function with
respect to α. We wonder whether this collection of α-paths can determine the inverse uncertainty
distribution of the solutions to higher-order UDEs. The following Theorem 3.8 provides a definitive
answer.

Theorem 3.8. Let Xt and Xαt be the solution and α-path of the regular uncertain differential equation

dnXt

dtn = f (t, Xt) + g(t, Xt)
dCt

dt
.

If the linear growth, Lipschitz and regular conditions hold, then

M{Xt ≤ Xαt ,∀t} = α,

M{Xt > Xαt ,∀t} = 1 − α.

Proof. Theorem 14.3 in [12] constructs an event Λ1 withM{Λ1} = α, and shows that for each γ ∈ Λ1,
there exists a small number δ > 0 such that

Cs(γ) −Ct(γ)
s − t

< Φ−1(α − δ), (3.14)
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for any times s and t with s > t, where Φ−1 is the inverse standard normal uncertainty distribution.
Since f and g satisfy the linear growth and Lipschitz conditions, it follows from Theorem 3.1 that Xαt
and Xt(γ) exist and are continuous with respect to t. Write the higher-order UDE in the form of a
system of equations: 

dXt = Yt,1dt,

dYt,1 = Yt,2dt,

. . .

dYt,n−1 = f (t, Xt)dt + g(t, Xt)dCt,

Xt

∣∣∣∣
t=0
= X0,Yt1

∣∣∣∣
t=0
= Y1, . . . ,Ytn−1

∣∣∣∣
t=0
= Yn−1.

(3.15)

λ(T, t, s) = (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
],

µ(T, t) = (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α − δ)],

ν(T, t) = (T − t)n−1[ f (t, Xαt ) + g(t, Xαt )Φ−1(α)],

λ1(t, s) = f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
,

µ1(t) = f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α − δ),

ν1(t) = f (t, Xαt ) + g(t, Xαt )Φ−1(α).

Due to the continuous nature of f and g, and the continuity of Xt(γ), we can infer that the composite
functions λ, µ, ν and λ1, µ1, ν1 are also continuous with respect to t.

Since g(0, X0) > 0 (regular condition), we have

µ(T, 0) < ν(T, 0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(T, t) < ν(T, t),∀t ∈ [0, r].

By inequality (3.14), for any time t ∈ [0, r] and any time s ∈ (t,∞), we have

λ(T, t, s) = (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
]

< (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α − δ)
= µ(T, t) < ν(T, t).
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By Lemma 3.1, it follows that

XT (γ) = X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

[
∫ T

0
(T − t)n−1 f (t, Xt(γ))dt

+

∫ T

0
(T − t)n−1g(t, Xt(γ))dCt(γ)]

= X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

λ(T, ti+1, ti)(ti+1 − ti)

≤ X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

µ(T, ti)(ti+1 − ti)

= X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

∫ T

0
µ(T, t)dt

< X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

∫ T

0
ν(T, t)dt

= X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

∫ T

0
(T − t)n−1 f (t, Xαt )dt

+
1

(n − 1)!

∫ T

0
(T − t)n−1g(t, Xαt )Φ−1(α)dt

= XαT

for any time T ∈ (0, r].
We will prove Xt(γ) < Xαt for all t > r by contradiction. Suppose there exists a time b > r at which

Xt(γ) and Xαt first meet, i.e.,

Xb(γ) = Xαb , Xt(γ) < Xαt ,∀t ∈ (0, b).

Since f (b, Xαb ) = f (b, Xb(γ)), g(b, Xαb ) = g(b, Xb(γ)) > 0, and we have

µ1(b) < ν1(b).

By the continuity of µ1 and ν1, there exists a time a ∈ (0, b) such that

µ1(t) < ν1(t), t ∈ [a, b].

By inequality (3.14), for any time t ∈ [a, b) and any time s ∈ (t,∞), we have

(b − t)n−1λ1(t, s) = (b − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
]

< (b − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α − δ)
= (b − t)n−1µ1(t) < (b − t)n−1ν1(t).

AIMS Mathematics Volume 9, Issue 11, 33023–33061.



33052

By a similar process as in Theorem 3.7, which indicates that the integral of a non-negative function
with a positive interval is also positive, we have the following inequality:

Xb(γ) = X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1 f (t, Xt(γ))dt

+
1

(n − 1)!

∫ b

a
(b − t)n−1g(t, Xt(γ))dCt(γ)

= X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

(b − ti)n−1λ1(ti+1, ti)(ti+1 − ti)

≤ X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

(b − ti)n−1µ1(ti)(ti+1 − ti)

= X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1µ1(t)dt

< X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1ν1(t)dt

= X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1 f (t, Xαt )dt

+
1

(n − 1)!

∫ b

a
(b − t)n−1g(t, Xαt )Φ−1(α)dt

= Xαb

which is in contradiction with Xb(γ) = Xαb . Therefore,

Xt(γ) < Xαt ,∀t > 0.

SinceM{Λ1} = α, we have
M{Xt ≤ Xαt ,∀t} ≥ α. (3.16)

Theorem 14.3 in [1] constructs an event Λ2 withM{Λ2} = 1−α, and shows that for each γ ∈ Λ2, there
exists a small number δ > 0 such that

Cs(γ) −Ct(γ)
s − t

> Φ−1(α + δ) (3.17)

for any times s and t with s > t. Write

λ(T, t, s) = (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
],

µ(T, t) = (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α + δ)],

ν(T, t) = (T − t)n−1[ f (t, Xαt ) + g(t, Xαt )Φ−1(α)],

λ1(t, s) = f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
,
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µ1(t) = f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α + δ),

ν1(t) = f (t, Xαt ) + g(t, Xαt )Φ−1(α).

Since g(0, X0) > 0, we have
µ(T, 0) > ν(T, 0).

By the continuity of µ and ν, there exists a small number r > 0 such that

µ(T, t) > ν(T, t),∀t ∈ [0, r].

By inequality (3.17), for any time t ∈ [0, r] and any time s ∈ (t,∞), we have

λ(T, t, s) = (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
]

> (T − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α + δ)
= µ(T, t) > ν(T, t).

Thus,

XT (γ) = X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

∫ T

0
(T − t)n−1 f (t, Xt(γ))dt

+
1

(n − 1)!

∫ T

0
(T − t)n−1g(t, Xt(γ))dCt(γ)

= X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

(T − ti)n−1λ(T, ti+1, ti)(ti+1 − ti)

≥ X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

(T − ti)n−1µ(T, ti)(ti+1 − ti)

= X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

∫ T

0
µ(T, t)dt

> X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

∫ T

0
ν(T, t)dt

= X0 +

n−1∑
k=1

T k

k!
Yk +

1
(n − 1)!

∫ T

0
(T − t)n−1 f (t, Xαt )dt

+
1

(n − 1)!

∫ T

0
(T − t)n−1g(t, Xαt )Φ−1(α)dt

= XαT
for any time T ∈ (0, r].

We will prove Xt(γ) > Xαt for all t > r by contradiction.
Suppose there exists a time b > r at which Xt(γ) and Xαt first meet, i.e.,

Xb(γ) = Xαb , Xt(γ) > Xαt ,∀t ∈ (0, b).
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Since f (b, Xαb ) = f (b, Xb(γ)), g(b, Xαb ) = g(b, Xb(γ)) > 0, we have

µ1(b) > ν1(b).

By the continuity of µ1 and ν1, there exists a time a ∈ (0, b) such that

µ1(t) > ν1(t), t ∈ [a, b].

By inequality (3.17), for any time t ∈ [a, b] and any time s ∈ (t,∞), we have

(b − t)n−1λ1(t, s) = (b − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))
Cs(γ) −Ct(γ)

s − t
]

> (b − t)n−1[ f (t, Xt(γ)) + g(t, Xt(γ))Φ−1(α + δ)
= (b − t)n−1µ1(t) > (b − t)n−1ν1(t).

Thus,

Xb(γ) = X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1 f (t, Xt(γ))dt

+
1

(n − 1)!

∫ b

a
(b − t)n−1g(t, Xt(γ))dCt(γ)

= X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

(b − t)n−1λ1(ti+1, ti)(ti+1 − ti)

≥ X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

lim
∆→0

k∑
i=1

(b − t)n−1µ1(ti)(ti+1 − ti)

= X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1µ1(t)dt

> X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1ν1(t)dt

= X0 +

n−1∑
k=1

(b − a)k

k!
Yk +

1
(n − 1)!

∫ b

a
(b − t)n−1 f (t, Xαt )dt

+
1

(n − 1)!

∫ b

a
(b − t)n−1g(t, Xαt )Φ−1(α)dt

= Xαb ,

which is in contradiction with Xb(γ) = Xαb . Therefore,

Xt(γ) > Xαt ,∀t > 0.

SinceM{Λ2} = 1 − α, we have
M{Xt > Xαt ,∀t} ≥ 1 − α. (3.18)

It follows from (3.16), (3.18) and

M{Xt ≤ Xαt ,∀t} +M{Xt > Xαt ,∀t} ≤ 1
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that
M{Xt ≤ Xαt ,∀t} = α,

M{Xt > Xαt ,∀t} = 1 − α.

hold. □

Theorem 3.9. Let Xt and Xαt be the solution and α-path of the regular uncertain differential equation

dnXt

dtn = f (t, Xt) + g(t, Xt)
dCt

dt
.

If the linear growth, Lipschitz and regular conditions hold, then at any time t > 0, we have

M{Xt ≤ Xαt } = α,

M{Xt > Xαt } = 1 − α.

Proof. The proof follows a similar process to Theorem 3.5. □

Theorem 3.10. Let Xt and Xαt be the solution and α-path of the uncertain differential equation

dnXt

dtn = f (t, Xt) + g(t, Xt)
dCt

dt
,

respectively. If the linear growth, Lipschitz and regular conditions hold, then Xt has an inverse
uncertainty distribution

Ψ−1
t (α) = Xαt .

Proof. The proof follows a similar process to Theorem 3.6. □

4. Numerical examples

Moving forward, we will provide examples to illustrate the significance of Condition (H).

Example 2. For the uncertain Duffing system, the equation is given by

m
d2Xt

dt2 + δ
dXt

dt
+ αXt + βX3

t − ζcosω(t) − γ
dCt

dt
= 0.

The initial values are Xt0(γ) = Xαt0 = 0.1. For convenience, the parameters involved are illustrated in
Table 1.

The uncertain external excitation represents the influence of climate on the object within the system.
Figure 4 is a schematic diagram of the Duffing system, where the spring is a hardening spring.

We have
f (t, Xt,

dXt

dt
) = cos(t) −

dXt

dt
− Xt − X3

t , g(t, Xt,
dXt

dt
) = 1.

It is straightforward to deduce that

∂ f (t, Xt,
dXt
dt )

∂Xt
= −1 − 3X2

t < 0,
∂g(t, Xt,

dXt
dt )

∂Xt
= 0.
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Table 1. Parameter defintions and their corresponding values.

Parameters Interpretation Value
m Mass 1kg
δ Damping coefficient 1Ns/m
E Elastic modulus 1000Pa
A Cross-sectional area 0.01m2

L Length 0.1m
α Linear stiffness coefficient 1N/m
β Nonlinear stiffness coefficient 1N/m3

ζ Excitation coefficient 1N
ω Excitation frequency 1rads/s
γ Uncertain external excitation coefficient 1Ns/m

Figure 4. System schematic diagram.

Upon observing Figure 5, it can be seen that the α-path for α = 0.1 and α = 0.2 intersect at time
t1. The set of solutions Xαt derived from the family of ordinary differential equations cannot substitute
for the inverse uncertainty distribution of the solution to the UDE.

Figure 5. α-path of the Uncertain Duffing Equation of a hardening spring.

For α < 0, the spring is a softening spring, where β < 0, the uncertain Duffing system is for

AIMS Mathematics Volume 9, Issue 11, 33023–33061.
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d2Xt

dt2 +
dXt

dt
− Xt − X3

t − cos(t) −
dCt

dt
= 0.

The initial values are Xt(γ)
∣∣∣∣
t=0
= Xαt

∣∣∣∣
t=0
= 0.1, dXt(γ)

dt

∣∣∣∣
t=0
=

dXαt
dt

∣∣∣∣
t=0
= 0.1. And we have

f (t, Xt,
dXt

dt
) = cos(t) −

dXt

dt
+ Xt + X3

t , g(t, Xt,
dXt

dt
) = 1.

Verify condition (H),
∂ f (t, Xt,

dXt
dt )

∂Xt
= 1 + 3X2

t > 0,
∂g(t, Xt,

dXt
dt )

∂Xt
= 0.

We define the region G ∈ [0, 100] × [0, 10] × [0, 10]. It is straightforward to determine that the
maximum value of the function f is denoted as M = 1100, which satisfies the conditions provided in
the remarks. Furthermore, as depicted in Figure 6, there are no intersecting α-path. Hence, the set
of solutions Xαt derived from the family of ordinary differential equations corresponding to the α-path
can be used to represent the inverse uncertainty distribution of the UDE.

Figure 6. α-path of the Uncertain Duffing Equation of a softening spring.

Example 3. The function g represents a commonly utilized activation function within neural networks.
Its second-order uncertain differential equation is given by

d2Xt

dt2 −
dXt

dt
− Xt − X3

t − cos(t) −
1

1 + exp(−Xt)
dCt

dt
= 0.

The initial values are Xt(γ)
∣∣∣∣
t=0
= Xαt

∣∣∣∣
t=0
= 0.1, dXt(γ)

dt

∣∣∣∣
t=0
=

dXαt
dt

∣∣∣∣
t=0
= 0.1, where

f (t, Xt,
dXt

dt
) = cos(t) −

dXt

dt
+ Xt + X3

t , g(t, Xt,
dXt

dt
) =

1
1 + exp(−Xt)

,

∂ f (t, Xt,
dXt
dt )

∂Xt
= 1 + 3X2

t > 0,
∂g(t, Xt,

dXt
dt )

∂Xt
=

exp(−Xt)
(1 + exp(−Xt))−2 > 0.

We define the region G ∈ [0, 100]× [0, 10]× [0, 10]. It is easy to establish that the maximum value of
the functions f and g is M = 1100, which meets the conditions specified in the notes. Additionally, as

AIMS Mathematics Volume 9, Issue 11, 33023–33061.



33058

shown in Figure 7, there are no intersections among the α-paths, whether in the short term (a) or the
long term (b). So the set of solutions Xαt derived from the α-path for a family of ordinary differential
equations can be used to represent the inverse uncertainty distribution of the solution to the UDE.

Figure 7. α-path of the UDE in Example 2.

Example 4.
d5Xt

dt5 − sin(t) − Xt −
dCt

dt
= 0.

The initial values are

Xt(γ)
∣∣∣∣
t=0
= Xαt

∣∣∣∣
t=0
= 0.1, X(k)

t (γ)
∣∣∣∣
t=0
= Xα(k)

t

∣∣∣∣
t=0
= 0.1, k = 1, 2, . . . , 5.

f (t, Xt) = s(t) + Xt, g(t, Xt) = 1.

We define the region G ∈ [0, 100] × [0, 10]. It is easy to establish that the maximum value of the
function f is M = 11, which meets the conditions specified in the notes. The α-path diagram is depicted
in Figure 8, from which it is observable that the individual α-path do not intersect at any point in time.
Thus, the set of solutions Xαt derived from the α-path for a family of ordinary differential equations can
be used to represent the inverse uncertainty distribution of the UDE.

Figure 8. α-path of the UDE in Example 3.
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5. Conclusions

The research presented in this paper is of significant importance and has broad applicability in
practical applications. If the correct inverse uncertainty distribution of the solutions to UDEs cannot
be obtained, it would be impossible to delve into the study of the behavior of UDEs and their solutions.
Consequently, the construction of such UDE models would be meaningless.

This paper presents for the first time the inverse uncertainty distribution for second-order and a class
of higher-order UDEs. (1) For second-order UDEs, if the conditions (H) are met and the linear growth,
Lipschitz and regular conditions hold, we can determine the inverse uncertainty distribution of the
second-order UDEs. (2) For a class of higher-order UDEs, if the linear growth, Lipschitz and regular
conditions hold, we can similarly ascertain the inverse uncertainty distribution of the second-order
UDEs. Based on the theorems presented in this paper, it is possible to conduct uncertain dynamical
analyses of these types of UDEs, which constitutes a foundational work in the field of uncertainty
theory. It is undeniable that these conditions have certain limitations. Scholars can continue to explore
the statistical properties and other applications of the solutions to UDEs to potentially relax these
constraints.

Based on our research, there are three areas for potential future exploration: (1) It merits
investigation whether the sufficient conditions for determining the inverse unncertainty distribution of
solutions to second-order or higher-order UDEs can be expanded and whether there exist necessary
and sufficient conditions. (2) While uncertainty theory and this paper discuss the transition from
ordinary differential equations to UDEs, our research group is currently working on more complex
equations, such as uncertain fractional-order differential equations and uncertain functional
differential equations with constant delays. We have conceived a potential sufficient condition for the
α-paths of systems of UDEs to determine the inverse uncertainty distribution of their solutions.
Additionally, uncertain partial differential equations also warrant investigation. (3) There is a
multitude of differential equations that satisfy our conditions, with numerous examples provided in
the final version under submission. On this basis, more in-depth issues can be explored, such as
uncertain dynamics, uncertain bifurcation, and uncertain chaos.
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