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Abstract: This paper provided a comprehensive analysis of sparse signal estimation from noisy
and possibly underdetermined linear observations in the high-dimensional asymptotic regime. The
focus was on the square-root lasso (sqrt-lasso), a popular convex optimization method used for sparse
signal recovery. We analyzed its performance using several metrics, such as root-mean-squared error
(r.m.s.e.), mean absolute error (m.a.e.), cosine similarity, and true/false recovery rates. The analysis
assumed a normally distributed design matrix with left-sided correlation and Gaussian noise. In
addition to theoretical contributions, we applied these results to a real-world wireless communications
problem by examining the error performance of sqrt-lasso in generalized space shift keying (GSSK)
modulation for multiple-input multiple-output (MIMO) systems. This application was particularly
relevant, as the GSSK modulation generates sparse data symbols, making it an ideal scenario for
sparse recovery techniques. Our study offered tight asymptotic approximations for the performance
of sqrt-lasso in such systems. Beyond the wireless communications application, the results had
broader implications for other high-dimensional applications, including compressed sensing, machine
learning, and statistical inference. The analysis presented in this paper, supported by numerical
simulations, provided practical insights into how sqrt-lasso behaved under correlated designs, offering
useful guidelines for optimizing its use in real-world scenarios. The expressions and insights obtained
from this study can be used to optimally choose the penalization parameter of the sqrt-lasso. By
applying these results, one can make informed decisions about performance and fine-tuning the sqrt-
lasso, considering the presence of correlated regressors in a high-dimensional context.
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1. Introduction

1.1. Motivation

In the era of big data, where the volume and complexity of data can overwhelm traditional analytical
methods, the concepts of compressed sensing and advanced regularization techniques have become
increasingly important. Compressed sensing [1, 2] is a signal processing technique that leverages
sparsity to reconstruct signals from a limited number of measurements, offering a powerful framework
for data acquisition and analysis.

The problem of sparse signal recovery is vital in many modern applications because it allows
for efficient processing and recovery of high-dimensional data where only a small number of
signal components are significant [2]. This is especially important in applications like wireless
communications [3], medical imaging [4], machine learning [5], and beyond, where data is often
incomplete or noisy, but the underlying signals are sparse. Accurate sparse signal estimation enables
the reconstruction of signals from limited measurements, reducing the need for excessive data
collection, which can be costly or impractical. Identifying sparse structures helps in improving model
interpretability and reducing computational complexity.

This imbalance necessitates the use of regularization techniques to prevent overfitting and enhance
model performance. Among these techniques, the least absolute shrinkage and selection operator
(lasso) [6] stands out for its dual role in variable selection and regularization. It is a widely used
regularization technique in machine learning, data science, statistics, and beyond [5, 7]. A variant
known as the square-root lasso (sqrt-lasso) [8] offers additional benefits for handling large-dimensional
data with unknown noise variance, providing robust and efficient solutions for sparse signal estimation.

In this work, we consider the linear measurements model

y j = θ>0 a j + σw j, j = 1, 2, · · · ,M, (1.1)

where y j ∈ R is the outcome (response) value, a j ∈ RN is the regressor vector, and w j ∈ R is
independent and identically distributed (IID) Gaussian noise ( j = 1, 2, · · · ,M), with σ > 0 being
its standard deviation. The vector of unknown true parameters, θ0 ∈ RN , is assumed to be S -sparse,
that is, it has at most S nonzero elements, where S < M. The sqrt-lasso [8] solves the following convex
program:

θ̂ := arg min
θ∈RN

√√√
1
M

M∑

j=1

(y j − a>j θ)2 +
γ

M

N∑

k=1

|θk|, (1.2)

where γ > 0 is the regularization coefficient.
The importance of the work presented in this paper lies in the fact that lasso-type problems,

including sqrt lasso, are essential to many modern applications, including machine learning, signal
processing, and wireless communications. Thus, a deeper understanding of their error performance
is crucial for optimizing their use. Additionally, this work provides a theoretical framework for
selecting the penalization parameter of sqrt-lasso based on derived performance metrics, as discussed
in Section 5, rather than relying on traditional cross-validation methods. Cross-validation is both
time-consuming and requires substantial data, which can be impractical in real-world applications.
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By offering a more efficient and theoretically grounded method for parameter selection, this work
significantly improves the practicality of using sqrt-lasso in high-dimensional settings. Furthermore,
as discussed in Section 6, this study’s findings allow for the design of practical communication systems,
such as multiple-input multiple-output (MIMO) systems, in an optimal way, minimizing the probability
of error when decoding data symbols. This makes the work particularly valuable in improving system
reliability and performance in noisy and high-dimensional environments.

1.2. Literature survey on the applications of sqrt-lasso in engineering and beyond

The sqrt-lasso and related lasso-type problems have found applications in numerous fields due to
its robustness and efficiency in large-dimensional data analysis. In medical imaging, such as magnetic
resonance imaging (MRI) and computed tomography (CT) scans, a constrained version of the sqrt-
lasso helps in reconstructing high-quality images from fewer measurements, reducing scan times
and radiation exposure [4]. In astronomy, the sqrt-lasso was employed for reconstructing images
from incomplete and noisy data, facilitating the study of celestial objects [9]. Moreover, in wireless
communications, a box-constrained version of the lasso was used to enhance the signal recovery in
compressed sensing-based modulation methods such as spatial modulation [3, 10]. Furthermore, the
lasso was used in [11] to analyze genetic data for disease predictions by selecting the relevant genetic
markers associated with certain diseases. In addition, [12] leverages the lasso method for its feature
selection capabilities to improve the performance of the random subspace method in bearing fault
diagnosis. By selecting a sparse and relevant set of features, lasso helps in enhancing the diagnostic
accuracy and robustness of the model. The authors in [13] explored its role in sparse principal
component analysis (PCA), to produce modified principal components with sparse loadings. A lasso-
based approach was used in [14] for solar power generation forecasting, while [15, 16] used it for
the analysis of large scale electrical power systems. Additionally, lasso techniques have been used in
control engineering such as in system identification [17–19].

1.3. Related works on large-dimensional error performance characterization

Characterizing the error performance of the sqrt-lasso is crucial for understanding its theoretical and
practical implications. In fact, a large body of research has been conducted on the analysis of lasso-
type optimization problems under different assumptions and using various technical analysis tools,
including approximate message passing (AMP) [2], the replica method [20], and the convex Gaussian
minimax theorem (CGMT) [21], to name a few. First attempts to characterize the performance of the
lasso and related compressed sensing problems provided some loose error bounds such as in [22–25].
In addition, the AMP framework was used in [26, 27] to derive large-dimensional error analysis of the
standard lasso under IID Gaussian feature vectors. Furthermore, the replica method, a heuristic from
statistical physics, was used in [28–30] to analyze related problems in compressed sensing.

The CGMT-based error analysis was motivated by the early work of Stojnic, who analyzed a
constrained version of the sqrt-lasso in the noiseless case [31], and later considered the noisy case
in the high signal-to-noise ratio (SNR) case [32] (i.e., when σ → 0), all under the assumption of
IID Gaussian design matrix. Shortly after, the authors in [33–36] extended the results of Stojnic to
derive tight error bounds on the performance of the sqrt-lasso with general regularization functions
in the high SNR regime. Then, the authors in [37, 38] extended the abovementioned findings to the
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finite SNR case and obtained precise characterization of the squared-error of the generalized sqrt-lasso
with IID Gaussian linear measurements. Additionally, [39] considered general performance measures
of the sqrt-lasso beyond the squared-error, while [40] analyzed the sqrt-lasso using CGMT with non-
linear measurements. Moreover, the box-lasso, a variant of the widely used lasso, was analyzed in [3]
under the same IID Gaussian design matrix. All of the above references assumed the design matrix
to be perfectly known. The CGMT-based analysis was extended to study the more difficult case of
imperfect design matrices (i.e., when the design matrix has some errors) in several works including the
lasso/box-lasso [10, 41, 42], box-elastic net [43], etc.

The literature that we provided above considered the design matrix to have IID Gaussian elements.
However, it is important to study the effect of correlations in the design matrix on the large-dimensional
error performance of the lasso-type problems discussed here. Unlike the case of IID elements, the
correlated-design scenario poses many technical challenges and few references have studied it. In
particular, [44] provided some loose bounds on how correlations affect the prediction of the lasso.
Moreover, [45, 46] partially studied the performance of the standard lasso with correlated designs.
Additionally, the CGMT framework was used to study the effect of correlations on the performance of
non-spare recovery algorithms such as the box-relaxation optimization (BRO) [47,48] and regularized
least square [49].

To the best of our knowledge, the asymptotic error performance of the sqrt-lasso in the presence of
correlations in the design matrix has not been studied before in the large-dimensional setup. While
previous studies have largely focused on IID designs, real-world systems, particularly in wireless
communications, often involve correlated data. This motivates the study presented in this work which
takes into account the presence of a left-sided correlation in the design matrix.

1.4. Summary of contributions

As discussed above, this paper derives a tight asymptotic analysis of the performance of the sqrt-
lasso convex program in (1.2), with the assumption of a correlated Gaussian design matrix when
used for the recovery of a sparse signal from noisy linear observations. In particular, we consider
various performance measures of the sqrt-lasso such as the root-mean squared error (r.m.s.e.), mean
absolute error (m.a.e.), cosine similarity, and false/true recovery rates and derive their asymptotic
approximations. After that, we present an application of our results to study the large-dimensional
limit of the probability of error performance of the sqrt-lasso in a modern modulation scheme called
the generalized space-shift keying (GSSK) modulation [50], which is used to encode sparse data
symbols in a MIMO wireless communication system. Numerical simulations are provided to support
the theoretical results obtained in this work.

1.5. Paper organization

The paper is organized as follows: Section 2 introduces the problem setup and modeling
assumptions. Section 3 presents the main theoretical results of the paper on the large-dimensional
error performance characterization of sqrt-lasso. In Section 4, we discuss the sparse recovery rates of
the sqrt-lasso. Moreover, in Section 5, we implement penalization parameter selection methods based
on the derived performance measure. Section 6 discusses the application of our results in a wireless
communications context, specifically in GSSK modulation for MIMO systems. Finally, Section 7
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concludes the paper and suggests future research directions. All the proofs of the results of the paper
are deferred to the appendices.

A flowchart that describes the general organizational structure of the paper is given in Figure 1.

Figure 1. General organizational structure of the paper.
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2. Problem setup

2.1. Notations

For the sake of simplicity, we will use the following notations from here on. We use boldface letters
for vectors and matrices. We also use ‖ · ‖2 and ‖ · ‖1 to represent the Euclidean norm and the `1-norm
of a vector, respectively. In addition, (·)> is used to indicate the transpose operation. The notations E[·]
and P(·) denote the expectation and probability, respectively. The notation VN

P−→
N→∞

c is used when a
sequence of random variables VN converges in probability to a constant c, as N → ∞. The notation
V ∼ pV is used to indicate that the random variable V has a probability density function (PDF) pV . In
particular, V ∼ N(0, 1) means that V is a standard Gaussian random variable. Furthermore, for x ∈ R,
Φ(x) = 1√

2π

∫ x

−∞ e−z2
dz is the cumulative distribution function (CDF) of a standard Gaussian random

variable. Finally, for any x ∈ R and λ > 0, η(x; λ) is the wavelet shrinkage function defined as

η(x; λ) = [x − λ sign(x)] 1{|x|≥λ}, (2.1)

where 1{·} is the indicator function, which is defined as 1{S} = 1 if the statement S holds true, otherwise
1{S} = 0.

2.2. Modeling assumptions

We consider the possibly underdetermined linear observations system given in (1.1), which can be
compactly written as

y = Aθ0 + σw, (2.2)

where y = [y1, y2, · · · , yM]> ∈ RM, A = [a1, a2, · · · , aM]> ∈ RM×N , and w = [w1,w2, · · · ,wM]> ∈ RM.
Moreover, the vector of unknown parameters θ0 ∈ RN is assumed to be S -sparse, i.e., only S of its
entries are sampled IID from a PDF pΘ0 , which has a zero mean and a finite second moment (E[Θ2

0] =

σ2
θ0
< ∞), while the remaining entries are zeros. The noise vector w ∈ RM is assumed to have IID

entries N(0, 1), and 0 < σ < ∞ is its standard deviation.
In addition, in this work, we consider a left-sided correlated Gaussian design matrix which can be

modeled as

A =
1√
N
Ψ

1
2 G, (2.3)

where Ψ ∈ RM×M is a known positive semi-definite left-sided correlation matrix, while G ∈ RM×N

is a Gaussian matrix with IID entries N(0, 1). This correlation-model is widely used in the wireless
communications literature, and also known as the receive-side correlation which represents the spatial
correlations between the receiver antennas [51]. Although this model is not particularly popular in
statistics*, it is better suited for the GSSK system application discussed later in Section 6.

*The more popular model in statistics and data science is the right-sided correlation:

A =
1√
N

GΨ
1
2 ,

where Ψ is the covariance matrix of the data. Our analysis applies to this model as well. However, we focus on the left-sided correlation
for concreteness.
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The analysis of this study is carried out in the asymptotic linear regime which requires dimensions
of the problem (N,M, and S ) to approach infinity at relative rates: M

N → ζ ∈ (0,∞), and S
N → ∆ ∈ (0, 1).

Furthermore, the regularization coefficient, γ > 0, is assumed to be constant and independent of N.

2.3. Performance metrics

The large-dimensional error characterization of the sqrt-lasso considered in this work is based on
deriving asymptotic limits of the following performance metrics.

• r.m.s.e.: is a widely used performance metric for evaluating the accuracy of a model’s predictions.
It measures the average magnitude of the errors between predicted and observed values by
squaring the individual errors, averaging them, and then taking the square root of this average.
This metric provides a clear and intuitive indication of how far, on average, the predictions are
from the actual values, in the same units as the target variable. The r.m.s.e. is often preferred
when large errors are particularly undesirable, as it penalizes these more heavily than smaller
errors. Formally, it can be defined as follows:

r.m.s.e. ,

√√
1
N

n∑

k=1

(̂θk − θ0,k)2, (2.4)

where θ̂k is the kth element of the sqrt-lasso estimate in (1.2). The squaring process emphasizes
larger errors, making the r.m.s.e. particularly sensitive to outliers and significant deviations.
• m.a.e.: is another common performance metric used to assess the accuracy of a model’s

predictions. Unlike the r.m.s.e., the m.a.e. measures the average magnitude of errors by taking
the absolute values of the individual errors and averaging them. This results in a straightforward
interpretation of the average error in the same units as the target variable. The m.a.e. treats
all errors equally, providing a linear score that is less sensitive to outliers than r.m.s.e. This
characteristic makes the m.a.e. a preferred choice when the impact of all errors, regardless of
their magnitude, needs to be assessed uniformly. Formally, it can be defined as:

m.a.e. ,
1
N

N∑

k=1

|̂θk − θ0,k|. (2.5)

• Cosine similarity: often referred to as the cosine correlation, is a performance measure used
to determine the similarity (correlation) between two nonzero vectors. In contrast to the
aforementioned two metrics, this measure assesses how closely the two vectors are aligned,
regardless of their magnitudes. This metric focuses on the orientation of the vectors, making
it particularly useful in high-dimensional spaces where the direction of the vectors is more
important than their magnitude. It is commonly used in text mining, information retrieval, and
recommendation systems to compare the similarity of documents, user preferences, or other types
of high-dimensional data [52]. Cosine similarity values range from −1 to 1, with 1 indicating
perfect alignment, 0 indicating no correlation, and −1 indicating perfect opposition. This measure
does not account for the magnitude of the differences between the vectors, focusing solely on their
directional relationship. For our sqrt-lasso algorithm, the cosine similarity between θ̂ and θ0 is
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defined as:

cos(](θ0; θ̂)) ,
θ>0 θ̂

‖θ0‖2‖̂θ‖2
. (2.6)

3. Main results

In this section, we present the primary theoretical results of this work, specifically the tight
analysis of the asymptotic performance of the sqrt-lasso in (1.2). We begin by examining the
estimation performance using the r.m.s.e. metric, as detailed in Theorem 3.1 below, which accurately
describes the large-dimensional asymptotic behavior of the error. Following this, we derive asymptotic
approximations of the other considered performance measures, including the m.a.e. and cosine
similarity. Numerical simulations are then provided to support the obtained theoretical results.

3.1. Large-dimensional characterization of sqrt-lasso

In this subsection, we state the main theoretical results of this work. Toward this goal, we define the
eigenvalue decomposition of the correlation matrixΨ asΨ = PQP>, where P is an orthonormal matrix
of eigenvectors, and Q is a diagonal matrix of eigenvalues, such that Q = diag([q1, q2, · · · , qM]>),
where q1 ≥ q2 ≥ · · · ≥ qM are the eigenvalues of Ψ. All eigenvalues are required to be fixed and finite.

Theorem 3.1 (r.m.s.e. limiting behavior). Under the modeling assumptions of Section 2.2, the
following convergence holds true for the r.m.s.e. of the sqrt-lasso:

r.m.s.e.
P−→

N→∞
α?, (3.1)

where α? is the unique minimizer to the following:

min
α≥0
t>0

max
β≥0
µ≥0
χ>0

C(α, t, β, χ, µ), (3.2)

and

C(α, t, β, χ, µ) :=[(t − q−1
1 )β2 + 1]µ − αχ

2
+
χσ2

θ0

2α
+

1
4µN

M∑

j=1

q jα
2 + σ2

1 + q j(t − q−1
1 )

− χ

2α
EΘ0∼pΘ0

H∼N(0,1)

[
η2

(
Θ0 − αβ

χ
H;

αγ

χ
√
ζ

)]
, (3.3)

with q j being the jth eigenvalue of the matrix Ψ, while q1 is its maximum eigenvalue.

Proof. The asymptotic convergence of the cost function as in (3.2) is derived in Appendix A, and the
proof of the r.m.s.e. convergence is given in Appendix B.1. �

Remark 3.1. The optimal solutions α?, β?, χ?, among others, can be determined numerically by setting
up the first-order optimality conditions, that is, by solving ∇(α,t,β,χ,µ)C(α, t, β, χ, µ) = 05. Although
Theorem 3.1 primarily involves α? only, the roles of the other optimization variables, such as β? and
χ?, will become evident in the prediction of the m.a.e. and cosine similarity, which are derived later.
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Remark 3.2. For isotropic regressors, i.e., when Ψ = I, then q j = 1 ∀ j = 1, 2, · · · ,M, and the scalar
objective in (3.2) reduces to:

min
α≥0

max
0≤β≤1
χ>0

β
√
ζ
√
α2 + σ2 − αχ

2
+
χσ2

θ0

2α
− χ

2α
EΘ0∼pΘ0

H∼N(0,1)

[
η2

(
Θ0 − αβ

χ
H;

αγ

χ
√
ζ

)]
,

which is the well-known objective for the sqrt-lasso derived in [38], and [53]. In particular, see
Eq (6.37) in [53], with the following map of variables therein: Θ0 7→ X0, ζ 7→ δ, χ 7→ τh, γ√

ζ
7→ λ, and

σ2
θ0
→ σ2

x = 1.

Remark 3.3. Theorem 3.1 allows us to optimally adjust parameters of the sqrt-lasso problem, such as
the regularization coefficient γ and the number of normalized measurements ζ, among others. Refer to
Figure 2 for an illustration.
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Figure 2. Performance of sqrt-lasso versus the regularization coefficient for ζ = 0.85. (a)
r.m.s.e.; (b) m.a.e.; (c) cosine similarity.

The following proposition presents a tight asymptotic evaluation of the m.a.e. of the sqrt-lasso.

Proposition 3.1 (Convergence of the m.a.e.). Under the same settings and assumptions of Theorem 3.1,
the m.a.e. defined in (2.5) converges as

m.a.e.
P−→

N→∞
EΘ0,H

[∣∣∣∣∣η
(
Θ0 − α?β?

χ?
H;

γα?

χ?
√
ζ

)
−Θ0

∣∣∣∣∣
]
, (3.4)

where α?, β?, and χ? are the optimal solutions of (3.2), and η(·; ·) is the wavelet shrinkage function
defined in (2.1).

Proof. See Appendix B.2. �

In contrast to the aforementioned two metrics, we consider next the large-dimensional
characterization of the cosine similarity metric which assesses how closely θ0 and θ̂ are aligned,
regardless of their magnitudes.
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Proposition 3.2 (Cosine similarity convergence). Under the setting of Theorem 3.1, and for the cosine
similarity metric defined in (2.6), it holds that:

cos(](θ0; θ̂))
P−→

N→∞

EΘ0,H

[
Θ0 η

(
Θ0 − α?β?

χ?
H; γα?

χ?
√
ζ

)]

√
σ2
θ0
EΘ0,H

[
η2

(
Θ0 − α?β?

χ?
H; γα?

χ?
√
ζ

)] . (3.5)

Proof. The proof closely follows the one provided in [42, App. A.2.5]; therefore, the details are
omitted. �

3.2. Numerical simulations

In this subsection, we conduct a numerical analysis of the sqrt-lasso performance across various
settings. Specifically, we examine the three performance metrics introduced earlier: r.m.s.e., m.a.e.,
and cosine similarity. We then compare these numerical findings with the theoretical predictions
discussed earlier in this section. As an example, we consider the so-called sparse binary distribution of
the entries of θ0:

pΘ0(θ) = ∆ δ(θ − E) + (1 − ∆)δ(θ), (3.6)

where E > 0, and δ(·) is the Dirac delta function. This distribution is widely used in many applications,
and of particular interest to us is its use in modeling GSSK signals, as we will discuss in Section 6.

Moreover, for the correlation matrix Ψ, we consider the Toeplitz correlation matrix example [54]
given by:

Ψk j = ρ|k− j|, (3.7)

for ρ ∈ [0, 1). In all of our simulations, we used the CVXPY package [55] to numerically solve the
sqrt-lasso optimization in (1.2).

3.2.1. Underdetermined (compressed measurements) case

First, we consider an underdetermined scenario of the problem, i.e., M < N (equivalently ζ < 1).
Figure 2 depicts the behavior of the considered performance measures as functions of the regularization
coefficient with ζ = 0.85,N = 256, ρ = 0.3, σ2 = 0.05, E = 1, and ∆ = 0.2. For each γ value,
we used 100 independent Monte Carlo simulations. These figures illustrate the tight match of the
theoretical expressions to numerical simulations. In addition, in all metrics, we can see that there is
usually a value of the regularization coefficient γ that results in an optimal performance, e.g., minimum
r.m.s.e./m.a.e., or maximum cosine similarity.

Moreover, from Figure 2, we can see that there exists a critical value of the regularizer† that we
denote by γcrit, for which the large-dimensional performance is constant when γ ≤ γcrit and it is different
for γ > γcrit. This behavior is noticed only when ζ ≤ 1, otherwise γcrit = 0 (see for example, [33,
Section 8] and [40]).

†This behavior is only observed in the sqrt-lasso, while in the standard lasso γcrit = 0 for both overdetermined and underdetermined
systems.
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3.2.2. Overdetermined case

We repeated the same simulations as in the above case, but we now consider the overdetermined
case, i.e., when M > N. In Figure 3, we plotted the three performance metrics as functions of the
regularization coefficient γ. We used ζ = 2,N = 256, ρ = 0.3, σ2 = 0.05, E = 1, and ∆ = 0.2. For
each γ value, we performed 100 independent simulations. As expected, the overall performance of the
overdetermined system is superior to an underdetermined one. Moreover, as discussed above, we can
see from these figures that for ζ > 1, indeed γcrit = 0. Although our theoretical results are asymptotic,
i.e., requiring N → ∞, we can see from Figures 2 and 3 that there is a tight match between theory and
simulations for finite values such as N = 256.
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Figure 3. Performance of sqrt-lasso versus the regularization coefficient for ζ = 2. (a)
r.m.s.e.; (b) m.a.e.; (c) cosine similarity.

4. Sparse recovery rates

Sparse recovery rates are metrics used to evaluate the performance of algorithms designed to recover
sparse signals from limited or noisy measurements such as the sqrt-lasso considered in this work. In the
context of sparse signal estimation, sparse recovery amounts to determining how well an algorithm can
identify the nonzero elements of a sparse vector (aka true elements) while minimizing the identification
of zero elements as nonzero (false recovery). The key recovery rates include: true positive rate (t.p.r.),
false positive rate (f.p.r.), true negative rate (t.n.r), and false negative rate (f.n.r.).

Mathematically, these rates are defined as follows (where θ̂i is the ith element of the lasso estimate
in (1.2) and θ0,i is the ith entry of the S -sparse vector):

t.p.r. =

∑N
k=1 1{̂θk,0}1{θ0,k,0}∑n

k=1 1{θ0,k,0}
,

f.p.r. =

∑N
k=1 1{̂θk,0}1{θ0,k=0}
∑N

k=1 1{θ0,k=0}
,

t.n.r. =

∑N
k=1 1{̂θk=0}1{θ0,k=0}
∑N

k=1 1{θ0,k=0}
,

and
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f.n.r. =

∑N
k=1 1{̂θk=0}1{θ0,k,0}
∑N

k=1 1{θ0,k,0}
.

Proposition 4.1 (Sparse recovery rates). Under the settings of Theorem 3.1, the following convergences
hold true:

t.p.r.
P−→

N→∞
P
(
η
(
Θ0 − α?β?

χ?
H;

γα?

χ?
√
ζ

)
, 0

)
,

f.p.r.
P−→

N→∞
P
(
η
(
− α?β?

χ?
H;

γα?

χ?
√
ζ

)
, 0

)
= 2Φ

( −γ
β?
√
ζ

)
,

t.n.r.
P−→

N→∞
P
(
η
(
− α?β?

χ?
H;

γα?

χ?
√
ζ

)
= 0

)
,

f.n.r.
P−→

N→∞
P
(
η
(
Θ0 − α?β?

χ?
H;

γα?

χ?
√
ζ

)
= 0

)
,

where α?, β?, and χ? are the optimizers of the minimax optimization problem in (3.2), and the
probabilities are with respect to Θ0 ∼ pΘ0 and H ∼ N(0, 1).

Proof. The sparse recovery rate metrics defined above are not Lipschitz, so the CGMT framework
cannot be directly used to prove Proposition 4.1. However, as shown in [27,39], this can be proved via
standard weak convergence arguments. The details are omitted to maintain a concise presentation. �

Remark 4.1 (Special case: Sparse binary signals). For the sparse binary distribution given in (3.6),
the above sparse recovery rate expressions simplify to:

t.p.r.
P−→

N→∞
Φ

( −γ
β?
√
ζ

+
χ?
α?β?

E
)

+ Φ

( −γ
β?
√
ζ
− χ?
α?β?

E
)
,

f.p.r.
P−→

N→∞
2Φ

( −γ
β?
√
ζ

)
,

t.n.r.
P−→

N→∞
1 − 2Φ

( −γ
β?
√
ζ

)
,

and

f.n.r.
P−→

N→∞
Φ

(
γ

β?
√
ζ
− χ?
α?β?

E
)
− Φ

( −γ
β?
√
ζ
− χ?
α?β?

E
)
.

Note: It can be easily seen that t.n.r. = 1 − f.p.r. and f.n.r. = 1 − t.p.r.

Remark 4.2 (Numerical illustration). For the sparse binary signal model in (3.6) with E = 1, we
plotted in Figure 4 the positive recovery rates as functions of the regularization coefficient γ, with
ζ = 0.85,N = 256, ρ = 0.3, σ2 = 0.05, and ∆ = 0.2.

In addition, the negative recovery rates are illustrated in Figure 5 with the same problem parameters
as in Figure 4. When compared to numerical simulations, both figures show the high accuracy of our
theoretical expressions in predicting these metrics. Moreover, we can notice from these figures that as
γ increases, the t.n.r. tends to 1, whereas the t.p.r. approaches zero. This behavior is not surprising
since a large amount of regularization will result in sparser solutions.
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Figure 4. Positive recovery rates. (a) t.p.r.; (b) f.p.r.
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Figure 5. Negative recovery rates. (a) t.n.r.; (b) f.n.r.

5. Penalization parameter selection

The selection of the penalization parameter γ plays a critical role in the performance of sqrt-lasso
as it directly influences the trade-off between model sparsity and the accuracy of signal recovery [7]. If
too large, important features are missing; if too small, incorrect features are included. The appropriate
choice of γ depends on the application at hand and the desired performance metrics, such as minimizing
the r.m.s.e./m.a.e., reducing the f.p.r., or maximizing the cosine similarity.

Several methods have been proposed in the literature to choose γ optimally. Among these, the
quantile universal threshold (QUT) method, as introduced by Bellec et al. in [56], provides a simple yet
effective way to select γ for the sqrt-lasso. The QUT is designed for minimizing the false discovery rate
(FDR) while maintaining good predictive performance, particularly when the noise level is unknown.
This method sets the threshold such that the FDR is controlled at a desired level, making it especially
useful in high-dimensional problems where false positives are a concern. The QUT threshold can be
easily computed and incorporated into existing algorithms for sqrt-lasso, and it is particularly well-
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suited for sparse signal estimation tasks. In the context of regression problems where the number of
observations M is equal to the number of predictors N, and the design matrix A is orthonormal, the
results of Mallat et al. [57] demonstrate another approach to parameter selection in the framework of
sparse additive models. Their work, which explores the case of orthonormal design matrices and
applies wavelets for dimensionality reduction, suggests parameter values that minimize the mean
squared error (MSE). This is particularly relevant for problems with dense matrices or when the
regression matrix exhibits orthogonality properties, which simplifies the selection of γ.

Given the theoretical approximations derived in this work, we implemented four different methods
for selecting γ based on minimizing r.m.s.e., m.a.e., and f.p.r., or maximizing the cosine similarity. For
the minimization of the r.m.s.e. metric, let us define the optimal penalization parameter, γr.m.s.e.

∗ as

γr.m.s.e.
∗ := arg min

γ>0
˜r.m.s.e.(γ), (5.1)

where ˜r.m.s.e.(γ) is the asymptotic limit of the r.m.s.e. as derived in (3.1). Moreover, we can similarly
define γm.a.e.

∗ , γf.p.r.
∗ , and γcos.

∗ as the values of the penalization parameter that optimize the m.a.e., f.p.r.
and cosine similarity, respectively. These values can be obtained using any search methods such as the
golden-section technique method and the ternary search method [58].

Tables 1 and 2 provide a comparison of different penalization parameter selection methods and their
effects on performance metrics for underdetermined and overdetermined cases, respectively. We used
a sparse-binary signal vector as defined in (3.6) to generate θ0.

Table 1. Comparison of different penalization parameter selection methods with performance
metrics. We used ζ = 0.85, ρ = 0.3, σ2 = 0.01, E = 1, and ∆ = 0.2.

Method γ∗ r.m.s.e. m.a.e. cos. sim. f.p.r.
Min. r.m.s.e., γr.m.s.e.

∗ 0.81 0.1204 0.0712 0.9600 1.8 × 10−6

Min. m.a.e., γm.a.e.
∗ 0.99 0.1356 0.0573 0.9605 3.15 × 10−6

Max. cosine similarity, γcos.
∗ 0.92 0.1323 0.0684 0.9710 2.98 × 10−6

Min. f.p.r., γ f .p.r.
∗ 0.71 0.1334 0.0753 0.9569 1.5 × 10−6

γQUT
∗ 0.74 0.1338 0.0772 0.9545 1.57 × 10−6

Table 2. Comparison of different penalization parameter selection methods based on several
performance metrics. We used ζ = 2, ρ = 0.3, σ2 = 0.01, E = 1, and ∆ = 0.2.

Method γ∗ r.m.s.e. m.a.e. cos. sim. f.p.r.
Min. r.m.s.e., γr.m.s.e.

∗ 0.84 0.0601 0.0756 0.9771 2.23 × 10−23

Min. m.a.e., γm.a.e.
∗ 1.16 0.0639 0.0209 0.9837 4.04 × 10−26

Max. cosine similarity, γcos.
∗ 1.29 0.0673 0.0319 0.9938 1.22 × 10−24

Min. f.p.r., γ f .p.r.
∗ 0.65 0.0617 0.0366 0.9851 4.14 × 10−29

γQUT
∗ 0.69 0.0611 0.0357 0.9836 4.48 × 10−29

In Table 1, the optimal value of the penalization parameter γ∗ varies between 0.71 and 0.99,
depending on the desired metric. Notably, the lowest r.m.s.e. of 0.1204 is achieved with γr.m.s.e.

∗ ,
while the lowest m.a.e. of 0.0573 is obtained with γm.a.e.

∗ . Interestingly, the method maximizing cosine
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similarity achieves the highest value of 0.9710, though at the cost of a slightly higher r.m.s.e. and m.a.e.
The f.p.r.-based method results in a moderately higher penalization, with γ∗ = 0.71, showing balanced
performance across the other metrics, particularly with a low f.p.r. of 1.5 × 10−6. The QUT-based
method has similar performance to the f.p.r.-based method as they minimize closely related metrics,
namely FDR and f.p.r.

In Table 2, where ζ = 2 indicates a setting with more measurements relative to parameters, we
observe that the penalization parameters are generally higher, ranging from 0.65 to 1.29. The larger ζ
typically allows for better estimation of the true signal. In particular, the reduced r.m.s.e. and m.a.e.
values in Table 2 highlight how having more measurements leads to more accurate recovery of the true
signal.

An important observation in Table 2 is the dramatic reduction in false positive rates across all
methods. The γf.p.r.

∗ method results in a minuscule f.p.r. of 4.14 × 10−29 ≈ 0, indicating that the model
is highly effective in suppressing irrelevant variables when the data provides more information. This is
a clear advantage of having more measurements.

Furthermore, Figure 6 illustrates the variation of the optimal penalization parameter γ∗ as a function
of the correlation coefficient ρ. The two curves represent the values of γ∗ that minimize the root mean
squared error (γr.m.s.e.

∗ ) and the false positive rate (γf.p.r.
∗ ), respectively. As the correlation coefficient ρ

increases, both penalization parameters exhibit a general downward trend. However, γr.m.s.e.
∗ maintains

higher values across the range of ρ, indicating a more conservative choice of γ when minimizing the
error. On the other hand, γf.p.r.

∗ decreases more rapidly, reflecting a tighter penalization required to
control the false positive rate as the correlation increases. The problem parameters used for generating
this plot are ζ = 0.85, σ2 = 0.05, E = 1, and ∆ = 0.2, for a sparse-binary signal vector.

As shown in the figure, both penalization parameters decrease with increasing ρ. This decrease can
be explained by the fact that as correlation increases, the effective degrees of freedom in the model may
reduce because highly correlated variables behave similarly. As a result, the model has fewer distinct
variables to estimate, which in turn reduces the need for strong penalization, allowing the penalization
parameter to be lower.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ

0.5
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0.7

0.8

0.9

γ
∗
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∗
γ

f .p.r.
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Figure 6. Optimal penalization parameter as a function of the correlation coefficient ρ. The
problem parameters are ζ = 0.85, σ2 = 0.05, E = 1, and ∆ = 0.2.
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6. Application: GSSK modulation in a MIMO wireless communications system

In this section, we consider applying the results derived so far in an application for a MIMO
wireless communication system [59] that employs a modern spatial modulation scheme, such as the
GSSK [50, 60], where information is conveyed solely through antenna location, with only a small
subset of antennas active at any given time. In these systems, the transmitted constellation signal θ0 is
inherently sparse, promoting the use of sparse recovery algorithms such as the lasso and its variants to
be used as decoding techniques as in [3, 10, 61]. Consequently, this section focuses on evaluating the
large-dimensional performance of the sqrt-lasso as a detection method for GSSK-modulated MIMO
systems.

In this MIMO setup, the signal at the receiving antenna satisfies y = Aθ0 + σw, where now
A represents the channel matrix between the transmitter and receiver sides following the receive-
side correlation model in (2.3), and w is an additive white Gaussian noise vector with IID N(0, 1)
components. Under these settings, the SNR is assumed to be constant and given as SNR = ∆E2

σ2 .
In GSSK modulation transmission, only a subset of antennas K ⊂ {1, 2, · · · ,N} is active at any

given time. Each active antenna transmits a symbol θ0,k = E > 0, k ∈ K , while the other antennas stay
idle, i.e., θ0,k = 0, k < K . Consequently, the information is conveyed solely by the positions of the
active antennas. Note that the transmitted signal θ0 is well-modeled by the sparse binary distribution
given in (3.6), where the cardinality of K is assumed to be |K| = ∆N, for a normalized sparsity factor
∆ ∈ (0, 1). This means that θ0 is S -sparse on average.

After passing through the channel, we can decode the received signal by first obtaining θ̂ as the
solution of the sqrt-lasso in (1.2). Second, we obtain our final estimate as θ∗ with elements:

θ∗k =


E, if |̂θk| ≥ ξ,
0, otherwise,

(6.1)

where ξ ∈ (0, E) is a fixed user-defined hard threshold.
To characterize the performance of the sqrt-lasso decoder, we will use the probability of error (Pe),

defined below, as a performance metric,

Pe ,
1
N

N∑

k=1

P(θ∗k , θ0,k). (6.2)

In the next proposition, we provide the large-dimensional characterization of the probability of error
for the considered GSSK-modulated MIMO system.

Proposition 6.1 (Pe convergence). Under the setting of Theorem 3.1, the next convergence holds

Pe
P−→

N→∞
Φ

(
γ

β?
√
ζ

+
(ξ − E)χ?
α?β?

)
− Φ

( −γ
β?
√
ζ
− (ξ + E)χ?

α?β?

)
+ 2Φ

( −γ
β?
√
ζ
− ξχ?
α?β?

)
, (6.3)

where α?, β?, and χ? are solutions to the min-max optimization in (3.2), with pΘ0 as given by (3.6)
therein.

Proof. It can be shown that the probability of error as defined in (6.2) converges as

Pe
P−→

N→∞
P

(∣∣∣∣∣∣η
(
E − α?β?

χ?
H;

α?γ

χ?
√
ζ

)∣∣∣∣∣∣ < ξ
)

+ P

(∣∣∣∣∣∣η
(
− α?β?

χ?
H;

α?γ

χ?
√
ζ

)∣∣∣∣∣∣ ≥ ξ
)
.

AIMS Mathematics Volume 9, Issue 11, 32872–32903.



32888

Using the definition of η(·; ·) in (2.1) and evaluating the above probabilities over the randomness of
H ∼ N(0, 1), the same convergence as in (6.3) can be achieved. �

Figure 7 illustrates the Pe theoretical performance as predicted by (6.3) as a function of the
regularization coefficient γ. This figure shows the tight agreement to the numerical simulations. Also,
it indicates that there exists a value of γ for which the Pe is minimized. This allows the optimum tuning
of the regularizer coefficient γ. We set N = 256, ρ = 0.3, σ2 = 0.01, E = 1,∆ = 0.2, and ξ = 10−3, and
we conducted 20 Monte Carlo simulations for each value of γ. This figure considers two cases for the
GSSK-modulated MIMO system, namely: (a) an overloaded (under-determined) MIMO system with
ζ = 0.85, which has poorer performance when compared to the underloaded (overdetermined) system
in (b).
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Figure 7. Probability of error performance as a function of the regularization coefficient. (a)
Overloaded MIMO: ζ = 0.85. (b) Underloaded MIMO: ζ = 2.

Furthermore, as expected, higher correlation between the regression parameters leads to poorer
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performance, resulting in larger prediction errors. The impact of correlations is evident in Figure 8,
where we plot the Pe of the same GSSK-modulated system as a function of the SNR and vary the
correlation coefficient ρ. Similar to Section 5, we selected γ that minimizes the probability of error
expression in (6.3), which we denote by γ = γPe∗ .
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ρ = 0.1
ρ = 0.5
ρ = 0.7

Figure 8. Probability of error performance as a function of the SNR. We used (6.3) with
ζ = 2, E = 1,∆ = 0.2, γ = γPe∗ , and ξ = 10−2.

7. Conclusions and future work

In this study, we conducted large-dimensional analysis of the error performance of the sqrt-lasso in
the asymptotic linear regime with the assumption of a correlated Gaussian design matrix when used for
the recovery of a sparse signal from noisy linear observations. Specifically, we derived tight limiting
approximations of several measures including the r.m.s.e., m.a.e., cosine similarity, and sparse recovery
rates. Numerical simulations were presented throughout the paper to support the obtained theoretical
results. Finally, we presented an application of the results of this work to study the large-dimensional
limit of the probability of error of the sqrt-lasso in modern modulation schemes such as the GSSK
modulation that is used to encode sparse data symbols in a MIMO wireless communication system.
Moreover, we observe that numerical simulations indicating our theoretical results remain accurate
even for problems involving only a few hundred variables, despite being theoretically derived under
the assumption of asymptotic problem dimensions.

It is essential to discuss some potential limitations of the current work.

• Single-sided correlation model: The analysis in this paper is based on a left-sided correlated
Gaussian design matrix, which simplifies modeling by assuming correlation only at the receiver
side. While this model is relevant to many wireless communication applications, it may not
fully capture the complexities of real-world systems where correlation might exist on both sides
(i.e., the transmitter and the receiver). A more comprehensive model, such as a double-sided
correlation model, may provide a better reflection of practical scenarios, particularly in MIMO
systems. The extension of this work to include such correlation models involves additional
technical challenges and is left as future work.
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• Gaussian design assumption: The assumption of a Gaussian design matrix simplifies the
mathematical analysis and is essential for proving the asymptotic results using the CGMT
framework (refer to Appendix A). However, in many real-world applications, especially in
wireless communications and machine learning, the design matrix may not strictly follow the
Gaussian assumption.
Nevertheless, we expect the asymptotic results derived in this study to be robust and applicable
to a broader class of random matrices. This expectation is supported by rigorous proofs found
in [62–64], where it has been demonstrated that the asymptotic predictions exhibit a universal
limit with respect to various types of random matrices. Future research could extend this analysis
to non-Gaussian scenarios.
• Asymptotic results: The analysis in this paper is carried out in the asymptotic linear regime,

assuming that the number of observations, regressors, and nonzero elements grow infinitely
large. While this provides a mathematically tractable framework for deriving tight error bounds,
real-world systems often involve finite dimensions, which may deviate from these asymptotic
assumptions. As a result, the performance guarantees may be less tight for small to moderate-
sized problems. Although our numerical simulations suggest that the results hold for problems
of moderate size, further exploration is needed to understand the limitations of our approach in
lower-dimensional regimes.
• Perfect design matrix assumption: Our analysis assumes that the design matrix is perfectly

known and free from errors. However, in practical applications, especially in communications
systems, the design matrix (i.e., the channel matrix in MIMO systems) may be estimated with
errors, leading to imperfect knowledge of the system. Matrix imperfections due to channel
estimation errors or noise can degrade the performance of the proposed sqrt-lasso algorithm.
Extending the analysis to account for matrix imperfections and designing robust recovery
algorithms is an important direction for future work.

Furthermore, this work could be extended by investigating more advanced modulation schemes,
such as generalized spatial modulation (GSM).

Author contributions

Ayed M. Alrashdi: Conceptualization, formal analysis, investigation, methodology, validation,
writing – original draft, review, edition; Masad A. Alrasheedi: Conceptualization, formal analysis,
methodology, validation, writing – original draft, review, edition. All authors have read and approved
the final version of the manuscript for publication.

Conflict of interest

The authors declare no conflict of interest.

References

1. D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289–1306.
https://doi.org/10.1109/TIT.2006.871582

AIMS Mathematics Volume 9, Issue 11, 32872–32903.

https://dx.doi.org/https://doi.org/10.1109/TIT.2006.871582


32891

2. D. L. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing,
Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 18914–18919. https://doi.org/10.1073/pnas.0909892106

3. I. B. Atitallah, C. Thrampoulidis, A. Kammoun, T. Y. Al-Naffouri, M. Alouini, B. Hassibi,
The BOX-LASSO with application to GSSK modulation in massive MIMO systems, In: 2017
IEEE International symposium on information theory (ISIT), Germany: IEEE, 2017, 1082–1086.
https://doi.org/10.1109/ISIT.2017.8006695

4. M. Lustig, D. Donoho, J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid
MR imaging, Magn. Reson. Med., 58 (2007), 1182–1195. https://doi.org/10.1002/mrm.21391

5. M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science, 349
(2015), 255–260. https://doi.org/10.1126/science.aaa8415

6. R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B Stat.
Methodol., 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
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A. Outline of the proof of the main theoretical results

In this appendix, we prove the main results of this paper, as presented in Section 3. The primary
technical tool used in the proof is the CGMT framework [21], [38, Theorem VI.1]. In this framework,
the original optimization problem (such as the sqrt-LASSO in (1.2)) is first reformulated as a minimax
optimization problem known as the primal optimization (PO) problem. Subsequently, a simpler
optimization problem, called the auxiliary optimization (AO) problem, is associated with the PO
problem, which is easier to analyze in the large-dimensional setting. The CGMT shows that if the
AO cost concentrates around a certain value c > 0, then the PO cost does as well. Furthermore, under
certain technical conditions regarding the AO solutions, the CGMT establishes that the concentration
of Lipschitz functions of the AO solution implies a similar concentration for the PO solution. For the
complete statement of the CGMT and its related technical assumptions, please refer to Appendix C
and [38, Theorem VI.1], and [21].

In the following, we utilize the CGMT framework to assess the performance of the sqrt-lasso. As
an initial step, we formulate the sqrt-lasso optimization as a PO problem.

A.1. Formulating the sqrt-lasso problem as a PO and an AO

PO Formulation. The sqrt-lasso problem in (1.2) can be written in a vector-form as follows

θ̂ := arg min
θ∈RN

‖y − Aθ‖2√
M

+
γ

M
‖θ‖1. (A.1)

Multiplying by
√

M, we get

θ̂ = arg min
θ∈RN

‖y − Aθ‖2 +
γ√
M
‖θ‖1. (A.2)

To directly address the error metrics introduced in (2.4) and (2.5), we consider changing the
optimization variable to e := θ − θ0. With this substitution, the problem in (A.2) can be recast as
follows:

ê := arg min
e∈RN

‖Ae − σw‖2 +
γ√
M
‖e + θ0‖1. (A.3)
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By leveraging the invariance of the normal distribution under orthogonal transformations, we arrive at

ê = arg min
e∈RN

‖Q 1
2 H̃e − σw‖2 +

γ√
M
‖e + θ0‖1, (A.4)

where H̃ is a random matrix with IID normal components H̃k j ∼ N(0, 1
N ). The loss function can be

rewritten in its dual form through the Fenchel (convex) conjugate as follows:

‖Q 1
2 H̃e − σw‖2 = max

‖u‖2≤1
u>(Q

1
2 H̃e − σw).

Using this, the problem in (A.4) can be formulated as a min-max optimization problem as follows:

min
e∈RN

max
‖u‖2≤1

u>Q
1
2 H̃e − u>σw +

γ√
M
‖e + θ0‖1. (A.5)

The problem above is not yet in the desired PO form because of the presence of the Q matrix. To
address this, we redefine u as u = Q 1

2 u, which results in:

min
e∈RN

max
u>Q−1u≤1

u>H̃e − u>Q−
1
2σw +

γ√
M
‖e + θ0‖1, (A.6)

where (·)−1 is the inverse operator. We finally arrive at the following PO formulation

min
e∈RN

max
u>Q−1u≤1

1√
N

u>He − u>Q−
1
2σw +

γ√
M
‖e + θ0‖1, (A.7)

where H has IID standard normal elements. Additionally, we can factor out 1√
N

resulting in

1√
N

min
e∈RN

max
u>Q−1u≤1

u>He −
√

Nu>Q−
1
2σw +

√
N
M
γ‖e + θ0‖1. (A.8)

Recall that ζ = M/N; thus, the PO problem is given by:

1√
N

min
e∈RN

max
u>Q−1u≤1

u>He −
√

Nu>Q−
1
2σw +

γ√
ζ
‖e + θ0‖1. (A.9)

Note that the compactness of the constraint set over e must be considered. This can be addressed
rigorously in a way similar to that in [38, Section VI-A]. The details are omitted here, as they are not
essential to our main objective.

AO Formulation. The optimization problem above is in PO format, and according to the CGMT
framework outlined in [38, Theorem VI.1] and [21], we can formulate the following AO problem.

1√
N

min
e∈RN

max
u>Q−1u≤1

‖e‖2g>u + ‖u‖2h>e −
√

Nu>Q−
1
2σw +

γ√
ζ
‖e + θ0‖1, (A.10)

where g ∈ Rm, and h ∈ Rn have IID standard normal entries. To further simplify, the AO can be
represented as:

1√
N

min
e∈RN

max
u
µ̃≥0

‖e‖2g>u + ‖u‖2h>e −
√

Nu>Q−
1
2σw +

√
Nµ̃(1 − u>Q−1u) +

γ√
ζ
‖e + θ0‖1, (A.11)
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where µ̃ is a Lagrange multiplier.
Given that ‖x‖1 = max‖v‖∞≤1 x>v, for any vector x, it follows that:

1√
N

min
e∈RN

max
u
µ̃≥0

max
‖v‖∞≤1

‖e‖2g>u + ‖u‖2h>e −
√

Nu>Q−
1
2σw

+
√

Nµ̃(1 − u>Q−1u) +
γ√
ζ

(e + θ0)>v. (A.12)

Setting α := ‖e‖2√
N

, and defining ē := e
‖e‖2 , the above problem can be represented as

max
u
µ̃≥0
‖v‖∞≤1

min
α≥0

αg>u − u>Q−
1
2σw + µ̃(1 − u>Q−1u) +

γ√
M
θ>0 v + min

‖ē‖2=1
α

(
γ√
ζ

v + ‖u‖2h
)>

ē. (A.13)

The last minimization is straightforward and can be carried out as follows:

min
‖ē‖2=1

α
(
γ√
ζ

v + ‖u‖2h
)>

ē = −α
∥∥∥∥∥
γ√
ζ

v + ‖u‖2h
∥∥∥∥∥

2
,

with an optimizer given by:

ē∗ = −
γ√
ζ
v + ‖u‖2h

∥∥∥∥∥
γ√
ζ
v + ‖u‖2h

∥∥∥∥∥
2

. (A.14)

After dividing by
√

N, we arrive at the following:

max
u
µ̃≥0
‖v‖∞≤1

min
α≥0

α√
N

g>u − 1√
N

u>Q−
1
2σw +

1√
N
µ̃(1 − u>Q−1u)

+
γ√
NM
θ>0 v − α√

N

∥∥∥∥∥
γ√
ζ

v + ‖u‖2h
∥∥∥∥∥

2
. (A.15)

Define g̃ := αg −Q− 1
2σw, µ =

µ̃√
N

, and with the norm of u fixed to β (i.e., ‖u‖2 = β), we obtain that

min
α≥0

max
β≥0
‖ū‖2=1
µ≥0
‖v‖∞≤1

β√
N

g̃>ū − β2µū>Q−1ū + µ +
γ√
MN
θ>0 v − α√

N

∥∥∥∥∥
γ√
ζ

v + βh
∥∥∥∥∥

2
. (A.16)

The optimization over ū is now separable, resulting in the following non-convex optimization problem
(due to the norm equality constraint) that needs to be solved:

max
‖ū‖2=1

β√
N

g̃>ū − β2µū>Q−1ū. (A.17)

This is a well-known optimization problem referred to as the trust region subproblem, which has been
thoroughly investigated in previous studies such as in [65–67]. It has been also shown in [67, 68]
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that optimization problems of this type can be expressed in terms of scalar optimization problems as
follows:

min
‖r‖2=r

c>r +
1
2

r>Br = sup
t>−ϑN

{
−1

2
c>(B + tI)−1c − t

2
r2

}
,

where r ≥ 0, ϑN is the minimum eigenvalue of matrix B, and I is the identity matrix. Therefore, using
this, we have

max
‖ū‖2=1

1√
N
β̃g>ū − β2µū>Q−1ū = −2µβ2 min

‖ū‖2=1

{
− 1

2µβ
√

N
g̃>ū +

1
2

ū>Q−1ū
}

= − 2µβ2 sup
t>−ϑN

{ −1
8µ2β2N

g̃>
(
Q−1 + tI

)−1
g̃ − t

2

}

=2µβ2 min
t>−ϑN

{
1

8µ2β2N
g̃>

(
Q−1 + tI

)−1
g̃ +

t
2

}

= min
t>−ϑN

{
1

4µN
g̃>

(
Q−1 + tI

)−1
g̃ + tβ2µ

}
, (A.18)

with ϑN being the minimum eigenvalue of the matrix Q−1, i.e., ϑN = 1/qmax = 1/q1. The analysis
above demonstrates that the AO problem presented in (A.16) can be equivalently expressed as:

min
α≥0

max
β≥0
µ≥0
‖v‖∞≤1

min
t>−ϑN

1
4µN

g̃>
(
Q−1 + tI

)−1
g̃ + (tβ2 + 1)µ +

γ√
MN
θ>0 v − α√

N

∥∥∥∥∥
γ√
ζ

v + βh
∥∥∥∥∥

2
. (A.19)

We continue by representing the `2-norm in (A.19) by using the next identity

‖x‖2 = min
χ>0

‖x‖22
2χ

+
χ

2
, (A.20)

with the minimizer χ̂ = ‖x‖2. Thus, the AO can be reformulated as:

min
α≥0

max
β≥0
µ≥0
‖v‖∞≤1
χ>0

min
t>−ϑN

1
4µN

g̃>
(
Q−1 + tI

)−1
g̃ + (tβ2 + 1)µ

+
γ√
MN
θ>0 v − αχ

2
− α

2χ

∥∥∥∥∥
1√
N

(
γ√
ζ

v + βh
)∥∥∥∥∥

2

2
. (A.21)

Next, we carry out the optimization over v given its separability. Thus, define

JN(α, β, χ, θ0,h) :=
1
N

[
max
‖v‖∞≤1

γ√
ζ
θ>0 v − α

2χ

∥∥∥∥∥
(
γ√
ζ

v + βh
)∥∥∥∥∥

2

2

]
. (A.22)

This can be rewritten as

JN(α, β, χ, θ0,h) = − αγ2

2χζN

N∑

k=1

min
|vk |≤1

v2
k +

2β
√
ζ

γ
hkvk − 2

√
ζχ

αγ
θ0,kvk − 1

N

N∑

k=1

αβ2

2χ
h2

k . (A.23)

AIMS Mathematics Volume 9, Issue 11, 32872–32903.



32899

Moreover, we can further rewrite JN(α, β, χ, θ0,h) as

JN(α, β, χ, θ0,h) = − αγ2

2χζN

N∑

k=1

min
|vk |≤1

(
vk −

( √
ζχ

αγ
θ0,k −

√
ζβ

γ
hk

))2

+
αγ2

2χζN

( √
ζχ

αγ
θ0,k −

√
ζβ

γ
hk

)2

− 1
N

N∑

k=1

αβ2

2χ
h2

k . (A.24)

Without much effort, it can be demonstrated that the above minimization yields the squared value of
the wavelet shrinkage function defined in (2.1). Thus, we obtain

JN(α, β, χ, θ0,h) = − αγ2

2χζN

N∑

k=1

η2
( √

ζχ

αγ
θ0,k −

√
ζβ

γ
hk; 1

)

+
αγ2

2χζN

N∑

k=1

( √
ζχ

αγ
θ0,k −

√
ζβ

γ
hk

)2

− 1
N

N∑

k=1

αβ2

2χ
h2

k . (A.25)

Using [38, Lemma A.10], it is possible to show, for c ∈ R and τ > 0, that

τ

N∑

k=1

η2
(
1
τ
θ0,k +

c
τ

hk; 1
)

=
1
τ

N∑

k=1

η2 (
θ0,k + chk; τ

)
. (A.26)

Using the above result, with τ =
αγ√
ζχ

, we get

JN(α, β, χ, θ0,h) = − χ

2αN

N∑

k=1

η2
(
θ0,k − αβ

χ
hk;

αγ√
ζχ

)

+
αγ2

2χζN

N∑

k=1

( √
ζχ

αγ
θ0,k −

√
ζβ

γ
hk

)2

− 1
N

N∑

k=1

αβ2

2χ
h2

k . (A.27)

With JN(α, β, χ, θ0,h) as defined above, the AO problem in (A.21) writes

min
α≥0

max
β≥0
µ̃≥0
χ>0

min
t>−ϑN

1
4µ̃N

g̃>
(
Q−1 + tI

)−1
g̃ + (tβ2 + 1)̃µ − αχ

2
+ JN(α, β, χ, θ0,h). (A.28)

In the sequel, we study the large-dimensional asymptotic convergence of the AO problem as given
above.

A.2. AO Asymptotic convergence

The next step involves transforming the AO into a scalar problem, i.e., a problem that consists of
scalar variables only. To achieve this, start by noting that g̃ has a multivariate Gaussian distribution
with a zero mean vector and a covriance matrix Σg̃ that is given by Σg̃ = α2IM + σ2Q−1. To study the
convergence of the first term of (A.28), we apply the trace lemma [69] from random matrix theory to
get:

1
N

g̃>
(
Q−1 + tI

)−1
g̃ − 1

N
tr

(
Σg̃

(
Q−1 + tI

)−1) P−→ 0, (A.29)
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where tr(·) is the trace operator. Furthermore, by applying the weak law of large numbers (WLLN), we
can show the following convergences:

1
N

N∑

k=1

hkθ0,k
P−→ 0,

1
N

N∑

k=1

h2
k

P−→ 1, and
1
N

N∑

k=1

θ2
0,k

P−→ σ2
θ0
.

In addition, for all α ≥ 0, β ≥ 0, and χ > 0:

JN(α, β, χ, θ0,h)
P−→ −χ

2α
EΘ0∼pΘ0

H∼N(0,1)

[
η2

(
Θ0 − αβ

χ
H;

αγ

χ
√
ζ

)]
+
χσ2

θ0

2α
. (A.30)

Combining all of the above convergence results and using [38, Lemma 10], it can be shown that the
AO problem in (A.28) converges to:

min
α≥0

max
β≥0
µ≥0
χ>0

min
t>−ϑN

(tβ2 + 1)µ − αχ
2

+
1

4µN

M∑

j=1

q jα
2 + σ2

1 + q jt

− χ

2α
EΘ0∼pΘ0

H∼N(0,1)

[
η2

(
Θ0 − αβ

χ
H;

αγ

χ
√
ζ

)]
+
χσ2

θ0

2α
, (A.31)

where q j is the jth eigenvalue of matrix Ψ.
Using the change of variables t 7→ t + ϑN , and after flipping the order of min-max, we have

min
α≥0
t>0

max
β≥0
µ≥0
χ>0

[(t − ϑN)β2 + 1]µ − αχ
2

+
χσ2

θ0

2α
+

1
4µN

M∑

j=1

q jα
2 + σ2

1 + q j(t − ϑN)

− χ

2α
EΘ0∼pΘ0

H∼N(0,1)

[
η2

(
Θ0 − αβ

χ
H;

αγ

χ
√
ζ

)]
. (A.32)

This optimization problem is exactly the scalar minimax problem in (3.2) of Theorem 3.1, with ϑN =

1/q1.

B. Large-dimensional error performance evaluation

B.1. R.M.S.E. Convergence analysis: Proof of Theorem 3.1

Having derived the scalar optimization problem in (A.32), which governs the large-dimensional
behavior of the sqrt-lasso, we next proceed to prove the convergence of the r.m.s.e. as stated in
Theorem 3.1.

Toward this goal, let ẽ be the minimizer of the AO problem that was defined in (A.13). Moreover, let
α̂N denote the optimizer of (A.13) in α. Then, recalling the definition of α introduced in the previous
section, we can see that α̂N = ‖̃e‖2√

N
. Using the asymptotic convergence of the AO problems derived

earlier, one can show that α̂N
P−→ α?, where α? is the unique minimizer of (3.2). This implies that

1√
N
‖̃e‖2 P−→ α?. (B.1)
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In order to utilize the CGMT framework [21], we need to consider the following set defined as:

Sε =

{
x ∈ RN :

∣∣∣∣∣
1√
N
‖x‖2 − α?

∣∣∣∣∣ < ε
}
,

for some sufficiently small ε > 0. From the convergence in (B.1), it follows immediately that
limN→∞ P

(̃
e ∈ Sε) = 1. Hence, according to the CGMT statement in [38, Theorem VI.1], it also

holds that limN→∞ P
(̂
e ∈ Sε) = 1, where ê = θ̂ − θ0 is the optimizer of the original sqrt-lasso in (A.3)

(after the change of variables to e). This establishes the proof of Theorem 3.1.

B.2. M.A.E. Convergence analysis: Proof of Proposition 3.1

We proceed now to the proof of the m.a.e. of the sqrt-lasso as given in Proposition 3.1. First, we
change the concentration set to the following:

Šε =

{
x ∈ RN :

∣∣∣∣∣∣
1
N
‖x‖1 − EΘ0,H

[∣∣∣∣∣η
(
Θ0 − α?β?

χ?
H;

γα?

χ?
√
ζ

)
−Θ0

∣∣∣∣∣
]∣∣∣∣∣∣ < ε

}
,

where α?, β?, and χ? are the unique optimizers of (3.2).
Next, we note that based on (A.14), the AO solution satisfies:

ẽ = −α̂N

(
γ√
ζ
v∗ + β̂Nh

)

1√
N

∥∥∥∥ γ√
ζ
v∗ + β̂Nh

∥∥∥∥
2

, (B.2)

and 1√
N

∥∥∥∥ γ√
ζ
v∗ + β̂Nh

∥∥∥∥
2

= χ̂N , where α̂N , β̂N , and χ̂N are the solutions of (A.28). This means that:

ẽk = −α̂N

(
γ√
ζ
v∗k + β̂Nhk

)

χ̂N
, for k = 1, 2, · · · ,N,

where v∗k is the maximizer of (A.22). By standard differentiation, it is easy to show that:

v∗k =



−1, if
(
χ
√
ζ

αγ

)2
λk < −1,

(
χ
√
ζ

αγ

)2
λk, if − 1 ≤

(
χ
√
ζ

αγ

)2
λk ≤ 1,

1, if
(
χ
√
ζ

αγ

)2
λk > 1,

(B.3)

where λk =
γα

χ
√
ζ
θ0,k − α2βγ

χ2 √ζhk. Recalling that θ̃k = ẽk + θ0,k, and after substituting the expressions of ẽk

and v∗k, along with a bit of algebraic manipulation, it follows that

θ̃k = η

θ0,k − α̂N β̂N

χ̂N
hk;

γα̂N

χ̂N
√
ζ

 .

Using the asymptotic convergence of the AO problems derived earlier, it holds that α̂N
P−→ α?, β̂N

P−→
β?, and χ̂N

P−→ χ?. Thus, using the WLLN, the following convergence holds true:

1
N
‖̃e‖1 =

1
N

N∑

k=1

|̃ek| = 1
N

N∑

k=1

|̃θk − θ0,k| P−→ EΘ0,H

[∣∣∣∣∣η
(
Θ0 − α?β?

χ?
H;

γα?

χ?
√
ζ

)
−Θ0

∣∣∣∣∣
]
. (B.4)

This demonstrates that ẽ ∈ Šε with probability approaching 1. Consequently, by applying the
CGMT, we can conclude that ê ∈ Šε with probability approaching 1, thereby proving Proposition 3.1.
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C. The large-dimensional analysis framework: CGMT

In this section, we present an overview of the primary analytical framework employed to derive the
theoretical results discussed in the paper, which is the Convex Gaussian Minimax Theorem (CGMT).
For the reader’s ease, we begin by revisiting the CGMT. This theorem is an extension of Gordon’s
comparison lemma, which has been applied to various large-dimensional inference problems. The
CGMT was first introduced in [32] and further expanded in [38]. It leverages convexity to compare the
min max values of given two Gaussian random processes.

To demonstrate the core concepts of this framework, let us begin by considering the next Gaussian
processes:

Xe,u := u>He + φ(e,u), (C.1a)
Ye,u := ‖e‖2g>u + ‖u‖2h>e + φ(e,u), (C.1b)

where H ∈ RM×N , g ∈ RM,h ∈ RN , and φ : RN×RM → R. Moreover, h, g and H are all assumed to have
IID standard normal components. For those random processes, let us consider the following minimax
optimization problems, known as the primal optimization (PO) and the auxiliary optimization (AO):

F(H) := min
e∈Se

max
u∈Su
Xe,u, (C.2a)

f (g,h) := min
e∈Se

max
u∈Su
Ye,u, (C.2b)

where Se ⊂ RN and Su ⊂ RM are compact and convex sets. Furthermore, if the function φ(e,u) is
continuous and exhibits convex–concave properties on Se ×Su, then, following the CGMT framework
outlined in [38, Theorem VI.1], and for all ω ∈ R and % > 0, it holds:

P(|F(H) − ω| > %) ≤ 2P(| f (g,h) − ω| > %). (C.3)

The result above indicates that if we can demonstrate that the optimal cost of the AO converges in

probability as f (g,h)
P−→ d? asymptotically, where d? ∈ R, then we can also conclude that the

optimal cost of the PO converges in probability to F(H)
P−→ d?. The key idea is that analyzing

the AO is typically much simpler than analyzing the PO. Moreover, the CGMT (Theorem VI.1 in [38])
establishes that if the optimal solution of the AO concentrates around a certain value, then the optimal
solution of the PO will concentrate around the same value as well. Specifically, if the solutions

of (C.2b) satisfy ‖̂e f (g,h)‖2 P−→ r?, where r? > 0, then the same holds true for the solutions of (C.2a),

meaning ‖̂eF(H)‖2 P−→ r?.
Additionally, we utilize the following theorem, which applies in the large-dimensional asymptotic

regime.

Theorem C.1 (Asymptotic CGMT [38]). With the same assumptions and notations as discussed
earlier, let S ⊂ Se and Sc := Se/S. Moreover, let us define FSc(H) and fSc(g,h) as the optimal
costs in (C.2a) and (C.2b), respectively, with the constraint that the optimization is limited to e ∈ Sc.

Also, given that there are constants ϕ̄ < ϕ̄Sc , satisfying fSc(g,h)
P−→ ϕ̄Sc and f (g,h)

P−→ ϕ̄, it follows
that

lim
N→∞
P(̂eF(H) ∈ S) = 1. (C.4)
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For additional information on the CGMT framework, the reader is encouraged to refer to [38].
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