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Abstract: In this paper, we considered the Rayleigh-Taylor (RT) instability for two incompressible,
immisicible, invisid coupled fluids, which were Euler and magnetohydrodynamic with zero resistivity.
Under the action of the uniform gravitational field, the two fluids interacted at a free interface. We
utilized the flow map to denote the Lorentz force under the Lagrangian coordinates. We first showed
the ill-posedness to the linear problem around the RT steady state solution. By virtue of such an
ill-posed result, we showed that the nonlinear system is also ill-posed.
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1. Introduction

In this paper we are devoted to the following Euler and magnetohydrodynamics coupled system
in Ω: ρ+∂tu+ + ρ+u+ · ∇u+ + div(p+I) = −gρ+e3,

divu+ = 0.
in Ω+(t) (1.1)

and 
ρ−∂tu− + ρ−u− · ∇u− + div(p−I − h− ⊗ h−) = −gρ−e3,

∂th− + u− · ∇h− − h− · ∇u− = 0,
divu− = 0, divh− = 0,

in Ω−(t) (1.2)

where Ω = R2 × (−1, 1) ⊂ R3 is divided into Ω− and Ω+ by a moving free surface Σ(t). As shown in the
above systems (1.1) and (1.2), the “upper fluid” is called Euler fluid, which is occupying Ω+, and the
“lower fluid”, which is occupying Ω−, is magnetohydrodynamics fluid. We use (u±, p±, h−) to describe
the fluid velocity, pressure, and magnetic field. The subscript “±”refers to “upper/lower” fluid. I is the
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identity matrix, ρ± denotes the densities of the respective fluids, g > 0 is the gravitational constant, and
e3 = (0, 0, 1).

The conditions on Σ(t) are as follows:
[u · ν]|Σ(t) = 0,
h− · ν|Σ(t) = 0,
[(p + gρx3)ν]|Σ(t) = (h− ⊗ h−)ν|Σ(t),

(1.3)

where ν is the normal vector of Σ(t).
At the fixed boundary x3 = ±1, we impose the conditions:

u+(t, x1, x2, 1) · e3 = u−(t, x1, x2,−1) · e3 = 0, (1.4)

for any t ≥ 0, (x1, x2) ∈ R2.
In order to overcome the mathematical difficulties brought about by the evolution of the free

interface over time, the Lagrangian coordinates are introduced. Define the following reversible maps:

ϕ0
± : Ω± −→ Ω±(0), (1.5)

satisfying Σ0 = ϕ0
±{x3 = 0} and {x3 = ±1} = ϕ0

±{x3 = ±1}. ϕ0
± are continuous across {x3 = 0}. Define

invertible flow maps ϕ± which solve ∂tϕ±(t, x) = u±(t, ϕ±(t, x)),
ϕ±(0, x) = ϕ0

±(x).
(1.6)

In this paper, (t, y) with y = ϕ(t, x) and (t, x) ∈ R+ × Ω denote Eulerian coordinates and Lagrangian
coordinates, respectively. Since the two-layer fluids may slip each other, the slip map must be
introduced. Define S ± : R2 × R+ → R2 × {0} ⊂ R2 × (−1, 1) by

S −(t, x1, x2) = ϕ−1
− (t, ϕ+(t, x1, x2, 0)), (1.7)

Now, we define the corresponding unknown functions in the Lagrangian coordinate
v±(t, x) = u±(t, ϕ±(t, x)),
b−(t, x) = h−(t, ϕ−(t, x)), (t, x) ∈ R+ ×Ω.

q±(t, x) = p±(t, ϕ±(t, x)),
(1.8)

Denote by A± := ((Dϕ±)−1)T , where D is the derivative of the coordinates x and superscript T is the
matrix transpose. Then, the evolution equations for v±, b−, q±, ϕ± become

∂tϕ
i
+ = vi

+,

ρ+∂tvi
+ + Aik

+∂kq+ = 0,

A jk
+ ∂kv

j
+ = 0,

∂tϕ
i
− = vi

−,

ρ−∂tvi
− + Aik

− · ∂kq− = b j
−Aik
−∂kbi

−,

A jk
− ∂kv

j
− = 0,

∂tbi
− = b j

−A jk
− ∂kvi

−,

A jk
− · ∂kb

j
− = 0.

(1.9)
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In the above system, we have used the Einstein summation convention. The corresponding conditions
on Σ(t) are 

(
v+(t, x1, x2, 0) − v−(t, S −(t, x1, x2))

)
· ν(t, x1, x2, 0) = 0,(

q+(t, x1, x2, 0) − q−(t, S −(t, x1, x2))
)
· ν(t, x1, x2, 0)

= g[ρ]ϕ3
+(t, x1, x2)ν(t, x1, x2, 0) − (b− ⊗ b−)(t, S −(t, x1, x2))ν(t, x1, x2, 0),

(1.10)

where
ν =

∂1ϕ+ × ∂2ϕ+

|∂1ϕ+ × ∂2ϕ+|
, (1.11)

is the unit normal vector to the interface Σ(t) = ϕ+(t, {x3 = 0}), and ϕ3
+ is the third component of ϕ+.

Finally, we require the impermeability conditions

v−(t, x1, x2,−1) · e3 = v+(t, x1, x2, 1) · e3 = 0. (1.12)

In the Lagrangian coordinates, the magnetic field b− can be expressed by virtue of ϕ− as in [1, 2].
Applying Ail

− to the seventh equation of (1.9), we achieve

Ail
−∂tbi

− = Ail
−b

j
−A jk
− ∂kvi

−

= Ail
−b

j
−A jk
− (∂t∂kϕ

i
−)

= −bi
−∂tAil

−.

Thus, we have ∂t(Ail
−b

i
−) = 0, which implies Ail

−b
i
− = Ail,0

− bi,0
− and

bi
− = ∂lϕ

i
−A jl,0
− b j,0

− . (1.13)

Now, we check the last equation of (1.9). Applying the geometric identities, we have

J = J0 and ∂k(JAik
− ) = 0,

where J = |Dϕ|. Utilizing Aik
−∂k to (1.13), one gets

Aik
−∂kbi

− =
J
J0 Aik

−∂k(∂lϕ
i
−A jl,0
− b j,0

− )

=
1
J0
∂k(JAik

−∂lϕ
i
−A jl,0
− b j,0

− ) −
1
J0
∂k(JAik

− )∂lϕ
i
−A jl,0
− bi,0

−

=
1
J0
∂k(JA jk,0

− b j,0
− ) =

1
J0
∂k(J0A jk,0

− b j,0
− )

=
J0

J0
∂k(A

jk,0
− b j,0

− ) = ∂k(A
jk,0
− b j,0

− ) = A jk,0
− ∂kb

j,0
− .

(1.14)

The compatibility conditions for the initial value are imposed as follows:

A jk,0
− ∂kb j,0 = 0. (1.15)

Combining (1.14), we have
A jk
− ∂kb

j
− = 0, for all 0 ≤ t ≤ T. (1.16)
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For simplicity, we assume that
Ail,0
− bi,0 = M̄l. (1.17)

By virtue of (1.13) and (1.17), we can use the forcing term by the flow map ϕ− to represent the
Lorentz term in the fifth equation of (1.9). Thus, (1.9) becomes a two-fluids Navier-stokes system:

∂tϕ
i
± = vi

±,

ρ∂tvi
+ + Aik

+∂kq+ = 0,
ρ−∂tvi

− + Aik
−∂kq− − M̄lM̄r∂

2
lrϕ

i
− = 0,

A jk
± ∂kv

j
± = 0,

(1.18)

where the magnetic field M̄ can be considered as a vector parameter.
The conditions (1.10) can be expressed as

[q+(t, x1, x2, 0) − q−(t, S −(t, x1, x2))]νi(t, x1, x2, 0)

=g[ρ]ϕ3
+(t, x1, x2, 0)νi(t, x1, x2, 0) − M̄lM̄m(∂ϕi

−∂mϕ
j
−)(t, S −(t, x1, x2))ν j(t, x1, x2, 0). (1.19)

The boundary conditions are the same as (1.12).
We have known that v± = 0, ϕ± = Id, q± = const are steady -state solutions to the

systems (1.18), (1.19), and (1.12). Then, ν = e3, A = Id, S − = Id{x3=0}. The linearized equation
system near the steady-state solution is

∂tϕ± = v±,

ρ+∂tv+ + ∇q+ = 0,
ρ−∂tv− + ∇q− − M̄lM̄m∂

2
lmϕ− = 0,

divv± = 0.

(1.20)

The corresponding jump and fixed boundary conditions are

[[v · e3]] = 0, [[q]]e3 = g[ρ]ϕ3e3 − M̄3M̄l∂lϕ, (1.21)

v−(t, x1, x2,−1) · e3 − v+(t, x1, x2, 1) · e3 = 0, (1.22)

where [[·]] denotes the interfacial jump quantity on the boundary {x3 = 0}. Our aim is to study the
Rayleigh-Taylor (RT) problem, so we suppose

ρ+ > ρ− ⇔ [ρ] > 0. (1.23)

RT instability is a ubiquitous phenomenon in nature, widely existing in various research fields such
as astrophysics, atmospheric and oceanic science, laser fusion, and magnetic confinement fusion [3–6].
Before further discussion, we first review some results with regard to the RT instability problems.
The studies on the RT instability can be traced back to the pioneering work due to Rayleigh [7] and
Taylor [8]. From then on, many interesting physical phenomena and numerical simulations come from
both physical and numerical experiments. Li and Luo [9] studied the effect of a vertical magnetic field
on the RT instability of 2d nonideal magnetic fluids by constructing numerical solutions. We refer
to [10] and references therein for a general research of the physics about RT instability. However,
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there are only very few analytical results from the mathematical point of view. Recently, Guo and
Tice [11, 12] studied the linear and nonlinear RT instability for Euler and Navier-Stokes fluids by
the variational method or the modified variational method. In these papers, they discovered that the
viscosity and surface tension have an impact on the RT instability. When considering the magnetic
field, the RT instability appears by the Lorentz force. The theoretical discussion about the influence
of magnetic fields was proposed by Kruskal and Schwarzchild in [13]. They found that the horizontal
magnetic field can affect the development of RT instability but cannot suppress the growth of instability.
Jiang et al. [1, 14–16] used the similar method as [11, 12] and employed the new techniques to discuss
the RT instability for magnetohydrodynamics (MHD) fluids, as well as revealed the magnetic effect to
the instability. In this paper we consider the mechanism for the effect of the magnetic field in the ideal
fluid and magnetohydrodynamic coupled through the free interface.

2. Notations and main results

We first introduce some definitions that are applicable throughout the paper. Define the horizontal
Fourier transform for a function g ∈ L2(Ω) as follows:

ĝ(ξ1, ξ2, x3) =

∫
R2

g(x1, x2, x3)e−i(x1ξ1+x2ξ2)dx1dx2. (2.1)

Due to the Fubini and Parseval theorems, one has that∫
Ω

‖g(x)‖2dx =
1

4π2

∫
Ω

‖ĝ(ξ, x3)‖2dξdx3. (2.2)

Define the piecewise Sobolev space H s(Ω) for any s ∈ R as follows:

H s(Ω) = {g|g+ ∈ H s(Ω+), g− ∈ H s(Ω−)}

equipped with the following norm:

‖g‖2Hs(Ω) = ‖g‖2Hs(Ω+) + ‖g‖2Hs(Ω−),

and

‖g‖2Hk(Ω±) :=
k∑

j=0

∫
R2×I±

(1 + |ξ|2)k− j|∂ j
x3

ĝ±(ξ, x3)|2dξdx3

=

k∑
j=0

∫
R2

(1 + |ξ|2)k− j‖∂ j
x3

ĝ±(ξ, x3)‖2L2(I±)dξ, (2.3)

for I− = (−1, 0) and I+ = (0, 1).
Next, we will give the main theorems. The first one is concerned with the linearized

systems (1.20)–(1.22).

Theorem 2.1. Give a constant vector M̄ = (M, 0, 0), then for any k, the linear systems (1.20)–(1.22)
are ill-posed in Hk(Ω). To be precise, for any fixed k, j ∈ N with j ≥ k, T0 > 0, and α > 0, (1.20)–(1.22)
have the solutions {(ϕn, vn, qn)}∞n=1 which satisfy

‖ϕn(0)‖H j + ‖vn(0)‖H j + ‖qn(0)‖H j ≤
1
n
, (2.4)

AIMS Mathematics Volume 9, Issue 11, 32849–32871.



32854

but
‖vn(t)‖Hk ≥ ‖ϕn(t)‖Hk ≥ α, for all t ≥ T0. (2.5)

Remark 2.2. The ill-posedness in the above theorem implies that the solutions to the linear
systems (1.20)–(1.22) established in Theorem 3.6 depend disconstinuously on the initial conditions.

With the linear instability in hand, there is the nonlinear instability as follows:

Theorem 2.3. For any k ≥ 4, the perturbed problem (4.2)–(4.6) does not have the property EE(k).

Remark 2.4. We can extend the conclusions in Theorems 2.1 and 2.3 to the general horizontal
magnetic field M̄ = (M1,M2, 0). In practice, since the L2− norm of the velocity remains unchanged
under the horizontal rotation, one may rotate the coordinates so that M̄ = (M, 0, 0) with M =√

M2
1 + M2

2 .

The paper is arranged as follows. In Section 1, we introduce the Lagrangian coordinates and
linearize the nonlinear system. Some notations and main results are given in Section 2. In Section 3 we
establish the growing mode solution to the linearized system and prove the uniqueness of the solution
and discontinuous dependence on the initial value. In the last section, we investigate the ill-posedness
of the nonlinear system.

3. Ill-posedness of linearized problems (1.20)

When discussing the posedness of linearized Eqs (1.20)–(1.22), studying normal mode solutions
is a standard practice. To this end, for some λ > 0, suppose a normal mode ansatz as follows:

v±(t, x) = eλtw±(x), q±(t, x) = eλtq̃±(x), ϕ±(t, x) = eλtϕ̃±(x). (3.1)

Substituting the above ansatz into the systems (1.20)–(1.22) and eliminating the unknown ϕ̃± by
using (1.20)1 and (1.20)3, we arrive at the following system:

λρ+w+ + ∇q̃+ = 0,

λρ−w− + ∇q̃− −
1
λ

M̄lM̄m∂
2
lmw− = 0,

divw± = 0.

(3.2)

At the same time, the jump and boundary conditions become

[[w3]] = 0, [[q̃]]e3 =
1
λ

g[ρ]w3e3 −
1
λ

M̄3M̄l∂lw, (3.3)

and
w3

+(x1, x2, 1) = w3
−(x1, x2,−1) = 0. (3.4)

Since the coefficients in (3.2) depend only on the x3 variable, we can adopt the horizontal Fourier
transformation to (3.2) to reduce them into ordinary differential equations (ODEs) in terms of x3 with
each spatial frequency as parameters. Define

κ±, ψ±, θ±, π± : (−1, 1)→ R,
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so that
κ±(x3) = iŵ1

±(ξ1, ξ2, x3),

ψ±(x3) = iŵ2
±(ξ1, ξ2, x3),

θ±(x3) = ŵ3
±(ξ1, ξ2, x3),

and
π±(x3) = ˆ̃q(ξ1, ξ2, x3).

Then, we have
F (divw±) = ξ1φ± + ξ2ψ± + θ′±, (3.5)

where F means the Fourier transformation and ′ = d
dx3

.
Note that we only consider M̄ = (M, 0, 0), and make the Fourier transform for (3.2), then we

achieve the following system of ODEs:

λρ+κ+ − ξ1π+ = 0,
λρ+ψ+ − ξ2π+ = 0,
λρ+θ+ + π′+ = 0,
λ2ρ−κ− − λξ1π− + M2ξ2

1κ− = 0,
λ2ρ−ψ− − λξ2π− + M2ξ2

1ψ− = 0,
λ2ρ−θ− + λπ′− + M2ξ2

1θ− = 0,
ξ1κ± + ξ2ψ± + θ′± = 0,

(3.6)

subject to the jump conditions
[[θ]] = 0, [[λπ]] = g[ρ]θ(0), (3.7)

and corresponding fixed boundary conditions

θ−(−1) = 0, θ+(1) = 0. (3.8)

Eliminating π± from the Eq (3.6), one hasλ2ρ+(|ξ|2θ+ − θ
′′
+) = 0,

λ2ρ−(|ξ|2θ− − θ′′−) = B2ξ2
1(|ξ|2θ− − θ′′−).

(3.9)

Equations (3.7) and (3.8) become

[[θ]] = 0, λ2[[ρθ′]] − B2ξ2
1θ
′
− + g[ρ]|ξ|2θ = 0, (3.10)

θ−(−1) = 0, θ+(1) = 0. (3.11)

In what follows, we will devote ourselves to build a solution for (3.9)–(3.11) based on the
variational method, which deduces a solution for the system (3.6)–(3.8). Then, we will derive an
exponential growth solution of time for the system (1.20)–(1.22).

AIMS Mathematics Volume 9, Issue 11, 32849–32871.



32856

Multiply θ+, θ− to (3.9)1 and (3.9)2, add the resulting equations, and integrate over (0, 1) and
(−1, 0), respectively. After integration by parts, we get

−
1
2
λ2

∫ 1

−1
ρ(|ξ|2|θ|2 + |θ′|2)dx3 =

1
2

[
∫ 0

−1
B2ξ2

1(|ξ|2|θ−|2 + |θ′−|
2)dx3 − g[ρ]|ξ|2θ2(0)], (3.12)

where we used boundary and jump conditions. We would like to find a growing mode solution to the
system (3.2), which requires that there exists λ > 0. One can utilize the variational method to look for
the smallest value µ as follows:

µ = µ(|ξ|)

= in f {
1
2

[
∫ 0

−1
B2ξ2

1(|ξ|2|θ−|2 + |θ′−|
2)dx3 − g[ρ]|ξ|2θ2(0)]

∣∣∣ ∫ 1

−1
ρ(|ξ|2|θ|2 + |θ′|2)dx3 = 2}.

(3.13)

Define

E(θ) =
1
2
[ ∫ 0

−1
B2ξ2

1(|ξ|2|θ−|2 + |θ′−|
2)dx3 − g[ρ]|ξ|θ2(0)

]
, (3.14)

and

J(θ) =
1
2

∫ 1

−1
ρ(|ξ|2|θ|2 + |θ′|2)dx3. (3.15)

It is convenient to introduce the setA

A = {θ ∈ H1
0(−1, 1)|J(θ) = 1}.

For any |ξ| > 0, let
−λ2 = inf

θ∈A
E(θ) < 0,

which is equivalent to

− λ2 = inf
θ∈H1

0 (−1,1)

E(θ)
J(θ)

. (3.16)

We want to find the minimizer of E on the setA and show the existence and negativity of the infimum.

Proposition 3.1. E can obtain the infimum on A for any fixed |ξ| ≥ 0. If θ is a minimizer and −λ2 :=
E(θ), then (θ, λ2) solves (3.9) with (3.10) and (3.11). Moreover, θ is smooth when limited to (−1, 0)
or (0, 1).

Proof. For any θ ∈ A, we estimate E(θ) as follows:

E(θ) ≥ −
1
2

g[ρ]|ξ|2|θ(0)|2

= −
1
2
|ξ|g[ρ]|ξ|

∫ 0

−1
∂x3 |θ−|

2dx3

≥ −|ξ|g[ρ]
1
2

∫ 0

−1
(|ξ|2|θ−|2 + |θ′−|

2)dx3

≥ −
g[ρ]
ρ−
|ξ|. (3.17)
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Therefore, E has a lower bound on A. Take θn ∈ A as a minimizing sequence, then we get the
boundedness of θn in H1

0(−1, 1), which implies that there exists θ ∈ H1
0(−1, 1) to guarantee that θn is

weakly convergent to θ in H1
0(−1, 1) and strongly convergent in L2(−1, 1). Thus, we have

E(θ) ≤ lim inf
n→∞

E(θn) = inf
A

E. (3.18)

Thus, E takes the infimum overA and θ is a minimizer.
For s ∈ R and any θ0 ∈ H1

0(−1, 1), define θ(s) = θ + sθ0, then

E(θ(s)) + λ2J(θ(s)) ≥ 0, (3.19)

follows from (3.16). Let L(s) = E(θ(s)) + λ2J(θ(s)), then there is L(s) ≥ 0 for any s ∈ R and L(0) = 0.
This leads to L′(0) = 0. By virtue of (3.14) and (3.15), we derive

L′(0) =

∫ 0

−1
B2ξ2

1(|ξ|2θ− · (θ0)− + θ′− · (θ0)′−)dx3 − g[ρ]|ξ|2θ(0)θ0(0)

+λ2
∫ 1

−1
ρ(|ξ|2θ · θ0 + θ′ · θ′0)dx3 = 0. (3.20)

By selecting θ0 with compact support in either (−1, 0) or (0, 1), one can get that θ solves Eq (3.9)
in a weak sense. By standard bootstrap arguments, we may demonstrate that θ− ∈ Hk(−1, 0)(resp.,
θ− ∈ Hk(0, 1)) for all k ≥ 0 and, hence, it is smooth when limited to the respective interval. This means
that θ± are classical solutions to the Eq (3.9). The remainder is to show that (3.10) is established. For
each θ0 ∈ C∞c (−1, 1), we obtain(

λ2[[ρθ′]] − B2ξ2
1θ
′
− + g[ρ]|ξ|2θ

)
θ0(0) = 0. (3.21)

Since θ0(0) can be chosen arbitrary, we yield the second jump condition in (3.10). The conditions
[[θ]] = 0 and θ−(−1) = θ+(1) = 0 are satisfied trivially since θ ∈ H1

0(−1, 1) ↪→ C0, 1
2

0 (−1, 1). �

Remark 3.2. (3.17) implies −λ2 = inf
θ∈A

E(θ) ≥ −g[ρ]
ρ−
|ξ| and, hence,

λ ≤

√
g[ρ]
ρ−
|ξ|. (3.22)

Corollary 3.3. For any |ξ| > 0, system (3.6) has a solution (κ±, ψ±, θ±, π±) with λ = λ(|ξ|) > 0 .
Moreover, this solution satisfies (3.7) and (3.8) and is smooth when limited to (−1, 0) or (0, 1).

Proof. By solving (3.6), we get

π+ =
−λρ+θ

′
+

|ξ|2
, π− =

−(λ2ρ− + M2ξ2
1)θ′−

λ|ξ|2
,

κ± = −
ξ1θ
′
±

|ξ|2
, ψ± =

ξ2θ
′
±

|ξ|2
. (3.23)

From Proposition 3.1, it is obvious that π± = π±(ξ, x3), θ± = θ±(ξ, x3), and ψ± = ψ±(ξ, x3) are smooth
over the interval (−1, 0) or (0, 1). Furthermore, the jump and boundary conditions (3.7) and (3.8)
are satisfied. �
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Lemma 3.4. Let R1, ξ1 satisfy

e2R1 − 1
e2R1 + 1

≥
1
2
, and |ξ1| <

g[ρ]
4M2 < R1, (3.24)

then the eigenvalue λ = λ(|ξ|) satisfies

λ ≥

√
g[ρ]

ρ+ + ρ−
|ξ|. (3.25)

Proof. Denote θ̄ by

θ̄(x3) =

e|ξ|x3 − e|ξ|(2−x3) x3 ∈ [0, 1),
e−|ξ|x3 − e|ξ|(2+x3) x3 ∈ (−1, 0),

(3.26)

then
E(θ̄) =

1
2
|ξ|

[
M2ξ2

1(e4|ξ| − 1) − g[ρ]|ξ|(1 − e2|ξ|)2],
J(θ̄) =

1
2

(ρ+ + ρ−)(e4|ξ| − 1)|ξ|,

so

E(θ̄)
J(θ̄)

= |ξ|
( M2ξ2

1

(ρ+ + ρ−)|ξ|
−

g[ρ](e2|ξ| − 1)
(ρ+ + ρ−)(e2|ξ| + 1)

)
≤ |ξ|

1
ρ+ + ρ−

(
g[ρ]

4
−

g[ρ]
2

)

= −
g[ρ]

4(ρ+ + ρ−)
|ξ|.

Since −λ2 = inf
θ∈H1

0 (−1,1)

E(θ)
J(θ) , the result follows. �

Define
D := {ξ = (ξ1, ξ2)||ξ1| <

g[ρ]
4M2 , |ξ| > R1}. (3.27)

Obviously, D is a symmetrical domain.

Lemma 3.5. Let ξ ∈ D, κ±, ψ±, θ±, and π± be the solutions to (3.6) constructed in Corollary 3.3 , then
for each k ≥ 0, the following inequalities are valid:

||θ(ξ)||Hk(−1,1) ≤ Ak

k∑
j=0

|ξ| j−∆( j), (3.28)

||κ(ξ)||Hk(−1,1) + ||ψ(ξ)||Hk(−1,1) + ||π(ξ)||Hk(−1,1) ≤ Bk

k∑
j=0

|ξ| j, (3.29)

where

∆( j) =

0, if j = 0,
1, if j , 0.
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Moreover, √
||κ||2

L2(−1,1) + ||ψ||2
L2(−1,1) + ||θ||2

L2(−1,1) ≥ D, (3.30)

where Ak, Bk,D > 0 are constants depending on ρ,M,R1, and g.

Proof. θ(ξ) ∈ A implies that there are constants A0, A1 > 0 so that

||θ||L2(−1,1) ≤ A0, ||θ||H1(−1,1) ≤ A1.

By (3.9), we have
|ξ|2θ± = θ′′± . (3.31)

Thus,
‖θ′′‖2L2(−1,1) = |ξ|‖|ξ|θ‖2L2(−1,1) ≤ A2|ξ|, (3.32)

where we used θ ∈ A. Combining (3.31) and (3.32), we arrive at

||θ(k+1)||2L2(−1,1) ≤ Ak+1|ξ|
k, for any k ≥ 0,

which verifies (3.28). Employing (3.23) with |ξ| ≥ R1, we get

||θ(k)||L2(−1,1) + ||ψ(k)||L2(−1,1) ≤
2
|ξ|
||θ(k)||L2(−1,1) ≤ Bk|ξ|

k, (3.33)

for any k ≥ 0. By virtue of the expression of π on (3.23), (3.22), and (3.25), with |ξ| ≥ R1, one has

||π(k)
− ||L2(−1,0) + ||π(k)

+ ||L2(0,1)

=
λρ+

|ξ|2
||θ(k+1)

+ ||L2(0,1) +
λ2ρ− + M2ξ2

1

λ|ξ|2
||θ(k+1)
− ||L2(−1,0)

≤

√
g[ρ]
ρ−
ρ+

|ξ|
3
2

||θ(k+1)
+ ||L2(0,1) + (

√
g[ρ]
ρ−
ρ+

|ξ|
3
2

+
2M2

√
g[ρ]
ρ++ρ−

|ξ|
1
2

)||θ(k+1)
− ||L2(−1,0)

≤ Bk|ξ|
k. (3.34)

Combining (3.33) and (3.34), one can achieve (3.29).
Equation (3.30) follows from that for any fixed |ξ| > 0, θ(|ξ|) ∈ A, and (3.23). �

In Corollary 3.3, we have achieved the solution to (1.20) for the fixed spatial frequency ξ ∈ R2. In
rest of this section, we will establish the solution to (1.20) by using Fourier synthesis.

Theorem 3.6. Let 1 ≤ R1 ≤ R2 < R3 < ∞ with R1 satisfy (3.24). Suppose a real-valued and radial
symmetric function f ∈ C∞0 (R2) and B(0,R2) ⊂ supp( f ) ⊂ B(0,R3). For ξ ∈ R2, define

ŵ(ξ, x3) = −iκ(ξ, x3)e1 − iψ(ξ, x3)e2 + θ(ξ, x3)e3, (3.35)

where κ, ψ, θ, π are the solutions constructed in Proposition 3.1 and Corollary 3.3 with λ(ξ) > 0.
Denote

ϕ(t, x) =
1

4π2

∫
R2

f (ξ)ŵ(ξ, x3)eλ(ξ)teix′ξdξ, (3.36)
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v(t, x) =
1

4π2

∫
R2
λ(ξ)ŵ(ξ, x3)eλ(ξ)teix′ξdξ, (3.37)

q(t, x) =
1

4π2

∫
R2
λ(ξ) f (ξ)π(ξ, x3)eλ(ξ)teix′ξdξ, (3.38)

where x′ · ξ = x1ξ1 + x2ξ2, then (ϕ, v, q) is a real-valued solution to the linearized problem (1.20) with
the corresponding conditions. For any k ∈ N, the following inequality is valid:

||ϕ(0)||Hk + ||v(0)||Hk + ||q(0)||Hk ≤ C̃k(
∫
R2

(1 + |ξ|2)k+1| f (ξ)|2dξ)
1
2 < ∞, (3.39)

in which the positive constant C̃k depends on ρ, |M|,R1, and g. Moreover, ϕ(t), v(t), q(t) ∈ Hk(Ω±) for
every t > 0 satisfies the following estimates:

et
√

c̄2R2 ||ϕ(0)||Hk ≤ ||ϕ(t)||Hk ≤ et
√

c̄1R3 ||ϕ(0)||Hk ,

et
√

c̄2R2 ||v(0)||Hk ≤ ||v(t)||Hk ≤ et
√

c̄1R3 ||v(0)||Hk ,

et
√

c̄2R2 ||q(0)||Hk ≤ ||q(t)||Hk ≤ et
√

c̄1R3 ||q(0)||Hk ,

(3.40)

where c̄1 =
g[ρ]
ρ−
, c̄2 =

g[ρ]
4(ρ++ρ−) .

Proof. Fix ξ ∈ R, and

ϕ(t, x) = f (ξ)ŵ(ξ, x3)eλ(ξ)teix′·ξ,

v(t, x) = λ(ξ) f (ξ)ŵ(ξ, x3)eλ(ξ)teix′·ξ,

q(t, x) = λ(ξ) f (ξ)π(ξ, x3)eλ(ξ)teix′·ξ,

are solutions to (1.20). Due to B(0,R2) ⊂ supp( f ) ⊂ B(0,R3), the following inequalities follow
from Lemma 3.5:

sup
ξ∈supp( f )

||∂k
x3

ŵ(ξ, ·)||L∞ < ∞,

and
sup

ξ∈supp( f )
||∂k

x3
π(ξ, ·)||L∞ < ∞,

for every k ∈ N.

Meanwhile, λ(ξ) ≤
√

g[ρ]
ρ−
|ξ|. This boundedness indicates that the functions given by (3.36)–(3.38)

are also a solution to (1.20).
For any k ≥ 0, by applying Lemma 3.5, and where f is compactly supported, we easily achieve

the estimate (3.39). According to (3.22) and (3.25), one has

0 <
√

c̄2R2 ≤

√
g[ρ]

4(ρ+ + ρ−)
|ξ| ≤ λ(|ξ|) ≤

√
g[ρ]
ρ−
|ξ| ≤

√
c̄1R3,

which derives the bounds (3.40). �
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Now, we will study the ill-posedness for the linearized problem. Suppose that (ϕ, v, q) is the
solution to (1.20). Further, assume that the solution is band-limited at radius R > 0, that is,

∪
x3∈(−1,1)

supp(|ϕ̂(·, x3)| + |v̂(·, x3)| + |q̂(·, x3)|) ⊂ B(0,R).

Since in the lower fluid the equation in (1.20) has Lorenz force, it is appropriate to use the second-
derivative of velocity. Differentiating the second equation and the fifth Eq (1.20) in time and removing
ϕ− by using the fourth equation, one arrives at

ρ+∂ttv+ + ∇∂tq+ = 0,
ρ−∂ttv− + ∇∂tq− − M2∂2

11v− = 0,
divv± = div(∂tv±) = 0,

(3.41)

where we used M̄ = (M, 0, 0). We impose the conditions:

[[v3]] = [[∂tv3]] = 0, [[∂tq]]e3 = g[ρ]v3e3, (3.42)

∂tv3
−(t, x1, x2,−1) = ∂tv3

+(t, x1, x2, 1) = 0. (3.43)

∂tv(0) satisfies ρ+∂tv+(0) = −∇q+(0),
ρ−∂tv−(0) = −∇q−(0) + M2∂2

11ϕ−(0).
(3.44)

The first result is about the estimate of energy in terms of v for the evolution Eq (3.41).

Lemma 3.7. For solutions to (3.41)–(3.43), we have

1
2

d
dt

(
∫

Ω

ρ|∂tv|2dx +

∫
R2×(−1,0)

M2|∂1v−|2dx −
∫
R2

g[ρ]|v3(x′, 0)|2dx′) = 0. (3.45)

Proof. Multiply (3.41)1 and (3.41)2 by ∂tv±(t) and integrate over Ω±, respectively. After integration by
parts and employing (3.41)3, we arrive at

1
2

d
dt

∫
Ω+

ρ+|∂tv+|
2dx −

∫
R2
∂tq+∂tv3

+

∣∣∣
x3=0

dx′ = 0, (3.46)

1
2

d
dt

∫
Ω−

ρ−|∂tv−|2dx −
∫
R2
∂tq−∂tv3

−

∣∣∣
x3=0

dx′ +
1
2

d
dt

∫
Ω−

M2|∂1v−|2dx = 0. (3.47)

Adding (3.46) and (3.47), using (3.42)2, we yield (3.7). �

Lemma 3.8. If v satisfies that v ∈ H1(Ω) is band-limited at radius R > 0, divv = 0, and
v3(t, x1, x2,±1) = 0, then we arrive at∫

R2
g[ρ]|v3(x′, 0)|2dx′ ≤ (R2 + 1)g[ρ]

∫
Ω

|v|2dx. (3.48)
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Proof. Utilizing the horizontal Fourier transform to divv = 0 and denoting

κ(x3) = iv̂1(ξ1, ξ2, x3), ψ(x3) = iv̂2(ξ1, ξ2, x3) and θ(x3) = v̂3(ξ1, ξ2, x3), (3.49)

we have
ξ1κ + ξ2ψ + θ′ = 0. (3.50)

From (2.2), (3.49), and (3.50), one has∫
R2

g[ρ]|v3(x′, 0)|2dx′ =
1

4π2

∫
R2

g[ρ]|θ(0)|2dξ

=
g[ρ]
4π2

∫
R2

∫ 1

0
∂x3 |θ(0)|2dx3dξ

≤
g[ρ]
4π2

∫
R2

∫ 1

−1
(|θ|2 + |θ′|2)dx3dξ

=
g[ρ]
4π2

∫
R2

∫ 1

−1
(|θ|2 + |ξ1κ|

2 + |ξ2ψ|
2)dx3dξ

≤
g[ρ]
4π2

∫
R2

∫ 1

−1
(|θ|2 + R2|κ|2 + R2|ψ|2)dx3dξ

= g[ρ]
∫
R2

∫ 1

−1
(|v3|2 + R2|v1|2 + R2|v2|2)dx

≤ (R2 + 1)g[ρ]
∫
R

|v|2dx,

which gives (3.48). �

We may now derive growth estimates for v(t) and ∂tv(t).

Proposition 3.9. If v is a solution to (3.41) and is also band-limited at radius R > 0, the following
estimate holds:

||v(t)||2L2(Ω) + ||∂tv(t)||2L2(Ω) ≤ ce( (R2+1)g[ρ]
ρ−

+1)t(||v(0)||H1(Ω) + ||∂tv(0)||L2(Ω)), (3.51)

where c depends on ρ,M, g,R.

Proof. Integrate (3.7) with regard to time from 0 to t to achieve∫
Ω
ρ|∂tv|2dx +

∫
R2×(−1,0)

M2|∂1v−|2dx −
∫
R2 |v3(t, x′, 0)|2dx′

=
∫

Ω
ρ|∂tv(0)|2dx +

∫
R2×(−1,0)

M2|∂1v−(0)|2dx −
∫
R2 g[ρ]|v3(0, x′, 0)dx′.

Thus, we have ∫
Ω

ρ|∂tv|2dx ≤ A +

∫
R2

g[ρ]|v3(t, x′, 0)|2dx′, (3.52)

where

A =

∫
Ω

ρ|∂tv(0)|2dx +

∫
R2×(−1,0)

M2|∂1v−(0)|2dx ≤ ρ+||∂tv(0)||L2(Ω) + M2||∂1v(0)||2L2 . (3.53)
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We apply (3.48) to (3.52) to get the inequality∫
Ω

ρ|∂tv|2dx ≤ A + (R2 + 1)g[ρ]
∫

Ω

|v|2dx,

which implies

||∂tv(t)||2 ≤
A
ρ−

+
(R2 + 1)g[ρ]

ρ−

∫
Ω

|v|2dx. (3.54)

By virtue of the Cauchy-Schwartz inequality, one can show that

∂t||v(t)||2 = 2〈∂tv(t), v(t)〉 ≤ ||∂tv(t)||L2(Ω)

≤
A
ρ−

+
( (R2 + 1)g[ρ]

ρ−
+ 1

)
||v(t)||2L2(Ω), (3.55)

where 〈·, ·〉 denotes the L2 inner product. Applying the Gronwall inequality to (3.55), we derive

||v(t)||2L2(Ω) ≤ e( (R2+1)g[ρ]
ρ−

+1)t(||v(0)||2L2(Ω) +
A

(R2 + 1)g[ρ]
). (3.56)

Combining (3.55) and (3.56), we obtain

||∂tv(t)||2L2(Ω) + ||v(t)||2L2(Ω) ≤ ce( (R2+1)g[ρ]
ρ−

+1)t(||∂tv(0)||2L2(Ω) + ||v(0)||2H1(Ω)),

where c depends ρ±, g,R,M. �

We have shown the existence of the solutions to the Eq (1.20). To investigate the ill-posedness, we
turn to verify the uniqueness and discontinuous dependence on the initial conditions of the solutions.
To do this, we first build a projection operator related to the horizontal spatial frequency. Let Φ be a
function that is infinitely differentiable and a compact support in R2, satisfies Φ ∈ [0, 1], supp(Φ) ⊂
B(0, 1), and Φ(x) = 1 for x ∈ B(0, 1

2 ), then define ΦR(x) = Φ( x
R ) for R > 0. For f ∈ L2(Ω), the

projection operator PR is defined by
PR f = F −1(ΦRF f ). (3.57)

It is easy to show that PR verifies the following properties [11]:
(1) PR f is band-limited at radius R;
(2) PR is a bounded linear operator on Hk(Ω) for all k ≥ 0;
(3)PR commutes with partial differential and multiplication by functions depending only on x3;
(4) PR f = 0 for all R > 0 if, and only if, f = 0.

Theorem 3.10. Solutions to (1.20) are unique.

Proof. We only need to prove that when the initial data is zero, the solutions to (1.20) are also zero.
Assume that η±, v±, q± solve (1.20) with zero initial conditions. For any fixed R > 0, define ηR =

PRη, vR = PRv, qR = PRq, then ηR, vR, and qR also solve (1.20). Moreover, vR also solves (3.41) with
zero initial value. By virtue of (3.51), for any t ≥ 0, we derive

||vR(t)||L2(Ω) = ||∂tvR(t)||L2(Ω) = 0. (3.58)

Thus, there is ϕR(t) = qR(t) = vR(t) = 0 for all t ≥ 0. Due to the arbitrariness of R , we have that
ϕ(t) = v(t) = q(t) = 0 for all t ≥ 0. �
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Lastly, we will show that the solution to the problem (1.20) is discontinuously dependent on the
initial data.

Now, let us complete the proof of Theorem 2.1.

Proof. Fix j ≥ k ≥ 0, α > 0,T0 > 0. Let positive constants C̃k,R1,D come from Lemma 3.5 and

Theorem 3.6. For every n ∈ N, take R(n) large enough such that R(n) > R1,
√

g[ρ]
4(ρ++ρ−)R(n) > 1, and

exp
(
T0

√
g[ρ]

4(ρ++ρ−)R(n)
)

(1 + (R(n) + 1)2) j−k+1 ≥ α
2n2

C̄2
j

D2 . (3.59)

Choose a family of real-valued, radial, and compact supported functions fn as f in (3.36)–(3.38) so
that B(0,R(n)) ⊂ supp( fn) ⊂ B(0,R(n) + 1) and∫

R2
(1 + |ξ|2) j+1| fn(ξ)|2dξ =

1
C̄2

j n2
. (3.60)

Take R2 = R(n) and R3 = R(n) + 1 in Theorem 3.6 to get ϕn(t), vn(t), qn(t) ∈ H j(Ω) that solves (1.20) for
all t ≥ 0. By virtue of (3.39) and (3.60), we have that (2.4) holds for all n. Due to the definition (2.2),
there is

‖ϕn(T0)‖2Hk(Ω±) =

k∑
j=0

∫
R2

(1 + |ξ|2)k− j|∂ j
x3
ϕ̂n(T0, ξ)|2dξ

=

k∑
j=0

∫
R2

(1 + |ξ|2)k− j‖∂ j
x3
ϕ̂n(T0, ξ, ·)‖2L2(−1,1)dξ

≥

∫
R2

(1 + |ξ|2)k‖ϕ̂n(T0, ξ, ·)‖2L2(−1,1)dξ

=

∫
R2

(1 + |ξ|2)k‖ϕn(T0, ξ, ·)‖2L2(−1,1)dξ

=

∫
R2

(1 + |ξ|2)k| fn(ξ)|2e2T0λ(ξ)‖ŵ(ξ, ·)‖2L2(−1,1)dξ

≥

exp(T0

√
g[ρ]

4(ρ++ρ−)R(n))

(1 + (R(n) + 1)2) j−k+1

∫
R2

(1 + |ξ|2) j+1| fn(ξ)|2e2T0λ(ξ)‖ŵ(ξ, ·)‖2L2(−1,1)dξ

≥ α2n2
C̄2

j

D2

∫
R2

(1 + |ξ|2) j+1| fn(ξ)|2D2dξ = α2,

where we used (3.25), (3.40), and (3.30).

Since λ(|ξ|) ≥
√

g[ρ]
4(ρ++ρ−)R(n) ≥ 1 on the support of fn, we also arrive at

‖vn(t)‖2Hk ≥ ‖ϕn(t)‖2Hk ≥ ‖ϕn(T0)‖2Hk , for t ≥ T0.

We finish the proof of Theorem 2.1. �
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4. Ill-posedness for the nonlinear problem

We focus on showing the ill-posedness of the nonlinear system. Since A = Id, S − = Id{x3=0},
v± = 0, ϕ± = Id, q± = const are the steady-state solutions to (1.18), one can rewrite (1.18) using the
perturbation equations near the steady-state solutions. Let

ϕ± = Id + ϕ̃±, ϕ
−1
± = Id − ζ±, q± = const + σ±, A± = I −G±, (4.1)

where GT
± =

∑∞
n=1(−1)n−1(Dϕ̃±)n.

Substituting (4.1) into (1.18) with M̄ = (M, 0, 0), we yield the following equations about ϕ̃±, v±, σ±
∂tϕ̃± = v±,

ρ+∂tv+ + (I −G+)∇σ+ = 0,
ρ−∂tv− + (I −G−)∇σ− − M2∂11ϕ̃− = 0,
divv± − tr(G±∇v±) = 0,

(4.2)

where tr(·) is the matrix trace. The following compatibility conditions are required:

ζ± = ϕ̃± ◦ (Id − ζ±).

We impose the corresponding jump conditions as follows:

(v+(t, x1, x2, 0) − v−(t, S −(x1, x2))) · ν(t, x1, x2, 0) = 0, (4.3)

(σ+(t, x1, x2, 0) − σ−(t, S −(x1, x2)) · ν(t, x1, x2, 0) = g[ρ]ϕ̃3
+(t, x1, x2, 0)ν(t, x1, x2, 0)

−M2(e1 + ∂1ϕ̃−)(e1 + ∂1ϕ̃
j
−)(t, S −(t, x1, x2))ν j(t, x1, x2, 0), (4.4)

where
S − = (IdR2 − ζ−) ◦ (IdR2 + ϕ̃+) = IdR2 + ϕ̃+ − ζ− ◦ (IdR2 + ϕ̃+), (4.5)

v−(t, x1, x2,−1) · e3 = v+(t, x1, x2, 1) · e3 = 0. (4.6)

We collect the equation, jump, and boundary Eqs (4.2)–(4.6) as “the perturbed problem”. For k ≥ 0,
we use the following abbreviation:

‖(ϕ̃, v, σ)(t)‖Hk = ‖ϕ̃(t)‖Hk + ‖v(t)‖Hk + ‖σ(t)‖Hk . (4.7)

Before proving it, we give an importance definition.

Definition 4.1. (Property EE(k)) For any δ, t0,C > 0, and the initial data ϕ̃0, v0, σ0 meeting

‖(ϕ̃0, v0, σ0)‖Hk < δ, (4.8)

there exists (ϕ̃, v, σ) ∈ L∞((0, t0); H3(Ω)), which solves the perturbed problems (4.2)–(4.6) on Ω×(0, t0)
and satisfies:

(1) ϕ(t) = Id + ϕ̃(t) is reversible and ϕ−1(t) = Id − ζ(t) for 0 ≤ t < t0, and
(2)

sup
0≤t<t0

‖(ϕ̃, v, σ)(t)‖H3 ≤ Q(‖(ϕ̃0, v0, σ0)‖Hk), (4.9)

where Q : [0, δ) → R+ and Q(y) ≤ Cy for z ∈ [0, δ) . We say the perturbed problems (4.2)–(4.6) has
property EE(k).
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Next, we will use the proof by contradiction to prove Theorem 2.3.

Proof. For some k ≥ 4, we assume that the problems (4.2)–(4.6) has the property EE(k) of the above
definition. For n ∈ N, let T = t0

2 , k ≥ 4, and α = 1 in Theorem 2.1. Then, ϕ̄, v̄, σ̄ solves (1.20) with
M̄ = (M, 0, 0) and the initial data satisfying

‖(ϕ̄, v̄, σ̄)(0)‖Hk <
1
n
,

but
‖v̄(t)‖H4 ≥ ‖ϕ̄(t)‖H4 ≥ 1, for t ≥ T. (4.10)

For any ε > 0, denote
ϕ̄ε0 = εϕ̄(0), v̄ε0 = εv̄(0), σ̄ε

0 = εσ̄(0),

then we have
‖(ϕ̄ε0, v̄

ε
0, σ̄

ε
0)‖Hk <

ε

n
.

Select n such that n > C, εn < δ, where C, δ are the constants in the above property EE(k).
Due to EE(k), the perturbed problem exists a solution (ϕ̃ε, vε, σε) ∈ L∞((0, t0); H4(Ω)) with

(ϕ̄ε0, v̄
ε
0, σ̄

ε
0) as the initial data. In addition,

sup
0≤t<t0

‖(ϕ̃ε, vε, σε, ∂tσ
ε)(t)‖H4 ≤ Q(‖(ϕ̄ε0, v̄

ε
0, σ̄

ε
0‖Hk)

≤ Cε‖(ϕ̄, v̄, σ̄)(0)‖Hk < ε. (4.11)

Defining

ϕ̄ε =
ϕ̃ε

ε
, v̄ε =

vε

ε
, σ̄ε =

σε

ε
, (4.12)

and inputting them into (4.11), we derive

sup
0≤t<t0

‖(ϕ̄ε, v̄ε, σ̄ε, ∂tσ̄
ε)‖H4 ≤ 1, (4.13)

and
(ϕ̄ε, v̄ε, σ̄ε)(0) = (ϕ̄, v̄, σ̄)(0). (4.14)

We next demonstrate that
lim
ε→0

(ϕ̄ε, v̄ε, σ̄ε) = (ϕ̄, v̄, σ̄),

where (ϕ̄, v̄, σ̄) solves the linearized system (1.20) with M̄ = (M, 0, 0). Substitute (4.12) into (4.2), then
we have 

∂tϕ̄
ε
± = v̄ε±,

ρ+∂tv̄ε+ + (I − εḠε
+)∇σ̄ε

+ = 0,
ρ−∂tv̄ε− + (I − εḠε

−)∇σ̄
ε
− − M2∂11ϕ̄

ε
− = 0,

divv̄ε± − tr(Ḡε
±∇v̄ε±) = 0,

(4.15)

where

Ḡε
± :=

I − (I + εDϕ̄T
±)−1

ε
, (4.16)
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then Ḡε
± is well-defined. Thus,

‖Ḡε
±‖H2 = ‖

∞∑
n=1

(−ε)n−1(Dϕ̄ε±)
n‖H2 ≤

∞∑
n=1

εn−1‖(Dϕ̄ε±)
n‖H2

≤

∞∑
n=1

(εK1)n−1‖Dϕ̄ε±)‖
n
H2 ≤

∞∑
n=1

1
2n−1 ‖ϕ̄

ε
±)‖

n
H4

<

∞∑
n=1

1
2n−1 = 2, (4.17)

where the positive constant K1 is the optimal constant in the inequality ‖FH‖H2 ≤ K1‖F‖H2‖H‖H2 . Take
ε small enough so that ε < 1

2K1
, then Ḡε

± is uniform boundness in L∞(0, t0; H2(Ω)).
Now we will show some convergence results. From (4.15)1, one gets

sup
0≤t<t0

‖∂tϕ̄
ε
±(t)‖H4 = sup

0≤t<t0
‖v̄ε±(t)‖H4 ≤ 1. (4.18)

Expanding (4.15)2, we have
ρ+∂tv̄ε+ + ∇σ̄ε

+ − εḠ
ε
+∇σ

ε
+ = 0, (4.19)

whence
lim
ε→0

sup
0≤t<t0

‖ρ+∂tv̄ε+ + ∇σ̄ε
+‖H3 = 0, (4.20)

and
sup

0≤t<t0
‖∂tv̄ε+‖H3 ≤ K3 for some constant K3 > 0. (4.21)

By virtue of (4.15)3, we achieve

ρ−∂tv̄ε− + ∇σ̄ε
− − εḠ

ε
−∇σ

ε
− − M2∂11ϕ̄

ε
− = 0, (4.22)

which implies
lim
ε→0

sup
0≤t<t0

‖ρ−∂tv̄ε− + ∇σ̄ε
− − M2∂11ϕ̄

ε
−‖H2 = 0, (4.23)

Thus, we have
sup

0≤t<t0
‖∂tv̄ε−‖H2 ≤ K4 for some constant K4 > 0, (4.24)

(4.15)4 implies
lim
ε→0

sup
0≤t<t0

‖divv̄ε±‖H3 = 0. (4.25)

The convergence results about the jump conditions are as follows. Due to the invertibility of Id + εϕ̄ε,
denote ζ̄ε by

(Id + εϕ̄ε)−1 = Id − εζ̄ε,

which means
ζ̄ε = ϕ̄ε ◦ (Id − εζ̄ε),

then S ε
− : R2 × R+ → R2 × {0} can be expressed by

S ε
− = IdR2 + εϕ̄ε+ − εζ̄

ε ◦ (IdR2 + εϕ̄ε+). (4.26)
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Hence,

sup
0≤t≤t0

‖S ε
−(t) − IdR2‖L∞ ≤ 2ε sup

0≤t<t0
‖ϕ̄ε(t)‖L∞

≤ 2εK2 sup
0≤t<t0

‖ϕ̄ε‖H4 < 2εaK2, (4.27)

where the positive constant K2 is the Sobolev embedding constant in the trace mapping H4(Ω) ↪→
L∞(R2 × {0}). Define S̄ ε

− =
S ε
−−IdR2

ε
, then S̄ ε

− is uniform boundness in L∞((0, t0); L∞(R2 × {0})) by (4.27).
Denote the normal at the interface by νε = Nε

|Nε |
with

Nε = (e1 + ε∂x1ϕ̄
ε
+) × (e2 + ε∂x2ϕ̄

ε
+)

= e3 + ε(e1 × ∂x2ϕ̄
ε
+ + ∂x1ϕ̄

ε
+ × e2 + ε∂x1ϕ̄

ε
+ × ∂x2ϕ̄

ε
+)

:= e3 + εN̄ε. (4.28)

As ε→ 0, one gets |Nε| > 0. The jump condition (4.3) can be rewritten as follows:

(v̄ε+ − v̄ε− ◦ (IdR2 + εS̄ εa
− )) · (e3 + εN̄ε) = 0. (4.29)

It is obvious that sup
0≤t<t0

‖N̄ε(t)‖L∞ is uniformly bounded since

sup
0≤t<t0

‖v̄ε− ◦ (IdR2 + εS̄ ε
−) − v̄ε−‖L∞

≤ sup
0≤t<t0

‖Dv̄ε(t)‖L∞ sup
0≤t<t0

‖εS̄ ε
−(t)‖L∞ → 0 as ε→ 0.

Therefore,
sup

0≤t<t0
‖e3 · (v̄ε+(t) − v̄ε−(t))‖L∞ → 0 as ε→ 0. (4.30)

For the jump condition (4.4), we can rewrite it as

[σ̄ε
+ − σ̄

ε
− ◦ (IdR2 + εS̄ ε

−) − g[ρ]ϕ̄ε,3+ ](e3 + εNε)
= −M2(N̄1,ε + ∂1ϕ̄

3,ε
− ) ◦ (IdR2 + εS̄ ε

−)e1 − εM2F̄ε,

where

Q̄ε = [(∂1ϕ̄
ε
− · N̄

ε)e1 + (N̄1,ε + ∂1ϕ̄
3,ε
− )∂1ϕ̄

ε
−

+ε(∂1ϕ̄− · N̄ε)∂1ϕ̄
ε
−] ◦ (IdR2 + εS̄ ε

−).

Obviously, sup
0≤t<t0

‖Q̄ε(t)‖L∞ is uniformly bounded. Thus, we achieve

sup
0≤t<t0

‖(σ̄v
+ − σ̄

ε
− − g[ρ]ϕ̄3,ε

+ )e3 + M2∂1ϕ̄
3,ε
− )e1‖L∞ → 0, as ε→ 0. (4.31)

Collecting (4.13), (4.18), (4.21), and (4.24), there exists (ϕ̄0, v̄0, σ̄0, ∂tσ̄
0, ∂tϕ̄0) ∈ L∞(0, t0; H4(Ω))

so that

(ϕ̄ε, v̄ε, σ̄ε, ∂tσ̄
ε, ∂tϕ̄

ε)→ (ϕ̄0, v̄0, σ̄0, ∂tσ̄
0, ∂tϕ̄0) weak-* in L∞(0, t0; H4(Ω)),
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and
∂tv̄ε → ∂tv0 weakly-∗ in L∞(0, t0; H2(Ω)). (4.32)

By virtue of the lower semi-continuity, we derive

sup
0≤t<t0

‖(ϕ̄0, v̄0, σ̄0)(t)‖H4 ≤ 1. (4.33)

Combining (4.13), (4.18), (4.21), and (4.24), one has

lim sup
ε→0

sup
0≤t<t0

‖(∂tϕ̄
ε, ∂tv̄ε, ∂tσ̄

ε)‖H2 < ∞.

By virtue of a conclusion in [17], (ϕ̄ε, v̄ε, σ̄ε) is strongly pre-compact in L∞(0, t0; H
11
4 (Ω)). So, we have

(ϕ̄ε, v̄ε, σ̄ε)
strongly
−−−−−→ (ϕ̄0, v̄0, σ̄0) in L∞(0, t0; H

11
4 (Ω)). (4.34)

Following from the above strong convergence, the convergence results (4.20) and (4.23), and the
equation ∂tϕ̄

ε = v̄ε, we arrive at

∂tϕ̄
ε strongly
−−−−−→ ∂tϕ̄

0 in L∞(0, t0; H
11
4 (Ω)),

∂tv̄ε
strongly
−−−−−→ ∂tv̄0 in L∞(0, t0; L2(Ω)),

and 
∂tϕ̄

0
± = v̄0

±,

ρ+∂tv̄0
+ + ∇σ̄0

+ = 0,
ρ−∂tv̄0

− + ∇σ̄0
− − M2∂2

11ϕ̄
0
− = 0,

divv̄0
± = 0.

(4.35)

Taking the limit for (4.14), there is

(ϕ̄0, v̄0, σ̄0)(0) = (ϕ̄, v̄, σ̄)(0). (4.36)

Combining (4.30) and (4.31), we infer

v̄0
+ · e3 = 0 on {x3 = 1}, v̄0

− · e3 = 0 on {x3 = −1},
(v̄0

+ − v̄0
−) · e3 = 0 on {x3 = 0}, (4.37)

and
(σ̄0

+ − σ̄
0
− − g[ρ]ϕ̄3,0

+ )e3 + M2∂1ϕ̄
3,0
− e1 = 0 on {x3 = 0}. (4.38)

(4.35)–(4.38) imply that (ϕ̄0, v̄0, σ̄0) solves (1.20)–(1.23) with M̄ = (M, 0, 0) and meets the initial
conditions (4.24). Thereby,

(ϕ̄0, v̄0, σ̄0) = (ϕ̄, v̄, σ̄) on [0, t0) ×Ω,

follows from Theorem 3.10. Furthermore, collect the inequality (4.33) and (4.10) to yield

2 ≤ sup
t0
2 ≤t<t0

‖(ϕ̄0, v̄0, σ̄0)(t)‖H4 ≤ sup
0≤t<t0

‖(ϕ̄0, v̄0, σ̄0)(t)‖H4 ≤ 1,

which is a contradiction. Therefore, for any k ≥ 4, the property EE(k) is not valid for the perturbed
problem. Theorem 2.3 has been proven. �

AIMS Mathematics Volume 9, Issue 11, 32849–32871.



32870

5. Conclusions

We investigated the RT instability problem of the two-phase flow coupled with ideal fluid and
magnetohydrodynamic. We obtained the RT instability of linear problems by establishing a growth
mode solution to the linearization problem near the steady-state solution. By virtue of the instability
of linearization problems, we ultimately obtained the RT instability of nonlinear problems.
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