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1. Introduction

In the present research, we prove existence results for a fourth-order differential equation system
that takes the form:

{w“”(t) = f(t,w(t), @' (), w"(t),w"(t)), aetedJ =]0,1], (L.1)

w(0)=wmy, @ (0)=w; and @’ € (BC),

where f : [0, 1] X R** — R” represents an L'-Carathéodory function, @, @, € R" and (BC) can be the
boundary conditions that are given by one of the following:
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(S L) Strum-Liouville boundary conditions on J

Ag@(0) — Bow’(0) = ro,

Ayo(l) + girw’(1) = . (1.2)

(P) Periodic boundary conditions on J

@(0) = @ (D),

@(0) = (1), (1.3)

where (A;)ici0.1) € Muxn (R), such that
Vie{0,1},3k >0 : (w, Ajo) > k ||o||*, Vo € R”

Vie{0,1},r,eR:B;€{0,1}, k; + B > 0.

We refer to [1-3] for further findings that were achieved in the specific instance of a boundary value
issue for only one differential equation of the fourth-order (n = 1), for more details, please see [4—6].
Existence results for higher-order differential equations can be found in [7, 8], and the general case of
N order systems is discussed in [9—11].

The concept of the solution-tube of problem (1.1) is presented in this work; see [12—14]. This idea
is inspired by [15] and [16], where solution-tubes for second and third order differential equations
systems are defined, respectively, as follows:

{w”(r) = f(t, w(r), @' (1)), ae.te’d, (14)
@ € (BC),
and
@(t) = f(t,w(1), @ (1), T (1)), ae.te”J, 0.5
@(0) = @y, @ € (BC). '

We prove that the system (1.1) has solutions. For this system, we employ the concept of a solution
tube, which extends to systems the ideas of lower and upper solutions to the fourth-order differential
equations presented in [17-19].

The structure of this paper is given as follows: This article will utilize the notations, definitions,
and findings found in Section 2. In Section 3, we provide the idea of a solution-tube to get existence
results for fourth-order differential equation systems. We then go on to demonstrate the practicality of
our results through two examples.

2. Preliminaries

In this section, we recall some notations, definitions, and results that we will use in this article.
The scalar product and the Euclidian norm in R" are denoted by (,) and ||-||, respectively. Also, let
C*(J,R") be the Banach space of the k-times continuously differentiable functions @ associated with
the norm

@}

lell, = max {llwlly , 1l , ..
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where
lwlly = max {w() : 1 € J}.

The space of integral functions is denoted by L'(J,R") , with the usual norm ||-||;:. The Sobolev space
of functions in C¥"!(J, R"), where k > 1 and the (k — 1) derivative is denoted by W*!((J,R").
For @y, w; € R", we have the following:

Co(J,R") :={w € C(J,R") : @(0) = wo},

Chyo (TR := [ € C'(J,R") : @(0) = my, @'(0) = w1},
CHIT.R" =@ € CH(IJ.R" : @ € (BC),
Wy'(T.RY) = {@ € W*'(T,RY) : @ € (BO)),
ColT R = {@ € C'(I. R : m(0) = @y, & € (BO),
Wel (T RY) = {@ € W (T, RY) : @(0) = @, @ € (BO),
s TRY =@ e C"X(I.RY : ©(0) = o, @'(0) = @1, x¥ € (BO)},
W{;;Z;l JTR) = @ e W(FLRY) : 2(0) = wo, @'(0) = @1, @ € (BO).

Definition 2.1. A function f : J x R* — R" is called an L'-Carathéodory function if

(i) For every (@,y,q, p) € R*, the function t — f(t,w,y,q, p) is measurable;
(ii) The function (w,y,q, p) — f(t,@,y,q, p) is continuous for a.e. t € J;
(iii) For every r > 0, there exists a function h, € L'(], [0, ©)) such that ||f(t,@,y,q, p)l| < h.(t) for
a.e.t € J and for all (w,y,q, p) € D, where

={(@,y,¢.p) eR™ :|l@l <1, IVl < 1 llgll < 7, llpll < ).

Definition 2.2. A function F : C*(J,R") x J — L'(J,R") is integrally bounded, if for every bounded
subset B C C3(J,R"), there exists an integral function hg € L'(J, [0, 0)) so that ||F(w@, )®)|| < hg(?),
forVte J, (w,a) € Bx 9.

The operator Np : C3(J,R") x J — Co( T, R") will be associated with F and defined by

Nr(w)(t) = f F(w,a)(s)ds.
0

We now state the following results:

Theorem 2.1. [20] Let F : C3(J,R") x J — L'(J,R") be continuous and integrally bounded, then
Np is continuous and completely continuous.

Lemma 2.1. [2]] Let E be a Banach space. Letv : J — E be an absolutely continuous function,
then for
{te T :v(t) =0andV (t) # 0},

the measure is zero.
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Lemma 2.2. [22] For w € W»!'(J;R) and & > 0, assume that one of the next properties is satisfied:

(i) w'(t) — ew(t) = 0; for almost every t € J,kow(0) — vow’'(0) < 0,k;w(1) + viw'(1) < 0; where
ki, v; = 0,max{k;,v;} > 0; i =0, 1; and max{ky, k;,&} > 0,
(ii) w”(t) — ew(t) > O, for almost every t € J, € > 0, w(0) = w(l), w'(1) —w'(0) <0,
(iii) w"(t) — ew(t) > O; for almost every t € [0,1;] U [f2, 1],& > 0,w(0) = w(l), w'(1) —w'(0) <0,

W(l) <0,te [t1,52].
Then w(t) <0, Yt € [0, 1].

Lemma 2.3. [22] Let f € C(J x R*,R") be a L'-Carathéodory function (see definition in [22]).
Consider the following problem:

{w”(r) = f(t,w(®),w'(?)), ae.te[,

2.1
w € (BC). @

Let € > 0, and (z, N) a solution-tube of (2.1) given in Definition 2.3 of [22]. If @ € Wé’l(j, R™) satisfies

(@(1) = 2(0), @" (1) = ") + &' () = Z DI (@) = 2(), @' (1) = 2/ (1))
IT = B _ ~
(t) ”w(l) - Z(t)” ”,w-(t) _ Z(I)HB € ”TD'(I) Z(t)”

N"(t) — eN(1),

\%

a.e. on
{reJ o) -zl > N0}
Then
() — z(t)|| < N(¢) foreveryte J.

Now, we recall some properties of the Leray Schauder degree. The interested reader can see [23,24].

Theorem 2.2. Let E be a Banach space and U C E is an open bounded set. We define K;y(U,E) =
{f : U — E, where fis compact and f(w) # @, for every w € U}, the Leary-Schauder degree on U
of (Id — f) is an integer deg(ld — f, U, 0) satisfying the following properties:

(i) (Existence) If deg(ld — f,U,0) # 0, then dw € U, s.t.,
w - f(w)=0.

(ii) (Normalization) If 0 € U, then cieg(ld, U0 =1.
(iii) (Homotopy invariance) If h : U x J — E is a compact such that w — h(w,a) # 0 for each
(w,a) € U X T, then

deg(ld — h(., @), U,0) = deg(ld — h(.,0),U,0), foreverya € .
(iv) (Excision) If V C U is open and w — f(w) # 0 for all w € U \V, then
deg(ld — f,U,0) =deg(ld — f,V,0).

(v) (Additivity) If Uy, U, C U are disjoint and open, such that U = U, U U, and w — f(w) # 0 for
all w € 90U U 9U,, then

deg(ld — f,U,0) = deg(ld — f,U,,0) + deg(ld — f, U,,0).
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3. Main results

In this section, we define the solution-tube to the problem (1.1). This definition is important for
our discussion about the existence results. A solution to this problem is a function @ € W*!(J,R")
satisfying (1.1). Now, we define the tube solution of problem (1.1), where the functions z € W*!(J,R")
and N € WH(T, [0, o) are chosen before studying the existence of this problem.

Definition 3.1. Let (z, N) € W*I(J,R") x WHI(T, [0, o). The couple (z, N) is solution-tube of (1.1),
if

(i) N'(1) 20, Vte .
(ii) For almost every t € J and for all (w,y,q, p) € F,

(=", [t @,y,9) = ") +lp = 2" OIF = N ON* @) + (N (1)),

where

F={(@.y.¢.p) €R" : |lm-z0I <N,
v =2 @Ol < N' (@),
lg == @l = N" (@),
(g =2, p=2"(®) = N"ON"(1)}.

(iii) Z29(t) = f(t,@,y,7°(£), 7" (1)), a.e. t € [0, 1] such that N"(t) = 0 and (w,y) € R*", such that
lo -z <N@andl|ly -z @l < N (@).
(iv) With (1.2), we have

llro = (Aoz”(0) — Boz” (O)II < koN"(0) — BoN""(0),
llri = (A1 2" (1) + B2 (DI < ki N”(1) + BIN""(1).
If (BC) is given by (1.3), then

Z//(O) — Z”(l), N///(O) — N’,(l),
”Zu/(l) _ ZN/(O)” < NIN(l) _ NIN(O).

(v) ll@o = z(0)ll < N(0), [lw, —Z'(0)|| < N'(0).
The next notation will be used
T(z,N) = {w € CHJ, R :|l@”(t) = " (0l < N"(0), |l@’' () = 2Dl < N' (1)
and ||l@”’(t) = " (DI < N”(t) forall t € J}.
The next hypotheses will be used:
(F1) f:9J xR¥" — R"is a L'-Carathéodory function.

(H1) There exists (z, N) € WHI(T,R") x WH1(], [0, )) a solution-tube of the main system (1.1).
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The next family of problems should be considered to prove the general existence theorem that will be
presented:

@) — s’ (1) = f2(1, w(t), @ @), @' (), @ (1), ae.te], o
@(0) = @y, @(0) = @, and @' € (BO), ’
where &, € J and f? : J X R* — R" is defined by
o (o 1, @,y,3,p) - £G) — s (1 =) (1)
+(1- 28 (290 + 228 (g - 2 (0). if llg = 2Ol > N (1),
fott,@,y,q,p) =
a(filt,@,y,q,p) —eq) —e(1 —a)z’(?)
+(1-a) (Z(4)(1) + ]X,L)((tt)) (g - Z"(t))) , otherwise,
where (z, N) is the solution-tube of (1.1),
[, @,3,q,p), if llm -zl > N(@) and |ly -z’ (|l > N'(2),
hHt,@,y,q,p) = .
f(t,@,y,q,p), otherwise,
N
() = ﬁ(ax — 2(0)) + 2(D), (3.2)
N/
30 = L (=2 0) + 0, (33)
~ N/,(t) 124 17
=—— ' (q- , 3.4
g(t) =0 (g=2"®)+7"(0 (3.4)
y (q-7"(),p - z”’(f))) ( q-2"(1) )
= N (f) - , 3.5
Po=p+ ( O —zor Mgz (52)

and where we mean

N@® )
N’ ( t)

We associate with f¢ the operator F* : C3(J,R") x J — L'(J,R") defined by

(g=2"(®)=0on{teJ :llg(t) -"@®I = N" () = 0}.

Fo(wm,a)(0) = f3(t, w(®), @' (1), @" (1), & (D).

Similarly to the Lemma 3.3 and Propositions 3.4 in [20] and results in [25], we need the following
auxiliary results:

Lemma 3.1. Assume (H1). If a function w € Wi;;,ml,s(j , R") satisfies

<w"(t) - z”(‘”(t)) + @ (t) - 2" (DI (@) ='W, w" (1) =270
i@ () = 2"l & () — 2’ (@I
>ND(t) — eN" (1),

ella” (0 - "l

forae tef{teJ ||l@’'(t) - 7"l > N”(t)}, then w € T(z, N).
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Proof. By assumption
@' € Wo (TR, @ € W5' (TR,

and thus, from applying Lemma 2.3 to @w”, we obtain
lw” () - "Il < N"(1),Vt € J.
On
teJ N’ ®-ZOI>N®, lo'®) -0l <lla”"®) - "0 < N"@().}
The function
t = l@'(0) - 2Ol - N'(0),

is nonincreasing on 4. Since

|y — 2 0)|| < N'(0),
we get

lo’ (@) - DI < N'(D), Vi€ T,
hence
la(@®) -zl < ll&’(t) = 2/ ()l < N'(0).
The function
1 = |lw(r) — 2|l - N(),

is nonincreasing on J and since

l(0) — z(O)I] < N(0),
we obtain

() — z()|| < N(1),Vt € J.
O

Proposition 3.1. Assume (F1) and (H1) hold. Then the operator F° that was defined earlier is
continuous and integrally bounded.

Proof. First, we will prove that F? is integrally bounded. If w € B, where 8B is a bounded set of
C3(J,RM, IK > 0 that satisfies ||@?(@)|| < K, ¥t € J, where i = 0,1,2,3. Then f2(t,.,.,.,.) is
bounded in E, it can be observed that

IFe (@, )l = ||[f2t, @ (), @' (), @ (1), @ ()
< max {||f(t, @, y, ¢, p)ll, (@,y,q, p) € E} + IN" O + 12Ol + 1127 (0)l| + IND(2)],

for all @ € J and almost every ¢ € J, where

E = {(u,y, g, p) € R¥ clull < llzllo + 1Nl , IVl < 112’ llg + 11Vl
llgll < 11z"llo + [IN"llo > [IpIl < 21l llo + 112" llo + 1N""1lo} -

As fis L'-Carathéodory, z € W*'(J,R") and N € W*!(T, [0, 00)), it is easy to see that F? is integrally
bounded.
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In order prove the continuity, we should firstly prove that if (wp, ap) — (w,a) in C3(J,R") X 9,
then
o, (1, @), @, (D), @, (1), @, (D) = f7 ¢, w0), o' 1), w" 1), w" (1) ae €. (3.6)

Using the fact that f is L'-Carathéodory, and from the definition of f2, it can be concluded that (3.6) is
true a.e. on {t € J : ||l@” (t) — 7" (1)|| # N” (¢)}. Then, by Lemma 2.1 and Proposition 3.5 in [22], we
easily show that @"(f) — @’”(f) on

{teJ @’ @ -"®l=N"@ >0},
where @’ (1), is defined as (3.5). Then, (3.6) is satisfied on
{teJ @’ @ -"®=N"@ >0}

For
A={teJ l@”" () -2" @ =N" () =0},

where @” (t) = 7” (¢), and by Lemma 2.1, it is not hard to see that @’ (r) = 7’ (¢), N"’(t) = 0 and
N®(t) =0, Vt € A, which means,

f2 (w0, @ 0,7 (1), @ (1) = o fi(t, &0, & (0, 7" (0, @) - e (1)) + (1 - @) (D) — £ (1))
= afi(t, w(1), @' (1), (1), 2" (1) - &' (1) + (1 = ) 29(0),
a.e. on A. By the solution tube hypothesis (Definition 3.1 condition (iii)), we have

o, 0, a"0),a”"0) = 2P0 +1-a)2P0) -0
- Z(4)(t) _ 8Z”(t),

a.e. on A. Consequently, (3.6) must be true a.e. on . Using the Lebesgue-dominated convergence
theorem, and since F* is integrally bounded, the proof can be concluded. O

Now, we can obtain our general existence result. We follow the method of proof given in [20].
Theorem 3.1. Assume (¥ 1), (H1), and the following conditions are satisfied:
(H,) For every solution @ of the related system (3.1), AK > 0, so that

la” Ol < K, Vi€ J.

Then, problem (1.1) has a solution @ € W*'(J,R") N T(z, N).
Proof. We first show that if (@, N) € Wi (F,R") x W*(T, [0, 00)) is a solution of (3.1), then

la” () —=7" @O <N’ (@) ,¥te .

For the set
{ted :ll@” () -" Ol >N" @}
By the definition of @ and w’’(t) (as (3.4) and (3.5)), we have

la”(t) - 2" ()|l = N” (1), (3.7)
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<@'(t) -7 (1), &) - ") >= N' (N ().
Also

<wll(t) _ ZH (t) , ID'W(l) _ lel(t)>2

I (t) = 2" O = Il (=" O + (N (1))* -
& (t) - 2’ DI
Then, by (H1), we obtain

7 S _ @ 17 7 2 ’” _ 1 - 2
(@"() =2"() =27 (@) + [|l@” () =" OI" (@) - "), @" (1) - ""(1)) _ el () - Ol

@ (t) — 27 (D)l i@ (t) — 27 (DI
3 (@’(t) ="' (), f2(t, w(t), @ (1), w" (1), @ (1)) + ew’ (1)) 1 e a2
- @ () — (D) + " (£) — Z"(f)”(”w @) =" @)

(@' () =@, @) = ")
I (1) = 27 ()|

(@ (0) = 2O, g i @0, @ (0, @7 (1), 7 (1) = 29(10))

- [ (1) = 27 (1)l

(@ (1) =2 (0.(1 - i ) e ) (@0 = 20, a@ () — (1) — (@) = (W)

I () = 27 (1) ¢ I (1) = 27 ()|

I8 (1) = 2" I = (N (1))’

lw” (1) — 2" @)l

= ||w//(l‘)a_ Z”(l‘)” <{Dv-”(t) - Z,/(t)’ fl (t’ ZD'(t), w/(t)’ aw(t)’ d’”(l’)) - Z(4)(t)> + N(4)(t) (1 -

) —ella”(®) - ")

—+

—ell@” (@) - " @l

aN" (1)
l” (1) — 2" (D)l
(@"(t) = 2'(1), a(@” (1) = (1)) L e”@ - 27O = (N"(1))*
ll@”(®) = 2" (D)l l@” (1) = 27Dl

7 17 2 7 2 4) _ CXN”(I)
(N7(@&) + (N7 (@) = 1" (1) = 2 (D)) + N(@) o = 2’0

—ellw”’ (@) - "0l + ell@” () =" (D)l — &

> a
I () = 2 ()
[ ()=2" DI = (N (1))
I () = 2 (1)
(A=) (s @) - " OIF = (N (1))
I () = 2 ()

—a eN"(1) +

=ND() —a eN"(t) +

>ND(1) — eN" (1),

on

{tedJ llw” () —-2" Ol > N" (0}

Using Lemma 3.1, it can be observed that any solutions to system (3.1) are in 7(z, N) and then, in U,
where
U={weC (TR ully <117l + IN®llo + 1, i = 1,0,2; ll=”"lly < K}.

Fix € € J such that the operator L, : C };(j ,R") = Co(J,R") given by

L, (w)(t) = @' (t) — @' (0) — sf w(s)ds
0

AIMS Mathematics Volume 9, Issue 11, 32831-32848.
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is invertible.
Consider the linear operator D : C;O’wl’ 3(J,R") — CL(J,R") defined by

D(w) = w”.

It can be easily confirmed that D is invertible.
A solution to (1.1) is a fixed point of the operator

K =D7'0oL;'oNp: : CY(T, R X T - Co . 5(T.R") c C(J,R".

W

Using Proposition 3.1 and Theorem 2.1, and since the operators D and L, are continuous, it can be
concluded that K is completely continuous and fixed point free on U. Let

Ky: C(J,RHYX T — C(J, R

by Ko(w,a) = aK(w,0). Because F?(.,0) is integrally bounded, there exists an open bounded set
K c C3(J,R"), where
U c K and Ky (C*(J.R") X J) € K.

it can be implied from the homotopic and the excision properties of the Leray-Schauder theorem that

| = deg(Id,K,0) = deg(ld—Ky(.,1),%,0) = deg (Id - K (.,0),%,0)

deg(ld — K (.,0),U,0) =deg(ld-K(.,1),U,0).

As a result, there exists a solution @ € T(z,N) for « = 1 to (3.1), which also can solve (1.1) by
definition of f{'. The proof is complete. O

Now, following from our general existence theorem (Theorem 3.1), other existence results will be
presented. We will consider the following assumptions:

(H?2) There exist a function y € L'(J, [0, o)) and a Borel measurable function ¥ € C([0, o), [1, o))
S.t.

0 1Ift, @, 5. Il <y O Ipl), Ve € T and ¥ (@, y,q, p) € R, where ||@ - z(0)|| < N (1),
ly =" Ol < N" (1) and |lg — 2" ()]l < N” (1),

(i1) Yec = 0, we have
f < dr
=
o Y@

(H3) There exist, a function y € L'(J, [0, o)) and a Borel measurable function ¥ € C([0, oo], ]0, o))
S.t.

() IKp, ft, @, 3.9, o0l < APy @O +1plD, ¥Vt € J and ¥ (w@,y,q,p) € R*, where
l -zl <N@®,lly -2 @I <N (1) and llg - 2" @I < N” (1),

(i1) Yc = 0, we have
f‘x’ Tdr
_ =
. YO +71
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(H4) Ar,b > 0, ¢ > 0 and a function h € L'(J,R) s.t. Yt € J, ¥ (w, y,q, p) € R, where
lo—zOI<N@®,Ily-2Z OI <N (@,llg-z" Ol <N" (@),
and ||p|| > r, then

(b+cllgl) o(t, @, y.q,p) 2 Ipll = h (1),

where
(@, ft@,y,4,p) + Pl (P, ft:,Y,4:P)) (4, P)

lIpll IpIP

ot,@,y,4,p) =
(H5) Ja>0and e L'(J,R)s.t.
I/t @,y.4. Pl < a((q, &, @, y,q. )+ IpIF) + L (D),
Vte J and V¥ (w,y,q, p) € R™, where
lo—zOI<N@®,lly-2Z OI <N ®),

and
lg—2" @I <N" (1.

Theorem 3.2. Assume (F1), (H1), and (H?2) are satisfied. If (BC) is given by (1.2) with max {8, 81}
>0, then system (1.1) has at least one solution @ € T(z, N) N W*'(J, R").

Proof. Theorem 3.1 will guarantee the existence of a solution if we can obtain a priori bound on the
third derivative of any solution @ to (3.1). It is known that @ € T(z, N) from the Theorem 3.1 proof.
Therefore, since (BC) is given by (1.2) with max {8y, 81} > 0, Ik > 0, s.t.

min {|l=” (O)II, lla” (DI} < k.

Now, let R > k such that

R
ds
— " 4) 4)
fk TGy > L= Ml + e INlo +1i o+ [N, -

Suppose there exists #; € [0, 1] s.t. ||@” (#))|| > R. Then, there exists oy # t; € [0, 1] such that
l@” (tp)l| = k and ||@”” (¢)|| > k, Yt € [ty,t;]. Let us assume that #, < ;. Thus, by (#2), almost
everywhere on [fy, #], we have

(@) _
R0

<|lre. w, & 0, 2" @, 5" O)|| + 1”0 - 2Ol + [ @ + [N
<y (& Ol) + e lIN"Ollg + 11" @l + [N, -

la” O = | )|

So,

11 ,
o o) 1
ft v onpdt < L-
0
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Then, we have

1 —— I (1)l p R .,
fm e wndl = ﬁw ol o 2 fk ¥ > L
which contradict the assumptions. So, for any solution @ of (3.1), AR > 0 s.t. |[|[@” (¥)|| < R, Vt €
J. o
If (H2) is replaced by (H3), extra assumptions are needed.

Theorem 3.3. Assume (1), (H1), (H3), and (H4) or (H5) are satisfied. Then, there exists a solution
weT(z,N)NWH(T, R to (1.1).

For this end, we need the next three Lemmas.

Lemma 3.2. [20] Let r,k > 0, N € L'([0, 1],R) and ¥ € C([0, o[, ]0, oo[) be a Borel measurable

function s.t.
f S > [INII +k
1 .
. Y(1) LY([0, 11,R)

Then AK > 0, s.t. ||@’]ly < K, Y& € W>'([0, 1],R") satisfy:
(i) minpo, yll@’” O < r;
(i) 110 sy 1 < k for every interval [to, 1] C {r € [0, 11 ll&’ (]| > r);
(iti) Koo' (1), @” () <Y (l@” (DI) (N @) + ||’ DI]) a.e. on
{tel0, 1]:|l@ @I = r}.

Lemma 3.3. [20] Let r,v > 0,y > 0 and N € L'([0, 1],R). Then there exists a nondecreasing
function w € C[0, oo[, [0, o) s.1.
@ iy, 1m) < @ (lllo) 5
and
in I’ Ol < max {r,; w (llwlly)} .

Yu € W>([0, 1],R") and
{telt, nl: ll@ @l =r},
the following inequality

’ 2
Y@@, @ OF

"I -N
@ () ||l )| — ll” @l (3)

v+ Al @)oo, @) +

is satisfied, where

ot ) = SZDT WD) + l@” (@' (1), @ (1)) (@ (1), @' (1))
o RO o I '

Lemma 34. [20] Let K > 0, and N € L'([0, 1],R). Then there exists an increasing function
w € C([0, o0, 10, 00[) 5.1, [[& 1o, 1) < w ([@lo) for all @ € W\([0, 11,R") that satisfies

lo” Ol < k(@ (1), @ @) + [’ OIF) + N @),

for almost every t € [0, 1].
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Proof of Theorem 3.3. Similarly to the previous proof, we need Theorem 3.1 to prove that the third
derivative of all solutions @ to (3.1) is bounded. Let @ be a solution to (3.1), where @ € T(z, N) from
Theorem 3.1 proof. We obtain from (7 3),

K@ (1), @ (1)
<K@ (1), f(t, (), @ (1), @" (1), @ O + (e l@” @) = 'Ol + 112P Ol + INP @D [l @)l
<y @O +la”ONY (l@”Ol) + € IN" O+ [P0l + INPOD [l @)
<Y (la” ON) +lla” Oll) + &y @) + [l Ol + IN" @] + 2P Ol + INP @)D,
for almost every ¢ € [0, 1]. Thus, condition (iii) of Lemma 3.2 is verified, where
Y@ =¥Y@+7tand N@) =y@+eIN" @+ [P@I+INY@).
Therefore, it is enough to prove that conditions (i) and (i) are verified. (#{4) guarantees that a.e. on
{tel0, 1]: lla” @Il = r},
we have
o _ @)+ O (@ (0) (@ (1), @ (D)
O-O(t’ @ ) - 1" - 3
|l ()] || (1)l
=ao(t,w@®),o (),z" @),z 1))+ -a)|lz” @l
(1 - a)(@" (1) + (& + 322 (@ (1) - 2" (1))
|l ()l
(1= ) (@"(1) + (& + 520) (@ (1) - 2 () (@ (0), @ (1)
I ()]
2ao(tw®),o ®),a" ), ®)+1-a)la” @l
23"+ IV @D ([ @ + &N @1+ [NOo))

+

r

Thus, we have

7" 17 2
@0, @O _

(b+cllw” D)oot @) + e\ Z s 2

alla” Ol +b (1 —a)lla” (Bl - h () - d, (1),
where
2
0o (1) = - (b+cllZ” O+ cIN” O (I Ol + IN” OD (2P @l + e IN” (0] + IND@)]).

If we take

= mi - b —c
Z—alg[l(}’nl]{a+b(1 a)l, v Zand@ n

we can apply Lemma 3.3 to @” ([0, 1],R"). Thus, conditions of Lemma 3.2 are verified. Moreover, if
(H5) holds, we have

la @Il < allf ¢t w@), @' @), @" @O, @ Ol + ella” @) = 2 Ol + 1129 Ol + IND@)
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< aa((@" (1), [t @), @ 0),@" 0,7 O) + & OIF) + 1)
+&IN" (@) + 29Ol + INO (@)
<a({@"@), @ O) +lla” OIF) + e IN"@)] + [P0 + N9 @)

“
—a(l -a) <w"(t), () + (]X[T((;)) +&) (@’ (1) - z”(t))>

<a((z"@, @9 @) +llm” OF) + eI 0] + | 0| + [V
+ a(HZ”(l‘)” + |N”([)|) (llz(4)(t)|l + |N(4)(t)| + SN”(I)) .

Therefore, if Lemma 3.4 is applied to @’ ([0, 1],R"), all conditions of Lemma 3.2 are satisfied. As a
result, for all solutions @ of (3.1), ||@”’||, < K for some constant K > 0. O

From the previous results, we obtain the following consequence:

Corollary 3.1. Assume (F 1), (H1), (H2), and (H4) or (H5) are satisfied. Then, we have a solution
@ € T(z, N) N W*1([0, 1],R") to the system (1.1).

Remark 3.1. Definition 3.1 is associated to the definitions of lower and upper solutions to the fourth-
order differential equation. These definitions are used in [17], and introduce them for problems (1.1)
and (1.2).

Definition 3.2. Letn = 1 and wy = w, = 0.
A function k € C*(10, 1[) N C3(J) is called a lower solution to (1.1) and (1.2), if

(i) kKD(t) > f(t, k1), K (1), K" (1), K" (1)) for every t € T ;
(ii) x(0) = k' (0) =0;
(iii) Aok’ (0) — Lok’ (0) < rg and A1k’ (1) + B1k’"" (1) < ;.

On the other hand, an upper solution to (1.1) and (1.2) is a function v € C*(]0, 1[)NC3*(J) that satisfies
(i)—(iii) with reversed inequalities.

Similarly to Remark 3.2 in [20], we consider the following assumptions:

(A) There exist lower and upper solutions, k and v, respectively, to (1.1) and (1.2), where k < v .
(B) There exists a solution-tube (z, N) to (1.1) and (1.2).
(C) There exist lower and upper solutions, k < v, to (1.1) and (1.2) s.t.

(i) K’(t) <V'(t)) forallt € J;

(ii) f(t, v,V (0),q.p) < ft,@.y,q.p) < f(t,k(t),K (1), q.p); ¥t € J and (@, y, q,p) € R"
such that k(t) < @ < v(t) and K'(t) < @' () < V'(2).

It can be easily checked that
e If (B) holds with z and N of class C*, and z(0) = N(0) = 0, then (A) holds.

Indeed, k = z— N and v = z+ N are respectively lower and upper solutions of (1.1) and (1.2). However,
(A) does not imply (B).
Noting that (B) is more general than (C), see [17]; i.e.,

AIMS Mathematics Volume 9, Issue 11, 32831-32848.



32845

o [f (C) is verified, then (B) is verified.
Taking z = (k + v)/2 and N = (v — k)/2. But, (B) does not imply (C) (ii) and k(0) = v(0) = 0.
Next, we present two examples to illustrate the applicability of Theorem 3.3.

Example 3.1. Consider the following system:

o) =@ (1) + |l (@) (IIW”(I)II2 @’ (1) — (@’ (1), W”(I)MU”(I)) —& aeted, (3.8)
@w(0)=0, @' (0) =0, Ayw”(0) =0, Ay@”(1) + B=1@w"”'(1) =0, '

here & € R", ||| = 1, and A; and B; are given before for i = 0,1. Show that when z = 0, N (t) = %,
(z, N) is a solution-tube of (3.8). We have (H3) and (H4) are verified for

2
Y(T)=3r+1,y®)=0,b=1, c=0, I’>0,I’l(T):—T+T5.
r

Owing to the Theorem 3.3, the problem (3.8) has at least one solution @ s.t.

3 2
Iz (DIl < %, @ ()] < % and ||@ @)'|| <t forallte J.

Example 3.2. Consider the following system:
o) = @ (1) (lo” @O + 1) + @), a.e.t€ T,
@w(0) =0, @'(0) =0, @’(0) =@”(1), @"”(0) = @ (1),

(3.9)

where ¢ € L*(J,R") with ||¢||;~ < 1. Show that for z =0, N (t) = % (z, N) is a solution-tube of (3.9).
We have (H3) and (HS) are verified when

YY) =m+2,y0)=0,a=1, [(t) = 3.

By Theorem 3.3, the problem (3.9) has at least one solution @ s.t.

? , .
|l ()] < R lo MOI<t, lo OI<1,Vted.

4. Conclusions

Our paper discusses the existence of solutions for fourth-order differential equation systems,
focusing particularly on cases involving L1-Carathéodory functions on the right-hand side of the
equations. We first, introduced the concept of a solution-tube, which is an innovative approach
that extends the concepts of upper and lower solutions applicable to fourth-order equations into the
domain of systems. It outlines the mathematical framework necessary to demonstrate that solutions
exist for these types of differential equation systems under specified boundary conditions (such as
Sturm-Liouville and periodic conditions). The paper stands on prior results regarding higher-order
differential equations, providing a fresh perspective and methodology that can be used to explore
further developments in the field. In addition to presenting the theoretical underpinnings, we also
illustrated the practicality of our results with examples, contributing to the mathematical discourse
on differential equations and our solutions, which ultimately serves as a scholarly contribution to
understanding the dynamics of fourth-order systems and the existence of their solutions; please
see [26,27].
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