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Abstract: Dengue impacts 129 nations, threatens over 50% of the global population, and results in 
around 400 million illnesses annually. The purpose of this paper was to build the global stability and 
sensitivity analysis of a vector-host dengue mathematical model with compartments of symptomatic 
and hospitalized infected humans. Additionally, it aimed to assess the impact of the immunological 
response of vulnerable individuals, through the ingestion of natural foods, on the transmission of the 
disease. The solution's positivity and boundedness proved the model's mathematical well-posedness. 
To examine endemicity, the reproduction number was calculated using the next-generation technique. 
The Lyapunov function approach was employed to illustrate the model’s global stability. Our 
mathematical discoveries were illustrated through numerical simulations of the dengue epidemic. The 
dynamical system sensitivity analysis suggests that the best way to control illness is to increase the 
immune system rate of susceptible hosts by consuming natural foods. 
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1. Introduction 

Dengue fever, a highly transmissible illness, threatens more than two to three million individuals 
annually on a global scale [1,2]. Dengue, the second most lethal mosquito-borne illness after malaria, 
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results in hundreds of fatalities and over 4 million infections each year [3]. More than 129 nations are 
home to it, and it can cause from mild to severe symptoms, especially in the tropics and subtropics [4,5]. 
About three quarters of all dengue cases are dengue fever (DF), the most prevalent type of disease. 
Five distinct serotypes of dengue virus define the viral infection known as dengue fever, which is 
transmitted by mosquitoes: DEN-1, DEN-2, DEN-3, DEN-4, and DEN-5. When mosquitoes bite an 
infected person, they take the virus and let it incubate for eight to ten days. Following a mosquito bite 
that carries an infection, patients often start symptoms for five to seven days after. DF symptoms 
include a high temperature, intense headaches, joints and muscles discomfort, and rashes [6,7]. 

People, insects, and the virus disseminate dengue in several environments. Due to space 
complexity, dengue transmission studies are complex [8]. The epidemic has many causes. Worldwide 
host and vector mobility boosted viral circulation, urban congestion encouraged multiple transmissions 
from a single infected vector, and vector control mechanisms were lost. Temperature, precipitation, 
and humidity affect vector development from egg viability to adult longevity and dispersal, among 
other dengue transmission factors [9]. Unplanned construction, high population density, and unstable 
trash collection promote mosquito breeding sites and dengue. 

Dengue has no cure; thus, severe cases require hospitalization and supportive care [10]. A cheap, 
efficient vaccine is essential for universal control. Governments mostly use vector control and insect 
repellents to lower infection rates. Community education about dengue hazards is essential for 
prevention [11]. Media campaigns and community involvement may spread preventative knowledge. 
Community-government miscommunications can raise dengue risk, making ongoing community 
awareness crucial for successful interventions. 

Mathematical models of infectious illness are valuable tools for comprehending and forecasting 
the patterns of outbreaks, comprehending the advancement and development of diseases, and 
estimating the consequences of health interventions on people or populations [12–14]. The models 
generated by mathematics can be used to improve tactics for reducing disease spread and enhance 
public health decisions with epidemiological evidence. Numerous authors have widely employed 
mathematical modeling to inform public health initiatives aimed at controlling the transmission of 
dengue [15,16]. The mathematical modeling approach is quite demanding due to the intricate nature 
of the dengue transmission mechanism. Utilizing a more intricate model can enhance the accuracy of 
the modeling process, but it also presents challenges when attempting to derive analytical data and 
draw conclusions. Therefore, the researcher must construct a practical yet uncomplicated model based 
on realistic assumptions. Utilizing actual incidence data is essential for accurately adjusting the model's 
performance. Various methodologies can be employed to build the dengue transmission model, 
including differential equations, fractional differential equations, stochastic differential equations, and 
alternative techniques. Rao et al. [17] introduced a variational model for delayed impulsive epidemic 
models, tackling mathematical challenges in the reaction-diffusion model with a delayed impulse. 
Yang et al. [18] investigated the presence of positive periodic solutions to neutral-type integral 
differential equations inside an epidemic model, employing Mawhin's continuation theorem and the 
characteristics of neutral-type operators. Zhao et al. [19] explored the stability of impulsive stochastic 
competition models with time-varying delays, focusing on persistence, extinction, and practical 
exponential stability. Xiao et al. [20] provided an innovative methodology for analyzing the dynamics of 
rumors inside social networks, differentiating between enthusiasts and ordinary individuals. Hattaf [21] 
presented a novel definition of fractional derivatives that integrates singular and non-singular kernels, 
along with an associated fractional integral, augmenting their utility in computational biology. Hattaf [22] 
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introduced a novel class of generalized differential and integral operators that generalize the definitions 
of fractal-fractional derivatives and integral operators employed to model complex dynamics in 
various disciplines. 

Many modeling analysis of viral illnesses like dengue, chikungunya, and zika have been 
conducted in the literature. Naaly et al. [23] studied how vector management, treatment, and mass 
awareness affect dengue fever transmission dynamics. The authors in [24] discovered awareness and 
control strategies for dengue disease transmission. Researchers Aldila et al. [25] looked into the 
interaction between social awareness, the detection of cases, and the capability of hospitals in Jakarta 
to eliminate dengue. Li et al. [26] analyzed the effects of awareness initiatives on dengue and identified 
the optimal control approaches. Bonyah et al. [27] performed an analysis of the fractional stochastic 
modeling of dengue illness, specifically focusing on the perspective of social awareness. The authors [28] 
conducted a mathematical analysis to investigate how community ignorance affects dengue population 
dynamics. Sood et al. [29] conducted an investigation on a sophisticated healthcare system designed 
to forecast and avert dengue virus illness. Macalalag et al. [30] analyzed the dengue model's global 
stability incorporating awareness and temporal delays. A dengue disease model was used by Saha et 
al. [31] to study the host-vector dynamics using the optimal control technique. The authors of [32] 
conducted a study on forecasting dengue epidemic outbreaks by utilizing climate variation and Monte 
Carlo techniques. Bhuju et al. [33] examined the fuzzy SEIR-SEI dengue disease model's sensitivity 
and bifurcation analysis. Harshit [34] conducted a sensitivity study to examine dengue transmission. 
Based on the sensitivity analysis of the dengue epidemic using a modified saturation incidence rate, 
the authors of [35] invented an optimal control strategy. Guo et al. [36] performed a stability analysis 
and simulation of a delayed dengue transmission model incorporating logistic growth and a nonlinear 
incidence rate. Leandro et al. [37] investigated the spatial distribution of dengue transmission in a city 
with a high incidence of the disease in Brazil, demonstrating significant spatial organization in the 
local dynamics of dengue transmission. Hasan et al. [38] performed a sensitivity analysis of a dynamic 
dengue epidemic model incorporating vector-host interactions. Abidemi et al. [39] performed a 
Lyapunov stability study and implemented optimization strategies for a model that simulates the 
transmission of dengue disease. The author of [40] conducted a thorough analysis of effective control 
measures for managing dengue infection in East Java. A study on the mathematical evaluation of the 
impact of hospitalization in dengue intervention was carried out by Nawawi et al. [41]. Researchers 
Hamdan et al. [42] used a case study of hospitalized infected individuals in Malaysia to determine the 
impact of temperature on creating a deterministic dengue epidemic model. The study by Abidemi et 
al. [43] offered valuable insights into the dynamics of dengue, with a specific focus on the 
asymptomatic, isolated, and vigilant compartments. Jan et al. [44] conducted a study on the 
transmission dynamics of dengue by asymptomatic carriers and the effectiveness of control strategies. 
A study by Jose et al. [45] used mathematical models to look into how the Zika virus and Dengue fever 
spread in people who show symptoms of both diseases. 

All of these studies are predicated on deterministic models; however, none have examined the 
consequences of the infection rate within the host or the symptomatically infected and hospitalized 
humans in question. Furthermore, the immune system's enhancement through the consumption of 
natural foods and awareness of symptomatic human infections were not taken into account. In light of 
the aforementioned, this work presents a novel mathematical model that accurately captures the 
interactions between dengue hosts and vectors. The model includes compartments for infected 
individuals, individuals with symptoms, and individuals requiring hospitalization. This paradigm will 
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help us to better understand the reality of dengue transmission, and eradication. 
The following parts of this work are arranged as follows: Our model is presented in Section 2, 

together with a biological justification of its parameters. Section 3 is devoted to analyzing the positivity 
as well as boundedness of the model. In addition, we analyze the equilibrium points and compute the 
basic reproduction number, represented as 𝑅଴. Section 4 discusses the stability of the model. Section 
5 focuses on sensitivity analysis to illustrate the influence of the proposed model on 𝑅଴. In Section 6, 
we introduce a computational method for solving the model. Furthermore, this section presents the 
numerical findings and their accompanying explanations. Ultimately, the concluding portion of the 
study provides a concise summary of the main contributions of our work and identifies prospective 
areas for further research. 

2. Dengue model formulation 

The compartmental models provide a thorough description of how the epidemic spreads and the 
various preventive measures that can be taken to stop it. In order to create the epidemic model, we 
utilize the compartmental modeling approach. The model consists of seven compartments which 
represent two distinct sub-populations: the human (host) population and the vector (mosquito) 
population. The total host population, can be divided into five distinct groups: 𝑆௛  represents 
susceptible humans who are capable of contracting the disease, 𝐼௛଴ signifies infected humans who are 
not capable of transmitting the disease to others, 𝐼௛ଵ represents symptomatically infected humans who 
are able to transmit the disease to others, 𝐻௛ implies hospitalized infected humans, and 𝑅௛ reflects 
the recovered population who have temporary immunity against dengue. Similarly, the vector 
population 𝑁௠  of mosquitoes is divided into two groups: mosquitoes capable of being infected 
(susceptible, 𝑆௠) and mosquitoes that are infected by the dengue virus (infected, 𝐼௠). Figure 1 shows 
a transmission diagram illustrating compartment interactions, while Table 1 describes the parameters. 

 

Figure 1. Dengue transmission diagram. 
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Table 1. Parameter’s biological descriptions of dengue model. 

Parameter Descriptions 
Λଵ Human population recruitment rates 
𝛽ଵ Infection transmission rate from vector to host 
α Rate of immune system of susceptible host by the consumption of natural foods 

𝛽ଶ Infections rate within the host 
𝜇ଵ Human population natural mortality 
𝛽ଷ Rate of symptomatic to hospitalized infected individuals 
𝛽ସ Symptomatic infection recovery rate 
𝛾 Awareness rate among symptomatic infected people 
𝛽ହ Hospitalized infected individual’s recovery rate 
Λଶ Vector population recruitment rates 
𝛽଺ Infection transmission rate from human to vector 
𝜇ଶ Vector population natural mortality 

In order to construct the model, we take into account the rate of immune system of the susceptible 
host achieved by the consumption of natural foods, denoted by α. 𝛽ଵ is the infection transmission rate 
from vector to host, and the infection rate within hosts is 𝛽ଶ. Additionally, the human awareness of 
individuals who are symptomatically infected (𝛾)  has protected them from dengue by employing 
mosquito-nets and mosquito -repellent sprays. Also, the hospitalized infected humans H୦  are 
introduced here. 

The model is governed by the differential equations that are shown in the following system: 

ௗௌ೓

ௗ௧
= Λଵ − 𝛽ଵ𝑆௛𝐼௠ − 𝛽ଶ𝑆௛𝐼௛ଵ − α𝑆௛ − 𝜇ଵ𝑆௛, 

ௗூ೓బ

ௗ௧
= 𝛽ଵ𝑆௛𝐼௠ − 𝜇ଵ𝐼௛଴, 

ௗூ೓భ

ௗ௧
= 𝛽ଶ𝑆௛𝐼௛ଵ − 𝛽ଷ𝐼௛ଵ − 𝛽ସ𝐼௛ଵ − 𝛾𝐼௛ଵ − 𝜇ଵ𝐼௛ଵ, 

ௗு೓

ௗ௧
= 𝛽ଷ𝐼௛ଵ − 𝛽ହ𝐻௛ − 𝜇ଵ𝐻௛,                                                                                                  (2.1) 

ௗோ೓

ௗ௧
= 𝛽ସ𝐼௛ଵ + 𝛽ହ𝐻௛ + α𝑆௛ + 𝛾𝐼௛ଵ − 𝜇ଵ𝑅௛, 

ௗௌ೘

ௗ௧
= Λଶ − 𝛽଺𝑆௠𝐼௛ଵ − 𝜇ଶ𝑆௠, 

 
ௗூ೘

ௗ௧
= 𝛽଺𝑆௠𝐼௛ଵ − 𝜇ଶ𝐼௠, 

With initial host population 𝑆௛(0) ≥ 0, 𝐼௛଴(0) ≥ 0, 𝐼௛ଵ(0) ≥ 0, 𝐻௛(0) ≥ 0, 𝑎𝑛𝑑 𝑅௛(0) ≥ 0, and the 
vector population 𝑆௠(0) ≥ 0, 𝑎𝑛𝑑 𝐼௠(0) ≥ 0. 
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3. Analysis of the dengue model 

3.1. Positivity of the solution 

A fundamental need for an epidemiological model is that its solutions must exhibit both non-
negativity and boundedness. Therefore, it is essential to demonstrate that all variables remain positive 
for every instance where t is greater than zero. 
Theorem 3.1. The system (2.1)’s feasible region stated as 

χ = ൜𝑆௛(𝑡), 𝐼௛଴(𝑡), 𝐼௛ଵ(𝑡), 𝐻௛(𝑡), 𝑅௛(𝑡), 𝑆௠(𝑡), 𝐼௠(𝑡)ϵℝ଻
ା: 𝑁௛(t) ≤

Λଵ

𝜇ଵ
, 𝑁௠(t) ≤

Λଶ

𝜇ଶ
ൠ 

is positively invariant along with the initial condition defined by ℛ଻
ା. 

Proof. One way to express system (1) is : 

ௗ௒

ௗ௧
= 𝐾(𝑌) + 𝑍,                                                                      (3.1) 

𝑌 = (𝑆௛, 𝐼௛଴, 𝐼௛ଵ, 𝐻௛, 𝑅௛, 𝑆௠, 𝐼௠)௧, 

𝐾 =

⎝

⎜
⎜
⎜
⎛

−𝑘ଵ 0 0 0 0 0 0
𝑘ଶ −𝜇ଵ 0 0 0 0 0
𝑘ଷ 0 −𝑘ସ 0 0 0 0
0 0 𝑘ହ −𝑘଺ 0 0 0

𝑘଻ 0 𝑘଼ 𝑘ଽ −𝜇ଵ 0 0
0 0 0 0 0 −𝑘ଵ଴ 0
0 0 0 0 0 𝑘ଵଵ −𝜇ଶ⎠

⎟
⎟
⎟
⎞

, 

where, 𝑘ଵ = 𝛽ଵ𝐼௠ + 𝛽ଶ𝐼௛ଵ + α + 𝜇ଵ, 𝑘ଶ = 𝛽ଵ𝑆௛𝐼௠ , 𝑘ଷ = 𝛽ଷ𝐼௛ଵ, 𝑘ସ = 𝛽ଷ + 𝛽ସ + γ + 𝜇ଵ, 𝑘ହ =

𝛽ଷ𝐼௛ଵ, 𝑘଺ = 𝛽ହ + 𝜇ଵ, 𝑘଻ = 𝛼, 𝑘଼ = 𝛽ସ + 𝛾, 𝑘ଽ = 𝛽ହ, 𝑘ଵ଴ = 𝛽଺𝐼௛ଵ + 𝜇ଶ, 𝑘ଵଵ = 𝛽ସI୦ଵ. 

And 

𝑍 = (Λଵ, 0,0,0,0, Λଶ, 0)௧. 

In this case, any entry of the matrix K(Y) off-diagonal is non-negative. Therefore, the matrix is referred 
to as the Metzler matrix. Furthermore, vector Z possesses a positive character. Consequently, it may 
be deduced that the system (3.1) is always positively invariant in the region ℛ଻

ା. 

3.2. Dengue-free equilibrium 

Setting each system of model ( 2.1 ) to zero, results in the production of the dengue-free 
equilibrium (DFE). Additionally, the DFE has no infections or recovery procedures in place. Therefore, 
the DFE of the dengue model is provided by 

𝐸଴ = (𝑆௛
଴, 𝐼௛଴

଴ , 𝐼௛ଵ
଴ , 𝐻௛

଴, 𝑅௛
଴, 𝑆௠

଴ , 𝐼௠
଴ ) = ቀ

ஃభ

ఓభାఈ
, 0,0,0,0,

ஃమ

ఓమ
, 0ቁ. 
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3.3. Estimation of the basic reproduction number 

The basic reproduction number is a critical threshold in mathematical epidemiology research 
since it helps predict the possibility of disease transmission. Utilizing the next-generation matrix to 
calculate the system (1)'s 𝑅଴ as 

𝐹 = ቌ

0 0 𝛽ଵ𝑆௛
଴

0 𝛽ଶ𝑆௛
଴ 0

0 𝛽଺𝑆௠
଴ 0

ቍ, 𝑉 = ൭

𝜇ଵ 0 0
0 𝛽ଷ + 𝛽ସ + 𝜇ଵ + 𝛾 0
0 0 𝜇ଶ

൱. 

The next-generation matrix 𝐹𝑉ିଵ generates 𝑅଴ as 

𝑅଴ =
ఉమ௸భ

(ఓభାఈ)(ఉయାఉరାఓభାఊ)
 . 

3.4. Endemic equilibrium 

The endemic equilibrium of system (2.1) is 

𝐸ଵ = (𝑆௛
∗ , 𝐼௛଴

∗ , 𝐼௛ଵ
∗ , 𝐻௛

∗ , 𝑅௛
∗ , 𝑆௠

∗ , 𝐼௠
∗ ) 

where, 

𝑆௛
∗ =

𝛽ଷ + 𝛽ସ + 𝜇ଵ

𝛽ଶ
, 𝐼௛଴

∗ =
𝛽ଵ𝛽଺𝛬ଶ(𝛽ଷ + 𝛽ସ + 𝜇ଵ + 𝛾)𝐼௛ଵ

∗

𝜇ଵ𝜇ଶ(𝛽଺ + 𝜇ଶ)
, 

𝐼௛ଵ
∗ =

(𝜇ଵା𝛼)𝜇ଶ(𝛽ହ + 𝜇ଵ)(𝛽଺ + 𝜇ଶ)(𝑅଴ − 1)

𝛽ଵ𝛽଺𝛬ଶ + 𝛽ଶ𝜇ଶ(𝛽଺ + 𝜇ଶ)
 , 𝐻௛

∗ =
𝛽ଷ𝐼௛ଵ

∗

𝛽ହ + 𝜇ଵ
, 

𝑅௛
∗ =

𝛽ଶ(𝛽ସ + 𝛾)(𝛽ହ + 𝜇ଵ) + 𝛽ଶ𝛽ଷ𝛽ହ)𝐼௛ଵ
∗ + 𝛼(𝛽ହ + 𝜇ଵ)(𝛽ଷ + 𝛽ସ + 𝜇ଵ)

𝜇ଵ𝛽ଶ(𝛽ହ + 𝜇ଵ)
, 

𝑆௠
∗ =

ஃమ

ఉలூ೓భ
∗ ାఓమ

, 𝐼௠
∗ =

ஃమఉలூ೓భ
∗

ఓమ(ఉలାఓమ)
. 

The endemic equilibria exist if 𝑅଴ > 1. 

4. Stability analysis of the dengue model 

4.1. Local stability of E0 & E1 

Theorem 4.1.1. System (2.1)'s DFE (E0) is locally asymptotically stable if 𝑅଴ < 1 and unstable if 
𝑅଴ > 1. 
Proof. The Jacobian matrix at the dengue-free equilibrium point (E0) is    
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𝐽(𝐸଴) =

⎝

⎜
⎜
⎜
⎜
⎛

−(𝜇ଵ + 𝛼) 0 −𝛽ଶ𝑆௛
଴ 0 0 0 −𝛽ଵ𝑆௛

଴

0 −𝜇ଵ 0 0 0 0 𝛽ଵ𝑆௛
଴

0 0 𝛽ଶ𝑆௛
଴ − (𝛽ଷ + 𝛽ସ + 𝜇ଵ + 𝛾) 0 0 0 0

0 0 𝛽ଷ −𝛽ହ − 𝜇ଵ 0 0 0
𝛼 0 𝛽ସ + 𝛾 𝛽ହ −𝜇ଵ 0 0

0 0 −𝛽଺𝑆௠
଴ 0 0 −𝜇ଶ 0

0 0 𝛽଺𝑆௠
଴ 0 0 0 −𝜇ଶ ⎠

⎟
⎟
⎟
⎟
⎞

. 

The eigenvalues for the matrix  𝐽(𝐸଴) are −𝜇ଵ (multiplicity 2), −𝜇ଶ (multiplicity 2), −(𝜇ଵ + 𝛼), 
−(𝛽ହ + 𝜇ଵ) , and 𝛽ଶ𝑆௛

଴ − (𝛽ଷ + 𝛽ସ + 𝜇ଵ + 𝛾) . An obvious negative sign appears in the first six 
eigenvalues. As this is the case, the DFE E0 is locally asymptotically stable if 

𝛽ଶ𝑆௛
଴ − (𝛽ଷ + 𝛽ସ + 𝜇ଵ + 𝛾) < 0, 

𝛽ଶ𝑆௛
଴ < (𝛽ଷ + 𝛽ସ + 𝜇ଵ + 𝛾), 

ఉమௌ೓
బ

(ఉయାఉరାఓభାఊ)
< 1, 

ఉమ௸భ

(ఓభାఈ)(ఉయାఉరାఓభାఊ)
< 1, 

𝑅଴ < 1. 

So, E0 is locally asymptotically stable if 𝑅଴ < 1, otherwise; it is unstable. 

Theorem 4.1.2. System (2.1)'s E1 is locally asymptotically stable if 𝑅଴ > 1. 
Proof. The Jacobian matrix at the endemic equilibrium point (E1) is    

𝐽(𝐸ଵ) =

⎝

⎜
⎜
⎜
⎜
⎛

−𝜑ଵ 0 −𝛽ଶ𝑆௛
∗ 0 0 0 −𝛽ଵ𝑆௛

∗

𝛽ଵ𝐼௠
∗ −𝜇ଵ 0 0 0 0 𝛽ଵ𝑆௛

∗

𝛽ଶ𝐼௛ଵ
∗ 0 −𝜑ଶ 0 0 0 0

0 0 𝛽ଷ −𝛽ହ − 𝜇ଵ 0 0 0
0 0 𝛽ସ + 𝛾 𝛽ହ −𝜇ଵ 0 0
0 0 −𝜑ଷ 0 0 −𝜑ସ − 𝜇ଶ 0
0 0 𝜑ଷ 0 0 𝜑ସ −𝜇ଶ ⎠

⎟
⎟
⎟
⎟
⎞

, 

where, 𝜑
1

= 𝛽ଵ𝐼௠
∗ + 𝛽ଶ𝐼௛ଵ

∗ + 𝛼 + 𝜇ଵ, 𝜑ଶ = 𝛽3 + 𝛽4 + 𝛾 + 𝜇1 − 𝛽2𝑆ℎ
∗

, 𝜑
3

= 𝛽଺𝑆௠
∗ , 𝜑

4
= 𝛽16𝐼௛ଵ

∗ . 

Four eigenvalues of the above matrix are −𝜇ଵ, −𝜇ଵ, −𝜇ଶ, −(𝛽ହ + 𝜇ଵ), and the other roots may 
be found by using the cubic equation 

𝜆ଷ + 𝜖ଵ𝜆ଶ + 𝜖ଶ𝜆 + 𝜖ଷ = 0,        (4.1) 

where, 

𝜖ଵ = 𝜑ଵ + 𝜑ଶ + 𝜑ସ + 𝜇ଶ, 

𝜖ଶ = 𝛽ଶ
ଶ𝐼௛ଵ

∗ 𝑆௛
∗ + 𝜑ଵ𝜇ଶ + 𝜑ଶ𝜇ଶ + 𝜑ଵ𝜑ଶ𝜇ଶ + 𝜑ଵ𝜑ଶ + 𝜑ଵ𝜑ସ + 𝜑ଶ𝜑ସ, 
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𝜖ଷ = 𝜑ଵ𝜑ଶ𝜑ସ + 𝜇ଶ𝛽ଶ
ଶ𝐼௛ଵ

∗ 𝑆௛
∗ + 𝜑ଷ𝛽ଵ𝛽ଶ𝐼௛ଵ

∗ 𝑆௛
∗. 

Here, 𝜖ଵ > 0, 𝜖ଷ > 0, 𝜖ଵ𝜖ଶ − 𝜖ଷ > 0. 

For this 

𝜖ଵ = 𝜑ଵ + 𝜑ଶ + 𝜑ସ + 𝜇ଶ 

= 𝛽ଵ𝐼௠
∗ + 𝛽ଶ𝐼௛ଵ

∗ + 𝛼 + 𝜇ଵ + 𝛽ଷ + 𝛽ସ + 𝛾 + 𝜇ଵ − 𝛽ଶ𝑆௛
∗ + 𝛽଺𝐼௛ଵ

∗ + 𝜇ଶ 

=
Λଶ𝛽ଵ𝛽଺(𝜇ଵା𝛼)𝜇ଶ(𝛽ହ + 𝜇ଵ)(𝛽଺ + 𝜇ଶ)(𝑅଴ − 1)

𝜇ଶ(𝛽଺ + 𝜇ଶ)𝛽ଵ𝛽଺𝛬ଶ + 𝛽ଶ𝜇ଶ(𝛽଺ + 𝜇ଶ)
 

+
𝛽ଶ(𝜇ଵା𝛼)𝜇ଶ(𝛽ହ + 𝜇ଵ)(𝛽଺ + 𝜇ଶ)(𝑅଴ − 1)

𝛽ଵ𝛽଺𝛬ଶ + 𝛽ଶ𝜇ଶ(𝛽଺ + 𝜇ଶ)
 

+
𝛽଺(𝜇ଵା𝛼)𝜇ଶ(𝛽ହ + 𝜇ଵ)(𝛽଺ + 𝜇ଶ)(𝑅଴ − 1)

𝛽ଵ𝛽଺𝛬ଶ + 𝛽ଶ𝜇ଶ(𝛽଺ + 𝜇ଶ)
 

+𝜇ଵ + 𝛼 + 𝛾 + 𝜇ଶ > 0, 

if 𝑅଴ > 1. 
Hence, the Routh-Hurwitz criterion 𝜖ଵ > 0 , 𝜖ଷ > 0,  𝜖ଵ𝜖ଶ − 𝜖ଷ > 0  ensues the local 

asymptotically stability for 𝑅଴ > 1. 

4.2. Global stability of dengue-free equilibrium (E0) & endemic equilibrium (E1) 

Lemma 4.2.1. The region 𝜔ଵ = {𝑋𝜖𝜔: 𝑆ℎ ≤ 𝑆௛
଴, 𝑆௠ ≤ 𝑆௠

଴ } is a positively invariant for the model (1), 

where  𝑋 = {𝑆
ℎ
,  𝐼ℎ0,  𝐼ℎ1, 𝐻ℎ, 𝑅ℎ,  𝑆𝑚,  𝐼𝑚}. 

Proof. Using the model's first equation, we obtain 

𝑑𝑆௛

𝑑𝑡
= Λ1 − 𝛽1𝑆ℎ𝐼𝑚 − 𝛽2𝑆ℎ𝐼ℎ1 − α𝑆ℎ − 𝜇1𝑆ℎ ≤ Λଵ − α𝑆ℎ − 𝜇ଵ𝑆௛ 

≤ (𝜇
1

+ 𝛼) ൬
ஃభ

(𝜇1+𝛼)
− 𝑆௛൰ ≤ (𝜇

1
+ 𝛼)൫𝑆௛

଴ − 𝑆௛൯. 

Implying that, 𝑆௛ ≤ 𝑆௛
଴ − (𝑆௛

଴ − 𝑆௛(0))𝑒ି(ఓభାఈ)௧. Thus 𝑆௛(𝑡) ≤ 𝑆௛
଴ for all 𝑡 ≥ 0. 

Using the model's fifth equation, we obtain 

            
ௗௌ೘

ௗ௧
= Λ2 − 𝛽6𝑆𝑚𝐼ℎ1 − 𝜇2𝑆𝑚 ≤ Λ2 − 𝜇2𝑆𝑚 ≤ 𝜇2 ൬

ஃమ

𝜇2
− 𝑆௠൰. 

Implying that, 𝑆௠ ≤ 𝑆௠
଴ − (𝑆௠

଴ − 𝑆௠(0))𝑒ି𝜇2௧. Thus 𝑆௠(𝑡) ≤ 𝑆௠
଴  for all 𝑡 ≥ 0. 

In summary, we conclude that the 𝜔ଵ is positively invariant. 
Theorem 4.2.1. The vector-host model may be expressed generally as 

ௗతభ

ௗ௧
= ℱ(𝜘ଵ, 𝜘ଶ), 

ௗతమ

ௗ௧
= 𝐺(𝜘ଵ, 𝜘ଶ), 𝐺(𝜘ଵ, 0) = 0.     (4.2) 

Where, 𝜘ଵ = (𝑆௛, 𝑅௛, 𝑆௠)௧, 𝑎𝑛𝑑 𝜘ଶ = (𝐼௛଴, 𝐼௛, 𝐻௛, 𝐼௠)௧   represent the individuals who are infected 
and those who are not. Then, the DFE is now represented by the following: 
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𝐸଴ = (𝜘ଵ
଴, 0) = ቀ

ஃభ

(ఓభାఈ)
,

ఓభ(ఓభାఈ)

஑ஃభ
,

ஃమ

ఓమ
, 0,0,0,0ቁ. 

The following conditions must be met in order for 𝐸଴ to maintain global asymptomatic stability: 

𝐻ଵ : 
ௗ𝜘భ

ௗ௧
= ℱ(𝜘ଵ

଴, 0), 𝜘ଵ
଴  is global asymptomatic stable, 𝐻ଶ: 𝐺෠(𝜘ଵ,  𝜘ଶ) = 𝐴𝜘ଶ − 𝐺(𝜘ଵ, 𝜘ଶ),  𝐺෡ (𝜘ଵ,

𝜘ଶ) ≥ 0, where 𝐴 =  𝐷𝜘మ
ℱ(𝜘ଵ

଴, 0) is Metzler matrix. 

Theorem 4.2.2. If the criteria of Eq (4.2) are met and 𝑅଴ < 1, 𝐸଴ = (𝜘ଵ
଴, 0) is a global asymptomatic 

stable. 
Proof. Applying the theorem (4.1.2)  

ℱ(𝜘1
0, 0) = Λ1 − α𝑆ℎ − 𝜇

1
𝑆ℎ, 𝐺ො(𝜘1, 𝜘2) = 𝐴𝜘2 − 𝐺(𝜘1, 𝜘2). 

Where, 

𝐴 =

⎣
⎢
⎢
⎢
⎡
−𝜇ଵ 0 0 𝛽ଵ𝑆௛

଴

0 𝛽ଶ𝑆௛
଴ − 𝛽ଷ + 𝛽ସ + 𝛾 + 𝜇ଵ 0 0

0 𝛽ଷ −(𝛽ହ + 𝜇ଵ) 0

0 𝛽଺𝑆௠
଴ 0 −𝜇ଶ ⎦

⎥
⎥
⎥
⎤

. 

Now, 

𝐺෠(𝜘ଵ, 𝜘ଶ) = 𝐴𝜘ଶ − 𝐺(𝜘ଵ, 𝜘ଶ) =

⎣
⎢
⎢
⎡

𝛽ଵ𝐼௠(𝑆௛
଴ − 𝑆௛)

𝛽ଶ𝐼௛ଵ(𝑆௛
଴ − 𝑆௛)

0
𝛽଺𝐼௛ଵ(𝑆௠

଴ − 𝑆௠)⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
𝐺෠ଵ

𝐺෠ଶ

0
𝐺෠ଷ⎦

⎥
⎥
⎤

. 

Clearly, 𝐺෠ଵ ≥ 0, 𝐺෠ଶ ≥ 0 𝑎𝑛𝑑 𝐺෠ଷ ≥ 0, since 𝑆௛ ≤ 𝑆௛
଴, 𝑆௠ ≤ 𝑆௠

଴ . Therefore, 𝐺෠(𝜘ଵ, 𝜘ଶ) ≥ 0. 
Also, A is Metzler matrix. Hence, the dengue-free equilibrium 𝐸଴ is global asymptotical stable. 

Theorem 4.2.3. System (2.1)'s E1 is globally asymptotically stable if 𝑅଴ > 1. 
Proof. The form's Lyapunov function in 

𝑊(𝑡) =
1

2
(𝑆௛ − 𝑆௛

∗)ଶ +
1

2
(𝐼௛଴ − 𝐼௛଴

∗ )ଶ +
1

2
(𝐼௛ଵ − 𝐼௛ଵ

∗ )ଶ +
1

2
(𝐻௛ − 𝐻௛

∗)ଶ 

+
ଵ

ଶ
(𝑅௛ − 𝑅௛

∗ )ଶ +
ଵ

ଶ
(𝑆௠ − 𝑆௠

∗ )ଶ +
ଵ

ଶ
(𝐼௠ − 𝐼௠

∗ )ଶ. 

Differentiating with respect to time t, we get: 

𝑊ᇱ(𝑡) = (𝑆௛ − 𝑆௛
∗)𝑆௛

ᇱ + (𝐼௛଴ − 𝐼௛଴
∗ )𝐼௛଴

ᇱ + (𝐼௛ଵ − 𝐼௛ଵ
∗ )𝐼௛ଵ

ᇱ + (𝐻௛ − 𝐻௛
∗)𝐻௛

ᇱ  

+(𝑅௛ − 𝑅௛
∗ )𝑅௛

ᇱ + (𝑆௠ − 𝑆௠
∗ )𝑆௠

ᇱ + (𝐼௠ − 𝐼௠
∗ )𝐼௠

ᇱ  

 = (𝑆௛ − 𝑆௛
∗)(𝛬ଵ − 𝛽ଵ𝑆௛𝐼௠ − 𝛽ଶ𝑆௛𝐼௛ଵ − 𝛼𝑆௛ − 𝜇ଵ𝑆௛) + (𝐼௛଴ − 𝐼௛଴

∗ )(𝛽ଵ𝑆௛𝐼௠ − 𝜇ଵ𝐼௛଴) 

+(𝐼௛ଵ − 𝐼௛ଵ
∗ )(𝛽ଶ𝑆௛𝐼௛ଵ − 𝛽ଷ𝐼௛ଵ − 𝛽ସ𝐼௛ଵ − 𝛾𝐼௛ଵ − 𝜇ଵ𝐼௛ଵ) 

+(𝐻௛ − 𝐻௛
∗)(𝛽ଷ𝐼௛ଵ − 𝛽ହ𝐻௛ − 𝜇ଵ𝐻௛) 
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+(𝑅௛ − 𝑅௛
∗ )(𝛽ସ𝐼௛ଵ + 𝛽ହ𝐻௛ + 𝛼𝑆௛ + 𝛾𝐼௛ଵ − 𝜇ଵ𝑅௛) 

+(𝑆௠ − 𝑆௠
∗ )(Λଶ − 𝛽଺𝑆௠𝐼௛ଵ − 𝜇ଶ𝑆௠) + (𝐼௠ − 𝐼௠

∗ )(𝛽଺𝑆௠𝐼௛ଵ − 𝜇ଶ𝐼௠). 

Using the equilibrium conditions Λଵ = 𝜇ଵ𝑆௛
∗ + 𝜇ଵ𝐼௛଴

∗ + 𝜇ଵ𝐼௛ଵ
∗ + 𝜇ଵ𝐻௛

∗ + 𝜇ଵ𝑅௛
∗   and Λଶ = 𝜇ଶ𝑆௠

∗ +

𝜇ଶ𝐼𝑚
∗  into the above equation 

𝑊ᇱ(𝑡) = (𝑆௛ − 𝑆௛
∗)(𝜇ଵ𝑆௛

∗ + 𝜇ଵ𝐼௛଴
∗ + 𝜇ଵ𝐼௛ଵ

∗ + 𝜇ଵ𝐻௛
∗ + 𝜇ଵ𝑅௛

∗ ) 

−(𝑆௛ − 𝑆௛
∗)(𝛽ଵ𝑆௛𝐼௠ + 𝛽ଶ𝑆௛𝐼௛ଵ + 𝛼𝑆௛ + 𝜇ଵ𝑆௛) + (𝐼௛଴ − 𝐼௛଴

∗ )(𝛽ଵ𝑆௛𝐼௠ − 𝜇ଵ𝐼௛଴) 

+(𝐼௛ଵ − 𝐼௛ଵ
∗ )(𝛽ଶ𝑆௛𝐼௛ଵ − 𝛽ଷ𝐼௛ଵ − 𝛽ସ𝐼௛ଵ − 𝛾𝐼௛ଵ − 𝜇ଵ𝐼௛ଵ) 

+(𝐻௛ − 𝐻௛
∗)(𝛽ଷ𝐼௛ଵ − 𝛽ହ𝐻௛ − 𝜇ଵ𝐻௛) 

+(𝑅௛ − 𝑅௛
∗ )(𝛽ସ𝐼௛ଵ + 𝛽ହ𝐻௛ + 𝛼𝑆௛ + 𝛾𝐼௛ଵ − 𝜇ଵ𝑅௛) 

+(𝑆௠ − 𝑆௠
∗ )(𝜇ଶ𝑆௠

∗ + 𝜇ଶ𝐼௠
∗ − 𝛽଺𝑆௠𝐼௛ଵ − 𝜇ଶ𝑆௠) + (𝐼௠ − 𝐼௠

∗ )(𝛽଺𝑆௠𝐼௛ଵ − 𝜇ଶ𝐼௠) 

= −𝜇ଵ(𝑆௛ − 𝑆௛
∗)ଶ + 𝜇ଵ𝐼௛଴

∗ (𝑆௛ − 𝑆௛
∗) + 𝜇ଵ𝐼௛ଵ

∗ (𝑆௛ − 𝑆௛
∗) − 𝛽ଶ𝑆௛𝐼௛ଵ

∗ (𝑆௛ − 𝑆௛
∗) 

+𝜇ଵ𝐻௛
∗(𝑆௛ − 𝑆௛

∗) + 𝜇ଵ𝑅௛
∗ (𝑆௛ − 𝑆௛

∗) − 𝛽ଵ𝑆௛𝐼௠(𝑆௛ − 𝑆௛
∗) − 𝛼𝑆௛(𝑆௛ − 𝑆௛

∗) 

+𝛽ଵ𝑆௛𝐼௠(𝐼௛଴ − 𝐼௛଴
∗ ) − 𝜇ଵ𝐼௛଴(𝐼௛଴ − 𝐼௛଴

∗ ) + 𝛽ଶ𝑆௛𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ
∗ ) − 𝛾𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ

∗ ) 

−(𝛽ଷ + 𝛽ସ)𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ
∗ ) − 𝜇ଵ𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ

∗ ) + 𝛽ଷ𝐼௛ଵ(𝐻௛ − 𝐻௛
∗) 

−𝜇ଵ𝐻௛(𝐻௛ − 𝐻௛
∗) + 𝛽ସ𝐼௛ଵ(𝑅௛ − 𝑅௛

∗ ) + 𝛽ହ𝐻௛(𝑅௛ − 𝑅௛
∗ ) 

+𝛼𝑆௛(𝑅௛ − 𝑅௛
∗ ) + 𝛾𝐼௛ଵ(𝑅௛ − 𝑅௛

∗ ) − 𝜇ଵ𝑅௛(𝑅௛ − 𝑅௛
∗ ) − 𝜇ଶ(𝑆௠ − 𝑆௠

∗ )ଶ 

+𝜇ଶ𝐼௠
∗ (𝑆௠ − 𝑆௠

∗ ) − 𝛽଺𝑆௠𝐼௛ଵ(𝑆௠ − 𝑆௠
∗ ) + 𝛽଺𝑆௠𝐼௛ଵ(𝐼௠ − 𝐼௠

∗ ) − 𝜇ଶ𝑆௠(𝐼௠ − 𝐼௠
∗ ) 

= −𝜇ଵ(𝑆௛ − 𝑆௛
∗)ଶ − 𝜇ଵ{𝐼௛଴(𝐼௛଴ − 𝐼௛଴

∗ ) − 𝐼௛଴
∗ (𝑆௛ − 𝑆௛

∗)} 

−𝛽ଶ𝑆௛{𝐼௛ଵ
∗ (𝑆௛ − 𝑆௛

∗) − 𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ
∗ )} − 𝜇ଵ{𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ

∗ ) − 𝐼௛ଵ
∗ (𝑆௛ − 𝑆௛

∗)} 

−𝜇ଵ{𝐻௛(𝐻௛ − 𝐻௛
∗) − 𝐻௛

∗(𝑆௛ − 𝑆௛
∗)} − 𝛼𝑆௛(𝑆௛ − 𝑆௛

∗ − 𝑅௛ + 𝑅௛
∗ ) 

−𝛾𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ
∗ − 𝑅௛ + 𝑅௛

∗ ) − 𝛽ଵ𝑆௛𝐼௠(𝑆௛ − 𝑆௛
∗ − 𝐼௛଴ + 𝐼௛଴

∗ ) 

−𝛽ଷ𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ
∗ − 𝐻௛ + 𝐻௛

∗) − 𝛽ସ𝐼௛ଵ(𝐼௛ଵ − 𝐼௛ଵ
∗ − 𝑅௛ + 𝑅௛

∗ ) 

−𝛽ହ𝐻௛(𝐻௛ − 𝐻௛
∗ − 𝑅௛ + 𝑅௛

∗ ) − 𝜇ଵ{𝑅௛(𝑅௛ − 𝑅௛
∗ ) − 𝑅௛

∗ (𝑆௛ − 𝑆௛
∗)} 

−𝜇ଶ(𝑆௠ − 𝑆௠
∗ )ଶ − 𝜇ଶ{(𝐼௠ − 𝐼௠

∗ )𝑆௠ − 𝐼௠
∗ (𝑆௠ − 𝑆௠

∗ )} 

−𝛽଺𝑆௠𝐼௛ଵ(𝑆௠ − 𝑆௠
∗ − 𝐼௠ + 𝐼௠

∗ ). 

Now, 𝑊ᇱ(𝑡) ≤ 0  𝑎𝑛𝑑  𝑊ᇱ(𝑡) = 0 for 

 𝑆௛ = 𝑆௛
∗ , 𝐼௛଴ = 𝐼௛଴

∗ , 𝐼௛ଵ = 𝐼௛ଵ
∗ , 𝐻௛ = 𝐻௛

∗ , 𝑅௛ = 𝑅௛
∗ , 𝑆௠ = 𝑆௠

∗ , , 𝐼௠ = 𝐼௠
∗ . 

So, the largest invariance set is the singleton set {𝐸ଵ} . Therefore, using the principle of LaSalle’s 
invariance, the endemic equilibrium 𝐸ଵ is globally asymptotically stable. 
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5. Dengue model’s sensitivity analysis 

To mitigate and manage dengue outbreaks, a sensitivity analysis is performed to pinpoint the factors 
that exert the most significant influence on the transmission and dissemination of dengue within the 
population, as outlined in the model (2.1), employing the same methodology as previous studies [46–48]. 
The normalized forward sensitivity index of R0 relates to the system (2.1 ) parameter 𝜗 , which is 

signified by ζோబ

ణ =
డோబ

డణ
.

ణ

ோబ
. 

Table 2 and Figure 2 display the dengue fever model's sensitivity index in relation to R0. When 
an index has a positive sign, R0 increases; when it has a negative sign, R0 declines. If the other 
parameters are maintained constantly and the negative indices (𝛼, 𝜇ଵ, 𝛾, 𝛽ଷ, 𝛽ସ)  are increased, the 
value of R0 falls, suggesting a reduction in the rate of disease transmission. Conversely, if all other 
parameters remain constant and the indices with positive values  (Λଵ, 𝛽ଶ) are raised, R0 will also rise, 
resulting in a higher rate of disease transmission among humans. Furthermore, the sensitivity index 
shows that the infectious rate within the host has the highest positive value (+1), suggesting that changes 
in the host's infectious rate will affect R0. In addition, the negative sensitivity index of -0.99324 for the 
rate of immune system of susceptible host by consumption of natural foods (𝜶) indicates that a rise 
in 𝜶 leads to a reduction in R0 and vice versa. So, the best control approach to keep diseases under 
control is to increase the immune system rate of susceptible hosts by eating natural foods. 

Figure 3–6 display the 𝑅଴ of the proposed system as it varies with different input parameters. 
Visualizing these parameters' effect on the outcomes of R0 is the primary goal of this endeavor. Dengue 
fever in the population decreases as the rate of the immune system in the susceptible host grows due 
to the consumption of natural foods (𝛼) , while the rate of infection within the host (𝛽ଶ)  remains 
constant (refer to Figure 3). It is indeed possible to take 𝑅଴  to a satisfactory level of 𝑅଴ < 1  by 
enhancing the immune system of susceptible hosts by consuming natural foods, with an α value of 
approximately 0.42. 

Table 2. Sensitivity measures of R0. 

Parameter Sensitivity index 
Λଵ +1.0 
𝛽ଶ +1.0 
𝛼 -0.993245927 

𝜇ଵ -0.0084993573 

𝛾 -0.3573103612 

𝛽ଷ -0.2793059925 

𝛽ସ -0.3616383535 
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Figure 2. Sensitivity measures of R0. 

 

Figure 3. Impact of variability 𝛼 on 𝑅଴. 
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Figure 4. Impact of variability 𝛾 on 𝑅଴. 

 

Figure 5. Impact of variability 𝛽ଷ on 𝑅଴. 

 

Figure 6. Impact of variability 𝛽ସ on 𝑅଴. 
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Figures 4–6 demonstrate that while the infectious disease rate (𝛽ଶ) stays constant within the 
host, there is noticeable variation in the awareness rate among symptomatic infected humans (𝛾 ), the 
rate of symptomatic to hospitalized infected (𝛽ଷ), and symptomatic infection recovery rate (𝛽ସ). The 
results indicate that 𝛾 and 𝛽ଷ have small effects on 𝑅଴, but the symptomatic infection recovery rate 
has a larger impact on 𝑅଴ (Figure 6). 

6. Numerical simulation 

To demonstrate the findings of this study, the model's numerical simulations are performed using 
the parameter values specified in Table 3. The simulation visually represents the quantities of 
susceptible, infected, symptomatic infected, and hospitalized infected carriers within the host 
population, as well as the quantities of susceptible and infected people within the vector population. 

Table 3. References and parameters values of system (2.1). 

Parameter Values Reference 

Λଵ .9999 [49] 

𝛽ଵ .8500 Assumed 

𝛽ଶ .6294 [50] 
α .2520 Assumed 

𝜇ଵ .003468 [51] 

𝛽ଷ .555 [52] 

𝛽ସ .7186 [53] 

𝛾 .111 [54] 

𝛽ହ .0062 Assumed 

Λଶ .00034 [55] 

𝛽଺ .009 [56] 

𝜇ଶ .000244 Assumed 

Figure 7 shows the dynamic behavior of an epidemic model over 150 days, illustrating the impact 
of fluctuations in the parameter 𝛼: the rate of the immune system of susceptible hosts by consumption 
of natural foods. Figure 7 shows the susceptible human (𝑆௛), symptomatically infected human (𝐼௛ଵ), 
recovered human (𝑅௛) , and total infected population (𝐼௛଴ + 𝐼௛ଵ + 𝐻௛)  under three conditions: the 
original 𝛼(green), a 10% increase in 𝛼(red), and a 10% decrease in 𝛼(blue). The susceptible human (𝑆௛) 
experiences rapid decline and stabilization, with 𝛼  influencing the initial peak and pace of 
stabilization (Figure 7(a)). The symptomatically infected human (𝐼௛ଵ) shows a dramatic initial surge 
followed by a steady reduction, with greater peaks and faster falls found with increased 𝛼 (Figure 7(b)). 
Increased 𝛼 leads to a fast increase in the recovered human (𝑅௛) in Figure 7(c), before settling at 
higher values. In Figure 7(d), the overall infected human follows a similar trend of rapid rise and 
stabilization, with higher and faster stabilization found with a 10% increase in 𝛼 levels. Increasing 𝛼 
intensifies and shortens the epidemic, whereas decreasing 𝛼 leads to a less severe but longer epidemic 
course. 
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Figure 7. The effects of 𝛼. 

Figure 8 displays four graphs illustrating the impacts of altering the parameter 𝛽ଷ on an epidemic 
model over a span of 150 days. The figure illustrates the fluctuations in the susceptible human 
population (𝑆௛), hospitalized infected human population (𝐻௛), infected vector population (𝐼௠), and 
the total population (𝑆௛ + 𝐼௛଴ + 𝐼௛ + 𝐻௛) across three scenarios: the initial 𝛽ଷ(green), a 10% rise in 
𝛽ଷ(red), and a 10% drop in 𝛽ଷ(blue). The population of individuals susceptible to the infection (𝑆௛) 
initially drops and then reaches a stable state. This is due to a decrease in the transmission rate 𝛽ଷ, 
which results in a smaller peak in infections and a faster population stability. The population of infected 
individuals who are hospitalized (𝐻௛) exhibits a notable peak followed by a steady fall, which is 
caused by a reduced 𝛽ଷ resulting in a more significant peak and longer duration of hospitalization. 
The population of infected vectors (𝐼௠), diminishes with time, with a reduced 𝛽ଷ leading to a more 
significant initial value and a slower rate of decline. The aggregate population (𝑆௛ + 𝐼௛଴ + 𝐼௛ + 𝐻௛) 
experiences a significant increase followed by a period of stability, with negligible influence from 
changes in 𝛽ଷ  on the overall pattern. Overall, a reduction in 𝛽ଷ  exacerbates and lengthens the 
epidemic, while an augmentation in 𝛽ଷ alleviates its severity and duration. 



32813 

AIMS Mathematics  Volume 9, Issue 11, 32797–32818. 

 

Figure 8. The effects of 𝛽ଷ. 

Figure 9 illustrates the impact of changing the parameter 𝛽ହ  on the number of hospitalized 
infected and recovered individuals over a period of time, measured in days. The initial 𝛽ହ(green) of 
the hospitalized infected exhibits a fast ascent, reaching its maximum around day 40, and subsequently 
undergoes a slow decrease (Figure 9(a)). An increment of 10% in the value of 𝛽ହ(red) leads to a decrease 
in the highest point and a slightly swifter decrease. A reduction of 10% in the value of 𝛽ହ (blue) results 
in an increased peak and a longer duration of hospitalization. In Figure 9(b), the population of the 
original 𝛽ହ(green) strain has rapid growth, reaching its highest point around day 50, and then remains 
stable. A 10% augmentation in the value of 𝛽ହ(red) leads to a marginally elevated peak and a faster 
attainment of stability. A reduction of 10% in the value of 𝛽ହ(blue) results in a marginally diminished 
highest point and a delayed attainment of stability. In general, raising the value of 𝛽ହ has the tendency 
to decrease the maximum number of patients requiring hospitalization and speed up the process of 
recovery, leading to a less severe outbreak.  
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Figure 9. The effects of 𝛽ହ. 

7. Conclusions 

This study focuses on developing and examining a nonlinear mathematical model that represents 
the dynamics of dengue. The model considers different compartments for infected people, individuals 
with symptoms, and individuals requiring hospitalization. We took a look at the suggested model's 
fundamental characteristics. The model equilibria were used to produce the control reproduction 
number, the most essential mathematical quantity with major public health relevance.  The results of 
the model's stability tests were presented. The application of the Jacobian matrix method reveals that 
the local asymptotic stability of the disease-free steady-state is disrupted. Numerical simulation using 
several parameter configurations demonstrated the evolution of epidemics, the dynamics of the system, 
and validated theoretical findings. The numerical simulations illustrate the impact of parameters such 
as the rate of immune system of susceptible hosts by consuming natural foods, the rate of symptomatic 
infection to hospitalized infected humans, and the recovery rate of hospitalized infected humans. We 
also conducted a sensitivity study to evaluate the impact of model parameters on the dynamics and 
management of the disease. We examined the impact of various parameter rates in order to determine 
the extent to which this variance influences the epidemic trajectory. The research findings indicate that 
raising the rate of 𝛼 has the most significant impact on reducing the reproduction number, with no 
other parameter having a comparable effect on reducing infection. An investigation of this nature can 
provide crucial information for policymakers and health experts who may be faced with the harsh 
reality of infectious diseases. 
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