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Abstract: This paper presents a comprehensive study of the (2+1) time-fractional nonlinear
generalized biological population model (TFNBPM) using the J-transform combined with the optimal
homotopy analysis method, a robust semi-analytical technique. The primary focus is to derive
analytical solutions for the model and provide a thorough investigation of the convergence properties
of these solutions. The proposed method allows for flexibility and accuracy in handling nonlinear
fractional differential equations (NFDEs), demonstrating its efficacy through a series of detailed
analyses. To validate the results, we present a set of 2D and 3D graphical representations of the
solutions, illustrating the dynamic behavior of the biological population over time and space. These
visualizations provide insightful perspectives on the population dynamics governed by the model.
Additionally, a comparative study is conducted, where our results are juxtaposed with those obtained
using other established techniques from the literature. The comparisons underscore the advantages of
optimal homotopy analysis J-transform method (optimal HAJ-TM), highlighting its consistency and
superior convergence in solving complex fractional models.
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1. Introduction

Biological population models are crucial tools in understanding the dynamics of species populations
over time. These models incorporate various factors that affect the population and interactions between
these factors; this allows researchers to identify key drivers of population change and assess the impact
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of environmental changes, and develop effective conservation strategies. Furthermore, population
models can be used to predict the long-term viability of species and inform decisions about habitat
preservation, species reintroduction, and invasive species management. The complexity of biological
systems often necessitates the use of nonlinear differential equations to accurately represent these
interactions [1–3]. Recently, the incorporation of fractional calculus into these models has gained
attention, as it allows for a more nuanced depiction of memory and hereditary properties inherent
in biological systems. The time-fractional derivatives provide a flexible framework that can capture
the long-term dependencies and anomalous diffusion processes observed in ecological contexts. As
a result, time-fractional models have proven to be more effective in describing real-world biological
phenomena compared to traditional integer-order models [4, 5]. This mathematical field has received
considerable attention because of its capability to model processes that exhibit anomalous behavior and
memory effects, which are not adequately captured by integer-order models. Fractional differential
equations (FDEs) are particularly useful in describing systems with long-range temporal or spatial
dependencies, making them applicable in various disciplines such as physics [6], engineering [7, 8],
biology [9, 10], and even natural phenomena [11]. The versatility of FDEs lies in their ability to
incorporate history-dependent effects, providing a more accurate and comprehensive framework for
modeling complex dynamical systems.

Solving FDEs present unique challenges due to their non-local properties and the complexity of
fractional derivatives. Various methods have been developed to address these challenges, broadly
categorized into numerical, analytical, and semi-analytical approaches. Numerical methods, such as
finite difference and finite element methods, discretize the equations to approximate solutions, offering
flexibility and robustness in handling complex boundary conditions and geometries. However, they
often require significant computational resources and can be less insightful regarding the underlying
dynamics [12, 13]. Analytical methods aim to provide exact solutions, or exact solutions under
conditions offering deep insights into the behavior of the system, such as invariant subspace, local
symmetry, and Lie symmetry analysis [14–16]. Techniques such as the Laplace transform and
Mittag-Leffler functions are often employed, though finding closed-form solutions can be difficult or
impossible for highly nonlinear problems [17, 18]. Semi-analytical methods, such as the homotopy
analysis method (HAM) and the Adomian decomposition method, bridge the gap between numerical
and analytical techniques. These methods provide approximate solutions that converge to the exact
solution, combining the interpretative power of analytical methods with the practical applicability of
numerical approaches [19, 20].

Maitama and Zhao, in 2020 [21], introduced a new transform called the J-transform, which is an
adaptation of the widely recognized Sumudu transform and the Natural transform. Additionally, they
established the connection between the J-transform and the other integral transforms. In 2022, Singh
et al. [22], applied the J transform with the HAM and variation iteration method to solve the telegraph
equation. Recently, Singh et al. [23], also applied the J-transform to the differential transform to solve
a hyperbolic wave equation. So far, the use of the J-transform in solving differential equations remains
limited despite its efficiency and accurate results.

The TFNBPM has been examined both analytically and numerically by various researchers,
providing a deeper understanding of the underlying mechanisms and behaviors. Among them,
Srivastava et al. [24], provided an analytical solution for the TFNBPM using the fractional reduced
differential transform method by employing the Caputo fractional derivative. Acan et al. [25], presented
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exact solutions for the TFNBPM using reduced differential transform with conformable fractional
derivative. Veeresha and Prakasha [26], presented the solution of the TFNBPM using the natural
decomposition method. Ziane et al. [27], solved the TFNBPM using HAM utilizing local fractional
derivatives. Alaroud et al. [28], provided an efficient solution using the Laplace residual power series
method.

The objective of this article is to explore the optimal HAM with J-transform to present solutions
for the TFNBPM using Caputo fractional derivative (CFD). By leveraging this technique, our goal is
to offer a thorough understanding of the model’s dynamics and offer robust solutions that can be used
to analyze complex biological systems.

This article is structured as follows: In Section 2, we introduce several notations about the CFD
and the J-transform with their most important relations. A detailed analysis of the model being
examined is outlined in Section 3. Section 4 offers an overview of the analytical method used with its
convergence analysis. In Section 5, we introduce the steps of the analytical solutions for this particular
model using different initial conditions. In the sixth section, we display various figures illustrating the
obtained solutions at different parameters. Finally, the conclusion section summarizes our findings and
highlights the key outcomes of this research.

2. Basic notations

In this part, we present the fundamentals of CFD and the J-transform with its basic properties.

2.1. Fundamentals of Caputo fractional derivatives

The Grunwald-Letnikov, Weyl, Riemann-Liouville, Marchaud, Caputo, and Riesz definitions of
fractional derivatives strive to retain the typical characteristics of the normal derivative. Among these
definitions, the only universally shared property is linearity. Some specific properties associated with
each definition were listed in [29–31].

Most researchers in fractional calculus focus on investigating the CFD, which has gained popularity
for simulating real-world problems due to two primary reasons. Firstly, the CFD is bounded because
the derivative of a constant yields zero, and secondly, it allows for expressing initial conditions through
an integer-order derivative. It is important to emphasize that Caputo’s definition applies exclusively to
functions that exhibit differentiability.

Definition 2.1. [29] The CFD of θ order is defined by

CDθ
U f (U) =


Jk−θ dk

dUk
f (U), k − 1 < θ < k,

dk

dUn
f (U), θ = k,

(2.1)

where Jk−θ represents the Riemann-Liouville (RL) fractional integral, which can be described as

J
θf (U) =

1
Γ(θ)

∫ U

0
(U − Υ)θ−1 f (Υ) dΥ, U > 0, θ ∈ R+, (2.2)

where, R+ denotes all real positive numbers, and the function Γ(.) represents the well-known Gamma
function. The operator Jθ exhibits the following characteristics for f (U) ∈ space Cµ, µ ∈ R, and
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µ ≥ −1, α, β ≥ 0 and υ ≥ −1:
J
α
J
βf (U) = Jα+βf (U). (2.3)

J
α
J
βf (U) = JβJαf (U). (2.4)

J
αUυ =

Γ(υ + 1)
Γ(υ + 1 + α)

Uυ+α. (2.5)

CFD satisfies the following properties:

CDθ
U

[
J
θf (U)

]
= f (U). (2.6)

J
θ
[
CDθ

U f (U)
]

= f (U) −
k−1∑
ı=0

f ı(0)
U ı

ı!
, U > 0. (2.7)

CDθ
UUν =

Γ(ν + 1)
Γ(ν + 1 − θ)

Uν−θ. (2.8)

2.2. An overview of the J-transform

The J-transform (JT ) as presented in [21] is

Definition 2.2. The JT of a functionW(t) ∈ Ω is defined as

J[W(t)](s, v) =W(t)(s, v) = v
∫ ∞

0
exp

(
−

st
v

)
W(t)dt, (2.9)

where s and v are the variables of transformation, and Ω are the functions of exponential order:

Ω =

{
W(t) : ∃ r1, r2 > 0, 0 < E < ∞

}
, such that:

|W(t)| ≤ E exp
(
|t|
ri

)
, f or t ∈ (−1)i × [0,∞).

The definition is valid under the condition that, the integral exists.

These are some of the important properties of the JT that we use in the research.

Lemma 2.1. [22]
(a) If the two functions g(t) and h(t) are ∈ Ω have the JT G(s, v) andH(s, v), respectively, then,
(i). (Linearity of JT)

J[K1 g(x, t) +K2 h(x, t)](s, v) = K1G(x, s, v) +K2H(x, s, v).

(ii). (Convolution of JT)

J[g ∗ h](s, v) =
1
v
G(s, v)H(s, v).

(b) For power functions,

J
[ t`θ+b

Γ(`θ + b + 1)

]
(s, v) =

v`θ+b+2

s`θ+b+1 , f or `, b = 0, 1, 2, ...,
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where Γ(.) represents the well-known Gamma function.
(c) If the function p(x, t) ∈ Ω has the JT P(s, v), then the JT of ∂j p(x,t)

∂tj ∈ Ω is

J
[
∂ j p(x, t)
∂t j

]
(s, v) =

s j

v j
P(x, s, v) −

j∑
ι=1

sj−ι

vj−(ι+1)

∂ι−1p(x, 0+)
∂tι−1 , j ≥ 1.

(d) If the CFD of θ order is CDθ
t f (x, t), then,

J
[
CDθ

t f (x, t)
]
(s, v) =

sθ

vθ
F (x, s, v) −

m∑
ι=1

sθ−ι

vθ−(ι+1)

∂ι−1f (x, 0+)
∂tι−1 , m − 1 < θ ≤ m.

3. Theoretical framework of the TFNBPM

The general form of the TFNBPM in two dimensions is

CDBt Z(x, y, t) =
∂2Z2

∂x2 +
∂2Z2

∂y2 + ρ(Z), (3.1)

under initial condition

Z0(x, y, t) = Z(x, y, 0).

Where Z = Z(x, y, t) is the population density or the state variable of interest, which depends on the
spatial coordinates x, and y as well as the time t, the spatial variables or coordinates over which the
population densityZ is distributed, and t is the time over which the population evolves, ρ signifies the
growth rate or interaction of the population, incorporating factors like birth, death, competition, and
other ecological interactions, and B is the order of CFD (0 < B ≤ 1).

ρ(Z) can take different forms, each with its own significance:
(i). ρ(Z) = CZ, where C is a constant. This is called the Malthusian law for the generalized biological
population model; this is attributed to Thomas Malthus (1798), who shared his perspective on how
population growth impacts the food supply. His theory is based on two fundamental principles:
- Population increases in geometric rate (1, 2, 4, 16, 32, ...).
- Food production rises at an arithmetic rate (1, 2, 3, 4,...).
(ii). ρ(Z) = C1Z+C2Z

2, where C1 and C2 are constants. This is called Verhulst law; this corresponds
to Pierre-François Verhulst. It is a mathematical model used to describe the growth or decay of a
biological population interacting with its environment. It is a generalization of the logistic equation
and is often used to model population dynamics in ecology and biology.

From Figure 1, one can notice that, when the population grows exponentially (geometrically), the
food production increases linearly (arithmetically), and eventually the demand for food will outstrip
supply. The point that indicates the Malthusian trap, some-times called a Malthusian catastrophe, refers
to a situation where population growth surpasses agricultural production, leading to a crisis. This point
indicates a critical threshold where the available resources, particularly food, are insufficient to sustain
the population.
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Figure 1. Population growth according to Malthusian law.

Figure 2 clarifies Verhulst’s Law for the biological population model, it also known as the logistic
growth model; it describes how biological populations grow in a constrained environment. Unlike
exponential growth, which assumes unlimited resources and results in a population increasing at a
constant rate, Verhulst’s model incorporates the concept of carrying capacity. This means that as
the population size approaches the environment’s limit, growth slows and eventually stabilizes. The
logistic growth model is represented by an S-shaped curve, where the population initially grows
exponentially but then tapers off as it encounters resource limitations, leading to a stable equilibrium.

In this study, we deal with the two laws at different initial conditions.

Figure 2. Population growth according to Verhulst law.

4. Analysis of the optimal HAJ-TM

The HAM was first introduced by Liao Shijun in 1992; then this method underwent to some
modifications by Liao and others [32]. Marinca and Herisanu [33], produced a significant modification
to optimize the convergence of solutions to nonlinear problems and present the optimal homotopy
asymptotic method for the first time. In 2010, Liao presented other modifications [34] for the method
and called it the optimal homotopy analysis method. Since then, it has become a valuable tool
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in applied mathematics and engineering, facilitating the analysis and solution of various nonlinear
systems across multiple disciplines.

In this part, we explore the steps for finding an approximate solution for the TFNBPM using optimal
HAM and JT instead of using Laplace transform. These steps are outlined as follows:

First, the model Eq (3.1) can be expressed as

N { CDBt Z(x, y, t)} = 0, 0 < B ≤ 1, (4.1)

then, impose JT on the examined model (3.1), we obtain

J[Z(x, y, t)](s, v) −
v2

s
Z0(x, y, t) +

(v
s

)B
J
[
−
∂2Z2

∂x2 −
∂2Z2

∂y2 − ρ(Z)
]

= 0. (4.2)

The nonlinear operator, written in the form:

ℵ[∅(x, y, t;℘)] = J[Z(x, y, t)](s, v) −
v2

s
Z0(x, y, t) +

(v
s

)B
J
[
−
∂2Z2

∂x2 −
∂2Z2

∂y2 − ρ(Z)
]
, (4.3)

where∅(x, y, t;℘) is a function that takes real values. The deformation equation of zero-order is written
in the following form:

(1 − ℘)J{∅(x, y, t;℘) −Z0(x, y, t)}(s, v) = ℘H(x, y, t)}ℵ[∅(x, y, t;℘)], (4.4)

where } is an auxiliary parameter (} , 0), ℘ called an embedding parameter, ℘ ∈ [0, 1], and H(x, y, t)
is an auxiliary function.

Clearly, when ℘ = 0, we have ∅(x, y, t; 0) = Z0(x, y, t), and when ℘ = 1, it follows that
∅(x, y, t; 1) = Z(x, y, t). As ℘ transitions from 0 to 1, the solution transitions from the initial
approximation Z0(x, y, t) to the final solution Z(x, y, t). The unknown function ∅ can be expressed
as a Taylor series expansion in terms of ℘,

∅(x, y, t;℘) = Z0(x, y, t) +

∞∑
ι=1

Zι(x, y, t)℘ι, (4.5)

in which
Zι(x, y, t) =

1
ι!
∂ι∅(x, y, t;℘)

∂℘ι
|℘=0. (4.6)

If } and the auxiliary function H are selected appropriately to ensure that the series in Eq (4.5)
converges when ℘ is equal to 1, then it can be represented in the form:

Z(x, y, t) = Z0(x, y, t) +

∞∑
ι=1

Zι(x, y, t). (4.7)

Define the vector,
Z→κ (x, y, t) = {Z0(x, y, t),Z1(x, y, t), ...,Zκ(x, y, t)}. (4.8)

The ι-th order deformation equation is derived through the differentiation of Eq (4.4) ι times with
respect to ℘, then setting ℘ = 0 and dividing by ι!,

J{Zι(x, y, t) − χιZι−1(x, y, t)} = }HRι(Z→ι−1(x, y, t)), (4.9)
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where

χι =

0, ι ≤ 1,
1, ι > 1.

(4.10)

Setting H = 1,
Zι(x, y, t) = χιZι−1(x, y, t) + }J−1{Rι(Z→ι−1(x, y, t))}, (4.11)

where

Rι(Z→ι−1) =
1

(ι − 1)!
∂ι−1N {∅(x, y, t;℘)}

∂℘ι−1 |℘=0. (4.12)

In the optimal HAM, it is known that the value of } governs how the solution converges. Therefore,
to determine the region where the solution converges faster, we plot the }-curves and observe that the
area aligned with the x− axis is where the solution converges quickly. This region usually includes the
value −1. More specifically, to determine the optimal value of }, we determine the average residual
error and minimize it; it is determined by the following formula:

Eι(}) =
1

A BC

A∑
i=0

B∑
j=0

C∑
k=0

(
N (

ι∑
n=0

Zι(
i

A
,

j
B
,

k
C

))
)2

. (4.13)

Equation (4.13) is a nonlinear equation, whose variable function on it is }. We solve it to determine
the smallest value of } that reduces the average residual error.

4.1. Convergence analysis

Given that the optimal HAJ-TM result in fractional power series, to demonstrate the solution’s
convergence, consider the following theorems.

Theorem 4.1. [11, 35] For any series expressed in fractional powers

∞∑
r=0

Cr trB, t ≥ 0, (4.14)

(a) if the series
∑∞

r=0 Cr trB, t ≥ 0 converges for t = Λ, then it demonstrates absolute convergence for
every real t that meets |t| < |Λ|,
(b) if the series

∑∞
r=0 Cr trB, t ≥ 0 diverges for t = Λ, then it demonstrates absolute divergence for

every real t that meets |t| > |Λ|.

Proof. Given that the series is convergent for t = Λ, the series
∑∞

r=0 Cr trB is convergent for t ≥ 0, thus

lim
r−→∞

Cr trB = 0. (4.15)

Since, the sequence Cr trB is convergent, it must be bounded. Thus, there is a positive real number Q
such that |Cr trB| ≤ Q for all r ∈ N . Therefore,

|Cr trB| = |Cr ΛrB|

∣∣∣∣∣ t
Λ

∣∣∣∣∣r ≤ Q∣∣∣∣∣ t
Λ

∣∣∣∣∣r. (4.16)
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For every t such that | t
Λ
| < 1, it follows that

∑∞
r=0 |

t
Λ
|r converges for all positive real numbers. By

applying the comparison test, the series
∑∞

r=0 Cr trB converges for |t| < |Λ|. This concludes the proof of
(a).

Let us consider that the fractional power series (4.14) converges when t = v provided that |Λ| < |v|.
Given that the series converges for t = v and |Λ| < |v|, it follows from (a) that the series would also
converge when t = Λ. This results in a contradiction, implying that the series diverges for every real
value of t where |t| > |Λ|. �

Theorem 4.2. [5] Let E be an operator that maps H to H (where H is the Hilbert space), and
let X be the precise solution of (4.1). Within this framework, the approximated solution

∑∞
%=0 Ξ%

converges to X provided that there is a fixed value σ, (with 0 < σ ≤ 1) that satisfies, ‖ Ξ%+1(x, y, t) ‖≤
σ ‖ Ξ%(x, y, t) ‖, for every % ∈ N ∪ {0}.

Proof. See reference [5]. �

Now let us apply the previous theory to the proposed model and the solution method to complete
the steps of convergence.

Theorem 4.3. The computed series solutionZ(x, y, t) = Z0(x, y, t) +
∑∞
ι=1Zι(x, y, t) is convergent and

approaches the precise solution of Eq (3.1).

Proof. If we assume that, the series solutionZ(x, y, t) = Z0(x, y, t)+
∑∞
ι=1Zι(x, y, t) is convergent, then

lim
ι−→∞
Zι(x, y, t) = 0. (4.17)

Since, the truncated series

ZM(x, y, t) =

M∑
ι=1

[Zι(x, y, t) − χιZι−1(x, y, t)]. (4.18)

Using Eqs (4.17) and (4.18), substituting into (4.11), we obtain

lim
M−→∞

M∑
ι=1

Rι(Z→ι−1(x, y, t)) =

∞∑
ι=1

Rι(Z→ι−1(x, y, t)) = 0.

Consequently,

∞∑
ι=1

Rι(Z→ι−1(x, y, t)) =

∞∑
ι=1

{
J[Zι−1(x, y, t)](s, v) − (1 − χι)

v2

s
Z0(x, y, t)

+

(v
s

)B
J
[
−
∂2Z2

∂x2 −
∂2Z2

∂y2 − ρ(Z)
]}

=

(v
s

)B
J
[
CDBt Z(x, y, t) + ψ(x, y, t) − ρ(Z)

]
,

hence, CDBt Z(x, y, t) + ψ(x, y, t) = ρ(Z), which confirms that when substituting by the approximated
series ψ(x, y, t) into the series Z(x, y, t) = Z0(x, y, t) +

∑∞
ι=1Zι(x, y, t) this yields the exact solution of

the proposed model. �
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5. Implementation of the TFNBPM

In this section, we apply the optimal HAJ-TM to solve the TFNBPM under different initial
conditions. The overall structure of the model depends on the form of the growth rate function ρ(Z).
The general form is

CDBt Z(x, y, t) =
∂2Z2

∂x2 +
∂2Z2

∂y2 + CZp(1 − rZq), 0 < B ≤ 1, (5.1)

where C, p, r, and q are constants.

5.1. Malthusian law for growth rate function

In this case, p = 1 and r = 0, hence, the growth rate function ρ(Z) = CZ, hence the TFNBPM (5.1)
takes the form:
Case I. For the TFNBPM,

CDBt Z(x, y, t) =
∂2Z2

∂x2 +
∂2Z2

∂y2 + CZ, 0 < B ≤ 1, (5.2)

under initial condition
Z0(x, y, t) = Z(x, y, 0) =

√
x y.

The variables x and y represent spatial coordinates for the two-dimensional population model, where
the population or concentrationZ(x, y, t) changes over time t and diffuses in both the x and y directions.

To solve Eq (5.2), first, apply JT to both sides,

J[Z(x, y, t)](s, v) −
v2

s
Z0(x, y, t) +

(v
s

)B
J
[
−
∂2Z2

∂x2 −
∂2Z2

∂y2 − CZ

]
= 0, (5.3)

when applying the optimal HAJ-TM steps that were discussed in Section 4, we obtain the deformation
equation:

Zι(x, y, t) = χιZι−1(x, y, t) + }J−1
[
Rι(Z→ι−1(x, y, t))

]
, (5.4)

where

Rι(Z→ι−1(x, y, t)) = J[Zι−1](s, v) − (1 − χι)
v2

s
√

x y +

(v
s

)B
J
[
−
∂2Z2

ι−1

∂x2 −
∂2Z2

ι−1

∂y2 − CZι−1

]
. (5.5)

For ι = 1,
Z1 = } J−1

[
R1(Z0)

]
, (5.6)

where

R1(Z0) = J[Z0](s, v) −
v2

s
√

x y +

(v
s

)B
J
[
−
∂2Z2

0

∂x2 −
∂2Z2

0

∂y2 − CZ0

]
=

v2

s
√

x y −
v2

s
√

x y +

(v
s

)B
J
[
− C
√

xy
]

=

(v
s

)B v2

s
(−C
√

xy)

=
vB+2

sB+1 (−C
√

xy),

(5.7)
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hence, by taking inverse JT we obtain

Z1 = } (−C
√

xy)
tB

Γ(B + 1)
. (5.8)

For ι = 2,

Z2 = Z1 + }J−1
[
R2(Z1)

]
, (5.9)

where

R2(Z1) = J[Z1](s, v) +

(v
s

)B
J
[
−
∂2Z2

1

∂x2 −
∂2Z2

1

∂y2 − CZ1

]
= J

[
} (−C

√
xy)

tB

Γ(B + 1)

]
+

(v
s

)B
J
[}C2tB

√
xy

Γ(B + 1)

]
= } (−C

√
xy)

vB+2

sB+1 +

(v
s

)B vB+2

sB+1

[
}C2√xy

]
= } (−C

√
xy)

vB+2

sB+1 +
v2B+2

s2B+1

[
}C2√xy

]
.

(5.10)

Hence,

Z2 = Z1 + }J−1
[
} (−C

√
xy)

vB+2

sB+1 +
v2B+2

s2B+1

(
}C2√xy

)]
= } (−C

√
xy)

tB

Γ(B + 1)
+ }2 (−C

√
xy)

tB

Γ(B + 1)
+ (}2 C2√xy)

t2B

Γ(2B + 1)
.

(5.11)

By setting ι = 3, 4, ..., and using “Mathematica 13.2” software, we can easily evaluateZ3,Z4, .... The
approximate solution will be

Z(x, y, t) = Z0 +Z1 +Z2 +Z3 + .... (5.12)

Table 1 clarifies the exact and estimated solutions obtained from solving the TFNBPM Case I under
initial condition Z0 =

√
xy at B = 1 and C = 0.5 for y = 2 and } = −1 for several values of x once

at t = 0.1, other at t = 0.2, and at t = 1. These values result from expanding six approximated terms.
The results are excellent, which reflect the efficiency of the JT when applied with the optimal HAM.
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Table 1. The exact and the estimated solutions for the TFNBPM Case I under initial
conditionZ0 =

√
xy at B = 1 and C = 0.5 for y = 2 and } = −1.

t x Exact Sol. Est. Sol. |Error|
-8 4.20508 4.20508 6.24389 ×10−13

-5 3.32441 3.32441 4.93383 ×10−13

-2 2.10254 2.10254 3.12195 ×10−13

0.1 1 1.48672 1.48672 2.20490 ×10−13

4 2.97344 2.97344 4.40981 ×10−13

7 3.93350 3.93350 5.83977 ×10−13

10 4.70143 4.70143 6.98108 ×10−13

-8 4.42068 4.42068 8.03686 ×10−11

-5 3.49486 3.49486 6.35367 ×10−11

0.2 -2 2.21034 2.21034 4.01843 ×10−11

1 1.56295 1.56295 2.84146 ×10−11

4 3.12590 3.12590 5.68292 ×10−11

7 4.13517 4.13517 7.51781 ×10−11

10 4.94247 4.94247 8.98552 ×10−11

-8 6.59489 6.59488 6.61058 ×10−6

-5 5.21371 5.21371 5.22612 ×10−6

1 -2 3.29744 3.29744 3.30529 ×10−6

1 2.33164 2.33164 2.33719 ×10−6

4 4.66329 4.66328 4.67438 ×10−6

7 6.16895 6.16894 6.18363 ×10−6

10 7.37331 7.373310 7.39085 ×10−6

As we mentioned before, the parameter } controls the convergence of the solution. From Figure 3,
it is clear that the region in which the fast convergence exists is the area aligned with the x − axis and
it usually includes the value −1. But if we want to ascertain the exact value of } that gives an optimal
solution, we calculate the average residual error presented in Eq (4.13) and minimize its value.
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Figure 3. The }-curves of the TFNBPM ( Malthusian law Case I) at C = 0.5, x = 0.5, y = 0.5,
and t = 0.1 for different B values.
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Table 2 presents the values of } that gives optimal solutions and the corresponding E(}) at different
B values. The values of } matches with the region of convergence that appears in Figure 3.

Table 2. The optimal value } and its corresponding average residual error at several B values
when C = 0.5.

B }- Optimal The average residual error E(})
1.0 -1.05205 5.09710 E-38
0.8 -1.16722 2.74219 E-37
0.6 -1.26108 9.70729 E-35
0.4 -1.27654 1.09485 E-32

It is worth noting that, the series solution (5.12) that introduces the estimated solution, if we
substitute by } = −1, we obtain

Z(x, y, t) =
√

xy + C
√

xy
tB

Γ(B + 1)
+ C2√xy

t2B

Γ(2B + 1)
+ ... =

√
xy

∞∑
v=0

Cv tvB

Γ(vB + 1)
,

which is the same solution obtained by Vineet Srivastava et al. in [24], when solved by the fractional
reduced differential transform method. And the same results obtained by Yanqin Liu et al. in [36] at
B = 1.

To clarify that obtaining the optimal parameter } improves the accuracy of the solution, we present
Table 3, which represents the absolute error at B = 1 for HAM with JT and for optimal HAJ-TM with
fixed values for x = y = 2 and different values of t.

Table 3. Comparison between the HAM with JT and optimal HAJ-TM at x = y = 2 at
B = 1 and C = 0.5.

t Abs. error HAM
with JT at } = −1

Abs. error HAM
with JT at } = −0.9

Abs. error of optimal HAJ-
TM at } optimal = −1.05832

0.1 3.12195 E-13 2.99288 E-7 4.46216 E-16
0.2 4.01839 E-11 1.32580 E-6 3.27812 E-16
0.3 6.90941 E-10 3.79505 E-6 1.53273 E-15
0.4 5.20923 E-9 8.79792 E-6 4.45890 E-15

In this case, when evaluating the minimal average residual error at } optimal = −1.05832, it
becomes 2.22242E−36, which confirms that we can obtain an optimal solution by obtaining } optimal
value.
Case II. For the TFNBPM,

CDBt Z(x, y, t) =
∂2Z2

∂x2 +
∂2Z2

∂y2 + CZ, 0 < B ≤ 1, t ≥ 0, (5.13)

under initial condition
Z0(x, y, t) = Z(x, y, 0) =

√
sinx sinhy.
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By applying the same steps of Case I, one can obtain

Z1 = } (−C
√

sinx sinhy)
tB

Γ(B + 1)
. (5.14)

Z2 = (1 + })Z1 + }2(C2
√

sinx sinhy)
t2B

Γ(2B + 1)
. (5.15)

Z3 = (1 + })Z2 + }2(1 + })(C2
√

sinx sinhy)
t2B

Γ(2B + 1)
− }3(C3

√
sinx sinhy)

t3B

Γ(3B + 1)
. (5.16)

Again, using “Mathematica 13.2” software, we can easily calculate Z4,Z5, .... Hence the
approximated solution in the form of a series will be

Z(x, y, t) = Z0 +Z1 +Z2 +Z3 +Z4 + .... (5.17)

Table 4 represents the precise and the calculated solutions for the TFNBPM Case I for Z0 =√
sinx sinhy initial guess at B = 1 and C = 0.25 for y = 2 and } = −1 at t = 0.1, t = 0.2, and at

t = 1. These values result from expanding 6 terms (Z0 +Z1 +Z2 + ...+Z5). The results are excellent
since they produce a very small error, which clarifies the efficiency of applying the optimal HAJ-TM.

Table 4. The exact and the estimated solutions for the TFNBPM Case I under initial
conditionZ0 =

√
sinx sinhy at B = 1 and C = 0.25 for y = 2 and } = −1.

t x Exact Sol. Est. Sol. |Error|
-8 1.94223 1.94223 2.44249 ×10−15

-5 1.91212 1.91212 2.44249 ×10−15

-2 1.86198 1.86198 2.22045 ×10−15

0.1 1 1.79119 1.79119 2.22045 ×10−15

4 1.69869 1.69869 1.99840 ×10−15

7 1.58271 1.58271 1.99840 ×10−15

10 1.44023 1.44023 1.77636 ×10−15

-8 1.99139 1.99139 2.95541 ×10−13

-5 1.96052 1.96052 2.91100 ×10−13

0.2 -2 1.90912 1.90912 2.83329 ×10−13

1 1.83654 1.83654 2.72671 ×10−13

4 1.74169 1.74169 2.58682 ×10−13

7 1.62278 1.62278 2.40918 ×10−13

10 1.47669 1.47669 2.19158 ×10−13

-8 2.43229 2.43229 2.36772 ×10−8

-5 2.39459 2.39459 2.33102 ×10−8

1 -2 2.33180 2.33180 2.26990 ×10−8

1 2.24315 2.24315 2.18360 ×10−8

4 2.12731 2.12731 2.07083 ×10−8

7 1.98206 1.98206 1.92944 ×10−8

10 1.80363 1.80363 1.75575 ×10−8
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Figure 4 represents the }-curves at various B values; it is clear that the region in which the fast
convergence exists is approximately [−2.5, 0.5]. To ascertain the particular value of } that gives an
optimal solution, we calculate the average residual error presented in Eq (4.13) and minimize its value.
The values of optimal } and its corresponding error are presented in Table 5.
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Figure 4. The }-curves of the TFNBPM ( Malthusian law Case II) at C = 0.25, x = 0.5,
y = 0.5 and t = 0.1 for various B values.

Table 5. The optimal value } and its corresponding average residual error at several B values
when C = 0.25.

B The optimal value of } The average residual error E(})
1.0 -1.05037 1.74892 E-39
0.8 -1.04323 7.72337 E-38
0.6 -1.11547 7.95951 E-37
0.4 -1.16775 1.34901 E-35

By noticing the approximated solution obtained, when substituting by } = −1, the solution takes
the form:

Z(x, y, t) =
√

sinx sinhy + C
√

sinx sinhy
tB

Γ(B + 1)
+ C2

√
sinx sinhy

t2B

Γ(2B + 1)
+ ...

=
√

sinx sinhy
∞∑

v=0

Cv tvB

Γ(vB + 1)
.

This is the same solution obtained by Vineet Srivastava et al. in [24] and also the same solution
obtained by Mohammad Alaroud et al. in [28] when they solved the system using the residual power
series method.

5.2. Verhulst law for growth rate function

In this case, if we put C = p = q = 1, in Eq (5.1), the growth rate function ρ(Z) = Z(1 − rZ),
hence the TFNBPM takes the form:

CDBt Z(x, y, t) =
∂2Z2

∂x2 +
∂2Z2

∂y2 +Z(1 − rZ), 0 < B ≤ 1, (5.18)
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with initial condition
Z0(x, y, t) = e

1
2

√
r
2 (x+y).

Applying the optimal HAJ-TM steps presented in Section 4, we obtain the deformation equation:

Zι(x, y, t) = χιZι−1(x, y, t) + }J−1
[
Rι(Z→ι−1(x, y, t))

]
, (5.19)

where

Rι(Z→ι−1) = J[Zι−1] − (1 − χι)
v2

s
e

1
2

√
r
2 (x+y) +

(v
s

)B
J
[
−
∂2Z2

ι−1

∂x2 −
∂2Z2

ι−1

∂y2 −Zι−1(1 − rZι−1)
]
. (5.20)

When ι = 1,
Z1 = } J−1

[
R1(Z0)

]
, (5.21)

where

R1(Z0) = J(Z0) −
v2

s
e

1
2

√
r
2 (x+y) +

(v
s

)B
J
[
−
∂2Z2

0

∂x2 −
∂2Z2

0

∂y2 −Z0(1 − rZ0)
]

=
v2

s
e

1
2

√
r
2 (x+y)

−
v2

s
e

1
2

√
r
2 (x+y) +

(v
s

)B
J
[
− e

√
r(x+y)
2
√

2

]
=

(v
s

)B v2

s
(−e

√
r(x+y)
2
√

2 )

=
vB+2

sB+1 (−e
√

r(x+y)
2
√

2 ).

(5.22)

Taking inverse JT to obtain,

Z1 = } (−e
√

r(x+y)
2
√

2 )
tB

Γ(B + 1)
. (5.23)

When ι = 2,
Z2 = Z1 + }J−1

[
R2(Z1)

]
, (5.24)

where,

R2(Z1) = J[Z1] +

(v
s

)B
J
[
−
∂2Z2

1

∂x2 −
∂2Z2

1

∂y2 −Z1(1 − rZ1)
]

= J
[
} (−e

√
r(x+y)
2
√

2 )
tB

Γ(B + 1)

]
+

(v
s

)B
J
[
}tBe

√
r(x+y)
2
√

2

Γ(B + 1)

]
= } (−e

√
r(x+y)
2
√

2 )
vB+2

sB+1 +

(v
s

)B [
}e

√
r(x+y)
2
√

2
vB+2

sB+1

]
.

(5.25)

Then, by substituting in Eq (5.24),

Z2 = Z1 + }J−1
{
} (−e

√
r(x+y)
2
√

2 )
vB+2

sB+1 +

(v
s

)B [
}e

√
r(x+y)
2
√

2
vB+2

sB+1

]}
= Z1 + }2 (−e

√
r(x+y)
2
√

2 )
tB

Γ(B + 1)
+ }2 (e

√
r(x+y)
2
√

2 )
t2B

Γ(2B + 1)

= Z1(1 + }) + }2 (e
√

r(x+y)
2
√

2 )
t2B

Γ(2B + 1)
.

(5.26)
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When ι = 3,
Z3 = Z2 + }J−1

[
R3(Z2)

]
, (5.27)

where,

R3(Z2) = J[Z2] +

(v
s

)B
J
[
−
∂2Z2

2

∂x2 −
∂2Z2

2

∂y2 −Z2(1 − rZ2)
]

= J(Z2) +

(v
s

)B
J
[
−
}2t2Be

√
r(x+y)
2
√

2

Γ(2B + 1)
+
}2tBe

√
r(x+y)
2
√

2

Γ(B + 1)
+
}tBe

√
r(x+y)
2
√

2

Γ(B + 1)

]
= J(Z2) +

(v
s

)B [
− }2e

√
r(x+y)
2
√

2
v2B+2

s2B+1 +

(
}2e

√
r(x+y)
2
√

2 + }e
√

r(x+y)
2
√

2

)vB+2

sB+1

]
.

(5.28)

Then, by substituting in Eq (5.27),

Z3 = Z2 + }J−1
{
J(Z2) +

(v
s

)B [
− }2e

√
r(x+y)
2
√

2
v2B+2

s2B+1 +

(
}2e

√
r(x+y)
2
√

2 + }e
√

r(x+y)
2
√

2

)vB+2

sB+1

]}
= Z2 + }Z2 + }3 (−e

√
r(x+y)
2
√

2 )
t3B

Γ(3B + 1)
+

(
}3e

√
r(x+y)
2
√

2 + }2e
√

r(x+y)
2
√

2

) t2B

Γ(2B + 1)

= Z2(1 + }) +

(
}3e

√
r(x+y)
2
√

2 + }2e
√

r(x+y)
2
√

2

) t2B

Γ(2B + 1)
+ }3 (−e

√
r(x+y)
2
√

2 )
t3B

Γ(3B + 1)
.

(5.29)

And so on, setting ι = 4, 5, ..., and using “Mathematica 13.2” software, we can easily evaluate
Z4,Z5, .... The approximate solution will be

Z(x, y, t) = Z0 +Z1 +Z2 +Z3 + .... (5.30)

Table 6 shows the precise, calculated solutions, and the absolute error between the two, that results
from solving the TFNBPM for the Verhulst law of population growth at B = 1 and r = 0.5 for y = 2
and } = −1. The results shown in the table for the calculated solution are obtained by expanding six
terms. The accuracy of the solution increases with the number of terms expanded, which confirms the
convergence of the series representing the solution we obtained.

As we did in previous cases to determine the region where the solution achieves faster convergence,
we graph the }-curves. The area aligned with the x−axis is where the solution converges more quickly.
The common value of } that is included in the region of convergence is −1 and this matches with the
region that appears in Figure 5.

By noticing the series solution (5.30), if we substitute by } = −1, we obtain a closed form solution:

Z(x, y, t) = e
√

r(x+y)
2
√

2 + e
√

r(x+y)
2
√

2
tB

Γ(B + 1)
+ e

√
r(x+y)
2
√

2
t2B

Γ(2B + 1)
+ ...

= e
√

r(x+y)
2
√

2

∞∑
v=0

tvB

Γ(vB + 1)
,

which is the same solution obtained by Mohammad Alaroud et al. in [28], when they solved the system
using the residual power series method.

From the results shown in the tables, it is clear that using the JT with the optimal HAM provides
very good results for solving fractional differential equations.

AIMS Mathematics Volume 9, Issue 11, 32757–32781.



32774

Table 6. The exact and calculated solutions for the TFNBPM for Verhulst law of population
growth at B = 1 and r = 0.5 for y = 2 and } = −1.

t x Exact Sol. Est. Sol. |Error|
-8 0.246597 0.246597 4.48316 ×10−12

-5 0.522046 0.522046 9.49085 ×10−12

-2 1.105170 1.105170 2.00919 ×10−11

0.1 1 2.339650 2.339650 4.25344 ×10−11

4 4.953030 4.953030 9.00471 ×10−11

7 10.48560 10.48560 1.90628 ×10−10

10 22.19800 22.19800 4.03563 ×10−10

-8 0.272532 0.272532 5.81168 ×10−10

-5 0.576950 0.576950 1.23033 ×10−9

0.2 -2 1.221400 1.221400 2.60461 ×10−9

1 2.585710 2.585710 5.51397 ×10−9

4 5.473950 5.473950 1.16731 ×10−8

7 11.58830 11.58830 2.47119 ×10−8

10 24.53250 24.53250 5.23151 ×10−8
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Figure 5. The }-curves of the TFNBPM ((Verhulst law for population) at r = 0.5, x = 0.5,
y = 0.5, and t = 0.1 for various B values.

To confirm the accuracy of our results, Let us present Tables 7 and 8, which present comparisons
between the results we obtained for Malthusian and Verhulst growth with one of the efficient semi-
analytical methods, which is the Laplace fractional power series method presented in [28]. We recorded
the results at the same parameter values and the same number of expanded terms.
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Table 7. Comparisons between our results and the results presented in [28] using absolute
error values for the TFNBPM at the same parameter values for Malthusian growth.

Case I Eq (5.2) for C = 0.5 at (x, y) = (2, 3) Case II Eq (5.13) for C = 0.1at (x, y) = (1, 30)
t The Abs. error

presented in [28]
The Abs. error of our
results at } = −1.05

t The Abs. error
presented in [28]

The Abs. error of our
results at } = −1.05

0.5 3.061708 ×10−8 6.15423 ×10−9 1 1.080055 ×10−9 3.70520 ×10−10

1 4.048135 ×10−6 7.05123 ×10−8 2 7.013444 ×10−8 1.32080 ×10−8

1.5 7.150407 ×10−5 1.38533 ×10−6 3 8.106860 ×10−7 9.65756 ×10−8

2 5.542531 ×10−4 1.80585 ×10−5 4 4.623050 ×10−6 1.21562 ×10−8

2.5 2.736956 ×10−3 3.24755 ×10−4 5 1.790206 ×10−5 9.26610 ×10−7

3 1.016540 ×10−2 2.12395 ×10−3 6 5.427211 ×10−5 2.15195 ×10−6

Table 8. Comparisons between our results and the results presented in [28] using absolute
error values for the TFNBPM at the same parameter values for Verhulst growth.

Verhulst growth Eq (5.18) at r = 0.5 and (x, y) = (1, 1)
t The Abs. error presented in [28] The Abs. error of our results at } = −1.05
0.32 1.154399 ×10−5 1.78803 ×10−7

0.64 7.752680 ×10−4 2.84184 ×10−6

0.96 9.282582 ×10−3 2.83280 ×10−4

1.28 5.492411 ×10−2 3.56900 ×10−3

1.6 2.210639 ×10−1 2.04997 ×10−2

1.92 6.978720 ×10−1 7.99154 ×10−2

6. Graphical illustrations

Graphs are the main tool that provides an explanation about the system dynamics and also shows
the effects of all parameters about each other in a simple way. In this study, we presented two- and
three-dimensional graphs of all solutions we obtained. Figure 6 represents the 2D profile of solving the
TFNBPM presented in Eq (5.2) at C = 0.5 and } = −1. Figure 6(a) introduces the solution at x = 2,
and y = 3 for different fractional order derivatives B, while Figure 6(b) introduces the solution at y = 3
and several time steps. Figure 7 clarifies the 3D solution of the TFNBPM (5.2); Figure 7(a) clarifies
the obtained calculated solution; and Figure 7(b) clarifies the exact solution; the two graphs provide
matching between them. Figure 8 provides a two-dimensional interface for the solution of TFNBPM
(5.13) at C = 0.25 and } = −1. Also this figure has two profiles, one at different B-values and the other
at different time values. Figure 9 is the three-dimensional profile of the TFNBPM (5.13) which gives
soliton wave shapes; Figure 9(a) is the approximated solution at B = 1, and Figure 9(b) is the exact
solution. Figure 10 represents the TFNBPM (5.18) in 2D; Figure 10(a) is the solution at x = 2, y = 3,
r = 0.5 and } = −1. Figure 10(b) is the solution at y = 3 for several time steps. Figure 11 is the 3D
profile for the approximate and the exact solution at the same parameters of TFNBPM (5.18). From the
figures represented, especially the three-dimensional figures, we notice a great similarity between the
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solutions we obtained and the accurate solutions, this reflects the efficiency of the applied technique
for solution.
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Figure 6. Two-dimensional solution profile presented in Eq (5.12) at C = 0.5 and } = −1.
(a) For x = 2, y = 3 for various B values; (b) For y = 3 and several time steps.

a b

Figure 7. 3D depiction of the solution to the TFNBPM at y = 1. (a) The estimated solution
from Eq (5.12) at B = 1; (b) the exact solution.
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Figure 8. Two-dimensional solution profile of TFNBPM (second case of Malthusian law for
population) presented in Eq (5.17) at C = 0.25 and } = −1. (a) For x = 2, y = 3 for various
B values; (b) for y = 3 and several time steps.
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a b

Figure 9. 3D depiction of the solution to the TFNBPM (Malthusian law case II) at y = 1. (a)
The estimated solution from Eq (5.17) at B = 1; (b) the exact solution.
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Figure 10. Two-dimensional solution profile of TFNBPM (Verhulst law for population)
presented in Eq (5.30) at r = 0.5 and } = −1. (a) For x = 2, and y = 3 at various B values;
(b) for y = 3 and several time steps.
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Figure 11. Three-dimensional profile of the solution of the TFNBPM (Verhulst law for
population) at y = 1. (a) The approximated solution from Eq (5.30) at B = 1; (b) the exact
solution.
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7. Conclusions

In this paper, we presented an in-depth analysis of the 2+1 nonlinear time-fractional generalized
biological population model using the J-transform in conjunction with the optimal homotopy analysis
method. The semi-analytical approach demonstrated its effectiveness in providing accurate and
convergent solutions, which were validated through a series of 2D and 3D graphical representations.
We presented two cases for the TFNBPM depending on the growth rate function called Malthusian
and Verhulst low for population growth. Additionally, comparative studies with other established
techniques underscored the robustness and efficiency of our proposed method. The findings of this
research highlight the potential of combining the J-transform with optimal HAM to address complex
fractional differential equations in biological population models.

Future research directions could focus on extending this approach to more complex and higher-
dimensional fractional systems, exploring its application in other fields such as physics and
engineering. Additionally, further refinement of the method to enhance computational efficiency and
accuracy could be pursued. Investigating the integration of machine learning techniques with the J-
transform and optimal HAM may also open new avenues for solving a broader range of nonlinear
fractional differential equations.
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